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A metaphase spindle is a complex structure consisting of microtubules and a myriad of
different proteins that modulate microtubule dynamics together with chromatin and kinet-
ochores. A decade ago, a full description of spindle formation and function seemed a lofty
goal. Here, we describe how work in the last 10 years combining cataloging of spindle
components, the characterization of their biochemical activities using single-molecule tech-
niques, and theory have advanced our knowledge. Taken together, these advances suggest
that a full understanding of spindle assembly and function may soon be possible.

Because of its prominent geometry, the mi-
totic spindle was identified under the light

microscope as early as the 19th century (Flem-
ming 1882). The central function of this struc-
ture, which has fascinated cell biologists ever
since, is to accurately segregate chromosomes
into two identical sets. The dynamic properties
of spindle microtubules are modulated by ac-
cessory proteins known as microtubule-associ-
ated proteins (MAPs) and motors. These pro-
teins modulate every aspect of a microtubule’s
life. They help microtubules nucleate, grow,
shrink, pause, and switch between all of these
states. In recent years, the biochemical activities
of these individual proteins have been exten-
sively studied. The advent of single-molecule
techniques has allowed unprecedented insight
into their detailed activities and the relation-
ship between these activities and the microtu-
bule lattice. However, one question remains.
How do spindle morphology and function

emerge through the dynamic activities of hun-
dreds of proteins?

“Emergence” describes the way complex
properties and patterns of a system arise out of
a multiplicity of simple interactions. Examples
include the generation of an infinite variety of
six-sided snowflakes from frozen water in snow
(Libbrecht 2005). Similarly, “flocking,” the co-
ordinated motion of animals observed in bird
flocks, fish schools, or insects swarms, is con-
sidered an emergent behavior (Berdahl et al.
2013). In physics, emergent behaviors are com-
monly studied to describe complex systems.
Physics thus provides a framework for relating
the microscopic properties of individual mole-
cules to the macroscopic properties of materials.
In this review, we first discuss progress in our
understanding of the biochemistry of individu-
al molecules required for modulating microtu-
bule dynamics with a focus on recent quantita-
tive data from biophysical and biochemical
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reconstitution assays. We highlight what we still
need to understand to link molecular and col-
lective function. We then discuss theoretical ap-
proaches, which integrate molecular details and
help to achieve a systems understanding of spin-
dle organization and function. Finally, we dis-
cuss forthcoming concepts of cellular scaling,
which assure that the spindle adapts its size to
the size of the cell.

KEY PLAYERS OF SPINDLE ORGANIZATION

The metaphase spindle is a bipolar array of mi-
crotubules assembled from dimeric ab-tubulin
subunits that polymerize in a head-to-tail fash-
ion into polar filaments with b-tubulin facing
the plus end and a-tubulin the minus end
(Mitchison 1993). Approximately 13 protofila-
ments associate laterally to form a dynamic
microtubule. The de novo formation of micro-
tubules is termed nucleation, which gives rise to
a dynamic microtubule. Microtubule dynamic
instability can empirically be described by four
parameters: (1) the microtubule polymeriza-
tion velocity, (2) the depolymerization velocity,
(3) the catastrophe frequency when microtu-
bules switch from growth to shrinkage, and
(4) the rescue frequency when microtubules
switch from shrinkage to growth (Mitchison
and Kirschner 1984). Microtubule polymeriza-
tion (Dogterom and Yurke 1997) and depoly-
merization (Lombillo et al. 1995) produce me-
chanical forces. In addition, microtubules are
subject to passive spindle forces such as elasticity
and molecular friction (Dumont and Mitchison
2009b; Itabashi et al. 2009; Shimamoto et al.
2011) and to active force generated by motor
proteins, such as kinesins and cytoplasmic dy-
nein, which use the energy from ATP hydrolysis
to step along microtubules (Gennerich and Vale
2009). Microtubule nucleation and dynamics as
well as spindle forces are controlled by a set of
regulatory proteins that specifically interact with
distinct regions of the microtubule.

MICROTUBULE NUCLEATION

The centrosome is the classic organelle associ-
ated with microtubule nucleation. The g-tubu-

lin small complex (g-TuSC) is the conserved,
functional unit of the centrosome essential for
microtubule nucleation. Multiple g-TuSCs as-
semble into a g-tubulin ring complex (g-TuRC)
in the presence of several other associated pro-
teins (Fig. 1) (Keating and Borisy 2000; Moritz
et al. 2000; Wiese and Zheng 2000, 2006; Koll-
man et al. 2010). The favored model for micro-
tubule nucleation is the template model, in
which g-tubulin assembles into a ring of 13
molecules that form a template for the nucle-
ation of microtubules with 13 tubulin protofila-
ments (Moritz et al. 1995; Zheng et al. 1995;
Pereira and Schiebel 1997). This model is sup-
ported by in vitro findings showing that puri-
fied g-TuRC caps microtubule minus ends
(Zheng et al. 1995; Moritz et al. 2000), and that
the purified yeast g-TuSC assembles into spiral-
like filaments of 13 g-tubulin molecules per
turn (Kollman et al. 2010).

Although centrosomes are considered the
classic organelle for microtubule nucleation,
spindles readily form in the absence of centro-
somes. Plant cell mitosis (De Mey et al. 1982;
Zhang and Dawe 2011) and animal egg meiosis
occur without centrosomes (Manandhar et al.
2005; Dumont and Desai 2012). In addition,
different experimental approaches show that
animal cell mitosis can occur normally after
centrosomes have been removed (Khodjakov et
al. 2000; Hinchcliffe et al. 2001; Megraw et al.
2001; Basto et al. 2006; Mahoney et al. 2006).
This implies that nucleation of spindle micro-
tubules does not always rely on centrosomes.
Indeed, seminal work in Xenopus egg extracts
revealed that chromatin can promote microtu-
bule nucleation (Heald et al. 1996). The spatial
cue necessary to nucleate microtubules around
chromatin is mediated by a diffusion-limited
RanGTP gradient (Fig. 1) (Carazo-Salas et al.
1999; 2001; Kaláb et al. 1999; Ohba et al. 1999;
Nachury et al. 2001). Ran is a small GTPase that
drives nucleocytoplasmic transport during in-
terphase, whereby the high concentration of the
guanosine triphosphate (GTP)-bound form of
Ran in the nucleus allows the release of newly
imported proteins from their binding to impor-
tins (Clarke 2008). Similarly, during mitosis, a
high-RanGTP gradient, centered around chro-
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matin, releases putative spindle assembly factors
(SAFs) from importins, thereby enabling the
SAFs to perform their function in spindle as-
sembly. The first identified direct effector of
RanGTP in spindle assembly is TPX2 (Fig. 1)
(Gruss et al. 2001, 2002). Removal of TPX2
function abolishes spindle assembly (Wittmann
et al. 2000; Gruss et al. 2001, 2002; Tulu et al.
2006; Greenan et al. 2010). Although TPX2 in-
duces microtubule nucleation when added to
Xenopus egg extracts (Gruss et al. 2001) and
promotes the assembly of microtubules from
pure tubulin in solution (Schatz et al. 2003; Bru-
net et al. 2004), it remains to be shown whether
TPX2 is a true microtubule nucleator. In addi-
tion, TPX2 is an activator of the mitotic kinase
Aurora A (Kufer et al. 2002; Tsai et al. 2003;
Eyers and Maller 2004; Ozlü et al. 2005). Work

in HeLa cells suggests that the chromatin nucle-
ation capacity of TPX2 is mediated through Au-
rora A activation and not by TPX2 directly (Bird
and Hymann 2008). Thus, the current model is
that the Ran gradient induces downstream gra-
dients, such as an Aurora A phosphorylation
gradient, and thereby effects not only microtu-
bule nucleation but also microtubule dynamics
and motor activities (Gruss and Vernos 2004).

There is direct evidence for a diffusion-lim-
ited RanGTP gradient surrounding chromo-
somes in mitotic somatic cells (Kaláb et al.
2006). Although chromatin-based microtubule
nucleation has been visualized in mammalian
cells (Khodjakov et al. 2003), chromatin-depen-
dent nucleation is not essential for spindle
bipolarity during human cell mitosis when cen-
trosomes are present (Kaláb et al. 2006; Bird and
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Figure 1. Microtubule nucleation, stabilization, and amplification. The metaphase spindle is a complex structure
consisting of microtubules (blue) that nucleate from centrosomes (green) and chromatin (gray). A central
centrosomal component is the g-tubulin ring complex (g-TuRC), which templates the nucleation of microtu-
bules. The spatial cue necessary to nucleate microtubules around chromatin is mediated by a diffusion-limited
RanGTP gradient, the first identified direct effector of which is TPX2. The eight-subunit complex augmin
nucleates microtubules parallel to existing microtubules, while katanin severs and disassembles microtubules.
GDP, Guanosine diphosphate; GTP, guanosine triphosphate.
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Hymann 2008). Thus, the relative contribution
of microtubule nucleation by the RanGTP gra-
dient appears to be organism- and cell-type-
specific (Sato and Toda 2007). Although this is
essential for anastral spindle assembly during
female meiosis, it might just provide a kinetic
advantage during the early stages of spindle as-
sembly in primarily centrosome-driven somatic
cells. Notably, in both somatic cells and Xenopus
egg extracts, the steepness of the Ran-regulated
gradient seems to correlate with spindle size
(Kaláb et al. 2002, 2006). Whether the steepness
of the Ran gradient or of its effectors actively
determines spindle size in these systems is still
an open question.

MICROTUBULE AMPLIFICATION

One open question is whether microtubule nu-
cleation by centrosomes and/or the RanGTP
pathway can generate a sufficient number of mi-
crotubules to account for the total spindle mass.
There is experimental evidence that micro-
tubule minus ends are spread throughout the
spindle (Burbank et al. 2006; Mahoney et al.
2006; Yang et al. 2007; Brugués et al. 2012), in-
dicative of microtubule nucleation happening
within the spindle body. Indeed, the eight-sub-
unit complex augmin (Fig. 1) has been shown to
recruit g-TuRC to the side of pre-existing mi-
crotubules and to initiate the nucleation of new
microtubules (Goshima et al. 2008; Lawo et al.
2009). This is consistent with the idea of a nu-
cleator that becomes activated once it binds to a
microtubule as a kinetic model of autocatalytic
microtubule production (Clausen and Ribbeck
2007). Although depletion of augmin by RNAi
decreases microtubule density within the spin-
dle (Goshima et al. 2007, 2008; Zhu et al. 2008;
Lawo et al. 2009; Uehara et al. 2009; Uehara and
Goshima 2010; Petry et al. 2011; Hotta et al.
2012; Nakaoka et al. 2012), the contribution
of microtubule amplification seems to differ sig-
nificantly in different cell types. For example,
augmin genes cannot be found in the Cae-
norhabditis elegans genome, making the worm
a system in which centrosomes play the domi-
nant role in generating spindle microtubules
(Hamill et al. 2002). In Drosophila oocytes, aug-

min is dispensable for chromatin-driven assem-
bly of bulk spindle microtubules (Colombié
et al. 2013), whereas, in Drosophila S2 cells, aug-
min depletion significantly reduces microtubule
density in spindles (Goshima et al. 2007, 2008).
Spindles formed in augmin-depleted Xenopus
egg extracts show a temporal delay in acentroso-
mal spindle formation. In the presence of cen-
trosomes, however, defects in spindle morphol-
ogy are modest (Petry et al. 2011).

So far, it is unclear how chromatin-depen-
dent microtubule nucleation and microtubule-
dependent microtubule amplification are inter-
regulated, if at all. A recent study now shows that
RanGTP stimulates augmin-dependent micro-
tubule amplification, which is dependent on
TPX2 (Petry et al. 2013), thereby linking the two
pathways. As augmin nucleates microtubules
parallel to existing microtubules, and in this
way preserves microtubule polarity (Kamasaki
et al. 2013; Petry et al. 2013), this pathway might
be important to amplify and stabilize pre-
formed structures once bipolarity is established.
Still, the exact mechanism by which RanGTP
spatially and temporally controls de novo nu-
cleation on the one hand and microtubule-de-
pendent microtubule nucleation on the other
remains to be shown.

MICROTUBULE SEVERING

Although it is clear that regulators of microtu-
bule nucleation, amplification, and growth
influence microtubule mass, the cellular conse-
quences of microtubule severing are more com-
plex. Although in vitro severing leads to the
complete loss of a microtubule, the in vivo con-
sequences of severing include microtubule am-
plification, the release of microtubules from
nucleation sites, and complete microtubule dis-
assembly (Srayko et al. 2000; McNally et al.
2006; Yu et al 2008; Loughlin et al. 2011). Active
microtubule severing was first described as an
M phase–specific activity (Vale 1991) and sub-
sequently attributed to the protein katanin
(Fig. 1) (McNally and Vale 1993). Katanin is a
heterodimeric protein, composed of a targeting
subunit (p80) and an enzymatic subunit (p60),
with an ATPase activity that severs and disas-
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sembles microtubules (Hartman et al. 1998).
Together with spastin and fidgetin, katanin rep-
resents an AAA (ATPases associated with diverse
cellular activities) subfamily with a highly con-
served AAA domain at their carboxyl terminus.
In C. elegans, the loss of katanin results in fewer
but longer spindle microtubules (Srayko et al.
2000, 2006; McNally et al. 2006). In contrast,
Dm katanin was shown to cut stabilized micro-
tubule ends, and thus provide a substrate for
kinesin-13-dependent depolymerization (Bust-
er et al. 2002; Zhang et al. 2011). In the two
closely related frogs, Xenopus laevis and tropica-
lis, katanin was shown to contribute to setting
spindle length by differentially accelerating mi-
crotubule depolymerization at the spindle poles
(see below) (Loughlin et al. 2011).

Although some studies put severing proteins
in the context of depolymerases, severing pro-
teins—if at all—are only weak depolymerases
(Dı́az-Valencia et al. 2011; Zhang et al. 2011)
when compared to classic ones such as mitotic
centromere-associated kinesin (MCAK). What
remains to be understood? Maybe the most
important aspect on the molecular level is to
understand how severing enzymes identify the
regions of microtubules on which they act. Sev-
eral lines of evidence suggest posttranslational
modifications of tubulin to enhance sever-
ing activity (Sharma et al. 2007; Lacroix et al.
2010). Although it is clear that severing has an
influence on microtubule dynamics, it remains
unclear in what way it affects microtubule mass
and, thus, spindle organization globally. Sever-
ing could induce microtubule depolymeriza-
tion and thereby increase turnover. Alternative-
ly, severing could create new templates for
microtubule growth and thereby influence the
effective nucleation rates. This might depend on
the cellular context the newly cut microtubule
ends encounterand whether theyshrinkor grow.

MICROTUBULE DYNAMICS

In vitro experiments with purified tubulin
show that both microtubule ends exhibit dy-
namic instability (Walker et al. 1988; Erickson
and O’Brien 1992; Desai and Mitchison 1997),
in which microtubules coexist in states of growth

and shrinkage and interconvert randomly be-
tween these two states. The observed in vivo dy-
namicity of microtubule ends, however, is quite
different. Although the microtubule plus end
is highly dynamic, the minus end is usually sta-
ble. The in vitro reconstitution of physiological
microtubule dynamics was first achieved using
purified centrosomes, tubulin, and the antago-
nistic proteins XKCM1 and XMAP215 (Kino-
shita et al. 2001). Although these two proteins
are among the best-understood MAPs to date,
there is a plethora of proteins that regulate mi-
crotubule plus-end dynamics. In contrast, only
a few proteins that specifically interact and reg-
ulate the microtubule minus end have been de-
scribed so far.

WHAT POWERS THE DYNAMIC
BEHAVIOR AT THE MICROTUBULE
PLUS END?

The energy required for the dynamicity comes
from GTP hydrolysis at the b-tubulin subunit
after incorporation of the tubulin dimer into
the microtubule lattice. When microtubules
are grown with guanylyl-(a,b)-methylenedi-
phosphonate (GMPCPP), a nonhydrolyzable
form of GTP, they do not undergo dynamic
instability (Hyman et al. 1992), showing that
GTP hydrolysis is necessary for the switching
behavior. Although the relation of the four pa-
rameters of microtubule dynamic instability in
pure tubulin solutions is well understood (Walk-
er et al. 1988), it is particularly important to
understand how individual proteins influence
each of the four parameters (Bowne Anderson
et al. 2013).

MICROTUBULE DEPOLYMERASES

XKCM1 is a member of the kinesin-13 family
(Fig. 2). Unlike other kinesins, kinesin-13s do
not move directionally along microtubules; in-
stead, theyemploy their ATP-hydrolyzing motor
domain to diffuse along the microtubule lattice
to target both microtubule ends, and induce
conformational changes that lead to microtu-
bule depolymerization in vitro (Hunter et al.
2003; Helenius et al. 2006; Cooper et al. 2010;
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Oguchi et al. 2011). The unconventional ATPase
cycle of kinesin-13 has optimized this motor
protein for microtubule depolymerization (Friel
and Howard 2011), explaining how structurally
similar motor domains can have different func-
tions. The kinesin-13 depolymerase activity ac-
counts well for the cellular phenotypes caused by
loss of its activity leading to a decrease in catas-
trophe rate and an increase in mitotic spindle
length (Walczak et al. 1996; Desai et al. 1999;
Tournebize et al. 2000; Rogers et al. 2004). Phe-
notypes upon loss of kinesin-13 function are
very similar to those upon kinesin-8 loss. Inhi-
bition of kinesin-8 activity results in elongated
spindles with hyperstable microtubules (Gosh-
ima et al. 2005; Mayr et al. 2007; Savoian and
Glover 2010). Indeed, kinesin-8 proteins are
slow plus-end directed motors with a high pro-
cessivity that disassemble microtubules exclu-
sively from one end (Fig. 2) (Varga et al. 2006).
Surprisingly, kinesin-8 can depolymerize long
microtubules faster than short ones. According

to the “antenna model,” longer microtubules ac-
cumulate more kinesin-8, which, because of its
high processivity, will allow the motor to reach
the microtubule plus end with a high probability.
Therefore, kinesin-8 forms length-dependent
“traffic jams” at the plus end, where an incoming
kinesin-8 willbump off a pausing kinesin-8 mol-
ecule together with one or two tubulin dimers
(Varga et al. 2009; Leduc et al. 2012). Such a
cooperative mechanism leads to a length-depen-
dent depolymerization rate and may serve as a
model for how an ensemble of molecules can
measure and control microtubule length.

Although experiments with purified pro-
teins show that both kinesin-8 and kinesin-13
can depolymerize stabilized microtubules (De-
sai et al. 1999; Hunter et al. 2003; Helenius et al.
2006; Varga et al. 2006, 2009; Mayr et al. 2007),
a recent study found that they influence catas-
trophes by quite different mechanisms (Gardner
et al. 2011). Catastrophes are thought to result
from the loss of a stabilizing GTP-tubulin cap at

XMAP215

GTP-αβ-tubulin

GTPcap

+TIPs
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Figure 2. Microtubule dynamics. The intrinsic dynamic instability of microtubules is generated by guanosine
triphosphate (GTP) hydrolysis at the nucleotide exchangeable site inb-tubulin. In addition, various proteins regu-
late the dynamic behaviorof microtubules. Although microtubule 2 ends are specifically stabilized, for example, by
patronin, the þ ends switch stochastically between growing (regulated by polymerases such as XMAP215) and
shrinking phases (regulated by depolymerases such as kinesin-8 and -13). Growing microtubuleþ ends are further
regulated by so-called microtubule plus-end tracking proteins (þTIPs). GDP, Guanosine diphosphate.
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the microtubule plus end. Although, for a long
time, catastrophes were thought to be a single-
step process, Gardner and colleagues show that
catastrophe frequency is intrinsically age de-
pendent. The idea is that, during microtubule
growth, “catastrophe-promoting events” accu-
mulate over time and increase the likelihood
of a catastrophe to happen. While kinesin-8
increases the rate of catastrophe-promoting
events, kinesin-13 reduces the number of events
necessary for catastrophe (Gardner et al. 2011).
Whether catastrophe-promoting events are
structural defects in the microtubule lattice re-
mains to be shown. The emerging picture thus is
that kinesin-13s promote rapid and global re-
structuring of microtubules as, for example,
required for spindle breakdown at the end of
mitosis (Rankin and Wordeman 2010), while
kinesin-8 mediates fine tuning of microtubule
length as, for example, required during chromo-
some congression and alignment (West et al.
2001; Mayr et al. 2007; Stumpff et al. 2008). In
fungi, however, there is no kinesin-13, only one
kinesin-8, Kip3, which does all of the jobs (Varga
et al. 2006; Roostalu and Surrey 2013), while flies
have three kinesin-13s: KLP10A, KLP59C, and
KLP59D (Mennella et al. 2005; Schimizzi et al.
2010). Taken together, although both kinesin-8
and kinesin-13 are catastrophe factors that dra-
matically affect microtubule lifetime, they will
have a different effect on the microtubule length
distribution in vivo. How microtubule length
ultimately translates into spindle length remains
to be shown.

PLUS-END TRACKING PROTEINS

Microtubule growth occurs by the addition of
ab-tubulin heterodimers with GTP bound in
the exchangeable site of b-tubulin. Proteins of
the XMAP215/Dis1 family catalyze this reaction
(Fig. 2). In accordance with their prominent role
as microtubule growth promoters, their deple-
tion leads to shorter spindles or defects in spin-
dle morphology in a variety of organisms (Mat-
thews et al. 1998; Cullen et al. 1999; Tournebize
et al. 2000; Garcia et al. 2001; Cassimeris and
Morabito 2004). Members of the XMAP215/
Dis1 family are characterized by tumor overex-

pressed gene (TOG) domains that function as
ab-tubulin-binding modules (Al-Bassam et al.
2007). The number of TOG domains is species
dependent and varies from two to five (Gard and
Kirschner 1987; Cassimeris and Morabito 2004;
van Breugel et al. 2003). Structure function anal-
yses revealed that TOG domains contribute dif-
ferentially to the affinity of XMAP215 for the
tubulin dimer and, thus, its polymerase activity
(Widlund et al. 2011). Our current understand-
ing of XMAP215 function is that it works as a
processive polymerase (Brouhard et al. 2008).
XMAP215 binds one free tubulin dimer via the
TOG domains, interacts with the microtubule
lattice via a specific microtubule-lattice-binding
domain, and targets the microtubule plus ends
by a diffusion-facilitated mechanism, where it
persists for numerous rounds of tubulin subunit
addition. XMAP215 is suggested to increase the
association rate constant of GTP-tubulin by sta-
bilizing a structural intermediate, which may
correspond to a “collision complex” whose for-
mation is very fast and diffusion limited (Brou-
hard et al. 2008).

XMAP215, together with EB1, synergisti-
cally reconstitutes physiological microtubule
growth velocities (.20 mm/min) in vitro
(Zanic et al. 2013). EB1 is a small dimeric, high-
ly conserved plus-end tracking protein (þTIP),
which specifically tracks growing, but not paus-
ing or shrinking microtubules, by recognizing
the tubulin nucleotide state within the micro-
tubule (Fig. 2) (Zanic et al. 2009; Maurer et al.
2012). In contrast to XMAP215, EB1 does not
track microtubule ends processively; instead, it
exchanges with fast binding/unbinding kinetics
(Bieling et al. 2007). How can we explain the
synergistic effect of XMAP215 and EB1 on mi-
crotubule growth rates? The release of tubulin
bound to XMAP215 was suggested to be depen-
dent on the straightening of tubulin upon in-
corporation into the microtubule lattice (Ayaz
et al. 2012). EB1 might accelerate the poly-
merase activity of XMAP215 by straightening
protofilaments at the microtubule end through
enhancement of lateral interactions between
neighboring tubulin dimers (Zanic et al. 2013).

EB1 has been shown to mildly accelerate mi-
crotubule growth and catastrophe-stimulating
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effects in vitro (Bieling et al. 2007; Komarova
et al. 2009; Zanic et al. 2013). Its main function,
however, might be the regulation of a plus-end
tracking proteins (þTIPs) network. EB1 recruits
otherþTIPs via its carboxy-terminal EB homol-
ogy domain. The majority of EB1-interacting þ
TIPs in turn binds EB1 via a short interaction
motif residing in basic and serine-rich regions,
named “SKIP” (or “SxIP”) motif (Honnappa
et al. 2009). Prominent examples are adenoma-
tous polyposis coli (APC) (Honnappa et al.
2009), CLASPs (CLIP-associated proteins)
(Honnappa et al. 2009; Kumar et al. 2012),
SLAIN (van der Vaart et al. 2011), GTSE1 (Scolz
et al. 2012), and microtubule depolymerases
(Stout et al. 2011; Tanenbaum et al. 2011). In
humans, the EB protein family includes three
related members, EB1, EB2, and EB3, which are
similar in structure and adopt homo- or hetero-
dimeric conformations. The roles of EB2 and
EB3 are less well understood. Recent studies,
however, imply that differential regulation of
EB proteins leads to specific functions through-
out mitosis and cytokinesis (Ferreira et al. 2013).

CLASP proteins have emerged as a potential
key player at the interface of microtubule and
chromosome interactions, potentially by pro-
moting microtubule rescue and suppressing mi-
crotubule catastrophe (Akhmanova et al. 2001;
Cheeseman et al. 2005; Galjart 2005; Maiato
et al. 2005; Mimori-Kiyosue et al. 2005; Drabek
et al. 2006; Hannak and Heald 2006; Pereira et
al. 2006; Sousa et al. 2007). Only recently,
RanGTP, together with CLASP1, was implicated
in mitotic spindle positioning (Bird et al. 2013).
Although human CLASP1 was originally anno-
tated as having only one TOG domain (Akhma-
nova et al. 2001), recent structural data report
the crystal structure of a cryptic TOG domain
(Leano et al. 2013). The identification of a sec-
ond TOG domain in CLASP supports the idea
that TOG domains function in arrays. How
CLASPs mechanistically induce rescues is un-
known. One possibility is that CLASP reverses
microtubule disassembly by incorporating
bound tubulin. Alternatively, CLASP could lo-
cally stabilize the depolymerizing microtubule
lattice, possibly by preventing protofilament
curling. Furthermore, it remains to be shown

whether rescues play an essential role in spindle
organization (Brugués et al. 2012). Direct visu-
alization of rescue events within the metaphase
spindle will help to solve these questions.

WHAT KEEPS MICROTUBULE MINUS ENDS
STABLE?

Although microtubule minus ends are intrinsi-
cally dynamic in vitro (Desai and Mitchison
1997; Goodwin and Vale 2010), they are usually
stable in vivo. So far, only very few minus-end-
specific proteins have been described. Patronin,
initially identified in the RNAi screen for Dro-
sophila genes involved in spindle assembly as
small spindle phenotype 4 (ssp4) (Goshima et
al. 2007), is a capping protein that directly and
selectively binds to the microtubule minus end
in vitro and protects it from kinesin-13-depen-
dent depolymerization (Fig. 2) (Goodwin and
Vale 2010; Wang et al. 2013). It has been spec-
ulated that patronin specifically recognizes a-
tubulin and protects the minus end by sterically
blocking kinesin-13 access. However, the mech-
anism by which patronin recognizes and pro-
tects the minus end remains elusive. In an
alternative scenario, patronin could modify
the morphology of the minus end by strength-
ening lateral protofilament interactions and
thus reducing kinesin-13 affinity, which is
known to prefer curved tubulin protofilaments
(Asenjo et al. 2013). Three patronin homologs
exist in humans (Baines et al. 2009). Their re-
spective roles, however, are not yet defined, but
they may have evolved to interact with distinct
partners for localizing microtubule minus-end
capping/anchoring activities to distinct subcel-
lular regions (Berglund et al. 2008; Meng et al.
2008). Thus, the three patronin family members
might provide new molecular tools for probing
the organization and function of microtubules
in different vertebrate cell types. Similarly, mi-
crospherule protein 1 (MCRS1), a protein that
localizes to the microtubule minus-end region,
has recently been shown to protect kinetochore
fibers from depolymerization (Meunier and
Vernos 2011).

Although the studies of microtubule plus-
end and minus-end binding proteins developed
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largely independent of each other, there is evi-
dence of cross talk between the microtubule
ends (Jiang and Akhmanova 2011). For exam-
ple, it is known that XMAP215 is specifically
recruited to the centrosome by the TACC family
of proteins indicating that þTIPs function be-
yond microtubule plus-end regulation (Lee et
al. 2001; Peset and Vernos 2008; Hubner et al.
2010). Therefore, studies of microtubule dy-
namics in the future should shift toward com-
bining plus- and minus-end regulators and
analyze their collective behavior.

SPINDLE FORCES

During assembly and function, the spindle pass-
es through several steady states, each relying on a
distinct balance of complementary and antago-
nistic forces. Loss-of-function studies in living
cells suggested that a balance of forces generated
by antagonistic motor proteins is crucial for
spindle assembly and maintenance (Saunders
et al. 1997; Mountain et al. 1999; Sharp et al.
1999a, 2000; Dumont and Mitchison 2009b). In
addition, numerous theoretical works suggest
that spindle size is dependent on the antago-
nism between motor proteins that slide micro-
tubules in opposite directions (Burbank et al.
2007; Wollman et al. 2008; Ferenz et al. 2009;
Loughlin et al. 2010; Brugués et al. 2012). The
question of how these forces are integrated, as
well as spatially and temporally regulated, to
build a structure with a defined length and
shape is too complex to be studied as a whole.
One approach that helps to shed light on the
increasing complexity of spindle forces is the
in vitro reconstitution of minimal systems with
a defined set of components. Minimal systems,
such as antiparallel microtubule overlaps and
astral microtubule arrays, have proven valuable
systems to study organizational principles of
spindle poles and the spindle midzone, respec-
tively (Karsenti et al. 2006; Subramanian and
Kapoor 2012; Dogterom and Surrey 2013).

KINESIN-5 AND DYNEIN

In cells lacking kinesin-5 activity, bipolar spin-
dle assembly can be restored when cytoplasmic

dynein is inhibited (Mitchison et al. 2005; Ta-
nenbaum et al. 2008; Ferenz et al. 2009). These
initial observations led to a model in which dy-
nein-dependent inward forces directly coun-
teract kinesin-5-dependent outward forces. In
most organisms, apart from C. elegans (Saun-
ders et al. 2007), kinesin-5 is absolutely essential
for bipolar spindle assembly, and its loss results
in the formation of monopolar spindles (Blangy
et al. 1995; Mayer et al. 1999; Sharp et al. 1999b;
Kapoor et al. 2000; Goshima and Vale 2003;
Kwok et al. 2004). The homotetramer kinesin-
5 is a highly conserved plus-end-directed motor
(Cole et al. 1994; Kashina et al. 1996), and its
unique structure is optimized to cross-link and
slide antiparallel microtubules (Fig. 3) (Hen-
trich and Surrey 2010), thereby producing the
necessary outward force that drives centrosome
separation during spindle assembly (Splinter
et al. 2010; Tanenbaum and Medema 2010).
Cytoplasmic dynein, on the other hand, is the
major motor responsible for microtubule mi-
nus-end-directed movements in most eukary-
otic cells. Compared to kinesins, cytoplasmic
dynein is unique as it belongs to the AAAþ fam-
ily. Dynein is a dimer of two heavy chains, each
composed of an AAA ring that binds and hy-
drolyzes ATP, a microtubule-binding stalk, and
a long tail domain (Fig. 3) (Carter et al. 2011).
In mitosis, dynein is involved in centrosome
separation, chromosome movements, spindle
organization in particular pole focusing, kinet-
ochore activity, checkpoint silencing, and spin-
dle positioning (Vaisberg et al. 1993; Gaglio et
al. 1996; Heald et al. 1996; Merdes et al. 1996;
Busson et al. 1998; Gönczy et al. 1999, 2000;
Sharp et al. 1999a; Howell et al. 2001; Grill and
Hyman 2005; Varma et al. 2008; Sivaram et al.
2009; Bader and Baughan 2010; Kiyomitsu and
Cheeseman 2012; Laan et al. 2012).

This simplified view, in which dynein-
dependent inward forces directly counteract ki-
nesin-5-dependent outward forces, has recently
been challenged by the observation that kinesin-
5 activity is not titratable against dynein activ-
ity, suggesting that dynein most likely antago-
nizes kinesin-5 indirectly by exerting force at
different spindle locations (Florian and Mayer
2012). Indeed, both kinesin-5 and cytoplasmic
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dynein localize to multiple subcellular struc-
tures throughout mitosis. At the spindle center,
kinesin-5 is proposed to drive microtubule flux
by antiparallel microtubule sliding, while the
dynein-dependent concentration of kinesin-5
at spindle poles is suggested to contribute to
parallel microtubule cross-linking (Uteng et al.
2008). Cytoplasmic dynein localizes to centro-
somes, kinetochores, spindle microtubules, and
the cell cortex (Pfarr et al. 1990; Steuer et al.
1990; Dujardin and Vallee 2002; Tanenbaum
and Medema 2010; Kiyomitsu and Cheeseman
2012). Taking these diverse localizations and
functions into consideration, it is not surprising
that the depletion of multifunctional proteins
results in complex patterns of spindle forma-

tion. In the case of dynein, the situation is even
more complicated by the fact that several acces-
sory proteins modulate dynein to carry out its
many different functions. Prominent examples
are the dynactin complexes, LIS1 and NudE
(Kardon and Vale 2009; Huang et al. 2012). In
the future, it will be interesting to learn how
these accessory proteins regulate the detailed
function of dynein. Recent exciting advances
in the in vitro reconstitution of human dynein
(Trokter et al. 2012) and the observation of sin-
gle dynein molecules in cells (Ananthanar-
ayanan et al. 2013; Rai et al. 2013) will help to
advance our understanding of the structural ba-
sis of dynein movement and determine how the
motor regulation works.

Dynein

Kinesin-4

Kinesin-5

Cross-linking

Kinesin-14

Sliding

PRC1

–

–

–

+

+

+

–

–

–

–

–

–

–

+

+
–

+

+

+

+

+

+

Figure 3. Spindle forces. During assembly and function, the spindle passes through several steady states, each
relying on a distinct balance of complementary and antagonistic forces. The homotetramer kinesin-5 is a highly
conserved plus-end-directed motor optimized to cross-link and slide antiparallel microtubules, thereby pro-
ducing outward forces that drive centrosome separation during spindle assembly. Kinesin-4 is a dimeric plus-
end-directed motor. Together with PRC1, it forms antiparallel microtubule overlaps with precisely defined
lengths; while PRC1 marks the microtubule overlap region and recruits kinesin-4, the motor protein walks
processively to microtubule ends in the overlap region, where its accumulation leads to the inhibition of
microtubule growth. In contrast to the plus-end-directed motility of other kinesin proteins, kinesin-14 is a
minus-end-directed motor that can either slide antiparallel microtubules or cross-link parallel microtubules
(adapted from Fink et al. 2009). Cytoplasmic dynein is the major motor responsible for microtubule minus-
end-directed movements.
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KINESIN-5 AND KINESIN-14

In other systems, kinesin-5 activity is proposed
to be antagonized by the inward sliding activ-
ity of kinesin-14. Kinesin-14 is a minus-end-
directed homodimeric motor (Fig. 3), which
uses a pair of motor domains to walk on one
microtubule and a nonmotor domain to inter-
act with the second filament. To cross-link two
microtubules, kinesin-14 orients stochastically
and its motor domains are equally likely to bind
either of the two filaments (Braun et al. 2009;
Fink et al. 2009). In vitro, kinesin-14 can auton-
omously induce pole-formation (Hentrich and
Surrey 2010), which might be the dominant
mechanism by which centrosome-free meiotic
spindles are focused in Drosophila (Matthies
et al. 1996; Sköld et al. 2005). Reconstitution
studies combining these two antagonistic mo-
tors, however, fail to establish a stable antipar-
allel microtubule overlap (Tao et al. 2006; Hen-
trich and Surrey 2010) but generate oscillatory
movements, as previously observed in microtu-
bule gliding assays with kinesin-1 and dynein
(Vale et al. 1992). Thus, a persistent force bal-
ance cannot be achieved by either of these two
motor combinations.

KINESIN-14 AND ASE1

Instead, a three-component system consisting of
microtubules, kinesin-14, and Ase1, a nonmo-
tor cross-linking protein, was shown to form
stable antiparallel microtubule overlaps (Braun
et al. 2011). Members of the conserved Ase1/
PRC1 family are characterized by their ability to
bind to antiparallel microtubule overlaps with
high affinity and selectively cross-link them in
vitro (Fig. 3) (Janson et al. 2007; Kapitein et al.
2008; Bieling et al. 2010; Subramanian et al.
2010, 2013; Duellberg et al. 2013). In yeast, the
spindle midzone is marked by Ase1 localization
and defined by the Ase-1-dependent recruit-
ment of all other midzone proteins (Khme-
linskii et al. 2007). PRC1, the Ase1 homolog in
higher eukaryotes, also selectively binds anti-
parallel microtubule overlaps (Bieling et al.
2010; Subramanian et al. 2010). Whether PRC1,
together with kinesin-14, can set an antiparallel

microtubule array with a defined overlap length
has not yet been tested. However, it was shown
to not substantially oppose kinesin-5 activity
(Subramanian et al. 2010).

PRC1 AND KINESIN-4

The question of how antiparallel microtubules
are established in metazoan metaphase spindles
is still open as PRC1 is not crucial for spindle
organization before anaphase (Mollinari et al.
2002). Only after anaphase onset, PRC1 is essen-
tial to maintain the overlap length of the central
spindle (Kurasawa et al. 2004; Hu et al. 2011),
where it recruits kinesin-4. Kinesin-4, a dimeric
plus-end-directed motor (Fig. 3), has an inhib-
itory effect on microtubule growth (Bringmann
et al. 2004). Two recent studies show that PRC1,
together with kinesin-4, is sufficient to form
antiparallel microtubule overlaps with precisely
defined lengths in vitro (Bieling et al. 2010; Sub-
ramanian et al. 2013). PRC1 and kinesin-4 tag
microtubule plus ends. While PRC1 marks the
microtubule overlap region and recruits kine-
sin-4, the motor protein walks processively to
microtubule ends in the overlap region, where
its accumulation leads to the inhibition of mi-
crotubule growth. Importantly, plus-end tag-
ging by PRC1 is microtubule length dependent,
and, thus, nicely demonstrates a biochemical
mechanism by which the length of antiparallel
overlaps can be controlled by suppression of mi-
crotubule dynamics.

MODELING SPINDLE ASSEMBLY USING
Xenopus EXTRACTS

Dynamic spindles assembled in Xenopus egg ex-
tracts are a powerful way to unravel principles of
self-organization. The egg extract is an open
system that permits biochemical manipulation
and quantitative kinetic studies. In addition,
this cell-free system is void of cortical restric-
tions and spindle material is not limited, which
allows studying intrinsic mechanisms of spindle
organization. In combination with theoretical
and conceptual approaches, it is a particular
powerful tool to describe complex dynamic
processes. Thus, in recent years, this easily trac-
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table system has led to an outpouring of non-
mutually-exclusive modelsthat quantitativelyde-
scribe spindle organization, which we will shortly
discuss.

A two-dimensional simulation study by
Loughlin and colleagues implemented many
processes relevant for Xenopus spindle assembly,
such as microtubule nucleation and dynamics,
steric interactions between microtubules, and
motor-induced sliding (Loughlin et al. 2010).
This model predicts that microtubule nucle-
ation occurs throughout the spindle and that
spindle morphology and, in particular, spindle
lengths, are governed by selective microtubule
destabilization near the spindle poles. In con-
trast, in a different model called the “slide-and-
cluster” mechanism (Burbank et al. 2007),
microtubules nucleate only locally near chro-
mosomes, slide outward by a plus-end-directed
motor, cluster by a minus-end-directed motor,
and are lost by turnover throughout the spindle.
An important feature of the slide-and-cluster
model is that the model does not require spe-
cific depolymerization of microtubule minus
ends at predefined poles. Thus, spindle length
primarily emerges as the product of outward
sliding velocity and minus-end lifetimes. This,
however, requires microtubule lifetimes that are
significantly higher than those measured in
metaphase spindles (Needlemann et al. 2010).

The above models make distinct predictions
for the length distribution and organization of
spindle microtubules. Only recently, Brugués
and colleagues developed a method to quanti-
tatively measure the length distribution and po-
larity of microtubules within the spindle. They
found that microtubules are shortest at the poles
and progressively increase in length toward the
center of the spindle. In the spindle center, an
equal number of microtubules points in both
directions, whereas close to the pole, the major-
ity of microtubules are oriented with their plus
end away from the pole (Brugués et al. 2012).
Combining these experiments with modeling,
the authors suggest that microtubule organiza-
tion in the spindle is determined by nonuniform
microtubule nucleation and local sorting of mi-
crotubules by transport. They, however, did not
find evidence for spatially varying microtubule

stability. The nonuniform nucleation close to
chromatin could be consistent with a gradient
of microtubule nucleation around chromatin or
microtubule-dependent nucleation.

Although all of the above studies predict
that microtubule nucleation has a profound in-
fluence on spindle organization and length, so
far, no one has been able to directly measure
microtubule nucleation rates within spindles.
It therefore remains unknown how different nu-
cleation mechanisms (i.e., chromatin-mediated
and microtubule-dependent microtubule nu-
cleation) contribute to the overall spindle archi-
tecture. Thus, measurement of nucleation rates
in spindles will be an important topic for the
future.

SPINDLE SIZE CONTROL AND SCALING

The metaphase spindle needs to function in cell
volumes that vary by several orders of magni-
tude. Thus, the spindle has to be long enough
to span sufficient distance to physically separate
chromosomes. Because defects in spindle length
result in erroneous cell division (Dumont et al.
2007), robust mechanisms to set the length of a
spindle and scale it according to cell size must
exist. In its simplest form, spindle length could
be constrained by physical cellular boundaries
just as the size of asters in frog and fish oocytes
(Wühr et al. 2010). Robust size control could
also be achieved through so-called dynamic bal-
ance models (Chan and Marshall 2012). These
models rely on either assembly or disassembly
being size dependent such that they balance at
one parameter-specified size or balance point.
Such a mechanism fits well with a recent mass
balance model of spindle length, with the steady-
state spindle size effectively set by the balance of
microtubule assembly and disassembly (Reber
et al. 2013). Alternatively, cell size could control
the length of the spindle by providing a finite
cytoplasmic volume, where a key component
present in limiting amounts is depleted as the
structure assembles (Good et al. 2013; Hazel
et al. 2013). A number of factors have been sug-
gested to contribute to setting spindle length
(see below), and it will be interesting to deter-
mine the relevant ones that govern scaling in
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different contexts (Goshima et al. 2005; Dumont
and Mitchison 2009a,b; Loughlin et al. 2011;
Reber et al. 2013; Wilbur and Heald 2013a).

The challenge of scale is particularly appar-
ent during early development, when cell growth
and division are uncoupled. During Xenopus
embryogenesis, for example, cell size dramati-
cally decreases. The 1200-mm-diameter fertil-
ized egg divides and gives rise to approximately
12-mm-diameter blastomeres (Montorzi et al.
2000). During the first mitoses, spindle length
is uncoupled from cell size and reaches an upper
limit of approximately 60 mm through mecha-
nisms proposed to be intrinsic to the spindle
(Wühr et al. 2008). Later in Xenopus egg devel-
opment, a strong correlation between spindle
length and cell size emerges. This has been
shown in Xenopus embryos and extracts from
fertilized embryos that recapitulate in vivo spin-
dle size differences (Wühr et al. 2008; Wilbur
and Heald 2013b). Two recent studies, which
encapsulate extracts from Xenopus eggs or em-
bryos in droplets of varying size, confirm that
metaphase spindle length and width scale with
droplet size in vitro (Good et al. 2013; Hazel
et al. 2013), suggesting that cytoplasmic volume
could limit the amount of material for assembly.
Interestingly, in embryonic extracts from hap-
loid embryos, spindle size is only reduced by
approximately 10%. This difference is similar
to the DNA-dependent length difference ob-
served previously (Brown et al. 2007; Dinarina
et al. 2009) indicating that signaling from chro-
matin contributes to setting spindle length
but is not a major factor. Instead, microtubule
stability appears to be a robust mechanism for
determining spindle length in Xenopus egg ex-
tracts, and factors controlling microtubule dy-
namics are likely to scale spindle length. Indeed,
kinesin-13 was shown to be inhibited during
early developmental stages by the transport re-
ceptor importin a, and activated in later stages
when importin a partitions to a membrane
pool (Wilbur and Heald 2013b). This mecha-
nism is directly linked to changes in the surface
membrane to cell volume ratio and thus suitable
for developmental scaling.

Interestingly, the smaller relative of X. laevis,
X. tropicalis, has correspondingly smaller cells,

nuclei, and spindles (Levy and Heald 2012).
Recent work has shown that the observed differ-
ences in spindle size are recapitulated in re-
spective egg extracts. X. tropicalis spindles are
approximately 30% shorter than X. laevis spin-
dles. What is the underlying cause of spindle size
difference in the two extracts? Mixed extracts
produce spindles of intermediate sizes revealing
a dynamic, dose-dependent regulation of spin-
dle size by cytoplasmic factors (Brown et al.
2007). Based on a computational model of mei-
otic spindle assembly, which predicted that
higher localized microtubule depolymerization
rates could generate shorter spindles (Loughlin
et al. 2010), a single phosphorylation site in ka-
tanin was identified as the source of the spindle
size differences in the two related frog species.
Phosphorylation by the mitotic kinase Aurora B
lowers the katanin activity in X. laevis, while
X. tropicalis katanin lacking this phosphoryla-
tion site remains active. Consequently, a de-
crease in microtubule stability causes the shorter
spindles in X. tropicalis egg extract (Loughlin
et al. 2011). This study nicely shows that, in
different species, mechanisms have evolved to
modulate the intrinsic size of the metaphase
spindle. However, it remains to be understood
why the X. tropicalis spindle needs to be shorter
in the first place. Perhaps this is because of later
constraints in development that arise as cells
become increasingly small, which, in tropicalis,
may occur sooner given its smaller initial size.

Correlations of spindle length and width
with cell size have also been shown in C. elegans
embryos (Hara and Kimura 2009, 2013; Gree-
nan et al. 2010) and Mus musculus (Fitzharris
2009; Courtois et al. 2012). Greenan and col-
leagues (2010) showed that spindle length cor-
relates with centrosome size through develop-
ment and that a reduction of centrosome size
reduces spindle length. Mechanistically, the au-
thors suggest that centrosome size sets mitotic
spindle length by controlling the length scale of
a TPX2 gradient along spindle microtubules
(Greenan et al. 2010). This is consistent with
previous results in human cells, which show
that introducing point mutations in TPX2,
which abolish the interaction between TPX2
and Aurora A, results in small spindles (Bird
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and Hymann 2008). If centrosome size sets
spindle size, what then controls the size of the
centrosome? Decker and colleagues propose
that limiting amounts of centrosome material
set the size of the centrosome in C. elegans em-
bryos (Decker et al. 2011). The idea is that when
centrosomes grow in a finite volume, the cyto-
plasmic concentration of a limiting (structural)
factor will gradually decrease as centrosomes
bind and sequester material from the cyto-
plasm. Such a limiting component system may
be a general way of limiting the size of intracel-
lular organelles in systems with fast cell cycles
and rapidly changing cell volume (Coyne and
Rosenbaum 1970; Stephens 1989; Norrander
et al. 1995; Bullitt et al. 1997; Elliott et al.
1999; Brangwynne et al. 2009, 2011; Goehring
et al. 2011; Goehring and Hyman 2012; Feric
and Brangwynne 2013). The great advantage
of the limiting component system is to provide
a robust and rapid system that takes advantage
of the contribution of a defined amount of ma-
ternal cytoplasm to the embryo. Whether sim-
ilar mechanisms also apply in somatic systems,
with longer cell cycles and smaller changes in
cell size, is an important direction for future
investigation.

OUTLOOK

Here, we have discussed how throughout the
last decade, three different directions have con-
verged to suggest that reconstitution of a mitot-
ic spindle might soon be possible. These are the
cataloging of spindle components, their in vitro
expression and biochemical and physical char-
acterization in minimal systems, and increas-
ingly developed theory. An in vitro reconstitu-
tion of the metaphase spindle from purified
components will likely begin as a spindle similar
to a Xenopus oocyte spindle, in which the dy-
namics of microtubules are dominated by chro-
matin. However, the increasingly sophisticated
reconstitution of kinetochores and centrosomes
suggest that a full reconstitution of a functional
spindle will be possible. This will indeed be a
triumphant conclusion to the work of Walther
Flemming almost 150 years ago, who could
hardly have conceived of such an achievement.
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