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Abstract
Droughts in tropical South America have an imminent and severe impact on the Amazon
rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia
have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical
oceans. Although the sources and impacts of such droughts have been widely studied, establishing
reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here,
we further investigate the relationship between SST and rainfall anomalies using a complex
network approach. We identify four ocean regions which exhibit the strongest overall SST
correlations with central Amazon rainfall, including two particularly prominent regions in the
northern and southern tropical Atlantic. Based on the time-dependent correlation between SST
anomalies in these two regions alone, we establish a new early-warning method for droughts in the
central Amazon basin and demonstrate its robustness in hindcasting past major drought events
with lead-times up to 18 months.

1. Introduction

Hydrological extremes in tropical South America
have great effects on regional ecosystems as well
as devastating socio-economic ramifications [1, 2].
Droughts increase tree mortality and the risk of fires,
while prolonged episodes of enhanced rainfall can
lead to floods. Moreover, while tropical rainforests
commonly serve as important global carbon sinks,
this can be reversed during droughts. The severe
Amazon drought in 2010, for instance, had a total
biomass carbon impact of 2.2 PgC with an affected
area of 3.0million km2 [3]. Because of these tremend-
ous effects, developing advanced strategies for multi-
year lead drought forecasting is key to an appro-
priate anticipation, mitigation and management of

their potential impacts on ecosystems, agriculture,
and urban water management. However, especially in
the Amazon basin, as a key hotspot of biodiversity,
terrestrial carbon storage and continental moisture
recycling, establishing reliable predictions of incipi-
ent droughts poses an ongoing challenge.

Rainfall in South America, and especially in the
Amazon basin, crucially depends on moisture inflow
from theAtlantic ocean and positive feedbacks related
to latent heating over the Amazon [4]. During austral
summer, the Intertropical Convergence Zone (ITCZ)
and the associated easterly trade winds are shifted
southward. After crossing the Amazon basin, these
low-level winds are blocked by the Andes and are
redirected southward, forming the South American
Low-Level Jet [5]. During austral winter, the ITCZ
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Figure 1. Climatic parameters.Mean monthly sea surface temperatures (in
◦
C, red scale) and mean continental rainfall over

South America (in mm/month, blue scale) for the time period from 1981 to 2016. Sea surface temperatures and rainfall are
generally higher around the equator. The spatial center of the El Niño–Southern Oscillation (ENSO) pattern and the typical
positions of the Intertropical Convergence Zone (ITCZ) in January and July are indicated by the white box and dotted lines,

respectively. The black box marks the continental study area referred to as the Central Amazon in this study (10
◦
S to 0

◦
S, 70

◦
W

to 55
◦
W).

is shifted northward, leading to enhanced moisture
inflow towards northern South America, but sim-
ultaneously to a substantially reduced flow to the
South American subtropics [2]. The core season of
the South American monsoon, with high rainfall val-
ues in the southern tropics and subtropics, takes place
during austral summer. This pattern is reversed for
the northern parts of the continent, where the highest
rainfall values are observed during austral winter [6].
Rainfall in South America is thus strongly affected by
the position of the ITCZ and the amount of water
vapor coming from the Atlantic ocean. Therefore,
a shift of the ITCZ, or significantly less evaporated
water from the ocean, can have drastic effects on rain-
fall sums over the South American continent. Figure 1
shows continental rainfall rates in South America and
SSTs of the adjacent ocean regions, averaged over the
time span from 1981 to 2016, as well as the typical
ITCZ positions in January and July.

Although the tropical Atlantic ocean is the major
source of moisture inflow into South America [5], it
has long been thought that droughts in the Amazon
basin are caused mainly by anomalies of the El Niño–
Southern Oscillation (ENSO) and associated longit-
udinal displacements of the atmospheric Walker cir-
culation. Only more recently, it has been suggested
that SST anomalies in the Atlantic ocean could pro-
voke hydrological extremes in the Amazon as well
[7, 8], which is supported by marked correlations

between tropical Atlantic SSTs and Amazon rainfall
[9, 10].

Recent findings indicate that rainfall sums in
the southern Amazon are mainly controlled by SST
anomalies in the northern tropical Atlantic ocean
(NTAO) [11], with anomalously warm SSTs in the
NTAO being associated with droughts in the Amazon
basin [12, 13]. In addition, southern tropical Atlantic
ocean (STAO) SSTs also exhibit significant correla-
tionswith rainfall in theAmazonbasin, with droughts
often coinciding with negative STAO SST anomalies
[14–17]. Opposite anomalies in both regions have
likewise been associated with the occurrence of very
wet periods. Taken together, the gradient between
SST anomalies in the NTAO and STAO could serve
as an indicator for conditions favoring hydrological
extremes in the southern Amazon basin [18–21]. Spe-
cifically, the combined effect of strong positive SST
anomalies in the NTAO along with negative SST
anomalies in the STAOcan trigger a significant north-
ward displacement of the ITCZ, leading to markedly
reduced rainfall in the Amazon basin [22, 23]. This
mechanism is exemplified by the severe 2010 Amazon
drought, along with which the NTAO exhibited the
strongest warming since 1903, causing a significant
ITCZ shift [24].

In this study, we investigate to what extent the
latter mechanism can be exploited for multi-year lead
statistical forecasting of incipient drought events in
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the central Amazon basin. For this purpose, we ana-
lyze the relationship between SST anomalies and rain-
fall in tropical South America by means of com-
plex network techniques [25, 26] to highlight the
strongest statistical associations among correspond-
ing time series from different locations. Recent work
has demonstrated that key spatiotemporal variability
patterns associated with the spatial organization of
rainfall in South America can be conveniently stud-
ied and quantitatively characterized by such methods
[6, 27, 28]. Here, we extend the application of this
approach to study the functional connectivity [29]
between monthly rainfall anomalies in South Amer-
ica and SST anomalies in the adjacent Atlantic and
Pacific oceans for the time period from 1981 to 2016
in a two-variable coupled network setting [30]. In
combination with a sliding window approach, the
temporal evolution of the identified key correlation
patterns is examined and linked to specific climatic
events (e.g. [28, 31]). Our analysis confirms the exist-
ence of two distinct tropical Atlantic ocean regions
with SST anomalies that are strongly correlated with
the central Amazon basin rainfall. Subsequently, we
exploit the time-dependent correlations between SST
anomalies in those two regions alone and show that
they provide a possible early-warning indicator for
drought events in the Amazon basin. By successfully
hindcasting past drought events, we demonstrate the
potential of the proposed framework to provide skill-
ful forecasts of incipient drought events at lead times
up to 18 months.

2. Data andMethods

2.1. Data
Weutilizemonthly SSTdata retrieved from the Exten-
ded Reconstructed Sea Surface Temperature data set
(ERSST Version 3b) [32] with a resolution of 2◦ ×
2◦. For the continental precipitation the Climate
Hazard Group InfraRed Precipitation with Station
(CHIRPS) data [33] is used at a monthly resolution.
The data is interpolated from the native 0.05◦ × 0.05◦

grid to 2◦ × 2◦ to match the resolution of the SST
data and to reduce computational efforts. Both data
sets are considered for their common time period
from 1981 to 2016. We compute monthly anom-
alies with respect to the long-term mean annual cycle
by subtracting the respective mean values for each
month (Supplementary Notes section S1 (available at
stacks.iop.org/ERL/15/094087/mmedia)).

As a drought indicator, we use the standardized
precipitation index for a three-month period (SPI-
3) [34], averaged over the central Amazon basin.
Here, server droughts correspond to SPI values below
−1.5. SPI-3 has been shown to provide similar
drought characteristics as more complex multi-
variable integrated indices like the Palmer Drought
Severity Index (PDSI) [10], so that we restrict our

attention here to this conceptually simpler index
exclusively based on rainfall sums.

2.2. Static unweighted climate networks
In order to conveniently represent the strongest neg-
ative and positive correlations between SST and
rainfall time series at different locations, we con-
struct unweighted two-variable coupled networks
[30]. This approach allows simultaneously investig-
ating the dominating correlation patterns within the
individual climate fields as well as between them.
Here, we restrict ourselves to the analysis of cross-
linkages between two spatially distinct sub-networks,
representing the oceanic SST and continental rainfall
anomalies, respectively.

For measuring the association between each pair
of time series, Spearman’s rank-order correlation
coefficient is applied. To obtain a coupled network
representation, each grid point is identified with a
node of a spatially embedded network, and only those
pairs of grid points with the strongest correlations are
represented as links. Thereby, statistical associations
below a certain threshold are not taken into account.
Here, we choose this threshold such as to represent
the 10% strongest positive and negative correlations
as links in two distinct networks. A detailed discus-
sion of this choice, along with the robustness of the
obtained results for different values, is provided in
the Supplementary Notes section S2. In general, we
find that the overall spatial patterns of links remain
very similar even when the employed link density of
10% is substantially modified. The resulting network
structure is fully described by the unweighted adja-
cency matrix

Aunweighted
ij =

{
0ρij < ρth

1ρij ≥ ρth
, (1)

where ρij denotes Spearman’s rank-order correlation
coefficient between the time series at node i and node
j, and ρth the correlation threshold. To identify the
strength of cross correlations between a specific grid
cell and the other sub-network (variable), the local
cross degree [30]

klmi =
∑
j∈Vm

Aij, i ∈ Vl (2)

is used, where V l and Vm denote the node sets of the
two respective sub-networks.

2.3. Evolving weighted climate networks
While the previous static network approach allows
identifying regions with SST anomalies markedly
co-varying with central Amazon basin rainfall anom-
alies, the inter-dependency between the observed
(rainfall or SST) variability in those different regions
requires further study. For this purpose, weighted
two-variable coupled networks are constructed.
Unlike for the unweighted network representation as

3
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described above, the correlation coefficients between
each pair of nodes are used here as coefficients of the
weighted adjacency matrix Aweighted

Aweighted
ij =

{
0ρij < ρth

ρijρij ≥ ρth
, (3)

and analogously using absolute values for negative
correlations.

For studying the temporal evolution of the cor-
relations between different regions, a sliding window
approach is applied. Here, for each month within
the observation period, except for the first two years,
an individual network is constructed based on the
data of the previous 24 months. To quantify the mag-
nitude of connectivity between two regions of choice,
we employ the average cross correlation ACC=

⟨
ρij
⟩

with i∈V l and j∈Vm. Note that this measure takes
the entire cross-correlation matrix between the two
fields into account, i.e. no correlation threshold is
needed. We associate each ACC value with the end
point of the time window for which it has been com-
puted. Thus, only data from the past enter each par-
ticular value.

2.4. Drought forecast
We finally examine the capability of ACC values
between SST anomalies in the NTAO and STAO to
provide a binary (yes/no) early-warning indicator of
incipient Amazon droughts. For this purpose, the
monthly ACC data are smoothed using a Chebyshev
type-I low-pass filter with a cutoff at 24months, since
we are only interested in longer time-scale variations
of these correlations. Then, a threshold to the filtered
ACCvalues is chosen such that the obtained threshold
crossing events coincide as much as possible with the
observed Amazon droughts. To quantify the skill of
the proposed forecasting scheme, we use the Heidke
Skill Score (HSS) [35, 36]

HSS=
2(tt · ff− ft · tf)

ft2 + tf2 + 2 · tt · ff+( ft+ tf) · (tt+ ff)
, (4)

which compares the performance of our scheme with
that of a random forecast. Here tt represents the num-
ber of cases with a correct forecast of a subsequent
event, ff the number of instances of no forecast and
no event, ft stands for the number of times where
no forecast was issued but an event occurred (missed
hits), and tf stands for the number of forecasts with
no following event (false alarms). A value of HSS= 0
corresponds to the skill of a random forecast, while a
score of 1 indicates a perfect forecast.

3. Results

3.1. Functional connectivity between continental
rainfall and sea surface temperatures
We first construct two unweighted static two-variable
coupled network representations of strong positive

and negative correlation patterns between monthly
SST and continental rainfall anomalies. This allows
identifying continental and oceanic regions with high
cross degree (Supplementary figure S2), which rep-
resent coherent spatial patterns of relevant correla-
tions between rainfall and SST that on average persist
on inter-annual time scales and beyond.

Instead of exploiting the full cross degree patterns,
we focus on rainfall anomalies in the central Amazon
basin (0

◦
–10

◦
S, 55

◦
–70

◦
W, see figure 2(a)), neglect-

ing regions north of the equator because of their
opposite seasonality. This restriction identifies four
distinct ocean regions comprising the highest 20% of
all cross degree values in the SST field, among which
two regions are positively and two negatively correl-
ated with rainfall anomalies in the central Amazon.
For positive correlations, the highest cross degrees are
observed around the equator in the southern trop-
ical Atlantic (STAO) and in the southern Pacific ocean
(SPO) (figure 2(a)). The highest values for negative
correlations are found in the tropical Atlantic north
of the equator (NTAO), as well as in the equatorial
central Pacific ocean (CPO) most likely related with
ENSO (figure 2(b)). In what follows, we will restrict
our attention to these four regions regions and their
relationship with rainfall variability in the central
Amazon basin.

In order to further study the mutual depend-
ency between SST anomalies in the four identified
ocean regions and the rainfall anomalies in the cent-
ral Amazon basin as a function of time, we gener-
ate weighted complex networks between the corres-
ponding variables shrinked to the respective pairs
of regions for sliding 24-month windows (see Sup-
plementary Notes section S3 for detailed results and
a corresponding in-depth discussion). The temporal
variability of the respective ACC values between the
two Pacific regions and the central Amazon basin
indicates no significant correlations during most of
the times. In turn, the temporal evolution of the
ACC between the NTAO and central Amazon rain-
fall exhibits generally negative values, especially dur-
ing periods with marked water shortages. The ACC
between the STAO and the central Amazon, on the
contrary, is mainly close to zero. However, it exhibits
markedly negative correlations during drought con-
ditions. This dynamical correlation structure is con-

sistent with previous findings based on a different
approach for detecting SST-rainfall coupling [37].

3.2. Early-warning indicator for droughts based on
Atlantic SST correlation structure
The above results, alongwith other several other stud-
ies [9, 10, 37], demonstrate that droughts in the cent-
ral Amazon and strong SST anomalies in the trop-
ical Atlantic ocean can be expected to often occur
simultaneously (see also Supplementary figure S3).
This supports recent suggestions that droughts in
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Figure 2. Cross degree between sea surface temperature and continental rainfall anomalies. For each sea surface temperature
grid cell of the Atlantic and Pacific Ocean, the cross degree towards rainfall in the Central Amazon Basin (blue box) is shown, for
a positive correlations and b negative correlations. Darker shading indicates a larger cross degree, implying a larger number of
links, and thus significant correlations with rainfall at more grid points in the Central Amazon Basin. Red areas outline coherent
oceanic regions with a the 20% highest cross degrees for positive correlations, found in the Southern Pacific Ocean (SPO) and
Southern Tropical Atlantic Ocean (STAO), and b the 20% highest cross degrees for negative correlations, found in the Central
Pacific Ocean (CPO) and Northern Tropical Atlantic Ocean (NTAO).

the Amazon basin are triggered by an emerging
gradient between the northern and southern tropical
Atlantic (see Supplementary figure S4) [2]. Instead
of just looking at the instantaneous SST gradient
between NTAO and STAO, we follow the highly non-
stationary nature of correlations as reported above
and study the mutual relationship between the SST
anomalies in both tropical Atlantic regions in more
detail. We again construct evolving weighted coupled
climate networks; this time, however, between the
SST anomalies in the two mentioned regions. The
temporal evolution of the resulting ACC (figure 3)
reveals generally positive values, indicating that the
SST anomalies in both Atlantic regions proceed
largely in phase. However, prior to drought events,
the ACC typically decreases and becomes negative,
indicating that SST anomalies in theNTAOand STAO
develop a dipolar relationship. This signal precedes
the SPI of the central Amazon basin by, on average,
about one year.

Along with the occurrence of a drought in the
Central Amazon, the ACC reaches a minimum before
increasing again. During a drought in the central
Amazon, the dipole between NTAO and STAO thus
reaches its maximum strength, before diminishing
again in the aftermath. We emphasize that the dipole
between these two regions—with maximum strength
indicated by the minimum in the ACC between the
SSTs of NTAO and STAO—is associated with, but
should not be considered the same as, the SST gradi-
ent between the two Atlantic regions that has been
proposed to cause droughts in former studies [2, 20]:
During the development of the dipole, SST anomalies
in the two regions evolve in opposite directions, lead-
ing to an increased gradient between them (Supple-
mentary figure S4).

To establish an early warning method for
droughts in the central Amazon basin, we therefore
focus on the emergence of the SST dipole pattern
between the NTAO and the STAO. Specifically, we
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Figure 3. Early-warning signal for droughts in the central Amazon basin.We compare the time evolution of the average cross
correlation of the Northern Tropical Atlantic Ocean (NTAO) and Southern Tropical Atlantic Ocean (STAO), given by the blue
curve, with the standardized precipitation index (SPI, orange) of the central Amazon basin. Orange dips indicate a negative SPI
with a threshold for severely dry periods (SPI<−1.5, dotted red line). We expect a drought event within the following one and a
half years whenever the average cross correlation between NTAO and STAO SST anomalies falls below an empirically found
threshold of−0.06. Green circles indicate a matching forecast based on the Atlantic SST correlation structure, with one false
alarm in 2002 indicated by a grey circle, where the threshold is crossed but no drought took place in the direct aftermath (see
Discussion). The temporal evolution of the average cross correlation shown here is smoothed using a Chebyshev type-I low-pass
filter with a cutoff at 24 months (see Methods).

expect a shortage in rainfall within the following
one and a half years whenever the ACC between the
NTAO and the STAO becomes significantly negat-
ive, with the peak of the drought occurring around
the time when this correlation reaches its minimum.
Empirically, crossing a threshold at−0.06 from above
is found to provide an optimal early-warning signal
of a drought event based on the considered study
period and data sets (see Supplementary figure S5).
For the time period between 1981 and 2016, in which
high quality rainfall data are available, the SPI indic-
ates seven severely dry periods (i.e. SPI <−1.5) in
the Amazon basin. Out of these seven droughts, our
method is able to correctly hindcast six (all but the
one taking place in 2005), while we would have also
issued one false alarm in 2002 (for possible reasons of
the false alarm andmissed hit see Discussion section).
This leads to a HSS of 0.82 (equation (4)). Extensive
robustness tests of this hindcast are provided in the
Supplementary Notes section S4. Because it occurred
at the very beginning of the study period, we did
not include the drought of 1983 in our analysis (as
we do not know whether the ACC had crossed the
threshold before). Note that to comply with the size
of our sliding windows, droughts which occur in
close succession are counted as one, e.g. 1991− 1992
and 2009− 2010. Furthermore, all droughts except
the one in 1995 occurred within one year after the
threshold was crossed, while the one in 1995 occurred
only after one and a half years.

During very wet periods in the central Amazon
basin, we often observe a positive SST gradient
between NTAO and STAO (Supplementary fig-
ure S4). Accordingly, the ACC between these two
Atlantic regions is close to zero or even positive dur-
ing such periods (Supplementary figure S6). In this
spirit, we find indications that shortly before very
wet anomalies, the dipole diminishes and the SST

anomalies of the two Atlantic regions rather vary in
phase. The fact that this behavior appears less regular
and—taken alone—more unreliable for establishing
a robust early warning suggests that the mechanisms
leading to the occurrences of very wet conditions are
more complex and depend on additional parameters
associated with the formation of extensive positive
rainfall anomalies, such as orography, ENSO, or other
atmospheric processes. Given that the relationship is
more concise for dry conditions in the Amazon, we
focus on the prediction of droughts in this study.

While we have only presented here the results for
the filtered ACC time series, corresponding findings
for the non-filtered data, shown in Supplementary
figure S7, indicate that the high forecast skill of our
method does not critically depend on the smoothing.
Details on the corresponding analysis can be found in
the Supplementary Notes section S5.

4. Discussion

The development of SST-based statistical forecast-
ing schemes for droughts in the Amazon basin
has recently attracted interest. Most notably, Lima
and AghaKouchak [10] considered the prediction of
the first three empirical orthogonal function (EOF)
modes of the Amazon PDSI field, achieving con-
siderable spatial correlations between forecasted and
observed spatial fields at lead-times up to 9 months.

In both, Lima and AghaKouchak [10] and our
present work, the essential background for establish-
ing a reliable drought forecasting scheme has been
provided by the detection of influential SST pat-
terns. For the Amazon basin, previous studies already
suggested that particularly high SST anomalies in
the northern tropical Atlantic ocean could trigger
droughts in the Amazon. Often, this phenomenon
co-occurs with an El Niño event (e.g. [7, 8, 11]).
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Corroborating the well-known impact of ENSO on
rainfall anomalies in tropical South America, we
also observe anomalies in the correlation structure
between rainfall in the central Amazon and the central
Pacific ocean (CPO) whenever hydrological extremes
occur. Note that the CPO region that we have iden-
tified in this study is similar to the area upon which
ENSO indices are typically defined.

Along with this possible constructive effect of
tropical Atlantic and Pacific SST anomalies, most
previous studies have considered both ocean basins
together with the Amazon basin as study regions in
their entirety. Indeed, while this work has developed
an early warning indicator for central Amazon
droughts solely based on Atlantic SST patterns, the
inclusion of other covariates (like characteristic SST
patterns in the tropical Pacific or relevant patterns in
other climate variables) in a more complex statistical
forecasting model could further improve the predict-
ive skill of our approach. Developing and testing a
more complex scheme would, however, require much
longer reliable data sets of SST and continental rain-
fall variability. In turn, given the limited data avail-
able, adding additional predictors might have eas-
ily rendered a corresponding forecast model over-
determined, or have resulted in a loss of sensitiv-
ity due to the spatial averaging of data from regions
affected by essentially different climate variability pat-
terns. Nevertheless, we outline corresponding further
extensions of the present work as a subject of future
studies.

Our proposed early-warning method differs
from previous drought forecasting schemes [10]
in that it is solely based on SST anomalies in the
northern and southern tropical Atlantic ocean
(NTAO and STAO). Although regression analyses
between tropical Atlantic SSTs and rainfall in the
Amazon have been performed before [13], an early-
warning method based on this idea alone has—to
our knowledge—not been introduced so far. In our
approach, a decrease of the average cross correlations
between NTAO and STAO SST anomalies below zero
indicates the development of an SST dipole between
both regions, which provokes a northward shift of
the ITCZ position, causing reduced rainfall amounts
in the central Amazon. The relationship between
the dipole formation and subsequent drought occur-
rences is so distinct that an early-warning systemwith
high predictive skill can be established solely on this
basis.

While the present study has exclusively focused
on the correlation pattern between the two Atlantic
regions, this does not imply that we disregard the
large-scale impact of El Niño events on droughts
in the Amazon basin (corresponding results for the
two Pacific regions can be found in the Supplement-
ary Notes section S6). Both El Niño and La Niña

events are associated with strong SST anomalies in
the Pacific ocean, which have in turn been found
to induce significant SST anomalies in the NTAO
[13, 37].

Regarding our missed hindcast of the 2005
drought, we note that the SPI-3 exhibited values
between−1 and−1.5 for a considerable time interval
before it finally dropped below −1.5 in 2005, indic-

ating the drought onset. Considering this period as
a prolonged build-up phase of drought conditions,
the early-warning signal observed in 2002 and attrib-
uted to a false alarm could in fact be linked to the
2005 drought. Future work should examine the spe-
cific conditions associated with the 2005 drought to
support or falsify this hypothesis and further unveil
the associated specific climatological processes.

Unlike the method by Lima and AghaKouchak
[10], our approach issues a binary forecast of an
incipient drought, without paying attention to its
specific spatiotemporal pattern and magnitude, at

common lead-times of the order of one year and
even longer (i.e. beyond those considered in [10]).
Moreover, the presented hindcast skill indicates its
considerable potential to be employed in combina-
tion with other existing strategies focusing on com-
plementary aspects. Specifically, an issued warning
could be used to initiate further, more computation-

ally expensive multi-model ensemble forecasts with
coupled atmosphere-ocean general circulation mod-
els, to study in more detail the expected spatiotem-
poral features of an incipient drought. Moreover,
since SST projections of climate models are con-
sidered to be more reliable than rainfall projections,
our results could also be used to estimate future

drought frequencies in the Amazon.
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