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Vaidman, Aharanov, and Albert [Phys. Rev. Lett. 58(14), 1385 (1987)] put forward a puzzle called the mean king’s
problem (MKP) that can be solved only by harnessing quantum entanglement. Prime-powered solutions to the
problem have been shown to exist, but they have not yet been experimentally realized for any dimension beyond
two. We propose a general first-of-its-kind experimental scheme for solving the MKP in prime dimensions (D).
Our search is guided by the digital discovery framework Pytheus, which finds highly interpretable graph-based
representations of quantum optical experimental setups; using it, we find specific solutions and generalize to higher
dimensions through human insight. As proof of principle, we present a detailed investigation of our solution for the
three-, five-, and seven-dimensional cases. We obtain maximum success probabilities of 82.3%, 56.2%, and 35.5%,
respectively. We therefore posit that our computer-inspired scheme yields solutions that implement Alice’s strategy
with quantum advantage, demonstrating its promise for experimental implementation in quantum communication
tasks.
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1. INTRODUCTION
The mean king’s problem (MKP) is a quantum puzzle originally
posed by Vaidman, Albert, and Aharanov [1] that chronicles how
one may leverage the properties of quantum entanglement to
ascertain the values of the non-commutable Pauli operators σx,
σy, and σz from a spin-1/2 particle. The problem is described
as follows: a physicist (Alice) prepares a quantum system to
her whims and sends it to a mean king, who secretly performs
projection-valued measurement (PVM) on one of the Pauli spin
operators. The king then allows Alice to perform one more
experiment, after which he reveals which operator he measured
and challenges her to guess his measurement outcome correctly.
As we will further elaborate upon in Section 2, the authors reveal
that Alice can escape the mean king’s cruelty with a theoretical
success probability of 100% by entangling her particle onto
an ancillary particle, which she tends to do in secret, and by
choosing to perform a projective valued measurement of her
own for her final experiment.

The MKP has since been adapted to various contexts [2–4].
Crucially, it has been shown that the author’s original trick
can also be extended to prime [5] and prime-powered [6–10]
dimensions when the mean king makes his measurement in
a maximal set of mutually unbiased bases (MUBs); it has also
been shown [11] to exist in composite dimensions (e.g., in D = 6

and D = 10) when one allows positive operator-valued measure-
ments (POVMs) to be performed instead. The applicability of
the MKP has also been considered in quantum key distribution
(QKD) [12–14]. Here, the same protocol can be used to agree
on a shared secret key made of a string of dits (d-dimensional
bits).

Considering the possible applications of the MKP, it is inter-
esting to implement it experimentally. Quantum optical setups
which implement the two-dimensional mean king’s problem
have been proposed [15,16]; In particular, Schulz et al. pro-
posed an experimental realization for the two-dimensional mean
king’s problem by using entanglement with two degrees of free-
dom (DOFs), polarization, and spatial mode of a single photon.
Their experimental setup would have the mean king Bob imi-
tate a PVM by transforming the input state onto one of several
possible choices of eigenstates. It achieved an experimental suc-
cess probability of 95.6%. An experimental implementation of
the tracking the king problem, a variant to the MKP in which
the mean king does not disclose to Alice his measurement
basis, has also been proposed [17], achieving reasonable suc-
cess probabilities of 81.3%. However, there does not yet exist an
experimental proposal for higher dimensions which, particularly
within the context of QKD, shows promise due to its robustness
to environmental noise [18–20]. The difficulty in experimentally
implementing the MKP in higher dimensions is due to the final
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Fig. 1. Step-by-step process of Alice’s solution to the MKP. She escapes the mean king’s cruelty by entangling and keeping an ancilla
secret from the photon she sends to the king. Upon performing a PVM, the king returns Alice’s original photon. She then measures both of
her photons based on the VAA states, to which the result of her measurement unravels to her the king’s measurement result. Over a classical
channel, the king reveals to Alice his measurement basis, and Alice, in turn, answers with her guess.

step, in which Alice must measure the non-trivial basis of D2

Vaidman–Albert–Aharanov (VAA) states.
This paper illustrates a computer-inspired approach that yields

experimental setups for the MKP in arbitrarily high dimensions
using entangled two-photon states. We exploit the highly inter-
pretable, graph-theoretical representation of quantum optical
experiments [21,22]. We determine the correct solution using
the AI-based framework Pytheus [23] for two and three dimen-
sions, then generalize from these solutions to higher dimensions
using human insight. Our experimental solutions can be imple-
mented using linear optical elements and can be realized
using any photonic DOF. We demonstrate that our setups’
success probabilities significantly exceed classical odds of 1

D ,
implicating the quantum advantage of our approach.

2. HIGH-DIMENSIONAL MKP CONCEPT
Figure 1 shows Alice’s protocol for solving the high-dimensional
mean king’s problem. We follow the approach in [6], and confine
our study to D = p>2 dimensions, where p is a prime number.
The solution may also be adapted to D = pn (or prime-powered)
dimensions by working in arithmetic defined by the dimension’s
corresponding finite field [7].

Alice’s stratagem to escape the mean king’s cruelty works as
follows. At step S (Send), Alice prepares two entangled photons,
labeled a and b for Alice and Bob, in a generalized Bell state
according to

|ψ⟩ab = |B0,0⟩a,b =
1
√

D

D−1∑︂
j=0

|mj⟩a |mj⟩b, (1)

where {|mj⟩}
D−1
j is the jth element of the mth MUB in D-

dimensional Hilbert space, and the conjugate ket, |ψ⟩, is defined
for any two states |ψ⟩ and |ϕ⟩ according to Eq. (3.2) (|ϕ⟩⟨ψ | ↔
|ψ⟩|ϕ⟩) in [7],

|ψ⟩ =

D−1∑︂
j=0

|j⟩⟨j |ψ⟩∗. (2)

This convention allows us to choose any MUB in the construc-
tion of |ψ⟩ab.

While keeping photon a for herself, Alice advances to the
Projection (P) stage. She sends photon b to the mean king, who

performs a projection-valued measurement (PVM) on the pho-
ton in one of D + 1 possible mutually unbiased bases (MUBs)
and yields an outcome j = 0, 1, . . . , D − 1. This collapses the
overall state to |mj⟩a,b = |mj⟩a |mj⟩b, where |mj⟩ refers to the jth
eigenstate in the mth MUB.

After having received photon b back from the king, Alice
moves to the Measure (M) stage: she must now retrodict the
king’s measurement result |mj⟩b. To achieve this with complete
certainty, Alice performs a simultaneous measurement of both
photons based on the VAA states. These are defined as

|ϕk⟩ = −|B0,0⟩a,b +
1
√

D

D∑︂
m=0

|mfk (m)⟩a,b, (3)

where fk(m) is a mapping function uniquely defined for each
VAA state which maps the king’s possible measurement bases
to Alice’s estimate of his outcome. Following [6], the map-
ping function can be defined as a constructor for a set of D + 1
mutually orthogonal Latin squares:

fk(m) =

{︄
(m × i − j) mod D if m<D,
i if m = D,

(4)

where (i, j) are indices corresponding to an entry in the mth
Latin square. These indices are obtained via the decomposition
k = jD + i.

Having completed her measurement, the king now discloses
his measurement basis to Alice over a classical channel and
awaits Alice’s response. The VAA states have the crucial
property that

⟨ϕk |mj⟩a,b =
1
√

D
δj,fk (m). (5)

In other words, for each of the king’s measurement results,
there exists a disjoint subset of VAA states, {|ϕk⟩}|mj⟩b , which
encompasses Alice’s possible measurement outcomes. There-
fore, regardless of which outcome she obtains within this subset,
Alice always guesses |mj⟩b, and ends up escaping the mean
king’s cruelty with a success probability of 1.

3. WORK PRINCIPLE
We search for experimental realizations of the MKP using
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an algorithm based on a graph-theoretical representation of
quantum linear optical setups [21,22]. We ascertain the graph-
theoretical solutions’ general form using Pytheus [23], then
translate them into experimental setups using the procedure
outlined in Section 1 of Supplement 1. We conceive our graph-
theoretical representations such that one VAA state coincides
with two detectors in our setup. Surprisingly, however, we also
find it possible to project onto other VAA states by adding
additional detectors where a beam splitter joins two paths, and
we observe loss, increasing the number of possible two-fold
detection events associated with each VAA state.

We then optimize the setup further to project across the entire
VAA basis by employing a post-processing optimization algo-
rithm on the phase shifters of our setup. We may compute the
success probability pV that, given the input VAA state |ϕk⟩,
Alice concludes that she measures |ϕk⟩ using the procedure out-
lined in Section 2 of Supplement 1. We then tune the phase
shifters φ = (φ1, φ2, . . .) in our setup by employing the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm [24] with a
loss function defined as

L(φ) = −pV(φ). (6)

We run the algorithm for 1000 iterations with random initial-
ization of the phases to account for the multimodality of the
parameter space. We then quantify our setups’ performance
regarding the MKP success probability, pM , that Alice can
successfully retrodict the mean king’s measurement result.

4. RESULTS
4.1. 3D MKP

We obtain the graph corresponding to the 3D VAA measure-
ment, shown in Fig. 2(a), using Pytheus [23,25]. We choose

the third VAA state to be our target:

|ϕk⟩ =
1
√

3
(|00⟩ + α(|01⟩ + |20⟩) + β(|01⟩ + |20⟩)

+ γ |12⟩ + δ |21⟩) + β(|12⟩) + γ(|21⟩)),
(7)

where ω = e−i2π/3, α = (2ω2 + ω)/3, β = (ω2 + 2ω)/3, γ =
(ω + 2)/3 and δ = (2 + ω2)/3.

Figure 2(a) shows the corresponding experimental setup. The
action of the setup on the initial state is given in the operator
form ˆ︁M(φ) as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2

b0

b1

b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 iφ1 iφ1 −φ1 0 0 iφ1

−φ3 0 iφ3 0 φ3 0 0
0 iφ5 0 φ5 0 iφ5 0

iφ2 φ2 −φ2 iφ2 0 0 φ2

iφ4 0 φ4 0 iφ4 0 0
0 −φ6 0 iφ6 0 φ6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

d0

10

20

30

40

50

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

We report the success probabilities of Alice’s measurement for
each MUB in Table 1. After optimization, we compute a suc-
cess probability of 91.7% for the m=0 basis, 73.0% for the
m=1 basis, 69.7% for the m=2 basis, and 63.5% for the m=3
basis. Altogether, this results in an average success probability
of 74.5%. However, the overall success probability of Alice’s
MKP measurement depends on the exact set of MUBs chosen
by the king. In particular, the maximum success probability of
82.3% is achieved when Bob only chooses the first two MUBs.

We provide a possible experimental setup that realizes the
three-dimensional MKP in Fig. 3. Taking inspiration from [26],
an ultraviolet (UV) laser is pumped toward a collection of
beam displacers and half-wave plates (HWPs) which projects
the incident photons’ polarization onto |H⟩ + |V⟩. This results

Fig. 2. High-dimensional MKP concept. Quantum optical graphs and their corresponding experimental translation for high-dimensional
MKP. We show experimental setups corresponding to schemes for (a) three-dimensional, (b) five-dimensional, and (c) seven-dimensional
MKP. We determine the three-dimensional graph-theoretical solution shown in panel (a) via the digital discovery framework Pytheus . Then,
we carry out the experimental translation by creating direct paths from incident photons to detectors. Additional loss detectors, N0 where
N ∈ N, are placed at the exit ports of the beam splitters to provide us with additional information. The three-dimensional solution does not
allow simultaneous clicks for higher-order photon modes; we may exploit this idea to ascertain the solutions for arbitrarily high dimensions
easily. BS, beam splitter; PS, phase shifter; MS, mode shifter; SPD, single-photon detector.

https://doi.org/10.6084/m9.figshare.24582654
https://doi.org/10.6084/m9.figshare.24582654
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Table 1. MKP Success Probability (pM ) for Different
Dimensions

D m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=7

3 91.7% 73.0% 69.7% 63.5% - - - -
5 61.3% 34.4% 51.0% 50.7% 29.9% 32.9% - -
7 40.8% 27.5% 27.9% 22.7% 26.5% 30.2% 29.0% 28.1%

in three beams pumping into a type-II β-barium borate (BBO)
crystal. It yields three correlated photon pairs, which we may
then split through an action of a polarizing beam splitter (PBS);
therefore, we encode the photons’ dimensionality using the path
mode DOF, while the polarization DOF is used to help achieve
certain transformations onto the state. In particular, Bob uses it
to achieve his PVM onto an eigenstate of his choosing, using the
input configuration provided in [27] and the wave plate angle
configurations provided in Supplement 1. To ensure the photons’
indistinguishability, Alice and Bob’s polarizations are matched
via the action of the HWP before being sent to the VAA analyzer
described above.

At the cost of increasing complexity, improving upon the
average success probability of the VAA measurement further by
considering all of the three possible graph-theoretical solutions
that we can obtain for the three-dimensional MKP is possible.
The 32 VAA states in three dimensions can be partitioned into
three disjoint sets: one set contains VAA states with kets |00⟩, but
not |11⟩ or |22⟩. The other sets feature states that satisfy a cyclic
permutation of this condition (e.g., |11⟩, but not |00⟩ or |22⟩).
Consequently, each subset is represented by a different graph-
theoretical solution, where simultaneous clicks are conditioned
on photons in the same mode. By implementing all three graph-
theoretical solutions together, using the recipe described above,
we observe a noticeable increase in the success probability.

4.2. MKP in Higher Dimensions

We make the following inference to generalize our computer-
inspired solution for the three-dimensional case to higher
dimensions: the VAA state given in Eq. (3) has seven of the
nine possible two-qutrit ket states, which determines the set of
allowed two-detector click patterns. Crucially, we cannot have
a two-fold detector click if both qutrits are of the same higher-
order mode (i.e., |11⟩ or |22⟩). In the graph representation, this
means that we cannot have perfect matchings realizing the kets
|11⟩ or |22⟩, in which each would consist of one edge represent-
ing a higher-order mode (1 or 2) between vertices a and one of
the detector vertices c or d, and another edge of the same mode
between vertices b and a different detector vertex. As this is a
quality that is shared among the VAA states for D dimensions –
by our construction, the first five VAA states in five dimensions
have |00⟩, but not |11⟩, |22⟩, |33⟩, or |44⟩, for example – we can
build upon the graph-theoretical solution in three dimensions
by adding higher order edges which go from both input mode
vertices to one output mode detector. It allows us to obtain gen-
eralizations of our graph-theoretical solution to arbitrarily high
dimensions.

We demonstrate this idea with a couple of examples: Fig. 2(b)
showcases the experimental solution in five dimensions. As
before, the input modes ai, bi for i ∈ {0, 1, 2, 3, 4} are trans-
formed into the detector modes c0, d0 as well as the loss
detector modes 10, 20, . . . , 90 via the operator ˆ︁M(φ), with φ =
(φ1, φ2, . . . , φ10). The MKP success probabilities for the six

MUBs in 5D are (in order): 61.3%, 34.4%, 51.0%, 50.7%,
29.9%, and 32.9%. Averaged out over all bases yields a suc-
cess probability of 43.4%. In particular, we achieve a maximal
success probability of 56.8% if the king solely chooses to mea-
sure on MUBs of m=0 and m=2, significantly exceeding the
classical success probability.

We iterate upon this idea further by considering the seven-
dimensional construction, as shown in Fig. 2(c). For the eight
possible MUBs that the mean king may choose, we report an
average success probability of 29.1%, with a maximal success
probability of 35.5% if the king chooses the bases m=0 and m=5.
We detail the success probabilities of Alice’s measurement on
the complete set of MUBs in each high-dimensional case in
Table 1.

We remark that our success probabilities are lower than the
theoretical limit of 1. We attribute this chiefly to our use of linear
optical elements in our setup. In principle, the graph-theoretical
solution configured for one particular state realizes a projec-
tive measurement on that state with 100% success probability.
However, if we consider successful measurements only on the
coincidence of detectors c and d, the success probability will
significantly be reduced. The drop in success probability is due
to the presence of linear optics (beam splitters), which introduce
loss. We make best use of this loss by using it as an additional
source of information, allowing us to extend our measurement to
other states in the VAA basis. We provide a detailed explanation
about the effects of using linear optical elements on the MKP
success probability in Section 3 of Supplement 1.

To this point, we have illustrated how to obtain experimental
setups for three high-dimensional cases of MKP. By using the
abovementioned idea behind generalizing the graph-theoretical
solution, we may access ever higher dimensions, allowing us to
tap into their increased information capacity and noise robust-
ness benefits. The higher dimensional realizations described
before and any other arbitrarily high dimensional variant of the
MKP can also be realized using the general experimental setup
described in Section 5 of Supplement 1.

5. CONCLUSION
By leveraging graph-theoretical representations of quantum
optical experiments, we describe a scheme to formulate quan-
tum optical realizations of Vaidman, Albert, and Aharanov’s
quantum thought experiment for arbitrarily high dimensions.
As a proof of principle, we propose how one may design
experimental setups for three-dimensional, five-dimensional,
and seven-dimensional cases. Considering every possible choice
of MUB by the king, we report maximal success probabilities
of 82.3%, 56.2%, and 35.5%, respectively, which demonstrates
the quantum advantage of our approach.

In our experimental scheme, we only use linear optical ele-
ments, which are easily accessible in any optics lab. The number
of elements we use scales linearly with the dimension of the sys-
tem. Encompassing these two points, our experimental scheme
is realizable in higher dimensions. Our experimental scheme
works for the path degree of freedom, but also works for other
degrees of freedom, e.g., orbital angular momentum. We antic-
ipate that the success probabilities of our measurement can be
further improved by adapting nonlinear elements in lieu of beam
splitters, which are the principal sources of loss in our experi-
mental setups. We foresee our experimental solutions facilitating

https://doi.org/10.6084/m9.figshare.24582654
https://doi.org/10.6084/m9.figshare.24582654
https://doi.org/10.6084/m9.figshare.24582654
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Fig. 3. Experimental setup. Example setup that exploits path mode encoding to realize the MKP protocol for three dimensions. Alice
exploits the polarization degree of freedom to produce three pump beams that, following SPDC, create three correlated photon pairs. Alice’s
photon is sent toward the VAA analyzer, while Bob imitates a PVM onto his photon to the eigenstate of his choosing before being sent to the
VAA analyzer. PBS, polarizing beam splitter; H1–H3, half-wave plates (HWPs); Q, quarter-wave plate (QWP).

the near-term implementation of MKP in quantum communica-
tion tasks, in particular, quantum key establishment. Bub [14]
and Werner [12] both suggest protocols in which Bob and Alice
develop a shared secret key by communicating their results over
a classical channel. Up to the known errors of our experimental
setups, the disagreement of even one bit implicates the presence
of an eavesdropper.

Our scheme illustrates another case in which artificial intel-
ligence (AI) and human insight work in tandem [28,29]. As the
representation of our solutions lends itself to interpretability,
we were able to extract insight into the nature of our solutions
through the solution to the three-dimensional case and generalize
it to solve the more complicated problem of high-dimensional
MKP. We hope this work gives further credence to a future in
which AI- and human-based intuition work together to discover
new science [30].
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