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Self-organization of primitive metabolic
cycles due to non-reciprocal interactions

Vincent Ouazan-Reboul1, Jaime Agudo-Canalejo 1 & Ramin Golestanian 1,2

One of the greatest mysteries concerning the origin of life is how it has
emerged so quickly after the formation of the earth. In particular, it is not
understoodhowmetabolic cycles, whichpower the non-equilibriumactivity of
cells, have come into existence in the first instances. While it is generally
expected that non-equilibrium conditions would have been necessary for the
formation of primitive metabolic structures, the focus has so far been on
externally imposed non-equilibrium conditions, such as temperature or pro-
ton gradients. Here, we propose an alternative paradigm in which naturally
occurring non-reciprocal interactions between catalysts that can partner
together in a cyclic reaction lead to their recruitment into self-organized
functional structures. We uncover different classes of self-organized cycles
that form through exponentially rapid coarsening processes, depending on
the parity of the cycle and the nature of the interaction motifs, which are all
generic but have readily tuneable features.

Since Oparin1 proposed a picture to describe how early forms of living
matter might have emerged from what Haldane described as the
prebiotic soup2, there has been a significant amount of progress in our
understanding of the physical aspects of the origin of life3. Recent
examples of such studies include spontaneous emergence of catalytic
cycles4,5, spontaneous growth and division of chemically active
droplets6–9, programmable self-organization of functional structures
under non-equilibrium conditions10,11, and controllable realization of
metabolically active condensates12. A striking generic observation that
has emerged in a variety of different scenarios is that the introduction
of non-equilibrium activity in the form of catalytic activity, or a pri-
mitive form of metabolism, can be a versatile driving force for func-
tional structure formation13–18 with manifestations of lifelike
behaviour19–27. It has also been demonstrated that the structured cat-
alytic activity that would support the required non-equilibrium pro-
cesses for primitive cells can be successfully coupled with the
condensation of appropriate functional nucleotide and peptide com-
ponents in membrane-free systems28–30, as well as lipid components in
protocells with functionalized membranes31,32.

Living systems necessarily involve a set of auto-catalytic chemical
reactions33, which have been theoretically shown to spontaneously
emerge in a population of polypeptide-like structures that could

assemble in a primordial soup setting34–37. A candidatemetabolic cycle
that may have served a key role in the early stages of life formation is
the citric acid cycle, which consists of 11 members and exhibits evo-
lutionary robustness and universality38,39. Candidates for pre-RNA and
protein autocatalytic chemical networks have been identified from
earlymicrobial organisms40, andmixtures of RNA fragments have been
experimentally observed to organize into self-replicating and catalyz-
ing reaction networks41–44.

The physicochemically motivated ideas initiated by Oparin and
Haldane were critically debated for much of the past century by pro-
ponents of the perspective that (genetic) information should be con-
sidered as the main organizer of matter that forms life33,45,46. As a
modern interpretation of these considerations, we note that the cur-
rently accepted paradigm assumes that the ingredients that would
later join up to form intricate components of living systems first come
together by ad hoc physical forces without any input from the infor-
mation that will eventually be at work in their hierarchical self-
organization. The information-basedorganization is expected tooccur
when the system has already made physical condensates. However,
this paradigm has so far been unable to answer two important ques-
tions. First, polymeric condensates such as coacervates are known to
be intrinsically very slow, almost glass-like, in their dynamics, even if
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they are driven by external non-equilibrium forces like temperature
and proton gradients. Therefore, it is not clear how such dense and
glassy condensates that were formed randomly would have been able
to efficiently evolve to form information-based functional structures
via random searches given the time scale that has taken life to emerge
after the formation of the earth. Secondly, the physics of condensation
is governed by relatively slow power law coarsening dynamics such as
the Lifshitz-Slyozov (~ t1/3) law47, even in externally driven non-
equilibrium cases. Then, it is unclear from a physical point of view
how life has emerged through slow coarsening into inherently slow
condensates.

In connection with the above considerations and to broaden the
scope of the research on the physical aspects of the origin of life, we
pose the following question: how can we envisage pathways in which
the information contained in chemical reaction networks fromwhich
primitive forms of metabolism can emerge would lead to structural
self-organization of the corresponding components? Here, we pro-
pose a strategy that can achieve this task by employing the naturally
occurring non-reciprocal interactions between catalysts that can
form a cyclic reaction network. We show that model catalytically-
active particles participating in a metabolic cycle are able to spon-
taneously self-organize into condensates, which may aggregate or
separate depending on the number of particle species involved in the
cycle, and exhibit chasing, periodic aggregation anddispersal, as well
as self-stirring, thus providing a generic mechanism for spontaneous
formation of metabolically-active protocells. While the observed

(super-)exponential coarsening law offers a significantly faster
alternative for the formation of condensates (see Fig. 1), the
information-driven dynamics leads to formation of structurally
active and functional condensates that exhibit lifelike behaviour
already at the outset.

Results
Non-reciprocal interactions have been shown to generically emerge in
activematter in the context of non-equilibriumphoretic (chemotactic)
interactions48. Chemotaxis in response to chemical gradients has been
experimentally observed not only in the context of synthetic micro-
scale colloids, but also for biological enzymes49,50, molecular
catalysts51, and nucleic acids52,53. The latter two observations raise the
interesting prospect that chemotactic interactions may have played a
role in the assembly of prebiotic systems, e.g. in a RNAworld scenario.
Let us consider a set ofM species of chemically-active particles (Fig. 1a,
top), representing catalystmolecules or enzymes. Each of the particles
converts a substrate (s) into a product (p) at a rate α. At steady state,
they create perturbations in the concentration field of the corre-
sponding substrate that decays with distance r as δc(s)∝ − α/r, and a
corresponding change in the concentration of the corresponding
product as δc(p)∝ α/r (Methods). These particles are also chemotactic
(Fig. 1a, bottom): when subjected to a concentration gradient of their
substrate, they develop a velocity v∝− μ(s)∇ c(s) with μ(s) the chemo-
tactic mobility for the substrate, which is negative or positive if the
particle is attracted to or repelled from the substrate, respectively.

Fig. 1 | Properties and interactions of catalytically-active particles. a The par-
ticles convert substrate (s) into product (p) with a rate given by the activity α (top)
and respond to gradients of these chemicals with mobilities μ(s) and μ(p) (bottom).
b M active particle species are arranged in a model metabolic cycle, in which the
product of speciesm is the substrate of speciesm + 1. cNon-reciprocal interactions
between particles of the same (vm,m) or adjacent (vm,m±1) species. Direction and
colour of arrows indicate the attractive (blue, inwards arrowhead) or repulsive (red,
outwards arrowhead) nature of the interaction. r̂ is the unit vector pointing from
particlem to the other particle. d Phase diagram of interaction motifs. Each region
constrains the mobilities so that one interaction has a higher magnitude than the

others, as highlightedby a full arrowhead. Thegrey asterisk indicates the location in
parameter space of the interactions pictured in (c). The green line separates the
self-attracting and self-repelling regions. The sign triplets correspond to the signs
of (μ(s), μ(p), μ(p) − μ(s)). e, Cluster growth dynamics for a cycle of M = 5 (blue, see
Fig. 3a and Supplementary Movie 7) and M = 6 (orange, see Fig. 3b and Supple-
mentary Movie 3) species, showing super-exponential coarsening dynamics of the
condensate formation. ForM = 5 species, the mean cluster size saturates at a value
corresponding to the total particle population divided byM (grey dotted line). For
M = 6, it saturates at half the particle population (dashed grey line).
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Similarly, the particles are able to chemotax in response to gradients of
their products, with a mobility μ(p).

To create a model for primitive metabolism, we consider a simpli-
fied metabolic cycle (Fig. 1b), in which the substrate of the catalyst
species m, which we denote as chemical (m), is the product of species
m− 1. To close the cycle, species 1 has the product of species M as its
substrate. For simplicity, we take all catalyst species to have the same
parameters α,μ(s) and μ(p), and to be present in the system at identical
initial concentrations. This assumptionwill not limit the range of validity
of the predictions, as more general choices for the parameters can be
shown to lead to a number of distinct classes with relatively sizeable
regions of the parameter space for each behaviour54,55. The cycle can
achieve a steady statewithout net chemical productionor consumption.
Due to their chemical activity and chemotactic mobilities, the particle
species can interact with one another through chemical fields (Fig. 1c).
For instance, ifwe consider twoparticlesof speciesm andm− 1, then the
particle of species m− 1 creates, through its chemical activity, a con-
centrationgradientof the substrateof theparticle of speciesm, towhich
the latter responds by developing a velocity directed towards the par-
ticle of species m� 1, vm,m�1 / αμðsÞr̂, where r̂ is the unit vector
pointing from the particle that creates the perturbation to the particle
that responds to the perturbation (Methods). On the other hand, the
particle of species m consumes the product of m− 1, and thus the par-
ticle of species m− 1 develops a velocity vm�1,m / �αμðpÞr̂ towards the
other particle. As a consequence, the interactions between the particles
of speciesm andm− 1 are nonreciprocal, i.e. vm,m−1≠− vm−1,m (see Fig. 1d
for different possibilities). This effective violation of action-reaction
symmetry is a signature of non-equilibrium activity, leading to non-
trivial many-body behaviour as has been shown for chemically-active
particles interacting through a single chemical25,56, active mixtures
interacting through generic short-range interactions57,58, complex
plasmas59, and other systems60,61. Particles of the same species also self-
interact by consumptionof their substrate andcreationof their product,
with a velocity vm,m / αðμðpÞ � μðsÞÞr̂. We note that these effective non-
reciprocal interactions mediated by chemical fields are long-ranged,
with the induced velocities going as 1/r2 (Methods).

We consider the evolution equations for the concentration fields
of the active species ρm and their substrates c(m), given by the coupled
system of 2M equations

∂tρmðr, tÞ=∇ � ½Dp∇ρm + ðμðsÞ∇cðmÞ +μðpÞ∇cðm+ 1ÞÞρm�, ð1Þ

∂tc
ðmÞðr, tÞ=D∇2cðmÞ +α ρm�1 � ρm

� �
: ð2Þ

Equation (1) describes the conserved dynamics of the catalysts,
with a diffusion term involving a species-independent coefficient Dp

and a chemotactic drift term in response to both substrate and pro-
duct gradients. The substrate concentrations evolve according to the
reaction-diffusion Eq. (2), with a diffusion coefficient D, and a reaction
term corresponding to the activity of the catalysts.

The time evolution of Eqs. (1) and (2) naturally leads to the for-
mation of clusters, akin to active phase separation25,56. The clusters are
formed through a particularly fast and efficient coarsening process
that exhibits exponential growth rather than the commonly occurring
power law form, associated with processes such as Ostwald ripening,
as can be seen in Fig. 1e (see Methods). This behaviour can be char-
acterized using a simple scaling argument. When particles are collap-
sing onto a cluster, the rate of growth for the cluster can be estimated

as dN
dt =

H
S ρv � dS where the velocity v = − μ∇ c can be expressed in

terms of the particle concentration by using Gauss theorem and the

relation −∇2c = αρ/D, which yields dN
dt = μα

D ρN. This expression can be

integrated to obtain NðtÞ=N0 exp
μα
D

R t
0 dt1ρ

� �
’ N0 exp

μα
D ρt

� �
, which

predicts an exponential growth law for constantρ and allows for super-
exponential growth if the density increases with time, which matches
well with the results presented in Fig. 1e.

This observation suggests that non-equilibrium phoretic interac-
tions have the ability to guide formation of dense clusters in a fast and
efficientmanner, and as such, canbe strongcandidates for creating the
appropriate conditions for the emergence of early functionalized
protocells.

A linear stability analysis on Eqs. (1) and (2) (Methods) around a
spatially-homogeneous solution leads to the following eigenvalue
equation for the macroscopic (long-wavelength) particle density
modes

�
XM
n = 1

Λm,nδρn = λδρm: ð3Þ

The matrix Λm,n describes the velocity response of species m to
species n, and is defined as follows

Λm,m�1 =αμ
ðsÞρ0=D,

Λm,m =α μðpÞ � μðsÞ� �
ρ0=D,

Λm,m+ 1 = � αμðpÞρ0=D,

Λm,n=2 m,m± 1f g =0,

8>>>><
>>>>:

ð4Þ

where ρ0 represents the initial homogeneous concentrations. By
definition, Λm,n is negative, or positive, ifm is attracted to, or repelled
from,n, respectively. The formofΛm,n suggests a classification scheme
as there are six possible interaction motifs (Fig. 1d), representing the
interactions of each species with itself as well as with its two neigh-
bours in the metabolic cycle. The signs of the interactions are repre-
sented diagrammatically, following the conventions defined in
Fig. 1c and d.

The eigenvalues λℓ (ℓ∈ {1,…,M}) allowus topredict the stability of
the system: ReðλÞ>0 for any eigenvalue λ indicates an instability,
whereas ReðλÞ<0 for all eigenvalues implies a stable homogeneous
state. The eigenvector δρ‘

m, in turn, gives the stoichiometry at the
onset of instability, i.e. the ratio of the different species within the
growing perturbation, which may be positive, for species that aggre-
gate together, or negative, for species that separate.

The topology of the metabolic cycle strongly influences its self-
organization. As a point of comparison, we consider a non-cyclic sys-
tem, in which M catalytic species all act on a single chemical field. In
this case, all the coefficients of the interactionmatrix are equal toαμρ0,
leading to a system with only one nonzero eigenvalue λ = −Mαμρ0/D.
The corresponding instability condition is αμ <0, and the instability is
equivalent to that of the Keller-Segel model25,62. The model metabolic
cycle studied here, however, presents a different category. As the
interaction matrix (4) is a circulant matrix, its eigenvalues are easily
calculated as

Reðλ‘Þ= � αρ0
D μðpÞ � μðsÞ� �

1� cosð2π‘=MÞ� �
,

Imðλ‘Þ= αρ0
D μðsÞ +μðpÞ� �

sinð2π‘=MÞ,

(
ð5Þ

(see Supplementary Note 1 for graphical representations of the
eigenvalue spectra for different species numbers). There are nowM − 1
nonzero eigenvalues, which come as pairs of complex conjugate
numbers with the possible exception of λM/2 for M even. In stark con-
trast with the non-cyclic system, the complex character of these
eigenvalues opens the door to oscillatory behaviour. The instability
condition, obtained by imposing that the real part of at least one
eigenvalue is larger than zero, in turn corresponds to

μðpÞ � μðsÞ<0, ð6Þ
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i.e. the catalytic species have to be self-attracting for an instability to
occur. This is represented in the phase diagrams of Fig. 2: all
interaction networks above the green line are unstable. If the condition
is not satisfied, the system remains homogeneous, with several
possible states: the particles can form transient self-propelled
molecules (Supplementary Fig. 3a, Supplementary Movie 1, see
Methods for the parameters of all Supplementary Movies), or form
more long-lived, rotating molecules (Supplementary Fig. 3b,

Supplementary Movie 2) which exchange particles without growing,
as found in particle-based Brownian dynamics simulations of the same
system (Methods).

Remarkably, we find key differences between cycles with even or
odd number of species. In the case of an even species numberM = 2K,
the eigenvalue with largest real part (which dominates the instability)
is real and given by

λK = �2
αρ0

D
μðpÞ � μðsÞ� �

, ð7Þ

implying that the instability is nonoscillatory with the corresponding
eigenvector

δρK = 1,� 1,1,� 1, � � � , � 1ð Þ: ð8Þ

Thus, at onset of instability, all the species with equal parity tend
to aggregate together and to separate from the species of opposite
parity (Fig. 2a, above the green line). Brownian dynamics simulations
show that this prediction carries over to the final phase-separated
state; an example is shown in Fig. 3a (Supplementary Movie 3). These
simulations show an initial exponential growth of M clusters, each
containing all the particles of a given species. The steady state for an
even number of self-attracting, cross-repelling species is two large
“clusters of clusters”, one encompassing clusters of the even-labelled
species, the other of the odd-labelled species. Both the transient and
the steady state are captured by the growth dynamics shown in Fig. 1e,
with the average cluster size initially growing exponentially and
saturating at half of the total particle population.

A variety of behaviour is observed in the case with chasing inter-
actions among neighbours, based on the relative values of the chasing
strength ∣μ(s) + μ(p)∣ as compared to the self-attraction strength
∣μ(p) − μ(s)∣. If both values are of the same order of magnitude, the sys-
tem behaves similarly to the cross-repelling case, except that the
resulting clusters can chase each other or rotate in place (Supple-
mentary Fig. 4a and Supplementary Movie 4). For the cases where the
value of the self-attraction is much lower than the chasing strength,
fully-hybrid clusters containing all species of the sameparity formover
longer timescales, as opposed to “clusters of clusters” as in the cross-
repelling case (Supplementary Movie 5). Finally, for almost negligible
self-attraction, transient oscillations are observed before cluster for-
mation (Supplementary Fig. 4b, Supplementary Movie 6).

For cycles with an odd number of species M = 2K + 1, the largest
real part corresponds to the complex conjugate pair of eigenvalues
(see Supplementary Note 1)

λK + 1
2 ±

1
2
= � αρ0

D
μðpÞ � μðsÞ� �

1 + cos
π

2K + 1

� �h i
∓ i

αρ0

D
μðsÞ +μðpÞ� �

sin
π

2K + 1

� �
,

ð9Þ

suggesting the potential for long-lived oscillations, or even oscillatory
steady states, with the real part corresponding to the growth rate of
the perturbation and the imaginary part to its oscillation frequency.

The corresponding eigenvectors δρK + 1
2 ±

1
2 are also a pair of com-

plex conjugates, with components given by

δρ
K + 1

2 ±
1
2

m = ð�1Þm�1 cos
ðm� 1Þπ
2K + 1

� 	
± i sin

ðm� 1Þπ
2K + 1

� 	
 �
, ð10Þ

for m = 1, . . . , 2K + 1. The species are out of phase by 2π/(2K + 1) with
respect to their second-nearest neighbour during the oscillations.
Since the number of species is odd, parity-based cluster aggregation is
not possible: if two clusters attempt to come together, a third will
systematically come to break them apart. For cross-repelling species,
this leads to a segregation into single-species clusters which separate

Fig. 2 | Stability diagrams formetabolic cycles. The cycles contain an even (a) or
an odd (b) number of catalytic species. The interaction motifs in each quadrant of
the parameter space are the same as those displayed in Fig. 1d. Details of the
behaviour ineachphase are given in the text. In both the self-propelled and rotating
molecule phases, the molecules exchange particles with one another. Molecule
rotation does not occur along the dashed lines corresponding to null imaginary
part in the unstable eigenvalue.
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in a way that minimizes their overall repulsion (Fig. 3b, Supplementary
Movie 7). Similarly to the even case with M = 2K, this behavior is
captured by the growth statistics displayed in Fig. 1e, where mean
cluster size exhibits an initial exponential growth and saturates at a
value corresponding to the formation of M individual clusters.

In the case of chasing cross-interactions, oscillations become
visible when the growth rate is slower than the oscillation frequency,
which corresponds to the condition

�μðpÞ≲� μðsÞ 1 + cos π
2K + 1

� �
∓ sin π

2K + 1

� �
1 + cos π

2K + 1

� �
± sin π

2K + 1

� �
" #

, ð11Þ

which defines the orange region in Fig. 2b. We note that this inequality
only sets an order of magnitude for the transition from oscillatory to
non-oscillatory dynamics, rather than a sharp boundary. The beha-
viour of the system again depends on the relative values of the self
attraction magnitude ∣μðpÞ � μðsÞ∣ and the chasing strength ∣μðpÞ +μðsÞ∣.
When self-attraction is weaker than the chasing strength (i.e. close to
the instability line), Brownian dynamics simulations indeed show a
persistent oscillatory dynamical behaviour with the following choreo-
graphy for the case in which each species chases after the previous
one: a single-species cluster of a species m forms transiently, and is
then “invaded” by speciesm + 1, leading to an explosion that disperses
species m back into the solution. Species m then invades a cluster of
speciesm − 1, and so on, in a sequential order untilM explosion events
have occurred and the cycle starts again. In the case withM = 5 (Fig. 4

and Supplementary Movie 8; see Supplementary Note 2 for a
quantification of the oscillation dynamics), we observe that the system
comes back to a state similar to the initial one, except for a swap in the
locations of the clusters. This change occurs because the clusters of
the second-nearest-neighbour species in the cycle tend to form pairs.
One component of one of these pairs is replaced in every explosion
event by the species preceding it in the cycle, such that, after five
explosions, the pairs have been switched in space. The reverse
dynamics (species m invading species m + 1) are observed if the signs
of μ(s) and μ(p) are reversed, so that each species chases the next one in
the cycle.

For even weaker self-attraction or stronger chasing, the clusters
do not have time to form. In this case, oscillations are observed in a
dilute mixture of catalytic particles, where clusters are replaced by
transient zones of higher concentration (SupplementaryMovie9). This
can create a self-stirring solution, favouring the mixing and assembly
of solution components in time scales considerably shorter than those
allowed by passive diffusion. Lastly, if the perturbation growth rate is
instead larger than its oscillation frequency (red region in Fig. 2b), then
the dynamics leads to formation of stable clusters. We have observed
in simulations the formation of chasing hybrid clusters similar to the
case with even number of species (Supplementary Fig. 5, Supplemen-
tary Movie 10).

These results can be contrasted with the behaviour of reaction-
diffusion systems, which can also undergo instabilities as first for-
mulated by Turing63, and have been extensively studied for both
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Fig. 3 | Aggregation dynamics for self-attracting, cross-repelling species. The
cycles contain an even (a) or an odd (b) number of catalytic species. Top left:
interactions between the active species. All species are self-attracting and repel
both neighbours in the cycle (corresponding to the top-right quadrants in
Fig. 2a, b). Top right: corresponding eigenvalue λ spectrum, in units of − (μ(p) − μ(s))
αρ0/D for the real part and − (μ(s) + μ(p))αρ0/D for the imaginary part. The eigenvalue
(or complex conjugate pair) with the largest real part is shown in red. In b, the

corresponding conjugate pair has an imaginary partmuch smaller than its real part,
so that the dynamics of the system are non-oscillatory. Bottom: Schematic repre-
sentations of the time evolution of the aggregation dynamics (left) and corre-
sponding snapshots of molecular dynamics simulations (right, see Supplementary
Movies 3 and 7 for even andodd cases, respectively) are shown side by side. Dashed
lines in a indicate the parity-based aggregation that occurs for an even number of
species.
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nonmass-conserving64–66 and mass-conserving67,68 reactions. Such
systems have been shown to exhibit pattern formation, macroscopic
phase separation, or travelling wave fronts. In contrast, the model we
study in this work is able to exhibit a larger variety of complex beha-
viour, because of the non-reciprocal interactions. Additionally, each
active species is individually conserved in ourmodel,meaning that it is
truly the catalysts and not the reactants that self-organize in this case.

Discussion
Our work shows that catalytically-active and chemotactic particles
participating in a primitive metabolic cycle exhibit a variety of struc-
tural complex collective behaviour. Due to the nature of the gradient-
mediated interactions involved, such particles are able to interact over
large distances, and undergo spontaneous and exponentially rapid
cluster formation that serves to support their metabolic function. This
feature can help overcome the barrier represented by the time needed
for the right types of molecules to meet by chance at sufficiently high
concentrations in thefirst place, and selectively drives the formationof
functional metabolic condensates based on the information embed-
ded in the chemical reaction network of the components. This sug-
gests thatnaturally occurringphoretic transportmechanismsmight be
able to equip the biological paradigm of liquid-liquid phase separation
with an information-controlled strategy for metabolic structure for-
mation. Moreover, since the overall chemical activity of enzymes can
be enhanced with suitable clustering behaviour15,69, the ability to
engineer complex clustering features such as those reported heremay
help improve the design and efficiency of synthetic reaction networks.

Depending on the parity of the number of different species
involved in the cycle and on their chemotactic parameters, these
clusters might consist of a single or several species, thereby

accommodating a range of design strategies for metabolic structure
formation. If the number of species in the cycle is odd, chasing inter-
actions may emerge at the macroscopic level, similar to those that
have been observed in recent experiments26,27, although in this case
leading to long-lived, system-wide oscillations. Our work suggests that
a metabolic cycle consisting of odd number of members may have an
advantage (over a cycle with an even number of members) due to the
formation of the explosive oscillatory stationary state. It remains to be
seen whether the fact that the universal citric acid cycle consists of 11
members can in someway be related to this observation. The observed
variety of emergent structural behaviour with highly precise control
over the composition of the constituents of the metabolically active
clusters hints at a significant possible role for catalytically active
molecules at the origin of life: the molecules that are metabolically
connected to each other will preferentially and efficiently form active
clusters together, hence serving as potential candidates for the
nucleation of early forms of life.

What is remarkable about our proposal to use non-reciprocal
interactions in this context is that such interactions generically emerge
in non-equilibrium systemswith chemical catalytic activity49, which are
abundantly present in the cell (molecular catalysts and enzymes
involved with metabolic activity) and can be easily synthesized in
artificial systems (catalytic colloids, RNA fragments, etc.) for con-
trolled in vitro experiments. In this sense, the theoretical develop-
ments that have led to significant progress in the field of active matter
in the laboratory setting can now be used to guide new experimental
strategies for research in the field of origin of life. Our work offers a
theoretical and conceptual platform towards developing this
possibility.

Methods
Linear stability analysis
We consider a system of M catalytically-active particles described by
concentration fields ρm r, tð Þ. A given species m converts its substrate,
chemical (m) described by a concentration field cðmÞ r, tð Þ, into its
product, which will in turn be the substrate (m + 1) of the catalytic
speciesm + 1. This conversion takes place at a rate α > 0, whichwe take
to be constant (i.e. catalysis is assumed to take place in the substrate-
saturated regime), and equal for all species. The particles are also
chemotactic for their substrate and their product, with respective
mobilities μ(s) and μ(p), again chosen to be equal for all species.We start
from the evolution equations for the substrate and product con-
centrations given in (2). We then consider the effects of a time- and
space-dependent perturbation ðδρm r, tð Þ,δcðmÞ r, tð ÞÞ around an initially
homogeneous state (ρ0, c0). We also assume a separation of time-
scales: as the substrates are typically much smaller than the catalytic
particles and thus diffuse faster, we assume that their concentrations
equilibrate more quickly to a quasi-steady state for a given config-
uration of the fields ρm, meaning that we set ∂tc(m)≃0. Fourier-
transforming the linearized equations with respect to space leads to
the following equation for the δc(m) mode with wavevector q:

Dq2δcðmÞ q, tð Þ=α δρm�1 q,tð Þ � δρm q, tð Þ� �
: ð12Þ

Reintroducing this perturbation into the linearized equation (1),
which we Laplace-transform with respect to time, leads to the system
of equations for the different modes with growth rate λ and wave-
vector q:

ðλ+Dpq
2Þδρm q, λð Þ= � αρ0

D
μðsÞδρm�1 q, λð Þ�

+ ðμðpÞ � μðsÞÞδρm q, λð Þ � μðpÞδρm+ 1 q, λð Þ�, ð13Þ

which is an eigenvalue equation. It is readily seen that the fastest
growing mode is the q = 0 mode. Therefore, we focus on this mode
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Fig. 4 | Oscillatory dynamics for an odd number of species with chasing cross-
interactions. A schematic representation of the oscillatory dynamics (left), snap-
shots of molecular dynamics simulations (middle, see also Supplementary
Movie 8), and a diagram of the corresponding species interactions and pairing
(right) are shown side by side. Here, dashed and dotted lines represent respectively
the pairs on the left and right of the schematic representation. The eigenvalues of
the system are as in Fig. 3b, but now ReðλÞ< ImðλÞ for the most unstable conjugate
pair, so that the dynamics of the system are oscillatory.
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throughout the paper. The system is unstable when Reðλðq =0ÞÞ>0.
Denoting the interactionmatrix asΛmn (asdefined inEq. (4)), we obtain
the result in Eq. (3).

Pair interactions between spherical catalytically active particles
In order to perform Brownian dynamics simulations of the system, we
calculate the effective interaction between two spherical catalytically
active particles in the far-field approximation, which we do in
two steps.

We first consider an isolated particle of species m, with activity α
and radius R, taken to be equal for all species. We place the particle at
the origin, and use spherical coordinates. The perturbation δc(n)

induced by the particle, which is assumed to equilibrate quickly with
respect to the motion of all particles, is a solution of the Laplace
equation:

0=D∇2δcðnÞ: ð14Þ

The corresponding boundary conditions, however, depend on
whether the chemical is the substrate (n =m), the product (n =m + 1),
or neither. Indeed, the boundary condition is determined by the dif-
fusive fluxes across the particle surface due to its chemical activity,
resulting in

�4πR2D
∂δcðnÞ

∂r

����
r =R

=

�α if n =m,

α if n =m+ 1,

0 otherwise :

8><
>: ð15Þ

The corresponding solutions for the perturbations are given as

δcðnÞðrÞ=
� α

4πD
1
r if n=m,

α
4πD

1
r if n=m+ 1,

0 otherwise :

8><
>: ð16Þ

Now consider a second particle of species n placed at a location r.
Its velocity vn,m(r) in response to the perturbation created by the
particle of species m will be

vn,mðrÞ=

�μðsÞ∇δcðnÞ if n=m+ 1,

�μðpÞ∇δcðn+ 1Þ if n=m� 1,

�μðsÞ∇δcðnÞ � μðpÞ∇δcðn+ 1Þ if n=m,

0 otherwise :

8>>><
>>>:

ð17Þ

Using Eq. (16), the responses can be explicitly written as

vn,mðrÞ=

αμðsÞ

4πD
r
r3 if n=m+ 1,

� αμðpÞ

4πD
r
r3 if n=m� 1,

α μðpÞ�μðsÞð Þ
4πD

r
r3 if n=m,

0 otherwise,

8>>>>><
>>>>>:

ð18Þ

whichmay be directly compared to the interaction matrix in Eq. (4) of
the main text. Note that in general vn,m(r) ≠ − vm,n( − r) when n ≠m,
which again highlights the non-reciprocal nature of the interactions.

Brownian dynamics simulations
We perform Brownian dynamics simulations using a custom program
written in the Julia language. We simulate N particles equally dis-
tributed among M species. Particles are started out randomly dis-
tributed in space, corresponding to a homogeneous state.

The equations of motion used in our simulations are

_r iðtÞ=
XN
j = 1
ðj≠iÞ

vSðiÞ,SðjÞðr i � r jÞ+
ffiffiffiffiffiffiffiffiffi
2Dp

q
ξ i, ð19Þ

where i∈ {1, 2,…,N}. Here, S(i) gives the species index corresponding to
the particle index i, the velocities are calculated using Eq. (18), Dp is the
diffusion coefficient of the particles, and ξi corresponds to a Gaussian
white noise with zero mean and unit variance acting on particle i.

The equations of motion are integrated using a forward Euler
scheme. At every integration step, an overlap correction is then per-
formed to account for hard-core repulsion between the spheres, using
the “elastic collision method”70. We simulate the system in a three
dimensional box of side length L with periodic boundary conditions,
and interactions are treated according to the minimum image con-
vention. Note that we do not use Ewald summation in our numerical
simulations, which would be relevant if our goal was to simulate sys-
tem sizes considerably larger than currently considered in our study.

The particle diameter, σ, which is taken to be the same for all
species, sets the basic length scale of the simulation. We can define
reference activity and mobility scales, respectively α0 and μ0, from
which we build a velocity scale V0 = α0μ0/(4πDσ2). From these scales,
we can define dimensionless time τ = tV0/σ, activity ~α =α=α0, and
mobility ~μ=μ=μ0 scales. Finally, we define a reduced particle diffusion
coefficient ~Dp =Dp=ðV0σÞ, which serves as an effective noise intensity
or temperature.

Simulation parameters
All simulations have been performed with a box size L/σ chosen such
that the total volume fractionof theparticles isϕ =0.005, aswell as the
choice of activity ~α = 1, and noise strength ~Dp =0:02. Simulations of
respectively M = 5 (M = 6) species are performed with N/M = 333
(N/M = 400) particles per species. We use the following rule of thumb
for parameter choices: the products in the form of ~α~μ are chosen to be
of order unity, while the time step is chosen such that dτ≤0.001. The
total simulation times are usually of the order of τtot≈ 102 − 103. In the
Supplementary Information, we describe each simulation movie. For
the specific parameters used in each simulation, see Table 1.

Cluster growth law determination
In order to qualitatively determine the cluster growth law for both an
even (see Fig. 3a of the main text and Supplementary Movie 7) and an
odd (see Fig. 3b of the main text and Supplementary Movie 3) number
of species, we use a simple clustering algorithm implemented in the
Julia programming language: starting from each individual particle
regarded as a cluster of size 1, we assign two particles to be in the same
cluster if their distance is below a threshold, which we choose to be 1.1

Table 1 | Simulation parameters for the movies referenced in
the main text

Supplementary Movie number M ~μðsÞ ~μðpÞ dτ τtot

1 5 −1.05 −1 0.001 2666

2 6 −0.5 1 0.0005 900

3 6 0.5 −1 0.0005 900

4 6 −0.5 −1 0.0005 900

5 6 −0.7 −0.8 0.001 8000

6 6 −0.95 −1 0.001 3200

7 5 0.5 −1 0.0005 900

8 5 −0.929 −1.07 0.001 2000

9 5 1.05 1 0.001 2666

10 5 −0.1 −0.2 0.001 6666
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times the particle diameter σ. In order to speed up the calculations, we
additionally use a link-list algorithm with a cell size 1.1σ, which only
requires calculation of the distance of each particle to the particles in
its vicinity. We run 100 simulations using the parameters given in the
previous subsection for Supplementary Movies 3 and 7, with a longer
total time τtot = 400. We then perform an ensemble average on these
data to obtain the growth laws shown in Fig. 1e.

Data availability
The data supporting themain findings of this study are available in the
paper and its Supplementary Information. Any additional data can be
made available upon request.

Code availability
The algorithms for the codes supporting the main findings of this
study are available in the paper and its Supplementary Information.
Any additional information concerning the code can bemade available
upon request.
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