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Abstract 

The article strengthens and provides a dynamic extension of the theory on collective rent 
seeking and private provision of a public good. Each individual agent within each group 
chooses in continuous or discrete time a continuous or discrete effort level. The combined 
effort within each group provides within-group public goods which are used as an input in 
the between-group n-group competition for an external prize. Intergroup mobility and 
intergroup warfare are allowed for. Each group and each individual agent within each group 
get a fraction of the prize based on a linear combination of equity and relative effort. A 
model/algorithm is developed generating analytical results and simulations illustrating how 
the interaction within and between groups proceeds through time. 

JEL classification: C72; C73; D72 

Keywords: Non-cooperative games; Evolutionary game dynamics; Rent seeking: Within-group strategy 
selection; Between-group competition; Micro-macro link 

1. Introduction 

The article strengthens and provides a dynamic extension of the theory on rent 
seeking, pioneered by Tullock (1967, 1980), supplemented by Katz et al. (1990) 

and Nitzan (1991). A model/algorithm is developed generating analytical results 
and simulations illustrating the interaction within and between groups of generally 
different and arbitrary size, allowing for intergroup mobility and intergroup 
warfare. The means employed in the between-group n-group competition are 
public goods generated by within-group interaction in each group. 
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Each individual agent Aij within each group Ai, i = 1,. . . , n, chooses at time r 
a cost Sij of effort, 0 I Sij I ci. The combined cost Si of effort within group Ai 

provides within-group public goods which are used in the between-group n-group 
competition for an external prize E. Each group Ai and each individual agent A,, 

within each group get a fraction of the prize E based on a linear combination of 
equity and relative effort. 

Section 2 presents the static model involving within-group and between-group 
interaction. Section 3 provides static equilibrium analysis. Section 4 develops an 
eight-step continuous and discrete time algorithm for an arbitrary number n of 
groups Ai each consisting of an arbitrary number n,(t) of individual agents Aij. 

Section 5 presents the dynamic model assuming fixed group sizes n,(r), and 
employs it to a continuous and discrete strategy within-group n,(t)-person pris- 
oner’s dilemma in each group Ai, accounting for between-group n-group competi- 
tion for an external prize E. A simulation allowing the two strategies ‘always 
cooperate’ and ‘always defect’ for two groups is performed. Section 6 presents the 
dynamic model assuming intergroup mobility, and performs simulations. Section 7 
presents the dynamic model assuming intergroup warfare, illustrating with simula- 
tions. Section 8 considers the combined operation of intergroup mobility and 
intergroup warfare, and provides simulations. Section 9 introduces the n,(t)-per- 
son reactive strategies ‘tit-for-tat’ and ‘bully’ and gives simulations for one group 
in isolation. 

2. Static model 

Assume n groups Ai, i= l,..., n, with n,(t) = ni individual agents A,,, 

j= l,..., ni, in each group (Fig. 1). Each individual agent Aij chooses a strategy 
.Sii, by which we mean that he has a cost Sij of effort, 0 I Sij < ci, so that each 
group Ai has a cost of effort 

SjdZf 5 s,,, 
j=l 

where 0 I S; I n,ci. All the n groups Ai have a cost of effort 

Sd”t& = e SSij, 
i=l i=lj=l 

where 0 < S I Cy_ , nici. 

Level 2 Al_ _J-. . . . . . . . . . . . . . .A, 
Level 1 All.. .&xl A21 . . .Azn2 Anl...AnnD 

Fig. 1. Hierarchy represented by matrix A. 

(2.1) 

(2.2) 
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Each group Ai is involved in a within-group game which determines the 
provision of a public good that is used as an input in the competition for a 
between-group prize, E, against the other groups. Let an effort of ci in group Ai 

produce within-group public goods Bi(t) = B,. An effort of Sij by an individual 
agent Aij thus generates within-group public goods BiSij/ci, and an effort Si by 
group Ai generates within-group public goods BiSi/ci. Interesting cases of Bi are 
when Bi is constant and when Bi is proportional to IZ~. Bi being constant means 
that the public goods produced by a cooperative act c is divided between the 
group members A,,, giving a smaller share to each as the group size ni increases. 
Bi being proportional to ni means that the benefits reaped by one individual group 
member do not reduce the benefits received by another group member. 

The between-group n-group competition for the prize E gives a fraction fi, i.e. 
LE to group Ai, and a fraction fij of this, i.e. fijfiE to individual agent Aij. The 
one-period (static) payoff Pi to each group Ai is thus 

pim2s’Bi +fi. - Si, 

‘i 
(2.3) 

where mod means that this is a model of nature. (2.3) says that group Ai has a 
total cost Si of effort, which generates a fraction Si/llici of the within-group 
public goods ni Bi, and a fraction fi of the between-group prize E. Similarly, the 
one-period payoff Pij to each individual agent Aij is 

PiimzAj si Bi +f. E 
.[ 1 ‘i 

- Sij. (2.4) 

A variety of different distribution rules fij and fi can be considered. Nitzan (1991, 
p. 1524) uses the rule 

f,_mz (’ -‘ilSij 

II 
+a’ 

‘i ni ’ 

which means that a proportion ai is distributed within group Ai on egalitarian 
grounds (i.e. equal portion to each) and the remaining proportion 1 - ai is 
distributed according to the relative amount of public goods produced by each 
individual agent Aij, which corresponds to the relative effort of each individual 
agent A ii. Analogously for the between-group distribution, set 

+” 
n’ (2.6) 
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where a proportion a is distributed between the n groups Ai on egalitarian 
grounds and the remaining proportion 1 - a is distributed according to the relative 
amount of public goods produced by each group Ai. An alternative to (2.6) is 

f, = . . . =fmrn-a/m, f,,, = . . . =f”m20 (2.7) 
where S, = . . . =S,,,>S,,,+,2 . . . 2 S, and 1 I m I II, which means that the 
group (assume A, without loss of generality) producing the highest effort S, gets 
the entire between-group prize E, or, if m groups equally produce the highest 
effort, that these equally share the prize E among themselves. In the remainder of 
the article I assume (2.6). Inserting (2.5) and (2.6) into (2.4) gives 

Pij = 
(1 - Ui)Sij 

‘i 

(1 -ai)Bi ai Bi 
= sij + -Si+(l -u,)E 

ci nici 

u,E a 
+ -- -sij. 

ni n (2.8) 

3. Static equilibrium analysis 

The first order condition for 
agent Ajj is 

a global interior maximum of Pij for individual 

-l=O. (3.1) 
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In the remainder of the article I set ai = 1 and a = 0, which means that the 
payoff available to each group Ai is divided equally among its members A,,, and 
that each group A, gets a fraction of the between-group prize E proportional to 
the relative amount of public goods it produces compared with the other groups. 
(3.1) then becomes 

E!? 
Ci 

Bi 
=n,--. 

‘i 
(3.2) 

Setting Bi = B, ci = c, and summing both sides in (3.2) from i = 1 to i = n, i.e. 
Cl=, (. ), gives 

ES(n - 1) 
s2 

= kni, -q, ( I i= I 

i.e. 

s= 
(n- l)E 

(3.3) 

(3.4) 

If we assume that all the groups Ai are equally large, i.e. n, = n2 = . . . = n,, and 
that identical individual agents Aij in a symmetric Nash equilibrium choose the 
same effort level S,,, which implies S = nSi = nniSij, (3.4) gives that 

S;j= nn,i:;“;) = n2Y&“J. 
(3.5) 

Checking the border conditions 0 I Sij I c, (3.5) shows that the former implies 
c > B/n, and the latter implies 

n2n2 B 

Es (n-‘1) ‘-< ( I I. (3.6) 

Inserting Sij = c and (3.5) into (2.8) with ai = 1 and a = 0 shows that the former 
maximizes Pi. when (3.6) is not satisfied. That is, when E is above that level 
given by (3.6j, it is beneficial for an individual agent Aij to limit his effort to 
Sjj = c rather than choose the higher Sij according to (3.5). 

If we assume 0 < Bi/ni < ci < Bi, the within-group game is a ‘continuous’ 
version of an n,-person prisoner’s dilemma, in the sense that each individual agent 
Aij can choose any effort level S,,, i.e. degree of cooperation, on a continuous 
scale from 0 to ci. 
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If we assume the two discrete strategies cooperation c (effort level Sij = ci) 
and defection d (effort level Sij = O), we get the standard (discrete) ni-person 
prisoner’s dilemma. Define hi, - 1 as the number of cooperating individual agents 
aside from individual agent Ajj in group Ai. If individual agent Aij chooses 
Sij = ci, giving hi, cooperators m group Ai, he gets according to (2.8) with ai = 1 
and a = 0, a payoff 

PijC = L hiCBi + 
hic Bi 

ni 

1 1 khicBi 

E -ci if Sij=ci. 

i=l 
(3.7) 

If individual agent Aij chooses Sij = 0, giving hi, - 1 cooperators in group Ai, 

he gets according to (2.8) with ai = 1 and a = 0, a payoff 

Piid = ; (hi, - 1) Bi + 
thic-- ‘jBi 

I ( khiCBi -Bi 
i= 1 ) 1 

E if Sij = 0. (34 

When the between-group prize E = 0, the unique Nash equilibrium for each 
individual agent Aij in group Ai is the well-known mutual defection Sij = 0. As 
E increases, a minimum value of E can be determined which guarantees coopera- 
tion Sij = ci by all the ni individual agents Aij in the II groups Ai. The most 
restrictive requirement for E, to ensure cooperation by all the individual agents 
A,,, is derived by assuming there are exclusively cooperators in the II groups, and 
that one individual agent Aij in group Ai contemplates whether to defect. Hence 
set hi, = ni in (3.7) and (3.8). Cooperation by the individual agent Ai follows if 
(3.7) is larger than (3.8), i.e. if 

i.e. if 

(iniBi)[(iniBi) -Bi] 

“[jtR”“i[[.ltl. 

(3.10) 

where n,>OVi=l,..., n, to avoid possible division with 0. That is, groups Ai 

without members Aij are not included in (3.101, which is consistent with these not 
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getting any fraction of the between-group prize E. Note from (3.10) that the 
requirement for E when Bi = B is most strict for the largest group and least strict 
for the smallest group. Calculating the right-hand side of (3.10) Vi = 1,. . . , n, 
choose that i that generates the strictest requirement for E. 

4. The algorithm 

One common algorithm to determine the relative fitnesses of several strategies, 
when there is only one group, is employed by Martinez-Co11 and Hirshleifer 
(1991), Maynard Smith (19821, Schuster and Sigmund (19851, Taylor and Jonker 
(19781, and Zeeman (1981). That algorithm makes five major simplifications: 

1. It assumes only one group, in isolation/vacuum, not several groups, nor a 
hierarchy. 
2. It assumes for each individual agent Aij a finite number of discrete strategies 
Sjj rather than a continuous effort level S,,, say 0 I Sij I ci. 
3. It does not specify group size, nor specific numbers of individual agents playing 
the various strategies. It specifies instead what fractions of the group play the 
various strategies. These fractions change through time dependent upon what 
strategies are most fit. 
4. It assumes that the fractions play two-person games, not n,(t)-person games. 
5. It assumes that the reactive strategies, tit-for-tat and bully, have instantaneous 
response capability. For a two-person game this implies that a tit-for-tat player will 
be able to distinguish between pure cooperators and pure defectors after having 
met one pure defector once. This is because the tit-for-tat player will cooperate 
and be exploited the first time it meets a defector, the defector enjoying a free ride, 
while, in subsequent time periods, whenever a tit-for-tat player meets a defector, 
the tit-for-tat player will also defect. 

Generalizing that algorithm, this section rectifies these five simplifications: 

1. It assumes a two-level hierarchy A and an arbitrary number n of groups Ai. 
2. It assumes a continuous and discrete time model. It posits for each individual 
agent Aij a continuous strategy model with a continuous effort level S,,, where 
0 I Sij I cj, and a discrete strategy model allowing for a finite number of discrete 
strategies Sjj. 
3. It specifies the exact number n,(t) of individual agents Aij in each group Ai at 
time t, and the exact fraction pi(s, t> or pi,(t), and exact number hi,(t) playing 
each strategy s = Sij, in group Ai at time t. 
4. It allows n,(t) to change through intergroup mobility, intergroup warfare, or 
analogs of reproduction and death of individual agents Aij in each group Ai. The 
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changes dn,(t>/dt and dpi(s, t)/dt in n,(t) and P~(s, t) (or pi,(t)) depend upon 
the within-group n,(t)-person games, and between-group n-group games. 
5. It acknowledges in a discrete time multi-period game that the ni(t)-person 
reactive strategies, tit-for-tat and bully, account for the conditions and strategies 
Sij played both in the current time period t and the previous time period t - 1. 

The eight-step algorithm is as follows: 

1. Set initial conditions: specify the number n of groups Ai, and the initial number 
ni(O> of individual agents Aij in each group Ai at time t = 0. Specify the strategy 
set Sij of available strategies Sij for each individual agent Aij. For the continuous 
strategy model, define the function pi(s, t> as the fraction of individual agents Aij 

that play the strategy s = Sij, 0 I s = Sij I ci at time t, where t is continuous or 
discrete, t = 0, 1, 2,. . . . For the discrete strategy model, define the initial number 
h,,(O) of individual agents Aij playing each strategy Sij at time t = 0. Define 

def his( t) 
Pis( t> = - 

ni(t> 

as the fraction of individual agents Aij in group Ai that chooses 
at time t. Observe that 

/ d’pi(s, t) ds= 1, pi,(t) = 1, and Fhi,(t) =n;(t). 

1, 11 

(4.1) 

strategy s = Sij 

(4.2) 

2. Determine the mean yield yi(s, t) (for continuous strategies s = S,,, 0 I s = Sij 
I ci> or yi$(t> (for discrete strategies S,,) that individual agent Aij in group Ai 

can expect to receive by playing strategy Sij at time t, using (2.8) (continuous 
strategy version), (3.7) and (3.8) (discrete strategy version), or the model to be 
analyzed. 
3. The overall mean yield y,(t) for an individual agent Aij in group Ai is 

yi( t)mzdk’pi( s, t) YJ s, t) ds (4.3) 

for the continuous strategy model and 

F( t)m'EPisC t> Y,s( t> (4.4) 
Sl, 

for the discrete strategy model. 
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The overall mean yield Y(t) for an individual agent Aij in any group Ai, 

i=l , . . . , n, is 

mod 1 n 

y(r) = N(t) ;=, 
- C~;wYiw~ (4.5) 

where Y(t) is given by (4.3) or (4.4) and 

N(t)def&t) 
i= I 

(4.6) 

is the total number of individual agents Aij in all the groups Ai, i = 1,. . . , n. 
4. The relative fitness e(s, t) for strategy Sij in group Ai is 

F;( s, l)Effyi( s, t) - yi( t) (4.7) 
for the continuous strategy model, substituting &(s, t) + Fi,(t) and Y.(s, t) + 

Y,(t) for the discrete strategy model. 

5. The change ApJs, t) =pi(s, t + 1) -p&s, t) in the fraction of individual 

agents Aij in group A i that play strategy Sij is 

pi( S, t+ 1) -pi(S, l)m’kipi(S9 t)&(s* t, 

=kipi(s9 r)[&(s* t)-yi(t)] (4.8) 
for the continuous strategy model, substituting pi(s, f) + p,.,(f), &(;.(s, t) + F;:,(t), 
and Y&s, t) + Y,(t) for the discrete strategy model. The change ApJs, t> is 

positive if the mean yield Y&s, t) that individual agent Ajj can expect to receive 

by playing strategy s = Sij is larger than the overall mean yield Y,(f) that an 

individual agent Ajj in group Ai can expect to receive, and negative if the reverse 

is the case. ki is the rapidity of change, or ‘sensitivity’ of the process. If ki is too 

large we may get irregular movement of the process for group Ai. To ensure 

stability, ki must be sufficiently small. If ki is too small, there will be no change 

in the fraction. (4.8) is a difference equation. Assuming At = 1, it can be written 

as a differential equation, viz. 

dpi( $7 t) mod 

dt 
=kipi(S, t)[Yi(s, r)-Yi(t)] (4.9) 

for the continuous strategy model, with the above substitutions for the discrete 

strategy model. 

The change dn,(t)/dt in the number n,(t) of individual agents Aij in group 
Ai is given by 

~ =g(ri, ni(f)V pi($V ‘)Y yi(‘* ‘)9 T(f), ‘(‘))9 
dt 

(4.10) 
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for the continuous strategy model, with the above substitutions for the discrete 
strategy model, where ri is the ‘sensitivity’ of the process for group Ai. Examples 
of functions g(‘) are considered in Sections 6 (intergroup mobility) and 7 
(intergroup warfare). 
6. For the discrete time model, let t + 1 + t. For the discrete strategy model, 
calculate h,,(t) =pJt)/n,(t), and round off the specific number hi,(t) of indi- 
vidual agents Aij playing strategy Sij to the nearest integer value: 

hj,( t) + round( hi,( t)). (4.11) 

7. Print out the relevant curves; yi(.~, t>, pi(S, t), ‘i(s, t), q,(r), Pi,(t)* ‘is(t), 

etc. 
8. Go to 2. 

5. Dynamic model with fured group sizes n,(t) 

Using the dynamic version of (2.8) to express (4.9) involves writing the effort 
level Si for group Ai in terms of pi(S, t), accounting on the one hand for the 
effort level of the other n,(t) - 1 individual agents in group Ai, and on the other 
hand for the specific effort level Sij = s chosen by the particular individual agent 
Aij. Hence, referring to (2. l), Si can be written as 

SiEf( ni( t) - l)icipi( s, t) s ds + s. 

Inserting (5.1) into (2.8) with ai = 1 and a = 0 gives 

x 

(I 

t Bi(r) 
-r~,(t)~~~p~(s, t)s ds 

i=r ci I 

-1 
s 1 Ci 

+ --- c, /, Pi(s, t)s ds --a 
ci 8 

(5-l) 

(5.2) 
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Inserting (4.3) and (5.2) into (4.9) gives 

dPi( ‘7 t) 

dt 

s 
= k,&(S, t) - Bi(f) 

“iCtlci I 

(5.3) 

where i= 1, 2,..., n and 0 I s I ci. (5.3) is an integro-differential equation 
which is most easily solved using the explicit method (i.e. rewriting with (4.8)) for 
the time integration, and a standard numerical method for the strategy integrals. 

To derive the analog of (5.3) for discrete strategies Sij, set 

PiCs$ t)m_ar~i~(‘)s(s-Sij),,~ ~icCf)S(S-Ci) +Pid(t)S(S)~ (5.4) 

r, i,;=“d 

where the rightmost two terms give the special case where only the two strategies 
Sij = ci and Sij = 0 are allowed, and where 6 is Dirac’s delta ‘function’ defined 

by 

/ 

CC 
__p,( s, t)S( s - Sij) dsdzfpi(Sij,r), and 8(s - Sij)dzfO for s # Sij. 

(5.5) 
With the two discrete strategies cooperation c (effort level Sij = ci) and defection 
d (effort level Sij = 01, where 0 < Bi(t)/ni(f) < ci < Bi(t), the within-group game 
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is the standard (discrete) n,(t)-person prisoner’s dilemma. Inserting (5.4) into (5.3) 

and simplifying gives the dynamic model for discrete strategies S,,, i.e. 

dPic(t) 

dt 

( Bi( t> 
=kiPi,(‘)(l -Pic<t)) “.(1)-‘i 

I 

-I 

x 2Pic(r)ni(r)Bi(r) + (’ -Pic(t))Bi(t) 
i= I I) 

-( ( 1 - &)PiloBi(r)E] 

X {[ ( ~Pic(l)ni(f)Bi(f)) -PicCtIBiCfI])-‘) 
i= I 

! 

Bi( t, 
=kiPic(t)(l_-PiC<r)) m-C’ 

I 

+ 

ii 
&,$,pic(t)ni(t)Bi(t) -Pic( )Bi( > Bi( )E I 1 I +i 

X ([ (~pit-(t)ni(~)Bi(l)) + (1 -Pil(r))B(f)] 
i= 1 

X [ (~Pi,(t)ni(r)Bi(t)) -Pi.OBiC’I])el)~ 
i=l 

(5.6) 

where i= 1, 2,..., n, and pid(t) =pi,(t) - 1. (5.6) has a very nice interpretation. 

Within the rightmost parentheses, the first two terms Bi(t)/ni(t) - ci describe the 
influence of the within-group n,(t)-person prisoner’s dilemma, and have a nega- 
tive effect upon dp,,(t)/dr to a degree corresponding to the ‘severity’ of the 
within-group n,(t)-person prisoner’s dilemma. Note that if ci < Bi(t)/ni(t), the 
within-group game is a pure cooperation game. If ci > B&t), the within-group 

game is a pure defection game. The range of ci from B&t)/n&?) to Bi(t) thus 
specifies how ‘severe’ the within-group n,(t)-person prisoner’s dilemma is. The 
last two terms within these parentheses, simplified to one term in the lower part of 
the equation, describe the influence of the between-group n-group competition for 



K. Hausken / Journal of Mathematical Economics 24 (1995) 655-687 661 

the external prize E, and have a positive effect upon dp,,(t>/dt to a degree 
corresponding to the size of E. (5.6) is a non-linear coupled ordinary differential 
equation of the first order. Although it has no straightforward analytical solution, it 
is richly endowed with information. 

Given 0 I pi,(t) I 1, (5.6) specifies three qualitatively different stationary 
values for p;,(t), i.e. the values that pi,(t) eventually tends towards as t 
approaches infinity. The stationary values of p,.,(t) are found by setting the 
left-hand side dp,,.(t>/dt equal to zero. The first stationary value, pi,(t) = 1, 
follows from setting the second term on the right-hand side of (5.6) equal to zero, 
i.e. 1 - p;,(t) = 0, and requiring that the term within the rightmost parentheses is 
strictly positive, which ensures that pi,(t) is strictly monotonically increasing 
towards its highest possible value pi,(t) = 1. Expressing this requirement in terms 
of E gives 

E> [ ( IkPic(t)ni(f)Bi(r)j + (’ ~Pic~‘~~Bi(t)i 
i=l 

X [ ( kPic(l)ni(r)di(r)) -Pic(ilBi(i)] 
i= I 

X i[( &,~,Pic(fJni(t)Bi(f) -Pic( )Bi(t) Bi(t) I I i * 1 i-’ 
Bi(t> 

x ci-- 
[ 1 ni(t) ’ 

(5.7) 

which is equivalent to the static requirement (3.10) when pi,(t) = 1 Vi = 1,. . . , n. 
In other words, if (5.7) is satisfied due to a sufficiently large between-group prize 
E, pi,(t) will eventually and inevitably be driven towards one as t approaches 
infinity, ensuring that all the groups Ai will consist exclusively of cooperating 
individual agents A i j. 

If the rightmost parenthesis in (5.6) is negative, p,.,(t) is monotonically 
decreasing. The most extreme form for monotonic decrease involves setting 
E = 0, which means exclusively within-group and not between-group interaction. 
In this case (5.6) has an analytical solution given by 

pi’O(t) = 
1 

1 

( ) 

, 

l- l-- 
Pi,(O) 

e(c;-&(r)/n;oDkir 
(5.8) 

where pi,(O) is the initial value of pi,(r) when t = 0. We see that pi”(t) + 0 
when t -+ 03 given that ci > Bi(t)/ni(t), which gives the second stationary value 
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pi,(t) = 0. This means that the number of cooperating individual agents Aij in 
each group Ai will eventually vanish, as is implied by an n,(t)-person prisoner’s 
dilemma specified by 0 < Bi(t)/ni(t) < ci < Bi(t). (We also see from (5.8) that 
pi”(t) + 1 when t + m given that ci < Bi( t)/ni( t), since the within-group game 
then is a pure cooperation game.) 

The third stationary value of pi,(t), for those i, i = 1,. _ . , II, where E > 0 and 
(5.6) is not satisfied, is found by setting the term within the rightmost parentheses 
in (5.6) equal to zero for those i, and then solving the equations to find 
p;,(t) = pi,(~). These values p,.,(m) may be larger, equivalent, or smaller than 
their corresponding initial values p,,(O), meaning that pi,(t) may be monotoni- 
cally increasing, constant, or monotonically decreasing for different i, i = 1,. . . , n, 
as this follows from the rightmost term being positive, zero, or negative for 
different i, given the parameter values and how the various pi,(t) proceed over 
time. 

(5.7) contains ample information of how the parameters II, n,(r), Bi(t), ci, and 
pi,(t) affect the requirement for E to ensure cooperation by the individual agents 
Aij in group Ai. The requirement increases (becomes more strict) with ci and 
decreases with Bi(t), as is consistent with the within-group n,(t)-person prisoner’s 
dilemma becoming more ‘severe’ as ci - Bi(t)/ni(t) increases. The requirement 
also increases with n,(t), as this gives more individual agents Aij among which to 
divide the fraction of the prize E that group Ai receives. 

Based on (5.6) and (5.7) we can specify how pi,(t) depends upon various 
characterizations of E. Assume Bi(t) is proportional to n,(t) (i.e. Bi(t) - n,(t)), 
and set for simplicity Bi(r) = Bi: If E is constant or E - n,(t) then pi,(t) + 0 
when any n,(t) + ml i, u = 1,. . . , n. If E - nf(t> then pi,(t) + 0 when n,(t) + 
03. If E-n,(t) then 0 IP&)< 1 when n,(t) +m, u # i, i, u = l,..., n. If 
E N n:(t) then 0 <pi,(t) I 1 when n,(t) + m. If E - n:(t) then pi,(t) + 1 when 
n,(t) + 03, IA # i. If EN n:(f) then pi,(t) + 1 when n,(t) + ~0. 

Simulating (5.3) and/or (5.6) enables us to predict a solution for generally all 
parameter values n, n,.(t), Bi(t), ci, and E, accounting for the combined within- 
group n,( t&person prisoner’s dilemma and between-group n-group competition 
for a prize E over time. Simulate (5.6) allowing for the two strategies cooperation 
c (effort level Sij = ci> and defection d (effort level Sij = 0). Set II = 2 and posit 
fixed group sizes n,(r) = ni = ltXl0, i = 1, 2. Considering the case with Bi(r) 
proportional to n,(t), set Bi(t) = n,(t). ci has to be chosen SO that 0 < Bi(r)/ni(t) 
< ci < Bi(t). Assuming a low degree of ‘severity’ for the within-group n,(r)-per- 
son prisoner’s dilemma, set ci = 2. With these parameter values, the requirement 
(5.7) for E to guarantee cooperation by all the individual agents Aij in the static 
case is E > 3998,000. If E = 0, the fraction pi,(t) of cooperating individual 
agents A,, will go exponentially towards 0 as described by (5.8). If E > 3,998,000, 
the fraction pi,(t) of cooperating individual agents Aij will go exponentially 
towards one. Interesting cases of E are thus 0 < E < 3.998,000, which gives an 
intermediate degree of cooperation in each group Ai. 
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Choose E = 2,700,OOO. With the above parameter values, the fraction pi,(t) of 
cooperating individual agents Aij in the two groups Ai, i = 1, 2, will eventually 
be equal, i.e. p,,(co> = pz,(“), regardless of initial conditions p,,(O). I will change 
this by setting B,(t) = O.gn,(t) and B,(t) = l.ln,(t>, which means that a given 
degree of cooperation, ceteris paribus, gives fewer public goods in group A, than 
in group A,, which implies that eventually p,,(w) <pzc(~). Note that by setting 
B,(t) = 0.9n,(r) and B,(r) = l.ln,(t), the requirement (5.7) for group A, in- 
creases to E > 4,442,444.4, while for group A, it decreases to E > 3,634,363.6. 
Fig. 2 sets the initial fractions of cooperators c to p,,(O) = 0.7 and ~~~(0) = 0.4 
(i.e. h,,(O) = 700 and h,,(O) = 400) and simulates over 20 time periods with 
‘sensitivity’ factor ki = 0.5. 

We see that the defectors in the least cooperative group A, switch to 
cooperation while the cooperators in the most cooperative group A, switch to 
defection. As the number of cooperating individual agents Aij in the two groups 
becomes more equal, an equilibrium arises with a mixture of cooperators and 
defectors in each group Ai. This equilibrium is such that no single individual 
agent Aij has any incentive to deviate unilaterally. Consistent with (5.71, pi,(“), 
i = 1, 2, increases with E and B,.(t), and decreases with ci and n,(t). 

6. Dynamic model with intergroup mobility 

Allowing for intergroup mobility means positing a model (4.10) specifying a 
change dn,(t>/dt in the number n,(r) of individual agents Aij in each group Ai 
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over time. This change dn,(t)/dt is such that individual agents Aij flow between 
the groups Ai, i = 1,. . . , n, preserving the total number N(f), as given by (4.6) of 
individual agents Aij in all the n groups Ai, i = 1,. . . , n, i.e. N(t) = N = constant. 
I consider the model 

dn/( t) mod 

- =(ri-E.Li)lZi(f)[Yi(t)-Y(r)] 
dt 

T(t) - ;,&(r)q(t) , 
I-l 1 (6.1) 

using (4.5), where Y(t) is given by (4.3) inserting (5.2) for the continuous strategy 
model, and (4.4) inserting (5.2) and (5.4) for the discrete strategy model. 
ri = yi - ki > 0 is the ‘compound’ sensitivity of the process, in the sense that y, 
is the sensitivity without switching costs, and pi is the cost of switching group Ai. 

Switching costs pi account for both entry costs (if Y,(t) - Y(t) is positive) and 
exit costs (if Y,(t) - Y(t) is negative) for individual agents Aij switching to and 
from, respectively, group A i. Switching costs pi slow down the rapidity of change 
dni( t)/dt, or sensitivity, of the process, and thus have a negative sign in (6.1). 
The change dn,( t)/dt is positive if the overall mean yield Y$t) for individual 
agent Aij in group Ai is larger than the overall mean yield Y(t) for an individual 
agent Aij in any group Ai, i = l,..., II, and negative if the reverse is the case. 
Aside from the economic interpretation, (6.1) can be interpreted as the Malthusian 
law of population growth, where the sign of the proportionality factor ri[ Y(t) - 
Y(t)] specifies whether the size n,(t) of group Ai (the population) increases or 
decreases. 

‘To derive the requirement for preserving the total number N(t) = N of individ- 
ual agents Aij in all the n groups Ai, i = 1, . . . , n, sum both sides in (6.1) from 
i = 1 to i = n, i.e. Cj’= ,(. >. Inserting (4.6) gives 

= ;N(r)= ;N= &(f)[Y&) - y(t)] =o. (6.2) 
i= 1 

(6.2) can be simplified by setting the “sensitivity” factor ri constant across the 
groups Ai, i= l,..., n, i.e. ri = r. Using (4.5) gives 

Lrini(f)[Yi(t) - y(t)] =r(icni(t)T(t)) -ry(‘)i~ni(r) 
i=l 

=rNY(t) -rY(t)N=O. (6.3) 
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which means that the requirement for preserving the total number N(t) = N of 

individual agents A ij in all the n groups Ai, i = 1, . . . , n, is automatically 

satisfied if the ‘sensitivity’ factor ri = r = constant. 
The final requirement for (6.1) is that 0 s n,(t) I N Vi = 1,. . . , n. I set n 

constant so that n,(t) = 0 means that group Ai exists but has no members Ajj. If 

n,(t) = N then all the groups A,, u # i, i, u = 1,. . . , n, except group Ai has no 

members Au j. 
Inserting (5.2) and (5.4) into (4.4) allowing for the two discrete strategies 

cooperation c (effort level Sij = ci) and defection d (effort level Sij = 01, where 

0 < Bi(t)/ni(t) < ci < B&t), gives 

K(l) =Pic(t)(Bi(f) -‘i> 

+ flPic(r)ni(r)Bi(t) 
iI i= I I i 

1 
+ l-- 

‘it t, 

+ Pi,(') 

- - 2Pic(r) 
‘i( t> 1 

xBi(r> Pic(t)ni(t)Bi(t)E 1 1 
X ([ ( kPic(f)ni(f)Bi(f)) + (’ -Pic~t~)Bi(i)] 

i= 1 

(6.4) 

defined for n,(t) > 0, i = 1,. . . , II. (6.1) inserting (6.4) has no straightforward 

analytical solution. With one available strategy cooperation c (effort level Sij = ci), 

giving p,,(t) = 1, (6.1) inserting (6.4) becomes 

dni( t, ni(r> 
p=riN(r) 

dt 

X kn,(t) L (Bi(t) -B,(t) -Cj+Cu) + 
Pip, -4W)E 

Ll=l 
u+i i5ni(t)BiC’) ’ 1 

(6.5) illustrates that with one available strategy cooperation c there is no inter- 

group mobility if the parameters in the n groups Ai, i = 1,. . . , n are equivalent, 
i.e. B&t) = B(t) and ci = c Vi = 1,. . . , n. If B&t) = B(t) then all the individual 
agents Aij will, compatible with the principle of competitive exclusion in popula- 
tion biology, eventually seek that group Ai having the lowest cost ci of effort for 
a cooperative act c, i.e. ci < c, Vi, u = 1,. . ., n, i # u, the other groups A,, 

becoming extinct in the sense of having no members Auj. If ci = c then all 

(6.5) 
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individual agents Aij will eventually seek that group Ai that can generate the 
highest amount of within-group public goods Bi(t) from a cooperative act c, the 
other groups A,, becoming extinct. Note that this latter process is quicker if E is 
large. If Bi(t) # B(t) and ci # c then all the individual agents Aij will eventually 
seek that group Ai where the bracketed term in (6.5) is positive when two groups 
Ai and A, remain, i, U= I,... n, i # U. Observe that in this case Bi(t) <B,(t) 
that is not beneficial for individual agent Aij can be offset by a beneficial 
ci -=c cU, and vice versa. 

Simulate (6.1) inserting (6.4) allowing for the two discrete strategies coopera- 
tion c (effort level Sij = ci> and defection d (effort level Sij = 0). Figs. 3 and 4 
assume the same parameters as in Fig. 2, i.e. n = 2, ni(0) = 1000, B,(t) = O.gn,(t>, 
B2(t) = 1.1 n,(t), E = 2,700,000, initial fractions p,,(O) = 0.7 and ~~$0) = 0.4, 
and ‘sensitivity’ factors ki = 0.5 and ri = 0.00021. 

Fig. 3 should be compared with Fig. 2. During the first time periods the 
defectors in the least cooperative group A, switch to cooperation at a high rate, 
B,(t) = 1.1 n,(t), while the cooperators in the most cooperative group A, switch 
to defection at a slightly slower rate, B,(t) = 0.9n,(t>. Because of the higher 
group fraction p,,(t) of cooperators in group A, initially, group A, is considered 
more attractive, some individual agents A,, switching from group A, to group 
A,, giving n,(t) > n,(t) (cf. Fig. 4). From time period four, the fraction pz,(t) of 
cooperators in group A, is larger than the fraction pi,(t) of cooperators in group 
A,, which makes group A, more attractive. Hence from time periods four to eight, 
n,(r) decreases and n,(t) increases. From time period eight, n,(t) > n,(t), and the 
between-group prize E is no longer large enough to sustain cooperation within the 



K. Ha&en /Journal of Mathematical Economics 24 fl995j 655-687 613 

m:or*pAl 
+++:WOtpAz 

+ + + + + + + 
+ 

+ 
+ 

Fig. 4. Evolution of gr6up sizes n,(t), E= 2,700,000, ki= 0.5, ri= 0.00021. 

larger group A,. Observe from (5.7) and (3.10) that the requirement for the 
between-group prize E gets more restrictive for the larger group A, and less 
restrictive for the smaller group A, as the group size n,(t) gets increasingly larger 
than n,(t). The individual agents A,j in group A, thus have an incentive to 
cooperate, but the small size n,(t) makes group A, command a relatively small 
proportion of the between-group prize E. Hence group A, can function more as if 
in isolation. When group A, eventually becomes extinct, no between-group prize 
E is large enough to counteract the logic of the within-group n&)-person 
prisoner’s dilemma, which dictates defection as the strategy that will flourish. 

7. Dynamic model with intergroup warfare 

Describing intergroup warfare means positing a model (4.10) specifying a 
change dn,(t)/dt based on how the groups Ai, i = 1,. . . , n, wage war against 
each other over time. There is no preservation of the total number N(t) of 
individual agents Aij in the u groups Ai. A generalized n-group version of 
Lanchester’s square law for conventional warfare is 

dni(t)md 
-= 

dt 
-hi ~~“(r)y~(f) +hj(f)l 

[ 1 u=l u#i (7.1) 

where hi is the ‘sensitivity’ factor for the process, hi(t) is the reinforcement rate, 
and 0 I n,(t) I N(t) Vi = 1,. . . , n. Operational loss due to non-combat factors is 
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assumed to be negligible. Y,(t), u # i, i, u = 1,. . . , n, is given by (4.3) inserting 
(5.2) for the continuous strategy model and (4.4) inserting (5.2) and (5.4) for the 
discrete strategy model. Consider n groups (forces) A,., i = 1,. . . , n, out in the 
open, each within kill range of its n - 1 enemies A,,, u # i, i, u = 1,. . . , n. If one 
group Ai suffers a loss, fire is concentrated on the remaining individual agents Aij 
in group Ai. This gives the combat loss rate for group A, as described by the first 
term on the right-hand side of (7.1). That is, each group Ai suffers a loss 
proportional to the sum of the ‘strengths’ of the opposing n - 1 groups A,, u # i, 

i, u= l,..., n. Note that ‘strength’ in (7.1) is defined as n,(r)Y,(t> and not n,,(t), 
where Y,(t) is given by (4.3). This means that d&)/dt is affected not only by 
the numbers n,(t), u # i, i, u = 1,. . . , n, of individual agents Auj in the other 
n - 1 groups A,, as is commonly done in the simulation of Lanchester’s square 
law, but also by the mean yields Y,(t) for these individual agents, as these depend 
upon the parameters for the groups A, and the various strategies Suj that the 
individual agents A,j choose. Hence the different capacities of the various 
individual agents A,j are accounted for, as these capacities depend upon the 
parameters and strategy sets SUj for the groups A,. 

(7.1) inserting (6.4) has no straightforward analytical solution. Simulate (7.1) 
inserting (6.4) allowing for the two discrete strategies cooperation c (effort level 
Sij = ci) and defection d (effort level Sij = 0). Figs. 5 and 6 assume the same 
parameters as in Figs. 2, 3, and 4, i.e. n =2, n,(O) = 1000, B,(t) = 0.9n,(t>, 
B,(r) = 1.1 n,(t), E = 2,700,000, initial fractions p,,(O) = 0.7 and pze(0) = 0.4, 
reinforcement rate hi(t) = 0, and ‘sensitivity’ factors ki = 0.5 and hi = 0.009014. 

Fig. 5 should be compared with Fig. 2. The between-group competition is now 
more fierce, in the sense that the two groups Ai and A, compete not only for the 
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between-group prize E; they also compete to exterminate each other’s individual 
agents Aij and Auj. This provides an additional incentive for each individual 
agent Aij and A,j, i # u, i,u = l,.. ., it, within each group Ai and A,, to choose 
cooperation c, which increases the fractions Pi&t) and put(t), respectively, of 
cooperators. Conversely, by comparison with Fig. 2, a given fraction pic(t> of 
cooperation within each group can be obtained with a lower between-group prize 
E. These results are compatible with the common claim by Hart (1983) and others 
that more fierce competition in the product-market (i.e. between organizations) 
reduces managerial slack, i.e. increases managerial cooperation. I will return to 
this issue in a future article. Fig. 6 illustrates the evolution of the group sizes 
n,(t), where eventually n,(r) < n,(t) because the parameters B,(t) = 0.9n,(t> and 
B,(t) = 1.1 n*(t) make group A, more favorable, more cooperative, and stronger 
than group A,. 

Generalizing (7.1) to guerilla warfare, set 

Assume that each group Ai, i = 1,. . . , n, occupies a certain geographical region 
and is invisible to all its opposing n - 1 groups A,, u Z i, i, u = 1,. . . , n. The 
groups A, tire into the region but cannot know when a kill of an individual agent 
Aij has been made. As for conventional warfare, each group Ai suffers a loss 
proportional to the sum of the ‘strengths’ of the opposing II - 1 groups A,,, u # i, 

i, u= l,..., n. Guerilla warfare assumes in addition that each group Ai suffers a 
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loss proportional to the number n,(t) of individual agents Aij in its own group 
Ai, since the larger n,(t) is, the greater is the probability that a shot from the other 
n - 1 groups A, will kill a member from group Ai. 

8. Dynamic model with intergroup mobility and intergroup warfare 

The combined operation of intergroup mobility and intergroup warfare can be 
modeled combining (6.1) and e.g. a generalized version of (7.21, giving 

dni( t) mod 
- = ‘ini( t) 

dt 

1 
n xmuYmar 

-hi C C Cnf(t)nl(t)Y,Y(t) 
u=lx=Oy=l 
u+i I +hi(t)V w 

where ni(th,(t)Yu(t) in (7.2) is substituted with a Taylor series, and where N(t) 
is no longer a constant. The ‘sensitivity’ factors ri and hi determine the relative 
weight of intergroup mobility and intergroup warfare. 

(8.1) inserting (6.4) has no straightforward analytical solution. Simulate (8.1) 
inserting (6.4) allowing for the two discrete strategies cooperation c (effort level 
Sij = ci> and defection d (effort level Sij = 0). Figs. 7 and 8 assume the same 
parameters as in Figs. 2, 3, and 4, i.e. n = 2, ni(O> = 1000, B,(t)= O.gn,(t), 
B,(t) = 1.1 n,(t), E = 2,700,000, x,,, = 0, y,,_, = 1, initial fractions p,,(O) = 0.7 

Q4 -pfmdoooprr*s 
1.0 

I 

+ 
+ 

+ 
0.6 

+ 
l 

0.6 
l t 
+ it l 4 4 

+ 

+w:GmupAl 
+++:QrogA2 

+ + + + + 
l 

4 + 4 + 
4 + 

4 + 

4 + 
4 

+ 

+ 

0.01 I I 8 I 1 , I I I 
I I I I I I I I tlms t 

0 2 4 6 6 10 12 14 16 18 ?k 

Fig. 7. Evolution of pi,(t), E = 2,700,000, ki = 0.5, ri = 0.00021, Ai = 0.000014. 



K. Hausken/Joumal of Mathematical Economics 24 (1995) 6S5-687 611 

Qroq* 

-i 

lzcs nUtI *ii: oroup.Al 
+++: QroupAz 

1800 

1600 

1400 

1200 

1 4 
+ + + + + + + + 

+ 
1 l 

l l l 4 
l + 

+ 
+ 

+ 
+ 

+ 

. 
+ + + + 

: 4 
l 

400 
t 

i 

Fig. 8. Evolution of n,(t), E = 2,7CQOOO, ki = 0.5, ri = 0.00021, hi = 0.000014. 

and pZC(0) = 0.4, reinforcement rate hi(t) = 0, and ‘sensitivity’ factors ki = 0.5, 
li = 0.00021, and Ai = 0.000014. 

Figs. 7 and 8 illustrate the combined operation of intergroup mobility from 
Section 6 and intergroup warfare. The intergroup warfare makes n,(t) approach 
zero faster than when exclusively assuming intergroup mobility. As n,(t) ap- 
proaches zero, group A, can function more in isolation, implying a decline in 
pZr(t) eventually giving pZC(m) = 0. n,(14) = 0 makes pl,(t> undefined for 
n, 2 14, while n,(t) = 1304 for t 2 14. 

9. Simulation of the algorithm with four strategies in one group 

This section shows that the introduction of the n,(t)-person reactive strategies, 
tit-for-tat and bully, into the within-group one-group n&)-person prisoner’s 
dilemma does not facilitate within-group cooperation in the way the between-group 
competition for an external prize E does. Define the two reactive strategies as 
follows: 

1. T,; cooperate in the initial time period t = 0, and then cooperate in each 
subsequent time period t, t = 1, 2,. . . if e or more of the other n,(t) - 1 
individual agents in group Ai chose cooperation c during the previous time period 
t - 1 (Taylor, 1976). 
2. G,; defect in the initial time period t = 0, and then defect in each subsequent 
timeperiod t, t= 1, 2,... if e or more of the other n,(t) - 1 individual agents in 
group Ai chose cooperation c during the previous time period t - 1. 
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Inserting (5.4) into (5.2) allowing for the two discrete strategies cooperation c 
(effort level Sij = ci) and defection d (effort level Sij = 0), where 0 < B&r)/nJt) 
< ci < B,(t), gives 

1 i( I 1 
Y&)= l-- 

‘i( t, 
PicCt> + - 

‘it t, ) 

Bi( t, 

and 

1 
qd(t)= l-- ( 1 ‘i( t> 

Pic( t> Bi( t> 

(9.2) 

The payoffs YJt) and &(t> for playing the reactive strategies T, and G, are 
determined from (9.1) and (9.2) based on the definitions of T, and G, given 
above, i.e. depending upon the parameter e related to how many of the other 
n,(t) - 1 individual agents in group Ai chose cooperation c during the previous 
time period. Set n,(t) = 1000, Bi(t) = n,(t), ci = 2, ‘sensitivity’ factor ki = 0.5, 
and simulate over 20 time periods with initial conditions pi&O) = 0.7, ~~~(0) = 
~~~(0) = piJO) = 0.1. Fig. 9 sets e = n,(t) - 1. In the initial time period t = 0, d 

and G, go to prey upon c and T,. In time period t = 1, G, switches to cooperation 
and T, switches to defection. Hence thereafter d and T, prey upon c and G,, the 
latter two becoming extinct. If T, defects in the initial time period t = 0, T, and d 

coincide throughout giving pid(m) = pi*(m) = 0.5. 
Fig. 10 decreases e to e = 0.7n,(t). G, defects and T, cooperates through time 

period t = 3, after which they switch roles, giving a similar evolution as Fig. 9. 
Fig. 11 decreases e further to e = 0.1 ni( t). G, defects and T, cooperates through 
time period t = 8, after which they switch roles. Since T, is almost extinct at 
t = 8, d thereafter preys upon G,, the latter becoming extinct, d approaching 
pi = 1. With e = 0, d and G, coincide throughout giving ~~~(03) = pi&“) = 
0.5. 

Figs. 9-l 1 show the superiority of defection d. The n,(t)-person tit-for-tat 
strategy T, is not as successful as the two-person tit-for-tat strategy (Axelrod, 
1984), mainly because of the constellation of one against many in n,(t)-person 
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games, not present in two-person games, and the rigidity of the parameter e. This 

can be partly remedied by assuming a ‘continuous’ version of an n,.(t)-person 

prisoner’s dilemma which, in addition to complicating the model, allows 

individual agent Aij to choose a degree S,,, 0 I Sij I cj, of cooperation based 
upon the overall degree Si of cooperation in group Ai in the previous time period. 

This remedy is insufficient because defectors are not punished with sufficient 
degree of specificity, the punishment being spread out over all the other n,(t) - 1 
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Fig. 11. Evolution of fractions pi,(t) for e = O.ln,(t) for one group (E = 0). ki = 0.5. 

individual agents in group Ai. A more appropriate remedy considered in this 
article involves introducing an external structure in the form of between-group 
n-group competition for a specific prize E. 

Appendix: Between-group competition where the more cooperative group A, 
gets the entire between-group prize E 

This article has assumed between-group competition where each group Ai gets 
a fraction of the between-group prize E proportional to the relative amount of 
public goods it produces compared with the other groups. An alternative is to 
assume between-group competition where the group Ai producing the highest 
amount of public goods gets the entire between-group prize E, i.e. ‘winner takes 
all’, and that if m of the n groups produce an equally high amount of public 
goods, that these share the prize E equally. Assume for expositional convenience 
Bi = B,, ci = c,, and a, = 1. Assume without loss of generality that n, = . . . = n, 

> > n,, where 1 I m <n 2 2. .*. _ 
Assume the within-group n,-person prisoner’s dilemma from Section 3 where 

0 < B,/ni < c, <B,. Define h,, - 1 as the number of cooperating individual 
agents aside from individual agent Alj in group A,. If individual agent A,j 

chooses S, j = ci. giving h,, cooperators in group A,, he gets, analogous to (3.71, 
a payoff 

‘ij, = i [ h,,Bi + E] - ~1 if hi, > h,, 2 . . . 2 h,, 
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=-!-[h,J,+i]-c, if h,== . . . =h,,> . . . rh,, 

=+[h,,B,+z]-c, if h,,= . ..=h., 

=-!-h,,B,-c, if h,,<h,, for at least one k, k=2 ,..., n. 
n1 

(A.11 

If individual agent Aij chooses Sij = 0, there are hi, - 1 cooperators in group Ai. 

Assume that h,,, u # i, u = 1,. . . , n, is the number of cooperators in the other 
n - 1 groups A,. Individual agent Aij then gets, analogous to (3.8), a payoff 

Pljd = ’ [(h,, - 1) Bt + E] if h,, - 1 > h,, 2 . . . 2 h,, 
n1 

=t (hi,-I)&+: 1 if h,,-l=...=h,,> . ..zh., 

(jr,,-l)B,+f 1 if hi,-l=...=h,, 

=$(h,,-1)B, if h,,-l<h,, for at least one k, k=2,...,n. 

64.2) 

When m of the n groups are equally large, where 2 I m s n, then the most 
restrictive requirement for E to ensure cooperation by all the individual agents in 
the m groups arises when everyone in the m groups cooperates, and one individual 
agent A, j in group A, contemplates whether to defect. To derive this requirement, 
set h,, = n, in (A.l) and (A.2). Cooperation by the individual agent AIi is 
guaranteed if (A.l) is larger than (A.2), i.e. if 

1 E 
- n,B,+- 
n1 1 1 m 

-c, > L(n, - l)B,, 
n1 

i.e. if 

(A4 

(A4 

If m = 1, which means that nl > nz, then the individual agents in group A, will 
coordinate such that h,, = n2 + 1, given that the between-group prize E is 
sufficiently large, which precludes any other group getting access to E. To derive 
the most restrictive requirement for E, assume n2 > n3, set h,, = n2 + 1 in (A.11 
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and (A.2). Cooperation by the individual agent A,, is guaranteed if (A.11 is larger 
than (A.2), i.e. if 

n,+ l)B, +E] - 
1 E 

c,>- n,B,+? , 
n, [ 1 

i.e. if 

if m=l. 

(‘9 

(A4 

(A.6) has a very nice interpretation. The requirement for having a within-group 
prisoner’s dilemma is 0 < B,/ni < c, < B,. For the largest group A, the expres- 

sion c, - B,/n, thus gives the extent to which the cost c, of cooperation for 
individual agent A,j in the largest group A, exceeds the lower limit B,/n, where 

the within-group game A, goes from being a within-group prisoner’s dilemma to 

becoming a within-group pure cooperation game. This expression c, - B,/n, is 

then multiplied with twice the number of individual agents A,j in the largest 

group A,. This gives the minimum value of E required to ensure cooperation by 
h,,. = n, + I individual agents A, j in the largest group A,. 

Observe that inserting n, = 2 into (A.6) gives 

E>4(c, -B,/2), 

which is three times less restrictive than 

(A.7) 

E> 12(c, -B,/2), (A@ 

which follows from inserting n = ni = 2, Bi = B,, and ci = c, into (3.101, for the 

proportional allocation rule. 

(A.4) gets more restrictive as the number m of those largest groups having 
equal size increases, because the fraction of E available to each group then gets 
smaller, and may get too small to facilitate within-group cooperation. If E 

represents a fixed amount of resources in the environment, (A.4) may be realistic. 

However, if the nature of the between-group prize E is such that it increases with 

the number m, (A.41 may be too restrictive. More specifically, if the m groups 
compete for a between-group prize E that is proportional to m, and if we, in order 
to illustrate compatibility with the two-group case, choose a proportionality factor 
such that the m groups compete for a between-group prize mE/2, then (A.41 
becomes (A.6). 

Using (A.4) and (A.6) we can specify six different intervals for the between- 
group prize E, and what degree of cooperation within the n groups corresponds: 

1. E > mn,(c, - B,/n,) and m 2 2: n, cooperators in groups A, to A,,, (all 
remaining are defectors). 
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Table Al 

Game with two defectors in the other group 

Individual agent 2 

C d 

Individual c B, - c, + E/2, B, - c1 + E/2 B, /2 - c, + E/2, B, /2 + E/2 
agent I d B, /2 +E/2, B, /2 - c, + E/2 E/4, E/4 

2. Cm - q)n,(c, - B,/n,) <Es (m - q + lXc, - B,/n,) and m 2 3: n, cooper- 
ators in groups A, to Am_q. q = 1,. . . , m - 2. 
3. E > 2n,(c, - B,/n,) and m = 1: nz + 1 cooperators in group A,. 

4. 2n,,+ ,(c, - B,/nrn+ I ) <E I 2n,(c, - B,/n,): nm+2 + 1 cooperators in group 
A m+ I’ 
5. 2n,(c, - B,/n,) < E I 2n,_,(c, - B,/n,_,): 1 cooperator in group A,. 
6. E I 2n,(c, - B,/n,): no cooperators. 

In the remainder of the appendix I analyze in detail the case of two groups Ai 
with two individual agents Aij in each group. An individual agent Aij gets from 
between-group competition a payoff E/2 if he is part of the more cooperative 
group, and a payoff E/4 if the two groups are equally cooperative. The payoff 
matrix for the individual agents in each group, given that the two individual agents 
in the other group defect, is as in Table Al. 

Table Al is derived from the basic two-person prisoner’s dilemma by adding 
the payoff E/2 to each entry except the two entries in the lower right comer, 
where the payoff E/4 is added. Table Al shows a chicken game and not a 
prisoner’s dilemma when 

B,/2 - c, + E/2 > E/4. (A9 

Given this, and given that there are four defectors in the other group, any defector 
has an incentive to switch to cooperation to increase his payoff. 

Given that there are one cooperator and one defector in the other group, the 
payoff matrix for a group is as in Table A2. 

Table A2 is derived from the basic two-person prisoner’s dilemma by adding 
the payoff E/2 to the upper left entries, adding the payoff E/4 to the entries on 

Table A2 

Game with one cooperator and one defector in the other group 

Individual agent 2 

C d 

Individual c B, - c, + E/2, B, -c, + E/2 B, /2 - c, + E/4, B, /2 + E/4 
agent 1 d B,/2+E/4,B,/2-c,+E/4 0.0 



684 K. Hausken / Journal of Mathematical Economics 24 (1995) 655-687 

Table A3 
Game with two cooperators in the other group 

Individual agent 2 

Individual 
agent I 

C d 

i 
B, - c, + E/4, B, - c, + E/4 B, /2 - cl, B, /2 
8, /2, B, /2 - Cl 0, 0 

the diagonal from lower left to upper right, and keeping the lower right entries 
unchanged. Table A2 shows a mutual cooperation game when 

B, - c, + E/2 > B,/2 + E/4. (A.lO) 

Given this, if cooperation gets started in one group, it will be perpetuated to 
mutual cooperation in the other group. 

Given that there are two cooperators in the other group, the payoff matrix for a 
group is as in Table A3. Table A3 is derived from the basic two-person prisoner’s 
dilemma by adding the payoff E/4 to the upper left entries, and keeping the other 
entries unchanged. Table A3 shows a cooperation game when (A.101 is satisfied. 
Given this, the individual agents can be expected to coordinate their actions so that 
the unique mutual cooperation equilibrium (B, - c, + E/4, B, - c, + E/4) is 
attained. 

Both (A.9) and (A.10) imply that 

E>4(c, -B,/2), (A.ll) 

which is thus the requirement for the between-group prize E to ensure the unique 
mutual cooperation equilibrium developed in this appendix. 

(A. 11) has a very nice interpretation. The requirement for having a within-group 
prisoner’s dilemma is 0 < B,/2 < ct <B,. The expression ct - B,/2 gives the 
extent to which the cost ct of cooperation for an individual agent exceeds the 
lower limit B,/2 where the within-group game goes from being a within-group 
prisoner’s dilemma to becoming a within-group pure cooperation game. This 
expression c, - B,/2 is then multiplied with the total number, four, of individual 
agents in the two groups. This gives the minimum value of E required to ensure 
cooperation by all four individual agents in the two groups. 

Tables Al-A3 can be illustrated with the four-dimensional hypercube in Fig. 
Al, where ct = 3 and B, = 4 dictate that we have a within-group prisoner’s 
dilemma, while E = 8 nevertheless guarantees that the unique mutual cooperation 
equilibrium is attained. 

Fig. Al illustrates how the between-group assumption of a value E to be 
competed for between the two groups turns the basic within-group prisoner’s 
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Fig. A I. Four-dimensional hypercube for payoffs to four individual agents divided into two groups. 

dilemma into a game with mutual cooperation as the unique equilibrium. The 

hypercube in Fig. Al has 16 nodes, corresponding to the 16 possible combinations 

of cooperation and defection by the four individual agents in the two groups. Each 

node has eight numbers attached to it, which are to be read as follows. The four 

numbers in the upper row are zero or one, corresponding to defection and 

cooperation, respectively, by the four individual agents. The two leftmost numbers 

in the upper row are for the two individual agents in what we may call group A,, 

and the two rightmost numbers in the upper row are for the two individual agents 

in group A,. The four numbers in the lower row are payoffs to the four individual 
agents, when the combination of cooperation and defection by the four individual 

agents is as specified in the upper row. 

All nodes adjacent to each other in Fig. Al are such that only one of the four 
individual agents switches strategy, either from cooperation to defection, or from 

defection to cooperation. A switch of strategy will occur if a higher payoff is 
attained by switching strategy, which is illustrated in Fig. Al with an arrow in the 

direction of the higher payoff. There are thus 32 arrows in Fig. Al. 

We observe in Fig. Al that there is only one node that has four arrows coming 

into it, corresponding to the unique mutual cooperation equilibrium (1, 1, 1, 1) 

with payoff (3, 3, 3, 3). There is also only one node with four arrows going out 

from it, corresponding to mutual defection (0, 0, 0, 0) with payoff (2, 2, 2, 2), 
which is thus as far from the equilibrium as one can get. The quickest route from 
mutual defection (0, 0, 0, 0) to mutual cooperation (1, 1, 1, 1) goes through four 
steps, and involves a zigzagging movement, i.e. a switch of strategy alternately by 
an individual agent from each of the two groups. 
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We also observe that regardless of the node in Fig. Al in which one is located 
initially, one will eventually end up in the unique mutual cooperation equilibrium 

(1, 1, 1, l>, with one exception. There are five interconnected circles in Fig. Al, 

all going through four nodes, and all going through the two nodes (1, 1, 0, 0) and 
(0, 0, 1, 1) and thereafter one of the four chicken equilibria in Table Al. Two of 
the circles are on the inner cube, one is on the outer cube, and two are between the 

two cubes. These circles open up the possibility of infinite circular movement. No 
node along any of the five circles corresponds to a final resting point. The circular 

movements along all five circles can be broken at any point in time when at least 

three of the four individual agents cooperate, which happens at one of the four 
nodes in each of the five circles. Once any of the circles is broken, the unique 

mutual cooperation equilibrium is attained, from which no single individual agent 

has any incentive to deviate unilaterally. 

One may impose a simple restriction to avoid the possibility of circular 

movement altogether. Fig. Al shows that when three of the four individual agents 
cooperate, the single defector improves his payoff from two to three by switching 

to cooperation, while his companion cooperator, if he has a shorter reaction time 

to switch, improves his payoff from minus one to zero by switching to defection. 

These two gains are of equal magnitude one. However, the first switch is 

preferable from a utilitarian point of view, because it involves an increase in the 

overall payoff to the two groups from 11 to 12, whereas the second switch 

involves a decrease in the overall payoff to the two groups from 11 to 10. Hence if 
indifference is involved, and the cultural characteristics are such that switches 

from cooperation to defection occur faster and more often than switches from 

defection to cooperation, a utilitarian argument resolves the indifference. This 

restriction is not consistent with methodological individualism, and may well be 

abandoned. 
The conclusion of this example is that simple competition between two groups 

for a between-group prize of value E turns a static within-group prisoner’s 
dilemma into a game, where mutual cooperation by all the individual agents in the 

two groups is a unique equilibrium, from which no single individual agent thus has 
any incentive to deviate unilaterally. That is, a within-group mixed-motive game is 

turned into a total pure coordination game for the four individual agents. This 
unique mutual cooperation equilibrium is reachable from any combination of 

strategies initially played by the individual agents in the two groups. 
Let us make some considerations of the size of the between-group prize E 

compared with the parameters B, and c, of the within-group prisoner’s dilemmas. 
If the prisoner’s dilemmas are ‘intermediately severe’, say c, = 3B,/4, then 
(A.1 1) becomes E > B,, which means that pure cooperation by the four individual 
agents Ajj is a unique equilibrium if the between-group prize E is larger than the 
public goods, B,, produced by one cooperative act c by one individual agent Aij. 
If the prisoner’s dilemmas are ‘maximally severe’ in the sense of bordering 
towards pure defection games, i.e. c, = B, , then (A. 11) becomes E > 2 B,, which 
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means that pure cooperation by the four individual agents Aij is a unique 

equilibrium if the between-group prize E is larger than the public goods, 24, 

produced by two individual agents Aij choosing cooperative acts c. If the 
prisoner’s dilemmas are ‘minimally severe’ in the sense of bordering towards pure 

cooperation games, i.e. c, = B,/2, then (A. 1 I), of course, becomes E > 0, which 
means a minuscule requirement for the between-group prize E to ensure a unique 

cooperation equilibrium for the four individual agents Aij. 
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