
Technische Universität MünchenFakultät für ChemieLehrstuhl für Theoretische Chemie

The Electrostatic Gap: Combining
Electrostatic Models with Machine Learning
Potentials

Carsten Gerald Staacke

Dissertation zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)



Technische Universität MünchenTUM School of Natural Sciences

The Electrostatic Gap: Combining
Electrostatic Models with Machine Learning
Potentials
Carsten Gerald Staacke

Vollständiger Abdruck der von der TUM School of Natural Sciences derTechnischen Universität München zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Priv.-Doz. Dr. Aras Kartouzian
Prüfer der Dissertation:

1. Prof. Dr. Karsten Reuter
2. Prof. Dr. Jennifer Rupp
3. Prof. Dr. Volker Deringer

Die Dissertation wurde am 31.08.2022 bei der Technischen Universität München
eingereicht und durch die TUM School of Natural Sciences am 12.10.2022 angenom-men.





Concordia res parvae crescunt, discordia maximae dilabuntur.





platzhalter

Preface
This dissertation is publication-based, meaning its scienti�c content is published in a series of
related, but independent articles, all of which have undergone the scienti�c peer-review process
in international scienti�c journals. The �rst chapters therefore mainly serve as an introduction
to methods and relevant literature. Summaries for each article are then provided in chapter 5.
The presented work has been carried out at the Chair of Theoretical Chemistry of the Technical
University of Munich (TUM) between March 2019 and December 2020, under the supervision of
Prof Dr. Karsten Reuter and has been completed between January 2021 and May 2022 at the Fritz
Haber Institute of the Max Planck Society in Berlin. A research stay between January 2022 and
Mai 2022 hosted by Prof Dr. Gábor Csányi at the University of Cambridge complemented this
work.

Munich, August 2022
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Abstract
Growths in the economy and population, a modern lifestyle, and a fully digitalized and connected
world increase the global energetic demands each year. Currently, fossil fuels make up 80% of
the global energy consumption, the combustion of which being the main driving force for the
disastrous e�ects of climate change. Controlling and reducing CO2 emissions are therefore key
challenges of modern society. Renewable energy sources such as wind and solar panel would
be ideal solutions to this problem, however both are a.) not necessarily predictable and b.) not
evenly distributed geographicaly. To enable an even energy distribution, we require e�cient
energy storage. In the past, the combustion of coal and oil has been so successful as that is what
carbon-based chemicals are: extraordinarily e�cient forms of energy storage.

Many applications, such as laptops, mobile phones, and electric vehicles, utilize lithium-ion
batteries as their primary energy storage. While lithium-ion batteries using liquid electrolytes
entered the market in 1991, all-solid-state lithium-ion batteries (ASS-LIB), although investigated
for decades, are still not widely applied. They promise several advantages in comparison to
liquid electrolyte batteries: minimizing �re hazards, longer cycle lifetimes, more comprehensive
temperature ranges, and enhanced energy density by potential usage of Li metal anodes. In
particular, solid electrolytes of the Li2S-P2S5 (LPS) material class have gained substantial attention
due to their favorable properties. First, they possess high RT conductivities of up to 10−2 S/cm
for crystalline LPS components, which ranks them among the most conductive solid electrolytes.
Secondly, they are composed of the earth-abundant elements sulfur and phosphorous enabling
applications at large scales. However, this material class’ design of potent SSE is hampered by
the poor understanding of structure-property relations. This manifests in massive deviations in
reported Li-ion conductivity in di�erent experimental setups and from theory and experiment.

Simulations based on Density Functional Theory (DFT) or classical force �elds (FF) have
enabled material comprehension e.g. new insights into material properties for decades. Insights
at the atomistic level are irreplaceable for a mechanistic understanding of chemical processes.
Unfortunately, due to high computational costs, DFT methods are limited to small systems while
providing a highly accurate and complete description. At a much reduced computational cost,
classical FFs allow to account for such e�ects. Yet, here the problem is an often reduced accuracy in
the description of the potential energy surface (PES). To this end, emerging Machine Learning (ML)
methods have shown to be increasingly able to bridge this gap, with good �rst-principles accuracy
at a much reduced computational cost. However, the basic assumption of locality, implying the
neglect of long-range interactions, is problematic in many cases.

To this end, the central topic of this thesis is threefold. First, we intended to systematically
identify systems where this locality assumption does not hold. We especially tried to understand
when and why the locality assumption holds for polar and ionic systems and when it fails. Second,
as we realized that local ML models accurately predict isotropic bulk material properties, we
developed a near-universal Gaussian Approximation Potential (GAP) model for the crystalline and
amorphous compounds in Li2S-P2S5. We then used the GAP model to systematically investigate
the e�ect of the local anion composition in glassy Li2S-P2S5 compounds.

At the same time we realized that a short-range model can accurately describe isotropic systems,
we understood that we need an accurate description of non-local interactions for non-isotropic
systems. To this end, we developed the kernel-based charge equilibration scheme called kQEq.
The novel kQEq schemes enable the prediction of partial charges based on local environments by
including the ability to predict non-local charge transfer.
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Zusammenfassung
Wirtschafts- und Bevölkerungswachstum, ein moderner Lebensstil, in seiner Gesamtheit eine
vollständig digitalisierte und vernetzte Welt, erhöhen den Ausstoß von Kohlensto�dioxid jedes
Jahr. Die Verbrennung fossiler Energieträger in Industriesektoren und im Individualverkehr sind
dabei der Hauptgrund für katastrophale Auswirkungen sowohl auf den Planeten Erde als auch auf
uns als Menschheit. Daher ist die Reduktion von CO2-Emissionen die größte Herausforderung,
vor der die Welt heute steht. Bereits heute stammen 20% des weltweiten Energieverbrauchs aus
erneuerbaren Energien. Bei der Energiegewinnung aus nachwachsenden Rohsto�en stehen wir
vor dem Problem, dass Wind und Sonne a.) nicht vorhersagbar und b.) nicht gleichmäßig über
die Erde verteilt sind. Um eine gleichmäßige Energieverteilung zu ermöglichen, benötigen wir
daher e�ziente Energiespeicher. In der Vergangenheit war die Verbrennung von Kohle und Öl so
allgegenwärtig, da kohlensto�basierte Chemikalien genau das sind: ein außerordentlich e�zienter
Energiespeicher.

Lithium-Ionen-Batterien werden häu�g als Energiespeicher der Wahl eingesetzt. Laptops,
Mobiltelefone und Elektroautos wären ohne Lithium-Ionen-Akkus nicht realisierbar gewesen.
Während Lithium-Ionen-Batterien mit �üssigen Elektrolyten 1991 auf den Markt kamen, haben
All-Solid-State-Lithium-Ionen-Batterien trotz jahrzehntelanger Erforschung noch immer keine
breite Anwendung gefunden. Sie versprechen mehrere Vorteile im Vergleich zu Flüssigelektro-
lytbatterien: höhere Leistungsdichte, Minimierung von Sicherheits- und Brandgefahren, längere
Zyklenlebensdauer, umfassendere Temperaturbereiche und Erhöhung der Energiedichte durch
die potenzielle Verwendung von Li-Metall-Anoden. Festkörperelektrolyte der Materialklasse Li2S-
P2S5 haben hier aufgrund ihrer bemerkenswerten Eigenschaften große Aufmerksamkeit erlangt.
Erstens besitzen sie hohe Leitfähigkeiten von bis zu 10−2 S/cm, womit sie zu den leitfähigsten SSEs
zählen. Zweitens bestehen sie aus den auf der Erde reichlich vorkommenden Elementen Schwefel
und Phosphor und ermöglichen daher Anwendungen in großem Maßstab. Allerdings wird das
Design potenter SSEs dieser Materialklasse durch das schlechte Verständnis der Beziehung von
Struktur und Materialeigenschaft behindert. Dies zeigt sich z.B. in großen Abweichungen von
Li-Ionen Leitfähigkeit aus Theorie und Experiment.

Simulationen basierend auf der Dichtefunktionaltheorie (DFT) oder klassischen Kraftfeldern
(force �elds, FF) beschleunigen die Materialanalyse seit Jahrzehnten. Simulation und Modellierung
auf atomarer Ebene sind für das mechanistische Verständnis chemischer Prozesse unersetzlich.
DFT-Methoden sind auf kleine Systeme beschränkt, liefern aber trotz hoher Rechenkosten eine
sehr genaue und vollständige Beschreibung. Obwohl der Rechenaufwand bei der Verwendung
eines klassischen FF gering ist, liefern diese hingegen oft nur eine vereinfachte Beschreibung eines
Materials. Hier haben sich neue Methoden des maschinellen Lernens (ML) als zunehmend in der
Lage erwiesen, diese Lücke zu schließen, indem sie die Genauigkeit der Dichtefunktionaltheorie
bei stark reduzierten Rechenkosten ermöglichen.

Die Grundannahme der Lokalität, die die Vernachlässigung langreichweitiger Wechselwirkun-
gen impliziert, ist in vielen Fällen problematisch. Zu diesem Zweck ist das zentrale Thema dieser
Arbeit in drei Fragestellungen aufgeteilt. Zunächst war es notwendig Systeme zu identi�zieren,
bei denen diese Lokalitätsannahme nicht ausreicht. Der Fokus lag insbesondere darauf, wann
und warum die Lokalitätsannahme für polare und ionische Systeme wie SSEs gilt und wann sie
versagt. Im zweiten Schritt haben wir, als wir erkannten, dass eine genaue Beschreibung isotroper
Materialien durch ein lokales ML-Modell erreicht werden kann, ein nahezu universelles Gaussian
Approximation Potential (GAP) für die kristallinen und amorphen LPS Materialien entwickelt.
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Wir haben das GAP-Model verwendet, um systematisch den Ein�uss der lokalen Anionenzusam-
mensetzung auf die Li-Ionen-Leitfähigkeit in glasartigen Li2S-P2S5-Verbindungen zu untersuchen.
Genauso wie wir erkannten, dass isotrope Systeme durch ein lokales Modell nahezu exakt be-
schrieben werden können, haben wir verstanden, dass wir eine genaue Beschreibung nicht-lokaler
Wechselwirkungen für nicht-isotrope Systeme benötigen. Hierfür haben wir das Kernel-basierte
Ladungsmodel namens kQEq entwickelt. kQEq ermöglicht die Vorhersage von Partialladungen
basierend auf lokalen atomaren Umgebungen.
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Nomenclature
As this thesis combines the nomenclature of di�erent �elds I will use the following notation
throughout this thesis. It is closely related to the original publications i.e. the publication where
the underlying theory has been introduced for the �rst time.

χE Electronegativity
χE,0 Electronegativity of the isolated atom
χECENT Environment dependent electronegativity used in the CENT approach
χd Descriptor vector
Jii Hardness of atom i
J 0ii Hardness of an isolated atom i
ri j Distance between atoms i and j
rA Atomic radius
qi Charge of atom i
Qtot Total Charge
ρi,α Element speci�c neighbour density in SOAP
w Weighting in the element-speci�c neighbor densities
p Power spectra vector
p Elements of the power spectra vector p
c Regression weight
Rn Radial basis function
Ylm Spherical Harmonics
fcut cuto� function
kd Kernel function using descriptor vectors d
KNN Kernel matrix of dimension N x N
λ Regularization parameter
ΣNN Diagonal matrix containing the regularization parameters λ
N Number of input parameters
Nt Number of training points
UE Electrostatic potential energy
kC Coulomb constant
E(+1) Energy equivalent to removing an electron
Etot Total energy
ϵd (χd ) local energy corresponding to a descriptor d
δ (d ) Scaling parameter of descriptor d ∈ [2b,3b,SOAP]
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List of Abbreviations
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CENT Charge equilibration via neural network technique
DFT d Density Functional Theory
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EN Electronegativity
FF Force Field
GAP Gaussian Approximation Potential
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IP Ionisation potential
kQEq Kernel QEq
KRR Kernel ridge regression
LPS LiPS material class
ML Machine Learning
NN Neural Network
PES Potential energy surface
QEq Charge equilibration scheme by Rappe and Goddard
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1 Introduction
“Our dangerous reliance on carbon-based fuels is at the core of all these problems- economics,

environmental, national security.” [1]

In his Nobel prize lecture in 2007, Al Gore pinpointed the need for an immediate carbon-free
economy. In times of inner European aggression, Al Gore seems right. More than ever.

Thirteen years later, clean energy technologies’ worldwide market lies at approximately 130
billion USD only.[2] Nevertheless, there are signs of improvement. Whilst the global economy
su�ered from the impact of COVID-19,[3] renewable energies expanded by their fastest rate in two
decades.[2] Record sales of electric vehicles are set daily.[4] Policy changes, such as a solar panel
mandate for new non-residential buildings in Germany [5, 6], indicate that the energy economy of
future generations will be unrecognizable to our current one.[7–9] Although sustainable energy in
our economy is without alternative, it is unclear what the supply with solely regenerative energy
will look like.

Batteries are by far the largest part of the clean energy technology market, a market expected to
increase to 1.2 trillion USD by 2050.[2] The current majority of lithium-ion batteries (LIBs) utilize
liquid electrolytes, which are in competition with All-solid-state (ASS)-LIBs.[8, 10–12] In theory,
these are advantageous over liquid-electrolye LIBs, as they minimize safety and �re hazards, have
longer cycle lifetimes and more comprehensive temperature ranges, and enhance energy density
via the potential use of Li metal anodes.[11, 12]

A promising subgroup of ASS-LIBs is the Li2S-P2S5 (LPS) material class.[13] First, they possess
high conductivities of up to 10−2 S/cm, even higher than the well known electrolytes Li10GeP2S12
or Li1.3Al0.3Ti1.7(PO4)3.[14, 15] Secondly, they consist of earth-abundant elements sulfur and
phosphorous.[16] A critical, yet often neglected factor, as abundance is required for sustainable
large-scale global implementation. [8]

When �rst commercial energy storage devices entered the market, sustainable energy research
targeted speci�c energy technologies and related materials.[17] While there is an ongoing hunt for
the jack-of-all-trades material,[18] design of potent SSE is typically hampered by the poor under-
standing of structure-property relations.[19] Hence, e�orts such as the e-conversion cluster or the
BIG-MAP project target disorder and materials interfaces that underlie these changes of material
functions.[20] Examples of successful material improvements by a mechanistic understanding
range from atomic-scale complexions [21, 22], via interface amorphization processes that improve
stability and capacity of batteries [23–25], to nanoscale disorder in solar cell materials.[26, 27]

Likewise, using LPS on a large scale is hindered by a poor understanding of Li-ion conduc-
tivity mechanisms, amorphization and degradation processes.[13] From a modeling perspective,
investigating these observations realistically at the atomistic level strains the capabilities of state-
of-the-art theoretical approaches.[28] On one hand, the system sizes and simulation time scales
required are prohibitive for �rst-principles methods such as density functional theory (DFT).[29,
30] That simply means that the sheer number of calculations, requires simulation approaches
multiple orders of magnitudes faster than standard DFT. On the other hand, parameterizations for

1



empirical potentials are often not available, and these potentials may ultimately lack the desired
predictive accuracy. Fortunately, modern machine learning (ML) potentials are increasingly able to
bridge this gap, promising �rst-principles accuracy at a much reduced computational cost.[28] In
the past ML potentials have increasingly been a standard tool for atomistic simulations. The most
prominent examples are Neural Networks (NN) [31–36] and Gaussian Approximation Potentials
(GAP)[37–40], which enable simulation with nearly DFT accuracy while accelerating simulations
almost reaching the speed of classical empirical potentials in some cases.[28, 30] As indicated
by their name, empirical potentials gain their speed from a simple �xed analytical form.[41]
Flexibility and transferability are dominated by choice of the functional form of the potential
energy surface (PES).[42] Opposed to that, ML potentials do not have a �xed functional form, but
instead Machine Learning is used to learn an approximated PES as accurately as needed. [30]

When �rst introduced, ML mehods such as NN used a �xed structure. The NN was then
optimized for a certain number of degrees of freedom, i.e., number of atoms.[32] These cannot be
used to predict energies for a di�erent system size/di�erent number of atoms, since the optimized
weights are valid only for a �xed number of input nodes of the NN. In order to overcome this
scaling limitation, the locality assumption was introduced: The total energy E of the system can
be de�ned as a sum of atomic contributions ϵi and hence the energy associated with a given atom
depends on its immediate environment but not on atoms outside a given cuto� radius.[32, 43, 44]

However, this locality approximation implies that long-range contributions arising, e.g., from
electrostatic interactions, are neglected beyond a certain cuto�.[37] Although the need to include
long-range electrostatics in a similar fashion as in empirical potentials appears straightforward at
�rst glance, the success of short-range ML potentials for the modeling of certain properties of
ionic and polar materials appears to say something di�erent.[45–49] Therefore, the �rst task was
to identify a system and simulation tasks where the locality assumptions hold in some cases but
fail in others. To study the role of long-range e�ects, GAP were constructed with and without
an electrostatic correction term. As we studied the role of anisotropy, we realised that current
electrostatic and charge equilibration models lack the required �exiblity. Hence, we extended
the classical charge equilibration model QEq by an environment-dependent electronegativity
and showed that our kernel QEq model (kQEq) can be used to generate accurate and highly
data-e�cient models for molecular dipole moments.

Chapter 2 will introduce the general concepts of SSEs speci�cally, materials of the Li2S-P2S5 class,
and discuss current challenges. Chapter 3 focuses on the two parts characteristic for ML potentials,
namely the atomic descriptor and the concept of regression. I discuss the GAP framework and
give a tutorial like introduction to the regression methods used in this work. The �nal chapter 4
focuses on the derivation of the charge equilibration and long-range interaction and the discussion
of previously published machine learning charge prediction schemes.
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2 Li2S-P2S5 Solid-State Electrolytes and theirchallenges
2.1 Solid-State Electrolytes
Lithium-ion batteries (LIBs) are currently the most e�cient electrochemical energy storage tech-
nology in terms of energy and power densities, reliability, and rechargability. While LIBs with
liquid electrolytes reached commercialisation at the beginning of the 90s, all-solid-state Lithium-
ion batteries (ASS-LIBs) are still not widely used. ASS-LIBs promise several advantages, regarding
reduced �ammability and operation safety in electri�ed mobility, longer lifetimes, and higher
energy density. [11, 12]

A common drawback of liquid electrolytes are side reactions in which soluble products are
generated at one electrode and consumed or further reacted at the other electrode, often called
chemical cross-talk.[50] A well known example is the Li-S shuttle e�ect.[51, 52] Soluble electrode
components can di�use, being responsible for the progressive leakage of active material from the
cathode.[53] In solid-state electrolytes (SSEs) only lithium ion transfer is exhibited as the SSE acts
as a functional separators with only resulting in minor self-discharge. The negligible self-discharge
is typically attributed to a low residual electronic conductivity.[21] In liquid electrolytes, most
compounds (Li ions and most anions) are mobile. The mobility of all chemical species can cause
concentration gradients of the conducting salts. This salt gradient leads to bulk polarization,
limiting the cell current. As in SSBs only Li ions are mobile, higher current densities can be
reached and hence lower charging times are enabled. [11, 14] A desired feature of SSEs is the use
of lithium-metal anodes. The hope was that due to mechanical rigidity of SSEs dendrite formation
caused by electrodeposition of lithium can be prevented.

SSEs can be divided into three groups. Organic solid polymers, inorganic solids, and solid
like dispersion of nanoparticles in liquids.[54] The last group is often referred to as semi-solid
electrolytes and form a group on their own. Although solid polymer electrolytes appear to be the
preferred choice as they can compensate for volume changes of electrodes by elastic and plastic
deformation, they lack the required high ionic conductivities for battery operation.[55] Batteries
using inorganic solids — either crystalline, glass or glass-ceramic in nature — have demonstrated to
improve battery performance at high currents.[56] This is in contrast to a common misconception
that SSEs are inherently poor ionic conductors at ambient temperature.[56] In fact a number
of ternary and quaternary sul�des and thiophosphates (Li2S-P2S5 and Li10GeP2S12) have been
reported to exhibit room temperature conductivities equal or even higher than typical liquid
electrolytes.[14, 57, 58]

So why is it that ASSBs are not fully applicable already? The major drawback of many inor-
ganic SSEs is their low thermodynamic stability.[59] Just like liquid electrolytes, SEs are easily
oxidized at intermediate potentials and reduced at low potentials.[60] Protecting interfaces are
therefore required to stabilize the electrode/electrolyte contact.[61] While oxides often experience
mechanical failure through cracking, thiophosphates such as the herein studied (Li2S-P2S5) are
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ductile and easily form dense cathode composites.[62]

Fig. 2.1: (Left): Schematic architecture of a solid-state battery adapted from Zeier and Janek.[11] Cathode
and anode are separated by the solid-state electrolyte that allows for lithium-ion di�usion. Porous
cathodes typically made of layered transition metals are the largest component of a battery. Anodes
and cathodes both serve as the active storage component of the battery, but known cathode materials
have a lower Li density. The cathode is typically coated on thin aluminium foils (current collector).
In a SSB the classically used porous graphite anode could be replaced by Lithium metal. (Right top):
Major challenges in modeling solid-state batteries: The use of a lithium metal anode can signi�cantly
increase the cell energy density resulting in a dramatically increased cell energy density. However,
resistive solid electrolyte interfaces (SEI) may form between the lithium anode and the SSE (Right
top). Inhomogeneous lithium metal deposition can form dendrites. Dendrite formation represents a
simulation task that requires an accurate description of charge-transfer plus the ability to model SEI.
Modeling lithium ion di�usion within a solid and over a solid-solid interface strains the capability of
modern simulation techniques. Near ab inito accuracy for long and large simulation cells are required
to determine a full picture of lithium ion motion. When modeling amorphization and the formation
of interfaces, it is crucial to describe reactivity in order to predict degradation processes that happen
during charging and discharging of a battery.

In Fig. 2.1 I give a schematic architecture of a solid-state battery as proposed by Zeier and Janek
and including current challenges in modeling solid-state batteries.[11] Already during synthesis
but especially during operation, SSE form resistive solid electrolyte interfaces (SEI) between
the lithium anode and the SSE. Although material interfaces can be engineered so they form a
protective layer, realistic models are challenging in both cases.[21] Secondly, inhomogeneous
lithium metal deposition in the anode as well as in the SSE itself can form dendrites.[63] For
modelling dendrite formation we require an accurate description of charge-transfer plus the ability
to model disorder in both electrodes and the SSE. The pure size of realistic simulation setups as
well as the simulation time in order to realistically model lithium ion di�usion within a solid and
over a solid-solid interface strains the capability of modern simulation techniques. Near ab initio
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accuracy, in long and large simulation cells are required to determine a full picture of lithium ion
motion. Finally, when modeling disorder, defects, amorphization and the formation of interfaces,
it is crucial that the underlying model is reactive and hence can predict degradation processes
that happen during charging and discharging of a battery.

The key to further advance in the ASS-LIB �eld is to fully understand material disorder, inter-
facial properties and eventually feature a lithium metal electrode and outperform conventional
lithium ion batteries.[11] In this light, it is evident that the development of Li ion batteries doesn’t
hinge on the development of appropriate solid bulk electrolyte materials, but a systematic under-
standing of material properties. In the following chapter I will summarize the structural and ionic
conduction properties of the Li2S-P2S5 material class, highlighting the challenges for an atomistic
understanding of these materials.
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2.2 The Li2S-P2S5 Solid-State Electrolytes
Sulfur based electrolytes gained attention as SSEs due to an inherent high ionic conductivity
(>10−3 Scm−1), [64] and their good contact with electrode materials due to their mechanical soft
nature. [65] The thiophosphate electrolytes in the “simple” Li2S-P2S5 two component system (LPS
family) are particularly interesting as they possess high conductivities without the addition of a
transition metal (Si, Ge, Sn).[58] Accordingly, a variety of crystalline and amorphous materials in
the LPS material class were reported over the past two decades.[13] In literature two nomenclatures
for the LPS material class are found. Either the material is characterized by its chemical formula
or by its mass percentage of Li2S, i.e. Li3PS4 or 75 mol% Li2S.

Although crystalline and amorphous materials are - in principle - of in�nite structural diversity,
in LPS �ve anionic species are commonly observed. As illustrated in Fig. 2.4, these species are
characterized by central phosphorus atoms, each bonded to either four sulfur atoms or a neigh-
bouring phosphorous atom and three sulfurs.

Fig. 2.2: P-S microchemistry/ anionic species formed within Li2S - P2S5.[13] Phosphorous is displayed in red,
sulfur in yellow.

These features were identi�ed and characterized in detail for the �rst time by Dietrich et al.
[58] in 2017 and can be summarized as follows:

• Ortho-thiophosphate moieties PS3−4 (tetrahedra) are dominant for high Li2S quantities (>75
mol%).

• Pyro-thiophosphate moieties P2S4−7 are formed by two corner sharing PS4 tetrahedra. They
are typically observed for Li2S quantities <75 mol%.

• Hypo-thiodiphosphate moieties P2S4−6 are composed by two PS−3 units with a direct P-P
bond. It should be noted that phosphorus in P2S4−6 has a formal oxidation state of +IV,
whereas its formal charge in the rest of the LPS anions is +V.
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• Meta-thiodiphosphate moieties P2S2−6 and Meta-thiophosphate (PS−3 )n are both observed in
the 60 mol% Li2S crystalline composition. Meta-thiodiphosphate has two edge sharing PS3−4
units, Meta-thiophosphate moieties are described as the polymeric corner-sharing chains of
PS−3 .

Crystalline Phases of Li3PS4, Li4P2S6, and Li7P3S11
In the ternary Li-P-S phase diagram, Li3PS4, Li4P2S6, and Li7P3S11 are probably the most commonly
studied compounds.[13]

Fig. 2.3: Crystal structures of the Li2S–P2S5 composition line. The structures are grouped by their local
P–S motifs. Note that Li4P2S6 does not exactly lie on the Li2S–P2S5 composition line, but is the
crystallization product of glassy Li4P2S7. (Li: blue; S: yellow; P: red)

Li3PS4: Li3PS4 is the crystalline compound of Li2S content of 75 mol% and can be found in three
di�erent phases: α , β , and γ -Li3PS4. All of them solely contain the simplest PS3−4 anion. As seen
in Fig. 2.4 conceptually, these three phases can be distinguished by their di�erent arrangement
of PS3−4 anions. These are either all pointing in the same direction (γ ), are arranged in a zig-
zag fashion in one (α ) or two directions (β) in space.[66] The room temperature stable phase is
γ -Li3PS4, exhibiting a phase transition at 600K (γ to β) and at 800K (β to α ).[67] As operating
temperatures of ASSBs are usually smaller than 400K the α phase is less relevant for battery
applications as it is not stable at RT. Apart from that, due to small stoichiometric changes, β-Li3PS4
has been shown to occur at RT. [68]
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Fig. 2.4: Arrangements of PS4 tetrahedra in the α , β , and γ in Li3PS4.[69] (Li: blue; S: yellow; P: red)

A fourth crystalline Li3PS4 called δ , was predicted by Iikubo et al . using an evolutionary
algorithm under high-pressure of 5GPa.[70] To the best of my knowledge, δ -Li3PS4 has not
been experimentally observed. Low RT-conductivities of 2.6 x 10−7 and 9.0 x 10−7 S cm−1 are
experimentally reported for both relevant crystals (γ to β).[67]

Li7P3S11: Crystalline LiP3S11 is obtained for 70 mol% Li2S. It is an extremely important mem-
ber and well studied crystal of the LPS family due to its very high ionic conductivity (up to
1.7 x 10−2 Scm−1 at RT).[71] It has a triclinic P-1 space group, composed by a 1:1 ratio of PS3−4
and P2S4−7 . Lithium ions are exclusively tetrahedrally coordinated.[72] Obtaining fully crystalline
Li7P3S11 is challenging due to its narrow stability window.

Fig. 2.5: Crystallographic structure of Li7P3S11. It features terminal (I) as well bridging (II) sulfur atoms. (Li:
blue; S: yellow; P: red)

As seen in Fig. 2.5 Li7P3S11 features two distinct sulfur species, namely in bridging and terminal
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positions. Our evaluations using Hirshfeld population analysis [73] indicate that these species
correspond to di�erent charge states. It is generally obtained as a glass-ceramic. [74] While
Li-ion conductivity in LPS is usually determined via a di�usion of defects (Li+ vacancies), Li7P3S11
exhibits a more collective Li+ motion yielding superior conductivity compared to the other of its
crystalline counterparts.[75, 76]

Li4P2S6 Synthesizing Li4P2S6 crystals is unique as its composition is not exactly in the sto-
ichiometric line between Li2S and P2S5. Li2S contents of 67 mol% yields Li4P2S7 glass. The
corresponding reaction is:

2Li2S + P2S5 
 Li4P2S7 
 Li4P2S6 + S

The crystal structure of Li4P2S6 was initially reported as being P6 3/mcm when �rst synthesized
in 1982,[77] recent studies predicted a stacking of P2S4−6 yielding P-31 m.[78] Quenching the
Li2S contents of 67 mol% melt yields glassy Li4P2S7. Subsequent annealing leads to the formation
of crystalline Li4P2S6 and sulphur.[77, 78] It is important to emphasize, that the local structures of
glassy Li4P2S7 and crystalline Li4P2S6 di�er signi�cantly. The dominant anion of the Li4P2S7 glass
is P2S4−7 , while as shown in Fig. 2.6 in crystalline Li4P2S6 the material solely contains P2S4−6 .[58,
78] Li4P2S6 is a commonly observed byproduct of other members of the LPS material class.[78]

Fig. 2.6: (a) rystallographic structure of Li4P2S6 with a D3d symmetry. The P–P bonds are along the crystal-
lographic z axis. (b) Ball-and-stick diagram of the P2S6 ion units. The blue arrows indicate the two
possible placements of the P.[79] The origin of the unit cell can either be at the center of the P-P bond
or located between P2S6. (Li: blue; S: yellow; P: red)

Especially, the metastable Li7P3S11 crystal degrades at high temperatures above 1000K leading
to the formation of Li4P2S6.[80] Indeed, these reactions can be attributed to the evaporation of
Li4P2S7 and the high stability of the Li4P2S6 phase. The ionic conductivity of Li4P2S6 is very
low (10−6 Scm−1) but can be enhanced when synthesized as a glass ceramic structure.[58] In the
glass-ceramic microstructure, the amorphous part is mainly composed of PS3−4 units.[58]
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Glasses and Thiophosphate Microchemistry
While LPS crystals have �xed stoichiometries and P-S anion matrices, high structural variability
is found in LPS glasses.[72, 78] The plasticity arising from the amorphous nature of the glasses
makes them more robust to mechanical stress, exerted by volume changes during cell cycling.[11]

Amorphous structures of xLi2S-(100-x )P2S5 have been synthesized and systematically studied
in the range 60 < x < 80.[78] Similar to crystalline LPS, the choice of x in�uences the anion
composition. Except for Meta-thiodiphosphate (P2S2−6 ) all thiophosphate anions were experimen-
tally veri�ed via 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) and Raman
measurements.[78, 81, 82] In general though, compositions are dominated by PS3−4 and P2S4−7 with
the corresponding species ratio highly depending on the choice of x . At low Li2S contents (60 ≤
x≤ 70) P2S4−7 is the dominating anion, while higher Li2S content favours PS3−4 anions.

The P2S4−6 anion content is a�ected by the method of synthesis. A ball milling approach yields
up to 10 % P2S4−6 anion independent of x .[78, 83] In contrast to that a microwave assisted synthesis
route minimizes the formation of P2S4−6 anion at RT.[78, 81, 82] Thiophosphate-chains (PS−3 ) have
only been demonstrated for low Li2S contents (x=60).[58, 78]

Essential di�erences of crystalline and glassy LPS, in addition to anion content, are Li+ conduc-
tion mechanisms. For glassy Li3PS4 , the so-called paddlewheel e�ect has been found to increase
the RT conductivity by several orders of magnitude.[84] The paddlewheel e�ect describes quasi
continuous PS3−4 re-orientations during Li+ migration. Li ion conductivities are between 10−5 and
10−4 Scm−1. They are less conductive than the Li7P3S11 crystal, but signi�cantly higher than the
crystalline Li3PS4 phases.[78–80, 85, 86] An interesting experimentally observed trend in LPS
glasses is an increased Li-ion conductivity with increasing Li2S content.[58]

2.3 Challenges from a Modeling Perspective
Realistic modelling of battery materials is an ongoing journey, challenging time and size scales
of all available methods we currently have in our toolbox. Ranging from polaron assisted Li
di�usion[87], studies on nano-scale complexions using empricial potentials[21] to kinetic Monte
Carlo investigations of Lithium intercalated in graphite[88] our group always tried to push state
of the art approaches to its limits. Developments in the �eld of operando spectroscopy enabled
detailed structural insight into batteries during operation. A key �nding of operando experiments,
not just in battery research but also catalysis and other �elds, is the awareness that a static picture
of a material is not enough and sometimes even wrong.[89] To establish multiscale relations
between atomistic features and a material’s macroscopic behaviour and electrochemical properties
we need to describe atomic interactions as accurate as possible on a size and time scale that is
statistically robust in an ensemble like fashion. So far, the methods of choice are based on DFT
for small/short but very accurate simulations and empirical potentials for large/long simulations
that are limited in their accuracy. Empirical potentials gain their speed and robustness from �xed
functional forms which comes at the cost of lacking reactivity or describing chemical variations
in LPS material inaccurately. In that respect my personal experience was always that accuracy in
a numerical sense often seemed to be taken too seriously and accuracy in a sense of consistency
with experimental observations to be underrepresented.

The approach taken in this thesis, is to replace �xed functional forms of empirical potentials
by �exible functional forms of machine learning interatomic potentials in order to combine the
accuracy of �rst principle methods with the speed of empirical potentials. In materials modelling
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we are typically interested in the total energy Etot of a system. We can de�ne Etot as a sum of local
contributions Elocal and long-range electrostatic EES yielding the following energy expression

Etot = Elocal + EES (2.1)

The following two chapters will evolve around this expression of the total energy. While chapter
2 focuses on the local energy contribution Elocal retrieved from the GAP framework, chapter 3
derives the EES expression in the context of the charge equilibration scheme QEq. Hence, the
underlying structure of each chapter is always the same: Starting from the energy expression
of either the local or electrostatic term each section introduces key steps how these energy
expressions are obtained.
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3 Machine-learning interatomic potentials inmaterials science
3.1 Machine Learning Potentials: A general Overview
In principle, the most accurate way to obtain total energies and atomic forces of a system is by
solving the Schrodinger equation (SE).Unfortunately, an analytic solution is only feasible for
very-simple systems such as the hydrogen atom. For larger chemical structures, the SE is typically
solved approximately. However, even with approximations, an accurate numerical solution of the
SE is a computationally extraordinary demanding task.

In the past, simple empirical functions are commonly used to model the relevant interactions.
From these FF, energies and forces can be obtained with much reduced costs. However, while
o�ering a qualitatively reasonable description of chemical interactions, the accuracy of the un-
derlying FF and hence the quality of the simulations can be very limited.[90] ML methods could
bridge this gap between accuracy of ab initio methods and e�ciency of classical FFs. When using
ML methods the user aims to train an algorithm to learn the functional relationship between
inputs (chemical descriptors) and outputs (properties) from patterns or structure in the training
data.

As we already introduced, in order to create a general ML potential that can be employed
for systems of varying size and composition, just as with many empirical potentials (e.g. EAM,
Terso�) a locality assumption is typically made.[32, 38, 91, 92] The system’s total energy is thus
approximated purely as a sum of local (atomic) contributions:

Etot ≈ Elocal =
N∑
i

ϵ(Zi , χi )fcut (3.1)

where the sum runs over the N atoms in the system and each atom i contributes with an energy ϵ
that only depends on its atomic number Zi and its local chemical environment, represented by
the descriptor χi . [32, 38, 93–95] This implies that electrostatic contributions outside a cuto�, in
the above function de�ned by a cuto� function fcut , are negligible.

Three components are needed to generate an ML potential for a given material/material class:

• A database of reference structures and associated quantum-mechanical data.

• A way to represent the atomic structure such that these can be used by the ML algorithm

• The regression or “learning” algorithm itself.

While I discussed the target materials in the previous chapter, I will discuss tasks two and three in
the following chapter.
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3.2 The Gaussian Approximation Potential Framework
In this work I used the Gaussian approximation potential (GAP) framework.[38, 39] The GAP
software is implemented in the QUIP code.[96] As well as in other ML frameworks, the total energy
of an atomistic system is a sum of atomic (“local”) energies, from training data that consist of the
system’s cartesian coordinates, total energies and their derivatives. In GAP, the two components
for modeling are the representation of atomic environments typically using n-body (with n=2,3)
descriptors as well as the many-body descriptor smooth overlap of atomic positions (SOAP), and
the regression task which is in this framework a Gaussian Process Regression (GPR).

The commonly used energy expression in GAP is

Etotal = Elocal = (δ (2b))2
Nt∑

i ∈pairs
ϵ (2b)(χ (2b)i )

+ (δ (3b))2
Nt∑

j ∈tr iplets
ϵ (3b)(χ (3b)j )

+ (δ (SOAP ))2
Nt∑

a∈atoms

ϵ (SOAP )(χ (SOAP )
a )

(3.2)

“2b”, “3b”, and “SOAP” denote two-, three-, and many-body interactions each containing a scaling
parameter δ (d ). The scaling parameter de�nes the energy contributions of a given interaction.
To the best of my knowledge, Volker Deringer and Gabor Csanyi �rst introduced that energy
expression for a GAP on amorphous Carbon in 2017.[37] From that energy expression, I will
now introduce the ingredients of the GAP framework in a step-by-step manner starting with
descriptors/representations of local atomic environments followed by the GPR framework.

3.3 Descriptors of local atomic environments
The set of descriptors χd = {χd1 ,χd2 ,...,χdN } with d ∈ {2b, 3b,MB} encode the local environment of
every atom i .[97] One possible terminology de�nes a descriptor by being a mapping of an atomic
con�guration i , typically a molecule or a solid de�ned by the cartesian coordinates and chemical
identity of its N atoms, into a suitable representation for the regression task.[30] The mapping
associates i with points in feature space, which are then used to construct a machine-learning
model to regress (�t) a structure-property relation.

One can de�ne four desirable properties/requirements for a structural descriptor: First, the
descriptor should obey fundamental physical symmetries. Second, the descriptor should be
smooth i.e. continuous changes of a structure should yield a smooth change in the associated
descriptor. Third, it should be complete hence inequivalent structures should yield distinguishable
descriptors. Finally, in order to be able to ensure transferability to systems of varying molecular
size, the descriptor should be additive e.g. structures should be decomposed in a sum of local
environments.[98, 99]

The need to remove the dependency of the Cartesian coordinates on the origin and orientation
of the reference system, is a key in chemical simulations. Already in classical FF di�erent sets of
internal coordinates (bonds, angles, and torsions) have been proposed, based on chemical intuition,
as invariant descriptors of molecular geometry. In fact classical FF have been extremely e�ective
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in the modeling of biological systems. When ensuring fundamental physical symmetries this
means that the descriptor χ (d ) has to be invariant 1 under symmetry operations and permutation
of equivalent atoms in addition to translation and rotation of structures.

In practice, in addition to SOAP, a multitude of descriptors χ (d ) are available and di�erent
authors have their favorite descriptor.[32, 38, 93, 94]

3.3.1 Kernel Function
Before we can introduce n-Body Descriptors, we need to highlight the role of kernel functions. In
GAP, the local energy corresponding to each type of descriptor d ∈ {2b,3b,MB} can be given by a
linear combination of kernel functions

ϵ (d )i (χ
(d )
i ) =

Nt∑
t=1

w (d)t K (d )(χ (d )i , χ
(d )
t ) (3.3)

where t denotes one ofNt training con�gurations χ (d )t . Each training con�guration has a weighting
coe�cient wt . The weighting coe�cient is attained during �tting. The covariance kernel K
quanti�es how similar the input con�guration χ (d ) is to the training con�guration χ (d )t . In
practice, one sparsi�es the representation and only allows the sum to range over a number of
“representative points” drawn from the full training database (Nt � Nf ull ).

So what is now a kernel? In machine learning, a ’kernel’ is usually used to refer to the kernel trick,
a method of using a linear classi�er to solve a non-linear problem. The kernel transform linearly
inseparable data to linearly separable ones. As seen in Figure 3.1 the kernel function K is thus
applied on each data point to map the original non-linear observations into a higher-dimensional
space in which they become separable. In this work we thus use the following nomenclature:
Cartesian coordinates are transformed by basis functions of the underlying descriptor, yielding a
descriptor vector. Each element of that descriptor vector is referred to as a feature.

Fig. 3.1: Graphical representation of the kernel trick: In 2-d, non-separable data (input space) become linearly
separable data in 3-d (feature space) after applying the kernel transformation K.

1It is important to note, that χ (d ) should be invariant to the things that the target property is invariant to. For example,
energy is a translation and rotationally invariant property, but a molecular dipole isn’t.
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In the GAP-framework, for 2b and 3b contributions, a squared exponential kernel is

K (d )(χ (d ), χ (d)t ) = exp

(
−

∑
ς

|χ (d )ς − χ (d )t,ς |2

2σ 2
ς

)
(3.4)

with ς being an index running over the elements of the descriptor vector χ and σ being the width
of the exponential kernel. The elements of the descriptor vector are often referred to as features.
A polynomial kernel is used in order to compare many-body (SOAP) environments

K (SOAP )(χ (SOAP ), χ (SOAP )
t ) =

( χ (SOAP ) · χ (SOAP )
t√

χ (SOAP ) · χ (SOAP )
t χ (SOAP ) · χ (SOAP )

t

)ζ
(3.5)

3.3.2 n-Body Descriptors
In the case of two-body contributions we use the above introduced local energy expression

ϵ (2b)i (χ
(2b)
i ) =

Nt∑
t=1

w (d)t K (2b)(χ (2b)i , χ (2b)t ) (3.6)

using a squared exponential kernel yielding

ϵ (2b)i (χ
(2b)
i ) =

Nt∑
t=1

w (d)t exp

(
−

∑
ς

|χ (d )ς − χ (d )t,ς |2

2σ 2
ς

)
(3.7)

In this case, we simply use distances ri j between atoms i and j , hence the descriptor has one single
scalar component and the local energy expression for a two body contribution simpli�es to

ϵ (2b)i (χ
(2b)
i ) =

Nt∑
t=1

Nt∑
j=1

w (d )t exp

(
−
|ri j − r jk |2

2σ 2
2b

)
(3.8)

Fig. 3.2: Graphical representation of n-body (here n=2,3) descriptors for a simple methane molecule. 2-body
terms encode the chemical environments via atomic distances. 3-body terms add angular information
between atoms. Instead of describing 3-body terms via the angle between three atoms, a general
3-body de�nes angular information by three atomic distances.
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The simplest way to guarantee rotational, translational and permutational invariance is to
represent an atomic structure via a set of atomic pairwise distances ri j accounting for all atom
pairs i and j.

The two-body contribution E(2b) can be obtained by comparing all eligible distances ri j = |ri−r j |
in a molecule or crystal via a smooth and regular kernel function k2b : RxR→ R

k (2b)(ri j , rik ) = exp

(
−
|ri j − r jk |2

2σ 2
2b

)
(3.9)

de�ning the similarity of distances via a Gaussian function of width σ2b . The width σ2b controls
the smoothness of the kernel. The energy E(2b)i (ri j ) of atom i is given by summing local energies,
each de�ned by its kernel values k (2b)(ri j )

E(2b)i (ri j ) =
Nt∑
j

ϵi j =
Nt∑
j

w jk
(2b)(ri j , rik ) (3.10)

with w being the regression weights. For a detailed discussion of the regression weights see
sec. 3.4.

Three-body descriptors add angular information, i.e. energy contributions arising from the
relative position of three atoms i, j,k . Equally to the 2-body descriptor, we can de�ne a three-body
kernel k3b : R2xR2→ R de�ning the energy as

E(2b,3b)i (ri jk ) =
Nt∑
j

w jk
(2b)(ri j , rik ) +

Nt∑
j

w jkk
(3b)(rik , ri j , r jk ) (3.11)

In the 3-body descriptor of GAP, distances ri j , rik , and r jk are not directly used, but a di�erent
form is used to enforce symmetry over permutation of the neighbor atoms j and k .

q(3b) =
©­­«
ri j + rik
(ri j − rik )2

r jk

ª®®¬ (3.12)

But as shown in Fig. 3.2, already a 3-body descriptor can be de�ned in multiple ways. Either by
a set of three atomic distances (or a combination of these) or by an angle between three atoms.
While it can be crucial to include higher body order terms to achieve a higher accuracy, when
de�ning a many-body representation, the possibilities to de�ne the descriptor space seems nearly
in�nite. [97] In the next section I will introduce the widely applied Smooth Overlap of Atomic
Positions (SOAP) descriptor as my many-body descriptor of choice.

3.3.3 Smooth Overlap of Atomic Positions Descriptor
In the past, SOAP has been one of the most widely applied many-body representations.[39]
In SOAP, neighboring atoms are represented by overlapping Gaussian functions yielding the
neighbour density. While the neighbor density is by construction already invariant to permutation
and translation, rotational invariance still has to be introduced. This is achieved by expanding the
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neighbor density in the basis of orthogonal radial distribution functions and spherical harmonics.
We again start by the energy expression

ϵ (d )i (χ
(d )
i ) =

Nt∑
t=1

w (d )t K (d )(χ (d )i , χ
(d)
t ) (3.13)

using a polynomial kernel

ϵ (d )i (χ
(d )
i ) =

Nt∑
t=1

w (d )t

( χ (SOAP ) · χ (SOAP )
t√

χ (SOAP ) · χ (SOAP )
t χ (SOAP ) · χ (SOAP )

t

)ζ
(3.14)

In a �rst step the atomic structure is transformed into atomic density �elds ρ for each species α .
We can de�ne a set of element-speci�c neighbor densities ρi,α for each central atom i

ρi,α (r) =
∑
j

fcut · (ri j )exp
(
−
|r − ri j |2

2σ 2
α

)
(3.15)

with σα being an element-speci�c descriptor width and fcut a cuto� function. As discussed the
neighbour density in eq. 3.15 is already invariant to permutations between equivalent atoms and
translation. Rotational invariance can then be introduced by expanding the neighbor density in a
set of orthonormal radial basis functions дn and spherical harmonics Ylm

ρi,α (r) =
∑
nlm

w i,α
nlmдn(r )Ylm(r̂) (3.16)

In this de�nition of the neighbour density ρi,α r is the vector containing the cartesian coordinates
of atom i , r in the radial basis functions дn(r ) is the magnitude and r̂) in the spherical harmonics
Ylm(r̂)) is the direction. The coe�cients w i,α

nlm can be obtained by projecting the density onto the
basis functions via

w i,α
nlm =

∭
dVдn(r )Ylm(θ ,ϕ)ρi,α (r). (3.17)

One typically does not use the entire powerspectrum, but the elements of a �nite truncation of
the power spectrum (up to n ≤ nmax and l ≤ lmax ). Hence, these hyperparameters nmax , lmax
have to be chosen according to the investigated system. The now rotationally invariant output is
the partial power spectra vector p with the individual elements:

piαα
′

nn′l =

√
8π 2

2l + 1
∑
m

w i,α
nlm ·w

i,α ′

n′lm (3.18)

In an alternative de�nition of SOAP by Ceriotti and coworkers[97], the spherical harmonics
can be de�ned by angular terms θ and ϕ as

ρi,α (r) =
∑
nlm

w i,α
nlmдn(r )Ylm(θ ,ϕ) (3.19)
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with the coe�cients w i,α
nlm

w i,α
nlm =

∭
dVдn(r )Ylm(θ ,ϕ)ρi,α (r). (3.20)

and the elements of the powerspectrum

piαα
′

nn′l =

√
1

2l + 1
∑
m

w i,α
nlm ·w

i,α ′

n′lm (3.21)

The kernel function for SOAP is a dot product of the power spectrum elements. When then
using a polynomial kernel (raising the dot product to a small integer ζ ) we get the �nal polynomial
kernel K as de�ned above

K(χi , χt ) =
( χi · χt√

χi · χt χi · χt

)ζ
(3.22)

In addition to the derivation of SOAP, Fig. 3.3 gives a graphical depiction of the above SOAP
derivation. This �gure focuses on the symmetry (permutation, translation, rotation) that is
introduced in the individual steps.

Fig. 3.3: Schematic summary of the steps in a symmetrized �eld construction. In contrast to cartesian co-
ordinates, the atom density �eld is permutationally invariant. By summing over the continuous
translation group we yield an atom centered distribution. Using orthonormal radial functions and
spherical harmonics yields a discrete set of coe�cients that transform as spherical harmonics. The
atomic density functions can be either �nite-width Gaussians, which leads to representations to SOAP
features, or Dirac δ distributions, which recovers the third body order term of the atomic cluster
expansion.[93]

The energy expression can now be expressed in terms of kernel functions

Etotal = Elocal = (δ (2b))2
Nf ul l∑
i

Nt∑
t

K (2b)(χ (2b)i , χ (2b)t )

+ (δ (3b))2
Nf ul l∑
j

Nt∑
t

K (3b)(χ (3b)j , χ
(3b)
t )

+ (δ (SOAP ))2
Nf ul l∑
a

Nt∑
t

K (SOAP )(χ (SOAP )
a , χ (SOAP )

t )

(3.23)

The coe�cients w are determined during the �tting process. In the next section we turn to
gaussian process regression (GPR).
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3.4 Regression Models
The third component determining the use of ML in computational chemistry in addition to
the database and a set of suitable descriptors is the regression of atomic properties. In that
sense regression de�nes the functional dependence of a given quantity on the local structural
environment. Regression models de�ne yi as a function of xi and ci , with ci being the respective
regression weights. The penalty term λ, often referred to as the regularization, is introduced in
some cases

y = f (x , c) + λ . (3.24)

The aim is to �nd the function f (x , c) that most closely �ts the given data. In order to carry out
regression tasks, the form of function f must be speci�ed. First, I will introduce a generalized
formalism of the underlying GPR approach including a simple tutorial-style example. The last
section will discuss the formalism of a sparse regression approach and the role of sparsi�cation
for the prediction of atomic properties.

3.4.1 Gaussian Process Regression
In a recent review on "Gaussian Process Regression for Materials and Molecules" Deringer and
coworkers de�ned two equivalent approaches deriving the GPR framework.[100] Both approaches
highlight di�erent aspects of the �tting process. While from my point of view the weight-space
approach highlights the similarity of Kernel-Ridge Regression (KRR) and GPR based on the choice
of regression weights, the function-space view discusses the fact that the estimator of the local
energies only depends explicitly on the kernel function, and not on the basis functions. In this
section I will discuss the weight-view derivation of GPR but will highlight key information taken
from the function-space derivation.

In the weight-space view of GPR, a function y(x) can be approximated by a function f (x , c),
de�ned as a linear combination of N data points in the training set (usually atoms)

f (x , c) =
N∑
n

cnk(x ,xn) = cTKNN , (3.25)

with c being the regression weights, k the kernel function, and xn the input data. I use the matrix
notation for that regression problem cTKNN in order to be consistent with Fig. 3.4. The �tting of
the GPR model to the data is done by �nding the coe�cients c that minimize the loss function

L =
∑
i

(yi − f (xi , ci ))2 + λ2
N∑
n,n′

cnk(xn ,xn′)cn′ = | |(yref − y)| |2 + ΣcT KNN c. (3.26)

Σ is a diagonal matrix of size N containing all values of λ. By setting dL
dc = 0 to minimize L and

solve for c, to obtain:

c =
(
K − Σ

)−1
yref . (3.27)

20



In the GPR framework the Gaussian kernel, sometimes also called square exponential kernel,

k(x ,xn) = exp
( (x − xn)2
2σ 2

length

)
(3.28)

with σlength being the spatial length scale/width of the Gaussian is used.
Let’s now evaluate an example function: y: R→ R. These data points are reproduced from

Ref. [101]. The exact function form of y(x) is unknown so we collect a total of N observations
yref . In Fig. 3.4 the increasing similarity of the predicted function f (x , c) and the true function
y(x) with an increasing number of data points is depicted. While this in principle shows the
relevance of additional data for the accuracy of the prediction, additional data come with an
increasing computation cost. In the last section of this chapter I discuss this and address the role
of sparsi�cation for such problems.

Fig. 3.4: GPR prediction of a function f (x , c) (solid yellow line) of an unknown one-dimensional function y(x)
(dashed black line). The orange shaded area is the standard deviation. GPR provides an uncertainty
information that is not available with a kernel ridge. Using an increasing number of observations N
of data points y the model hyperparameters are �xed.

When updating the Gaussian process (hence adding a new observation n based on its predicted
uncertainty), the updated Gaussian process is constrained to the possible functions that �t the
observations N . Hence, the mean of f (x , c) intercepts all observations N . Additionally, it is
clear that the standard deviation is higher away from the observations, which re�ects our lack of
knowledge about these part of the function.

The kernel width σlength in Gaussian kernel functions together with the regularization λ are
both crucial for the smoothness and the accuracy of the predicted function. The role of σlength and
λ is depicted in Fig. 3.5. The choice is related to the often used terms ’under�tting’ and ’over�tting’
being the left and right panel in Fig. 3.5.

When decreasing regularization and/or kernel width (λ→ 0 , σ → 0) we obtain an improved
alignment of training data N and the predicted function f . As illustrated in the right panel of
Fig. 3.5 an increased precision on the prediction of the training data N when decreasing λ and or
σ diminishes the predictive accuracy for input data unequal to the training data. It is therefore
crucial to determine the accuracy/ predictive power on a set of independent data points.

3.4.2 Sparse Gaussian Process Regression
In practice when training an interatomic potential, full GPR is not applicable for large training
sets, because the computational costs of training scale with O(N 3) i.e. cubical with the training
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Fig. 3.5: E�ect of regularization λ and kernel width σ on the GPR prediction (solid yellow line). Left panel: For
small penalties on the prediction (large λ, σ ) f (x , c) is centered around the average of the observations.
Although the predicted function is smooth, it can not accurately predict the original function and
has a high uncertainty. Right panel: In contrast, small λ, σ over�t the function y(x). Although high
accuracy is achieved for the training data, high uncertainties are yielded for all other data points.
Center panel: An optimal performance is acchieved when balancing smoothness and accuracy with
appropriate λ and σ .

set size.[100] In GAP, instead of using all data points N a smaller set of representative points M(i.e.
M � N ) de�ning the ’sparse’ representation is used. We �rst recall the loss function

L =
N∑
n

(yn − f (xn , cn))2 + R (3.29)

where the relative importance of individual data points being controlled by R. Opposite to the
general case discussed above in sparse GPR the regularization term R is now only depending on
this representative set of M instead of N data points

R = Σ
M∑

m,m′
cmk(xm ,xm′)cm′ . (3.30)

Adding eq. 3.29 to eq. 3.30 and rewriting the loss function in matrix form yields:

L =
(
yref − KNMc

)T
Σ−1

(
yref − KNMc

)
+ cT KMMc. (3.31)

The matrix elements are de�ned as KNM = k(xn ,xm) where N indicates the number of data points
in the data set and M indicates the number of representative points, respectively. Minimizing L
we obtain:

−KMN Σ
−1y + KMN Σ

−1KNMc + KMMc = 0 . (3.32)

When solving for c we yield the following expression:

c =
(
KMM + KMN Σ−1KNM

)−1
KMN Σ−1yref (3.33)

Although, in the �rst glance eq. 3.27 appears to be ’simpler’ compared to eq. 3.33, Fig. 3.7 clari�es
that the coe�cient vector is shorter. Fig 3.7 also sorts out the misconception of sparsi�cation,
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that data points are left out. In sparse GPR, the full data vector y is used in training, yet now M
(’sparse’) locations are chosen to evaluate (unkown) input data. The coe�cient vector is therefore
of length M in the case of sparse GPR, while full GPR yields a coe�cent vector of lenght N .
Evaluating f (xnew, c)=ỹ for a new con�guration xnew is done using eq. 3.25

f (xnew, c) = cT k(xnew) (3.34)

A key bene�t of sparse GPR becomes apparent. While the cost of prediction in full GPR scales
with N , sparse GP is now independent of N . The notation of k(xnew) is used for the vector of
kernel values at xnew and the set of representative points

k(x)m = k(x ,xm) (3.35)

But what does that now mean in the case of the GAP framework? All GAP models are sparse
kernel models, i.e. the basis functions for the linear expansion of the atomic energy do not directly
correspond to the set of input data N . In the GAP framework individual atomic environments are
chosen as the elements of the representative set M , and the corresponding kernel basis functions
are used to expand the atomic energy. The crucial factor, beside the actual number of sparse points
(which can be seen as convergence parameter), is the choice of representative environments for
training. While for a two body-descriptor a homogeneously spaced grid is suitable due to low
dimensionality, the CUR algorithm has been found to be a good algorithm to provide a decent set
of representative data points within the SOAP-GAP model.[100]

Fig. 3.6: Visualization of the full GPR (top) eq. 3.27 and sparse GPR (bottom) eq. 3.33. The training database
consists of N entries. In full GPR all N entries are used to obain the coe�cient vector c of length N. In
sparse GPR, still all entries y are used, but M representative (“sparse”) locations are chosen to obtain a
coe�cient vector c of length M. The �gure is adapted from a review by Deringer and coworkers.[100]
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Fig. 3.7: The coe�cient vector c (green) is computed, and can be used to make a prediction at a new location
f(xnew ) as given in eq. 3.34. The cost scales with the number of data locations, N. In sparse GPR, the
full data vector y is used as well, but now M representative (’sparse’) locations are chosen, with M�
N. The coe�cient vector is therefore of length M, and the cost of prediction is now independent of N.
The �gure is adapted from a review by Deringer and coworkers.[100]
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4 Long-Range Electrostatics and Non-localCharge Transfer
The locality assumption kick-started the �tting of ML potentials and their wide applicability
spanning the range from molelucar to condensed systems.[37, 89] Even in water, where one
would expect long-range electrostatics to be crucial for an accurate description, extraordinary
accuracy of the structural and dynamic properties of bulk liquid water and di�erent ice phases
was achieved using a short-range potential.[102] This can be rationalized by the fact that these
properties/materials are presumably highly isotropic, so that long-range interactions average out.
The importance of long-range e�ects depends on the material and property of interest and thus
demands a systematic analysis.

In this last chapter I will give a historical outline on long-range interactions. Starting with
Coulomb’s law from 18th century, to Sanderson’s concept of electronegativity equalization intro-
duced in the early 50s, and the �rst Charge Equilibration (QEq) scheme by Rappe and Goddard in
1991, section 4.1 will introduce the basic formalism of charge equilibration.

Section 4.2 covers machine-learning based charge equilibration approaches and recent develop-
ments in the �eld of machine learning based charge assignments.

4.1 First steps towards QEq
Coulomb’s law, when �rst introduced in 1785 enabled the quanti�cation of the force between
two stationary, electrically charged particles. Charged particles’ attraction or repulsion is directly
proportional to the product of charges (qi ,qj ) and inversely proportional to the square of the
distance between them:

F = kc
qiqj

(ri − r j )2
. (4.1)

Here, kc is Coulomb’s constant.
From Coulomb’s law we can derive the electrostatic potential energy (UE (qi )) of one point

charge qi at position ri in the presence of another point charge qj as:

UE (qi ) = kc
qiqj

|ri − r j |
, (4.2)

as well as the electrostatic potential energy (UE (qi )) of one point charge qi at position ri in the
presence of N − 1 other point charges qj

UE (qi ) = kcqi
N−1∑
j=1

qj

|ri − r j |
, (4.3)
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In a molecule or condensed system we can then de�ne the electrostatic potential energy of the
entire system of N point charges as:

UE =
1
2k

c
N∑
i

qi

N∑
j,i

qj

ri j
. (4.4)

For small atomic distances ri j e.g. in chemical bonds it is intuitive that the energy description
can be beyond coulombic interactions. Linus Pauling de�ned electronegativity χ by the ability
of an atom to attract shared electrons/electron density when forming a chemical bond.[103] He
proposed an electronegativity scale which depends on bond energies, as a development of valence
bond theory. By that we are able to understand that a covalent bond between two di�erent atoms
(i–j) is stronger than the average of the i–i and the j–j bonds. He proposed an electronegativity
scale which depends on bond energies, as a development of valence bond theory. It is important
to remember that electronegativity cannot be directly measured and strongly correlates with a
number of other chemical properties. Two of these properties are the ionization potential (IP)
and the electron a�nity (EA).[104] The ionization potential is the energy needed to remove the
outer valence electron. Electron a�nity is the energy di�erence related to the injection of an extra
electron. As such we can de�ne the electronegativity of atom i as:

IP + EA

2 = χEi (4.5)

When two atoms i and j form a bond Sanderson postulated that the corresponding electroneg-
ativities equalize.[105] He �rst showed that concept based on bond lengths in alkali halide gas
molecules, and proved that the same holds true for more than two atoms combining within a
molecule. He de�ned the electronegativity as a stability ratio of the formed bond of atoms i and j

χE =
Z

4.19r 3Aρe
(4.6)

where Z is the atomic number, rA the atomic radius of each atom and ρe the electronic density
of atom i . When comparing reported bond lengths to ionic or non-polar covalent radii, Sanderson
identi�ed electronegativities based on bond stability for di�erent molecules. He then averaged
χE to yield one electronegativity per element. But in principle he already put forth that the
electronegativity depends on the formed bond and hence the atomic environment.

Rappe and Goddard extended the idea of the electronegativity equilibration of a bond and
developed a framework to estimate the electrostatic potential energy of molecules and periodic
systems by its charges. The QEq methods computes partial charges by using atomic coordinates
and the two previous de�ned properties of isolated atoms χE,0i , J 0ii . I use the notation χE,0i instead
of χi when we treat an isolated atom i instead of atom i in a molecule. This is one of the underlying
assumptions: atomic ionization potential and electron a�nity of isolated atoms are similar to
the ones of the same element bonded inside a molecule or a crystal. The concepts involved in
the QEq approach manages to combine earlier ideas of Pauling (chemical bond) [103], Mulliken
(electron a�nity)[104], Margrave (an extended de�nition of electronegativity)[106], Parr and
Pearson (concept of hardness)[107], Mortier (Electronegativity-equalization for the prediction
of partial charges)[108], and others. In that respect, I can highly recommend the original QEq
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publication of Rappe and Goddard. In their publication they clearly outline the relationship
between QEq and some of these earlier ideas and methods.

Above, I already de�ned electronegativity based on IP and EA. Now let’s consider how the
energy of an isolated atom changes as a function of charge, e.g. how the energy changes by adding
or removing an electron. Starting with the neutral reference, one can write the energy of atom i
by a Taylor expansion

Ei (qi ) = Ei0 + qi
(∂E
∂q

)
i0
+
1
2q

2
i

(∂2E
∂q2

)
i0
+ . . . (4.7)

When including terms through second order and de�ning two examples of adding/removing an
electron we yield:

Ei (+1) = IP = Ei0 +
(∂E
∂q

)
i0
+
1
2

(∂2E
∂q2

)
i0

(4.8)

Ei (−1) = EA = Ei0 −
(∂E
∂q

)
i0
+
1
2

(∂2E
∂q2

)
i0

(4.9)

These two cases represent the IP (the energy needed to remove the outer valence electron) and the
EA (the energy di�erence related to the injection of an extra electron). When solving for

(
∂E
∂q

)
i0

and
(
∂2E
∂q2

)
i0

we can de�ne

(∂E
∂q

)
i0
=

Ei (+1) + Ei (−1)
2 =

IP + EA

2 (4.10)

(∂2E
∂q2

)
i0
= Ei (+1) − Ei (−1) = IP − EA (4.11)

In eq. 4.5 we already identi�ed the �rst term
(
∂E
∂q

)
i
= χE,0i being equivalent to the electronegativity.

For the second term let’s consider a neutral atom with a singly occupied orbital. The orbital is
empty for the positive ion and double occupied for the negative ion. The di�erence between the
IP and EA for that orbital is:

IP − EA = J 0ii (4.12)

with J 0ii being the Coulomb repulsion between two electrons in the orbital. This electronic
repulsion quantity is the idempotential and is known as atomic hardness. This is an approximation
as the optimum shape of the orbital changes upon adding an additional electron.
Using the de�nitions of electronegativity and hardness we get

Ei (qi ) = Ei0 + χ
0
i qi +

1
2 J

0
iiq

2
i (4.13)
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In order to yield an energy expression for molecules and crystals the sum of atomic values for
χE,0i and J 0ii are extended by pairwise interactions between the atoms:

Etot (q1, . . . ,qN ) =
N∑
i

(
Ei0 + χ

0
i qi +

1
2 J

0
iiq

2
i

)
+

N∑
i<j

qiqj Jii (4.14)

with Ji j being the Coulomb interaction between atom i and j. This can be rewritten as

Etot (q1, . . . ,qN ) =
N∑
i

(
Ei0 + χ

E,0
i qi

)
+
1
2

N∑
i, j

qiqj Ji j (4.15)

In order to obtain the partial charges we set up a system of partial di�erential equations of the
energy with respect to the system charges as χi

χi (q1, . . . ,qN ) =
∂E

∂qi
= χE,0i +

N∑
B

qB Ji j (4.16)

χi is a function of the charges on all the atoms of the system. With the constraint on the total
charge

Qtot =

N∑
i=1

qi (4.17)

the minimun energy is found if

χ1 = χ2 = · · · = χN (4.18)

By that we have a set of N partial di�erential equations for the equilibrium self-consistent charges
that are solved once for a given structure.

In order to solve the QEq scheme, we require the Coulomb potential Ji j , de�ned as the potential
between the charge centers on atoms i and j, to be separated by a distance R. For distances R
where the charge distributions of atoms overlap, the simple Coulomb law (eq. 4.3) is not valid. For
R → 0, the Coulomb interaction Ji j → ∞, whereas it should lead to a �nite value related to Jii
and Jj j . To ensure that Ji j (r ) is physical meaningful, a shielding is needed. A variety of shielding
approaches exist, Rappe and Goddard choose the shielding to be the Coulomb integral between
atomic densities. For simplicity Slater-type densities of neighboring atoms are considered instead
of atomic densities from ab initio calculations on atoms. Hence, QEq still considers neighbouring
atoms like isolated atoms that are pushed close.

The electron densities of an atom with valence orbitals ns, np, or nd can be written as normalized
single nS Slater densities of the form

ρSlaternζ = Nnr
n−1e−ζ r (4.19)

where Nn is the normalization constant, n the valence shell and ζ the valence orbital exponent.
The valence orbital simply represents the characteristic size of each atom by

ζi =
λ(2n + 1)

2ri
(4.20)
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The scaling factor λ accounts for the di�erence between an average atom size and the covalent
radius ri . The Coulomb integral for short distances can now be expressed by atomic densities

Ji j (R) =
∬

ρi (ri )
1
ri j
ρ j (r j )dVidVj (4.21)

In later work Rappe and coworker’s extended the QEq for periodic systems by using the Ewald
summation. By using the Ewald summation they ensure the convergence of the Coulomb term in
an in�nite periodic system. Since the �rst implementation of the original QEq scheme, a variety of
extensions have been proposed in order to improve the quality of the computed charges. Ongari et
al. compared systematic errors of di�erent classical approaches for gas adsorption predictions in
metalorganic frameworks (MOFs). [109] These variations can in general be distinguished by these
four parameters:

• Choice of the atomic parameters

• Center and the order of the Taylor expansion of the energy

• Analytic form to compute the pairwise interaction between atoms with respect to it’s
geometry

• Inclusion of further parameters to characterize each bond type

In the next section, I want to discuss a few selected machine learning approaches for charge
prediction and charge equilibration.

4.2 Machine Learning Charge Prediction Schemes
Including long-range electrostatic interactions in ML potentials as an electrostatic baseline is a
great challenge. We not only require to take interactions beyond the cuto� radius into account, but
also to include physically meaningful energy terms. Huge e�orts have been made by various groups
in the past, ranging from NN approaches like PhysNet[31] and HIPNN[110] predicting partial
charges, electrostatic multipole coe�cients for organic molecules from kernel-ridge regression
[111, 112], partial charge prediction by random forest regression in drug like molecules [113], and
many more.[114–116]

In this section I want to focus on two ideas that - from my perspective - are the key developments
in the last decade that in�uenced the development of our kQEq model. Namely Behler’s third
generation NN in 2011[33] and Goedecker’s charge equilibration neural network technique (CENT)
in 2015[117]. Behler and coworkers were the �rst group to use a baseline neural network predicting
environment-dependent charges from ab initio atomic charges. By that they could predict long-
range interactions but lack the ability to predict non-local charge transfer. A �rst important
step towards non local charge-transfer in ML potentials has then been done by Goedecker and
co-workers. By predicting environment dependent electronegativities and determine charges by
the QEq scheme they were able to include long-range charge transfer in a qualitatively correct
way. In all subsections, I focus on the main idea of how to incorporate long-range electrostatics.
Details of the underling NN frameworks can be found in the corresponding publications.
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4.2.1 Third generation NN potentials
The key component for a successful application of such an electrostatic baseline is the accurate
prediction of atomic charges. While for some cases, including our �rst attempt to use an electro-
static baseline[73], an element-wise �tting of charges can be su�cient, the work of Behler and
others have shown the possibility to predict environment-dependent atomic charges.[33, 118]

In this approach a baseline NN (accounting for the long-range electrostatic) in addition to a NN
potential (covering all remaining short-range interactions within the cuto�) is trained. This idea
of using an electrostatic baseline is often referred to ∆-learning.

Etotal = Eshor t + Eelec (4.22)

In ∆-learning a double counting of electrostatic energy contributions is avoided by a simple
subtraction of the electrostatic energy Eelec from the total energy Etotal . As shown in Fig. 4.1,
atomic charge NNs are trained using reference atomic charges obtained from electronic structure
calculations and atomic positions.

Fig. 4.1: Schematic structure of a third generation NN potential by Behler. A set of atomic NNs (shown in red)
is used to construct environment-dependent atomic charges. These predicted atomic charges can be
used to calculate the long-range electrostatic energy. The total energy of the system is then given
by the sum of the short-range Eshor t and the electrostatic energy Eelec .The �gure is adapted from a
review by Behler.[119]

Using �rst-principle partial charges is a major drawback in that approach. Atomic partical
charges are not physical observables and there is no unique/best choice. Although all of them are
mathematically well-de�ned, benchmark studies have shown that di�erent partitioning schemes
yield very di�erent results.[120] In addition, predicting partial charges directly from atomic
environments, will not cover non-local charge transfer, e.g. charge redistribution outside the
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cuto� radius. As charges are predicted for each atomic environment individually without a
constrain on Qtot , the total charge is not conserved and molecules, which are formally charge
neutral might be predicted to be charged by these type of NN.

4.2.2 The CENT approach

To account for non-local charge transfer Goedecker and co-workers de�ne the total-energy
expression similare to QEq by:

Etot (q1, . . . ,qN ) =
N∑
i

(
E0i + χ

CENT
i qi +

1
2 Jiiq

2
i

)
+
1
2

∬
ρi (ri )

1
ri j
ρB(ri )dVidVj (4.23)

with E0
i being a reference energy, qi the atomic charges, Jii the atomic hardness, and χCENT

i the
environment-dependent atomic electronegativity of atom i . The charge density ρ in CENT is a
superposition of normalized spherically symmetric Gaussian functions of width αi centered at
atomic positions ri given by

ρi (r) =
qi

α3
i π

3
2
exp

(
− |r − ri |

2

α2
i

)
(4.24)

The QEq approach as outlined above only requires three parameters, namely the electronega-
tivity (χEi ), the non-classical contribution to the hardness (J 0ii ) and the atomic size (ri ) for each
species in the system. As a �ipside of this elegant simplicity, the accuracy and transferability of
the QEq method is limited, however.

In the CENT approach this limitation is hurdled by allowing the electronegativity χCENT of
an atom to change as a function of its chemical environment.[117] As shown in Fig. 4.2, for
an ionic system, the cartesian coordinates (input) are transformed to atom-centered symmetry
function vectors (descriptors for the NN). These inputs for the atomic NNs yield the environment-
dependent electronegativities χCENT . Using the charge equilibarion framework similar to QEq,
atomic charges q can be used to compute the total energy Etot using eq. 4.23.
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Fig. 4.2: Schematic structure of the charge equilibration neural network technique (CENT) for a system with
two elements (a,b) with N atoms of element a andM elements for element b. Cartesian coordinates
are transformed to atom-centered symmetry function vectors. These basis functions are the input
for atomic NNs yielding environment-dependent electronegativities χ . Using a charge equilibration
framework similar to QEq, atomic charges q can be used to compute the total energy Etot . The �gure
is adapted from a review by Behler.[119]

Goedecker, and co-workers applied the NN-based QEq model to ionic crystals.[117] In these
ionic systems, the total energy can entirely be represented by the electrostatic contributions. In
general there is no need for Qtot to be zero such that the method is also applicable to charged
systems. Notably in the CENT approach, Qtot is conserved. For details on the setup on the NN
infrastructure see [117].
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5 Publications
As this thesis is publication based, in this chapter a summary of my two publications that resulted
from my research during my PhD period is given. Each overview includes a brief summary of the
genesis and its content and is followed by a more detailed elaboration on my personal contribution.
The corresponding full articles together with the respective supporting information can be found
in the appendix of this thesis.
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5.1 On the role of long-range electrostatics in machine-learnedinteratomic potentials for complex battery materials
Carsten G. Staacke, Hendrik H. Heenen, Christoph Scheurer, Gábor Csányi, Karsten Reuter,
Johannes T. Margraf
ACS Appl. Energy Mater. 2021, 4, 12562-12569
DOI: 10.1021/acsaem.1c02363
Summary: This �rst project aimed for the question, are long-range interactions needed when
using an ML interatomic potential and if so when are they relevant? Modeling complex energy
materials such as the herein investigated Li7P3S11 SSE realistically at the atomistic level strains
the capabilities of state-of-the-art theoretical approaches. Fortunately, modern ML potentials
promise �rst-principles accuracy at a much reduced computational cost. However, the local
nature of these ML potentials typically means that long-range contributions arising, e.g., from
electrostatic interactions are neglected. Clearly, such interactions can be large in polar materials
like electrolytes. In this work we investigated the e�ect that the locality assumption of ML
potentials has on lithium mobility and defect formation energies in SSEs. We therefore developed
a ∆ learning protocol using a simple electrostatic baseline (ES-GAP). Comparing the classical
GAP model with the newly developed ES-GAP, we found that neglecting long-range electrostatics
is unproblematic for the description of lithium transport in isotropic bulk like environments.
In contrast, simulating non-isotropic systems yielded the importance of ES contributions and
provided new insights into interphase stability of Li7P3S11.

Speci�cally, we studied Frenkel defects in an applied �eld mimicking the potential drop at a
solid/solid interface. In this setup we found that a stabilization of the defects can occur already at
moderate �elds. This would favor the accumulation of defects towards the interphase, which could
in�uence the kinetic stability of Li7P3S11/electrode interfaces. Additionally, such stabilizations
are anisotropic to crystallographic orientation making grain shape and orientation an additional
parameter to be considered in battery engineering and beyond.

The �ndings of this work laid the foundation for the following two projects. First, now that we
understood when ES contributions are relevant, we need to develop a suitable electrostatic model,
that has the favourable properties of an ML approach, keeps the reactivity of ML interatomic
potentials and can describe non-local charge transfer. Second, if we want to model SSE interphases
realistically, we need to develop a near-universal ML potential that can likewise describe crystalline
and amorphous LPS compounds.

Individual Contributions
The idea for this project was jointly conceived by Johannes Margraf, Gábor Csányi, Karsten Reuter,
Christoph Scheurer and myself. Gábor Csányi introduced me to the GAP model while Johannes
Margraf and Christoph Scheurer helped me to understand electrostatic modeling beyond �rst
principles. While we have been able to identify cases of similar predictive power of the GAP and
ES-GAP model, Karsten Reuter and Hendrik Heenen suggested interfacial like simulation tasks to
strain the capability of a local GAP model. The manuscript was jointly written and edited by all
authors.
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5.2 Kernel Charge Equilibration: Efficient and Accurate Predictionof Molecular Dipole Moments with a Machine-LearningEnhanced Electron Density Model
Carsten G. Staacke, Simon Wengert, Christian Kunkel, Gábor Csányi, Karsten Reuter,
Johannes T. Margraf
Mach. Learn.: Sci. Technol. 3, 2022, 015032
DOI: 10.1088/2632-2153/ac568d

Summary
In the previous project we identi�ed the need for a charge model that can describe non-local
charge transfer. Hence, in this project we developed a kernel based extension of the widely
used charge equilibrition model (QEq) termed kernel Charge Equilibration (kQEq). In contrast to
conventional QEq, a data-driven, environment-dependent description of atomic electronegativities
is introduced. For this work we trained kQEq models on molecular dipoles and have been able
to show an excellent performance, en par with or better than state-of-the-art kernel models,
speci�cally tuned to predicting dipole moments.

The kQEq formalism presented in this work opens the door towards physics-based kernel
ML models for predicting atomic charges, to be used in combination with reactive interatomic
potentials such as the ES-GAP model. Most importantly, the presented approach was designed
quite general and can be extended to other �t targets (e.g quadrupole moments and electrostatic
potentials) and to more �exible density representations (e.g using atom centered dipoles in addition
to partial charges).

While this work served as a proof of concept for molecular systems, we envision the extension
for more complex �nite systems, such as catalytic processes on nano-particles, and periodic
systems, such as SSE interfaces.

Individual Contributions
Inspired by the work of Goedecker et al., Johannes Margraf suggested to replace �xed elec-
tronegativities by an atomic-environment based term and we quickly developed the �rst working
implementation together with Simon Wengert. Thanks to Christian Kunkel, an online documen-
tation is available. While we �rst aimed for partial charges as the �tting target, Gábor Csányi
suggested to aim for atomic dipoles as a more realistic target. The manuscript was jointly written
and edited by all authors.
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5.3 Tackling structural complexity in Li2S-P2S5 solid-stateelectrolyte using Machine Learning Potentials
Carsten G. Staacke∗, Tabea Huss∗, Johannes T. Margraf, Karsten Reuter, and Christoph Scheurer
∗ These authors contributed equally to the work.
Nanomaterials, 12, 2950, (2022)
DOI: 10.3390/nano12172950

Summary
For the �nal project we aimed for a near universal ML potential for the LPS material class that
can likewise describe crystalline and amorphous LPS. So, how can we model amorphous LPS
realistically at the atomic level and is there a way for a data-e�cient description for glassy SSEs?
As the lithium thiophosphate (LPS) material class provides promising candidates for solid-state
electrolytes (SSEs) in lithium ion batteries due to high lithium ion conductivities, non-critical
elements, and low material cost we want to be able to investigate this materials class as a whole.
LPS materials are characterized by complex thiophosphate microchemistry and structural disorder
in�uencing the material performance. To overcome the length and time scale restrictions of
ab initio calculations in simulations of industrially applicable LPS materials, we develop a data-
e�cient training approach for SSEs with an emphasis on complex microchemistries. Our trained
GAP model can likewise describe crystal and glassy materials and di erent P-S connectivities
PmSn .

As we have been able to model this material class as a whole, we apply the GAP surrogate
model to probe lithium ion conductivity and the in�uence of thiophosphate subunits on the latter.
In our work we found that the paddle wheel e�ect, and hence, a constant reorientation of S in
PS3−4 , is happening as long as PS3−4 is present, indepent of glassy or crystalline environments.

The general structure of the training protocol furthermore allows for a variety of extensions,
such as dopants, other selection criteria, and including an electrostatic baseline. For future work
we are currently aiming for a combination of the kQEq model with our training approach to
realistically model internal SSE interfaces.

Individual Contributions
This project has been an ongoing e�ort of Tabea Huss and myself, that included a research
internship and Tabea Huss masterthesis. While I developed the general �tting procedure, Tabea
Huss re�ned the iterative training scheme. Christoph Scheurer and Johannes Margraf guided us
when we were stuck in one of the many approaches we tried and helped us to analyse the data we
produced. The manuscript was jointly written and edited by all authors.
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5.4 Additional Work on Machine Learning Potentials: MachineLearning Surface Complexions of Rutile IrO2 and RuO2

IrO2 Surface Complexions Identified through Machine Learning and SurfaceInvestigations
Jakob Timmermann, Florian Kraushofer, Nikolaus Resch, Peigang Li, Yu Wang, Zhiqiang Mao,
Michele Riva, Yonghyuk Lee, Carsten Staacke, Michael Schmid, Christoph Scheurer, Gareth S.
Parkinson, Ulrike Diebold and Karsten Reuter
Phys. Rev. Lett. 125, 206101 (2020).
DOI: 10.1103/PhysRevLett.125.206101
Summary:
During an initial ab initio study of IrO2 nanoparticles and surfaces, it quickly became obvious
that relevant insights considering the catalytic surface demand a method multiple orders of
magnitude faster than DFT. As classical force �elds in this case are insu�cient due to their lack
of reactivity we turned to the Gaussian Approximation Potential (GAP) framework as a reactive,
interatomic Machine Learning (ML) potential. Fruitful discussion and testing of hyperparameters
with Jakob Timmermann led to a �rst GAP model. Already the �rst simulated annealing (SA)
simulations based on the initial GAP revealed several unknown GAP minimum structures. In
further iterative training and back then visual inspection of Jakob Timmermann revealed a variety
of new, low energy surface complexions that have been revealed by surface reconstructions during
the SA simulations. Together with the colleages from Prof Ulrike Diebold’s group at the Technical
University Vienna we have been able to con�rm experimentally and theoretically that solely
(101)-type surfaces con�rm a (1 x 1) surface unit cell size and hence ruling out any reconstruction
of higher symmetry.

Data-Efficient Iterative Training of Gaussian Approximation Potentials:Application to Surface Structure Determination of Rutile IrO2 and RuO2

Jakob Timmermann, Yonghyuk Lee, Carsten Staacke, Johannes T. Margraf, Christoph Scheurer
and Karsten Reuter
J. Chem. Phys. 155, 244107 (2021)
DOI: 10.1063/5.0071249
Summary:
The instant success of the generation-based training protocol had an obvious �aw: the selection
process via visual inspection is highly subjective, and can not be automated. Accordingly, we
introduced a similarity measure as a systematic, quanti�able selection criterion into our work�ow
and developed an updated iterative and automated training protocol for the identi�cation of global
minimum structures of arbitrary metal oxide surfaces. I then helped with the hyperparameter
selection procedure for rutile IrO2 and RuO2. Jakob Timmermann and Yonghyuk Lee then took
this initial work and developed a systematic yet data-e�cient scheme for bootstrapping the initial
training set, detailed heuristics on how to test and select appropriate hyperparameters, and a
straight-forward approach to determine the similarity threshold. This then fully-automatized,
iterative training protocol was successfully applied to IrO2 and RuO2 and revealed additional
low-energy complexions for both materials.
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6 Summary, Conclusions and Outlook
Large scale energy storage is already indispensable in our todays life. In that respect batteries
play a crucial role in modern mobility, transport and communication. While we are struggling
with the complete picture of liquid electrolytes, we still barely scratch the surface when it comes
to solid-state batteries. In the past, ab initio methods and empirical potentials have been powerful
tools. Unfortunately, in the same way ab initio methods are limited given the size and time scales
required for a detailed understanding of interfaces, while empirical potentials don’t reach the
required accuracy or lack �exibility. Here, emerging Machine Learning (ML) methods have shown
to be increasingly able to combine the strength of both approaches, with good �rst-principles
accuracy at a much reduced computational cost.

In this thesis, I developed a variety of new approaches and tackled these three challenges:
First, we identi�ed simulation tasks which need an electrostatic baseline in order to achieve

a correct description of the material. Using the same training data for crystalline Li7P3S11, we
found signi�cant di�erences between a short range GAP model and the ES-GAP model when
studying isotropic vs. non-isotropic systems. Here, for standard isotropic simulation tasks, such
as determining Li di�usion barriers and ionic conductivities, both models yield similar results. In
contrast, simulations on non-isotropic systems show the importance of ES contributions. More
generally, our results con�rm that short-ranged ML potentials can be surprisingly accurate for
polar and ionic materials in the absence of non-isotropic chemical environments like interfaces or
electric �elds. In contrast we found important qualitative deviation between our GAP models in
non-isotropic systems.

Second, we developed the kernel-based charge equilibration scheme called kQEq. The novel
kQEq schemes enable the prediction of partial charges based on local environments by including
the ability to predict non-local charge transfer. For a �rst application, kQEq models trained on
molecular dipole moments display excellent performance, en par with or better than state-of-the-
art dipole prediction schemes. The formalism of kQEq allows for physics-based kernel ML models
for predicting atomic charges, to be used in combination with interatomic potentials such as GAP.

Third, we developed a near-universal GAP model for the crystalline and amorphous compounds
in Li2S-P2S5. We then used the GAP model to systematically investigate the e�ect of the local
anion composition in glassy Li2S-P2S5 compounds. The general structure of our training protocol
allows for a variety of extensions, such additional selection criteria, doping with transition metals,
and the future modeling of solid/solid interfaces.

Now in 2022, it seems we �nally have all the tools to study solid-solid battery interfaces in an
operando like fashion. Nevertheless, open challenges remain. First, we need to de�ne a training
procedure to train a kQEq model so that we can �t to energies, higher order moments, and periodic
systems. Especially �tting to energies in a ∆-learning fashion is challenging. Second, material
interfaces have shown to exhibit distinctively di�erent stoichiometries, structure, and properties
than either of the neighboring bulk phases. We therefore need a sensible way to to establish
iterative training and exploration protocols that systematically extend the transferability of an
electrostatic GAP model to the complex interphases that truly determine the performance of
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all solid-state batteries. The speed-up achieved by electrostatic GAPs as compared to direct ab
initio calculations will then allow extensive searches and sampling that should provide a much
clearer picture of the yet missing structure-performance relationships that will ultimately enable
a rational design and advancement.
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