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Three-nucleon (3N) interactions are key for an accurate solution of the nuclear many-body problem. However,
fully taking into account 3N forces constitutes a computational challenge and hence approximate treatments
are commonly employed. The method of normal ordering has proven to be a powerful tool that allows to
systematically include 3N interactions in an efficient way, but traditional normal-ordering frameworks require
the representation of 3N interactions in a large single-particle basis, typically necessitating a truncation of 3N
matrix elements. While this truncation has only a minor impact for light and medium-mass nuclei, its effects
become sizable for heavier systems and hence limit the scope of ab initio calculations. In this work, we present
a novel normal-ordering framework that allows to circumvent this limitation by performing the normal ordering
directly in a Jacobi basis. We discuss in detail the new framework, benchmark it against established results, and
present calculations for ground-state energies and charge radii of heavy nuclei, such as 132Sn and 208Pb.

I. INTRODUCTION

The inclusion of three-body forces in nuclear Hamiltonians
is crucial to obtain a realistic description of the structure of
finite nuclei and properties of dense matter [ 1 – 3 ]. However,
the full inclusion of three-body operators is computationally
very challenging due to a steep increase in the number of ma-
trix elements when using large model spaces, as is required
for converged calculations of heavier nuclei. Normal ordering
(NO) is a powerful and well-established method that allows to
transform a given Hamiltonian in an exact way, such that con-
tributions from 3N interactions can be incorporated to good
approximation at the computational cost of two-body interac-
tions. This so-called normal-ordered two-body approximation
(NO2B) has become the standard tool in state-of-the-art cal-
culations of finite nuclei [ 4 – 10 ] and nuclear matter [ 11 – 14 ].

However, established NO frameworks for ab initio calcu-
lations of nuclei require the representation of 3N interactions
in a given single-particle basis as an intermediate step. Due
to the rapid increase of the three-body basis dimension, this
step necessitates the introduction of additional truncations for
a given single-particle model space. Typically, a cut on the al-
lowed three-body energy quantum numbers is applied. For
studies of light and medium-mass nuclei the impact of the
additional truncation is small, and for low resolution inter-
actions calculations converge rapidly at moderate truncation
values. For heavier systems this cut becomes significant, and
the uncertainty due to these effects has constrained ab initio
calculations to masses A . 100. Only recently, extensions to
larger three-body spaces have become available for the NO2B
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approximation, allowing converged calculations for heavy nu-
clei based on soft nuclear interactions [ 15 ,  16 ].

In this work, we present a novel NO framework that
is formulated directly in a partial-wave-decomposed Jacobi-
momentum basis [  3 ,  17 ,  18 ], in which 3N interaction ma-
trix elements are most commonly stored. Performing the
NO in this basis avoids the need to represent the 3N inter-
action in a single-particle basis at any point of the calculation
and hence fully circumvents memory limitations associated
with the single-particle formulation of the NO2B approxima-
tion [ 19 ]. The new Jacobi NO framework yields an effective
two-body interaction that explicitly depends on the center-of-
mass (CM) momentum, characterized by an extended set of
quantum numbers. In this work, we present the details of the
new framework and carefully benchmark it against the exist-
ing NO implementation for a selected set of closed-shell nu-
clei with a large range of mass numbers from 16O up to 208Pb.

This work is structured as follows: In Sec.  II , we revisit the
concept of NO in its single-particle formulation. Section  III 

introduces the novel Jacobi NO framework. Results and nu-
merical benchmarks are presented in Sec.  IV . Finally, we
summarize and conclude with future perspectives in Sec.  V .

II. NORMAL ORDERING:
TRADITIONAL FORMULATION

A. Reference states

Basis-expansion methods for nuclei employ an A-body ref-
erence state |Φ〉 as a starting point for the correlation expan-
sion [ 20 – 24 ]. The reference state provides the many-body
method with a qualitatively correct starting point for an expan-
sion of the state of interest. In this work, we use a spherical
A-particle Slater-determinant reference state

|Φ〉 =

A∏
i=1

a†i |0〉 , (1)
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where |0〉 denotes the physical vacuum. The A particles in the
system occupy orthonormal single-particle states

a†p |0〉 = |ϕp〉 = |ϕnplp jpm jp mtp
〉 . (2)

Here np denotes the radial quantum number, and lp denotes the
single-particle orbital angular-momentum quantum number
coupled with the spin sp = 1

2 to the total angular-momentum
quantum number jp and its projection m jp . The isospin is
tp = 1

2 and the projection quantum number mtp denotes proton
(mtp = + 1

2 ) and neutron states (mtp = − 1
2 ). Since our ref-

erence state is a single Slater determinant, states occupied in
the reference state (i.e., |ϕi〉 with i ≤ A) have an associated
occupation number ñp = 1. 

1
 The occupation number of the

remaining states in the computational basis is given by ñi = 0.
Starting from an initial set of spherical harmonic oscillator

(HO) orbitals, one can construct a new set of orbitals, e.g.,
by solving the Hartree-Fock (HF) equations as is typically
done in this work. As long as the HF solution is obtained
in a symmetry-restricted way, the single-particle transforma-
tion will only mix radial quantum numbers, allowing the HF
orbitals to be re-expressed in terms of HO orbitals as

|ϕnili jim ji mti
〉 =

∑
n′i

Cli jim ji mti
(ni, n′i) |ϕn′i li jim ji mti

〉
HO

. (3)

In the future, it will also be interesting to study alternative
single-particle bases, such as natural orbitals, based on the
eigenstates of a perturbatively improved density matrix (see,
e.g., Refs. [ 25 – 27 ]).

B. Single-particle formulation

Once an appropriate reference state has been determined,
normal-ordered matrix elements for all operators of interest
constitute the fundamental input of basis-expansion many-
body frameworks [ 20 – 24 ]. The normal-ordered Hamiltonian
is commonly written as

H = E0 +
∑
pq

fpq : a†paq : +
1
4

∑
pqrs

Γpqrs : a†pa†qasar :

+
1
36

∑
pqrstu

Wpqrstu : a†pa†qa†r auatas : , (4)

where E0 = 〈Φ|H|Φ〉 is the reference-state expectation value
of the Hamiltonian, fpq, Γpqrs, and Wpqrstu are the normal-
ordered one-, two-, and three-body matrix elements of the
Hamiltonian, and the colons : . . . : indicate normal-ordered
products of fermion creation and annihilation operators.

These matrix elements must be computed from the “free-
space” Hamiltonian

H = T + VNN + V3N , (5)

1 The occupation number ñi should not be confused with the radial quantum
number ni.

which is typically represented in a single-particle basis as an
intermediate step:

T =
∑
pq

〈p|T |q〉 a†paq , (6a)

VNN =
1
4

∑
pqrs

〈
pq|Vas

NN|rs
〉

a†pa†qasar , (6b)

V3N =
1

36

∑
pqrstu

〈
pqr|Vas

3N|stu
〉

a†pa†qa†r auatas . (6c)

Here
〈
pq|Vas

NN|rs
〉

and
〈
pqr|Vas

3N|stu
〉

denote the antisym-
metrized matrix elements of the NN and 3N interactions, re-
spectively. The normal-ordered Hamiltonian matrix elements
can be expressed in terms of these free-space single-particle
matrix elements as

E0 =
∑

p

ñp
〈
p|T |p

〉
+

1
2

∑
pq

ñpñq
〈
pq|Vas

NN|pq
〉

+
1
6

∑
pqr

ñpñqñr
〈
pqr|Vas

3N|pqr
〉
, (7a)

fpq =
〈
p|T |q

〉
+

∑
r

ñr
〈
pr|Vas

NN|qr
〉

+
1
2

∑
rs

ñrñs
〈
prs|Vas

3N|qrs
〉
, (7b)

Γpqrs =
〈
pq|Vas

NN|rs
〉

+
∑

t

ñt
〈
pqt|Vas

3N|rst
〉
, (7c)

Wpqrstu =
〈
pqr|Vas

3N|stu
〉
, (7d)

with the reference-state occupation numbers ñp.
In this single-particle NO scheme, the computational and

storage cost is dominated by the three-body matrix elements〈
pqr|Vas

3N|stu
〉
. For typical single-particle basis truncations,

characterized by emax = (2n + l)max ∼ 14–16, the storage
cost of three-body matrix elements without any additional
truncations is tens or hundreds of TB (see Fig.  1 ). This
necessitates the additional truncation of the basis of three-
body states |pqr〉, and one such established truncation discards
states based on their three-body energy quantum number

E(3) = ep + eq + er ≤ E(3)
max . (8)

The basis dimension for the representation of three-body oper-
ators grows rapidly with increasing E(3)

max values. In the NO2B
approximation the normal-ordered Hamiltonian is truncated at
the two-body level, i.e.,

H = E0 +
∑
pq

fpq : a†paq : +
1
4

∑
pqrs

Γpqrs : a†pa†qasar : , (9)

and the residual three-body contributions from Wi jklmn are ne-
glected. The NO2B approximation has been used successfully
in various many-body methods. In fact, many-body calcu-
lations including explicit three-body operators are presently
limited to light nuclei using methods that do not rely on nor-
mal ordering [ 28 – 30 ]. For basis-expansion methods for nu-
clei, the inclusion of residual three-body interactions has been
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constrained to small model spaces [ 4 ,  31 ] or to studies with
softened 3N interactions that have shown their effects to be
small [ 6 ,  7 ,  32 ,  33 ].

In practice the evaluation of the 3N contribution to the
normal-ordered two-body Hamiltonian Γ in Eq. ( 7c ),

Γ3N
pqrs ≡

∑
t

ñt
〈
pqt|Vas

3N|rst
〉
, (10)

constitutes the computationally most challenging step. It
formally requires a representation of the 3N interaction in
a single-particle basis that is sufficiently large for a well-
converged many-body calculation. Lower-rank contributions
that enter the normal-ordered one-body and zero-body parts in
Eqs. ( 7a ) and ( 7b ), respectively, can be easily computed from
Γ3N

pqrs. For many years E(3) ≤ E(3)
max ' 16 was the state of the

art for ab initio many-body calculations. Only recently, the
size of the three-body basis could be significantly increased to
E(3)

max = 28 at the NO2B level in Ref. [  15 ] by storing only
a subset of matrix elements needed for NO. This made it
possible to obtain converged results for soft interactions in
the region of 132Sn [ 15 ] and enabled first ab initio studies of
208Pb [ 16 ].

III. NORMAL ORDERING:
JACOBI BASIS FORMULATION

In this section, we discuss how NO can be formulated in
the plane-wave Jacobi basis. This circumvents the storage of
three-body matrix elements in a single-particle basis at any
point and thus completely avoids the E(3)

max cut. Instead, the
Jacobi NO framework introduces truncations in the CM and
relative partial-wave angular momenta that effectively define
the basis dimension. These truncations, however, turn out to
be more robust than the E(3)

max cut for heavy systems and al-
low for significant storage savings compared to the traditional
NO formulation. The effective two-body interaction is sub-
sequently transformed to the single-particle basis, yielding a
suitable input for many-body methods.

A. Jacobi basis formulation

For the discussion of the new framework we start by repre-
senting the two-body matrix elements of Γ3N in a momentum-
space single-particle basis of the form∣∣∣k̃1k̃2

〉
with

∣∣∣k̃i

〉
≡

∣∣∣kimsi mti
〉
. (11)

In this basis Eq. (  10 ) can be written more explicitly in the form

〈
k̃′1k̃′2

∣∣∣Γ3N
∣∣∣ k̃1k̃2

〉
=

∫ dk3dk′3
(2π)6

∑
ms3 m′s3

∑
mt3 m′t3

× ρ(k̃3, k̃′3)
〈
k̃′1k̃′2k̃′3

∣∣∣Vas
3N

∣∣∣ k̃1k̃2k̃3

〉
, (12)

with the density matrix

ρ(k̃3, k̃′3) = δmt3 m′t3

∑
n3l3 j3m j3

ñ3

〈
k̃′3

∣∣∣ϕn3l3 j3m j3 mt3

〉 〈
ϕn3l3 j3m j3 mt3

∣∣∣ k̃3

〉
.

(13)
Note that the density matrix is diagonal in the isospin projec-
tion quantum number mt3 but not in the spin projection quan-
tum number ms3 . The reference-state orbitals in the single-
particle momentum-space basis take the explicit form〈

kimsi mti

∣∣∣ϕnili jim ji mti

〉
=

∑
mli

C
jim ji

limli
1
2 msi

Ylimli
(k̂i) ϕnili jim ji mti

(ki) ,

(14)
with the Clebsch-Gordan coefficients C jm j

lml1/2 ms
coupling the

single-particle orbital angular momentum and spin to the to-
tal angular momentum, the spherical harmonics Ylml , and the
angular orientation k̂ and modulus k = |k| of the vector k.

For practical calculations Eq. (  12 ) is not very useful due to
the complexity and redundancy of 3N interactions when us-
ing the single-particle momentum representation. Significant
benefits can be obtained by exploiting the symmetries of 3N
forces, e.g., Galilean, rotational, and isospin invariance. In
particular, we explicitly make use of Galilean invariance of
the nuclear interactions by representing it in terms of the rela-
tive and CM momenta, with the interaction being independent
of the three-body CM momentum P3N. We therefore switch
to a Jacobi momentum-space representation by defining the
following Jacobi momenta [ 17 ]:

p =
1
2

(k1 − k2) , q =
2
3

[
k3 −

1
2

(k1 + k2)
]
, (15)

and the corresponding two- and three-body CM momenta

P = k1 + k2 , (16a)
P3N = k1 + k2 + k3 = k′1 + k′2 + k′3 , (16b)

respectively. Including spin and isospin quantum numbers
the states are given by

|p̃〉 = |pS MS T MT 〉 , (17a)

|q̃〉 = |qmsmt〉 =
∣∣∣qms3 mt3

〉
, (17b)

where, S (T ) denotes the two-body spin (isospin) and its pro-
jection MS (MT ), and ms (mt) the spin (isospin) projection of
the third particle. The latter are identical to ms3 and mt3 of
|k̃3〉. From Eqs. ( 16 ) it follows that k3 = 3/2q + P/2. In this
representation Eq. ( 12 ) can be rewritten by expressing the 3N
interaction Vas

3N in the Jacobi basis. The resulting interaction
is independent of P3N and only depends on four momenta in-
stead of six as in the single-particle representation〈

p̃′P′
∣∣∣Γ3N

∣∣∣ p̃P
〉

=

∫ dk3dk′3
(2π)6

∑
ms3 m′s3

∑
mt3 m′t3

ρ(k̃3, k̃′3)

×
〈
p̃′q̃′

∣∣∣Vas
3N

∣∣∣ p̃q̃
〉

(2π)3δ(P + k3 − P′ − k′3) .
(18)

In the above equation, we have explicitly factored out the triv-
ial dependence of the 3N interaction matrix elements on the
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three-body CM momentum P3N = P + k3 and represented the
two-body operator Γ3N as a function of the two-body Jacobi
and CM momenta. Note that the two-body CM momentum P
is in general not conserved since k3 , k′3, and consequently,
the resulting two-body interaction Γ3N will depend on P and
P′. This is in contrast to NO with respect to momentum eigen-
states, as is the case for nuclear matter [ 11 ,  34 ].

B. Partial-wave decomposition

The feasibility of our approach is based on the use of a
partial-wave decomposed JT -coupled basis

|pq[(LS )J(ls) j]J(Tt)T〉 ≡ |pqα〉 , (19)

where p = |p| and q = |q| define the modulus of the Jacobi
momenta, and α refers to all partial-wave quantum numbers:
orbital angular momentum L, spin S , total angular momentum

J, and the isospin T of the two-body subsystem of particles 1
and 2 with Jacobi momentum p; orbital angular momentum
l, spin s = 1/2, total angular momentum j, and the isospin
t = 1/2 of particle 3 relative to the two-body subsystem; and
the total three-body angular momentum J and total three-
body isospin T . These two three-body quantum numbers also
have associated projections MJ and MT , respectively. How-
ever, due to the rotational and isospin invariance of 3N interac-
tions, the 3N Jacobi matrix elements are diagonal in J and T
and independent of MJ and MT . Therefore, it is sufficient to
guarantee that these conditions between the bra and ket states
are fulfilled and drop the trivial dependence on the three-body
projection quantum numbers.

As a next step, we perform a partial-wave decomposition of
the 3N interaction in the Jacobi momentum-space basis (see,
e.g., Refs. [ 3 ,  17 ,  18 ] for details) with the goal of obtaining
a partial-wave decomposed two-body interaction Γ3N. Using
the notation of Eq. ( 19 ), we first decompose the plane-wave
Jacobi basis states into partial waves

|p̃q̃〉 =
∑
LML

∑
lml

Y∗LML
(p̂)Y∗lml

(q̂)
∑
JMJ

∑
jm j

C
JMJ
LMLS MS

C
jm j

lml
1
2 ms

∑
JMJ

∑
TMT

C
JMJ
JMJ jm j

C
TMT
T MT

1
2 mt
|pq[(LS )J(ls) j]J(Tt)T〉 . (20)

In the following, we will make use of Eq. ( 20 ) to represent
Eq. (  18 ) in a partial-wave representation. Since the 3N con-
tribution to the normal-ordered two-body interaction breaks
Galilean invariance, we have to explicitly incorporate addi-
tional quantum numbers that describe the two-body CM de-
pendence. In the following, we indicate quantum numbers of
the two-body basis by an overline to distinguish them from
the three-body basis and use a collective index γ for the two-
body states. The modified partial-wave decomposed two-body
state, including the additional quantum numbers L̄CM and J̄tot,
is defined as∣∣∣pPγ

〉
≡

∣∣∣pP[(L̄S̄ )J̄L̄CM]J̄totMJ̄tot
T̄ MT̄

〉
, (21)

with the total two-body angular momentum J̄tot obtained by

coupling the angular momentum J̄ and the two-body CM or-
bital angular momentum L̄CM. As long as the reference state
conserves rotational invariance, the effective two-body inter-
action Γ3N transforms like a scalar under rotations in spin and
space, is diagonal in the total angular momentum J̄tot, does not
depend on its projection MJ̄tot

, and is diagonal in the isospin
projection MT̄ .

By inserting the partial-wave expansion, Eq. ( 20 ), in
Eq. ( 18 ) and projecting the matrix elements of Γ3N onto the
partial-wave states, taking into account the additional CM
dependence in Eq. ( 21 ), we obtain the following expres-
sion of the normal-ordered 3N contribution in the relative
momentum-space basis,

〈
p′P′γ′

∣∣∣Γ3N
∣∣∣ pPγ

〉
=

1
2J̄tot + 1

∑
MJ̄tot

∑
ML̄ MS̄ MJ̄ ML̄CM
M′

L̄
M′

S̄
M′

J̄
M′

L̄CM

C
J̄MJ̄

L̄ML̄S̄ MS̄
C

J̄′M′
J̄

L̄′M′
L̄
S̄ ′M′

S̄

C
J̄tot MJ̄tot

J̄MJ̄ L̄CM ML̄CM
C

J̄tot MJ̄tot

J̄′M′
J̄
L̄′CM M′

L̄CM

×

∫
dP̂

∫
dP̂′YL̄CM ML̄CM

(P̂) Y∗L̄′CM M′
L̄CM

(P̂′)
∫

dk3

(2π)3

×
∑

n3l3 j3m j3 mt3
ml3 m′l3 ms3 m′s3

C
j3m j3

l3ml3
1
2 ms3

C
j3m j3

l3m′l3
1
2 m′s3

ϕn3l3 j3m j3 mt3
(k3)ϕn3l3 j3m j3 mt3

(k′3)Yl3m′l3
(k̂′3)Y∗l3ml3

(k̂3)

×
∑
JMJ

∑
TMT

∑
LL′ll′

∑
JJ′ j j′

∑
ML M′L

∑
mlm′l

∑
MJ M′J

∑
m jm′j

δLL̄δML ML̄
δL′ L̄′δM′L M′

L̄
Y∗lml

(q̂)Yl′m′l (q̂
′)

× C
JMJ

LMLS̄ MS̄
C

J′M′J
L′M′LS̄ ′M′

S̄

C
jm j

lml
1
2 ms3

C
j′m′j

l′m′l
1
2 m′s3

C
JMJ
JMJ jm j

C
JMJ
J′M′J j′m′j

C
TMT

T̄ MT̄
1
2 mt3

C
TMT

T̄ ′MT̄
1
2 mt3

〈
p′q′α′ |V3N| pqα

〉
,

(22)
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where we used the orthonormality of the spherical harmonics,
that the two-body spin is given by S = S̄ and S ′ = S̄ ′, and
k′3 = P + k3 − P′. A significant number of the sums in this
expression can be reduced analytically, while several remain-
ing sums and integrals need to be performed numerically. The
final result can be expressed in the following simplified form:〈

p′P′γ′
∣∣∣Γ3N

∣∣∣pPγ
〉

=
∑
JT
ll′ j j′

∫
dP̂dP̂′

dk3

(2π)3

〈
p′q′α′|V3N|pqα

〉
×

∑
jx jy jz
mymz

∑
ML̄CM

M′
L̄CM

∑
mlm′l

Aαα′γγ′

jx jy jz
BT̄ T̄ ′MT̄T

jx jy jzmymz
(k3,k′3)

× C
jymy

lml L̄′CM M′
L̄CM

C
jzmz

l′m′l L̄CM ML̄CM

× Y∗L̄CM ML̄CM
(P̂) YL̄′CM M′

L̄CM
(P̂′) Y∗lml

(q̂) Yl′m′l (q̂
′) ,

(23)

with the superscripts α and γ indicating the dependence on all
of the quantum numbers defined in Eqs. ( 19 ) and ( 21 ), respec-
tively. We introduced the following quantities

Aαα′γγ′

jx jy jz
= δJ̄JδJ̄′J′ (−1)−J̄+J̄′+ j+ j′+2 jx+ jy− jzĴ2 ĵ ĵ′ ĵy ĵz ĵ2x

×

{
L̄′CM l jy

1
2 jx j

}{
L̄CM l′ jz

1
2 jx j′

}
jx L̄′CM j

L̄CM J̄tot J̄
j′ J̄′ J

 ,

(24)

and

BT̄ T̄ ′MT̄T

jx jy jzmymz
(k3,k′3) =∑

MT

∑
jumu

∑
n3l3 j3m j3
ml3 m′l3 mt3

ĵ23C
jumu
l3ml3 jzmz

C
jumu
l3m′l3 jymy

C
TMT

T̄ MT̄
1
2 mt3

C
TMT

T̄ MT̄
1
2 mt3

×


jx

1
2 jy

1
2 j3 l3
jz l3 ju

 Yl3m′l3
(k̂′3) Y∗l3ml3

(k̂3)

× ϕn3l3 j3m j3 mt3
(k3)ϕn3l3 j3m j3 mt3

(k′3) ,

(25)

with ĵ =
√

2 j + 1 for all angular momentum quantum num-
bers. In addition we introduced the auxiliary quantum num-
bers jx, jy, jz, and ju as well as their projections my, mz, and
mu. These intermediate quantities are obtained by coupling
l with L̄′CM to jy, l′ with L̄CM to jz, l3 with jy and jz to ju,
and s = 1/2 with jy and jz to jx. Note that the values of
the Jacobi momenta q and q′ are implicitly fixed by the rela-
tions k3 = 3/2q + P/2 and k′3 = P + k3 − P′. Furthermore,
Aαα′γγ′

jx jy jz
does not depend on my, mz, or any of the momenta

in the spherical harmonics, such that it can be evaluated in-
dependently of the sums and integrals in Eq. ( 23 ) and can be
easily prestored. All other quantities that involve those quan-
tum numbers, like ML̄CM

and ml, that also enter the spherical
harmonics need to be recomputed for each point of the mo-
mentum mesh in the numerical integration.

In order to take into account all possible recoupling con-
tributions from the Jacobi representation to a single-particle
representation, matrix elements for sufficiently large values of

the angular momentum quantum numbers in the basis need to
be computed for a given single-particle basis size emax. Gener-
ally, the matrix elements of Γ3N get systematically suppressed
as the values of the total angular momentum quantum num-
bers J̄, L̄CM, and J̄tot increase.

The integrals and sums in Eq. ( 23 ) are then calculated for
a given partial-wave truncation specified by L̄max

CM and J̄max
tot in

the partial-wave basis γ for a specified number of mesh points
of the four momenta p, P, p′, and P′. Our calculations show
that for the interaction employed in this work about 20 points
for each of these momenta are needed for calculations up to
around 48Ca, while for heavier systems higher partial-wave
channels become relevant which make it necessary to also in-
crease the number of mesh points. Specifically, for our largest
calculations of 132Sn and 208Pb we used NP = 35 and Np = 20.

C. Transformation to HO basis

Once the matrix elements of
〈
p′P′γ′

∣∣∣Γ3N
∣∣∣pPγ

〉
have been

computed in the plane-wave Jacobi representation, the next
step consists of transforming these relative momentum matrix
elements to a relative harmonic oscillator basis of the form
|NNCMγ〉, where N and NCM are the radial oscillator quantum
numbers that correspond to the relative momentum p and two-
body CM momentum P, respectively, and γ is the collective
index of Eq. ( 21 ). This step is straightforward as it represents
a simple generalization of the standard transformation expres-
sions for free-space NN interactions. We additionally have to
include the CM dependence and can then represent the plane-
wave Jacobi states in Eq. ( 23 ) in the relative HO basis by

|NNCMγ〉 =

∫
dp dP p2P2RNL̄(p, brel)RNCM L̄CM

(P, bCM) |pPγ〉 ,

(26)

with the oscillator lengths bi = 1/
√

Mωi and the radial part
RNL̄ of the harmonic oscillator wave function in momentum
space is given by RNL̄(p, b) = 〈pL̄|NL̄〉. The oscillator param-
eters are related by [ 3 ]

brel =
√

2 b , bCM =
1
√

2
b , (27)

where b is the single-particle oscillator length of the HO basis.
Note that the number of partial-wave channels is much

higher in the present case than for free-space two-body in-
teractions due to the dependence of the matrix elements on
the L̄CM quantum number. This allows for more complicated
angular-momentum coupling patterns in the basis |γ〉 com-
pared to the free-space two-body basis.

In the following, we characterize the basis space in the Ja-
cobi representation by the total energy quantum number Ē(2),
which involves relative and CM quantum numbers:

Ē(2) = 2NCM + L̄CM + 2N + L̄ = e1 + e2 . (28)

This implies that for Ē(2)
max ≥ 2emax the NO does not involve

any truncations on radial HO quantum numbers in a given
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Angular-momentum quantum numbers

L̄CM [γ] two-body CM orbital angular momentum of P

J̄tot[γ] total angular momentum of p and P

L̄ [γ] = L [α] relative orbital angular momentum of p

J̄ [γ] = J [α] total angular momentum of p

l [α] orbital angular momentum of q

j [α] total angular momentum of q

J[α] total three-body angular momentum of p and q

li single-particle orbital angular momentum of ki

Energy quantum numbers

ei = 2ni + li

E(3) = e1 + e2 + e3

Ē(2)[γ] = 2NCM + L̄CM + 2N + L̄ = e1 + e2

General truncations

J̄ [γ] ≤ J̄max, l [α] ≤ lmax, J[α] ≤ Jmax, ei ≤ emax

Additional truncations in Jacobi normal ordering

L̄CM [γ] ≤ L̄max
CM , J̄tot [γ] ≤ J̄max

tot

Additional truncations in single-particle normal ordering

E(3) ≤ E(3)
max

TABLE I. Summary of the relevant quantum numbers and employed
truncations in the Jacobi and single-particle NO frameworks. The
argument in square brackets indicates the basis in which the corre-
sponding quantum number is defined, i.e., Eqs. ( 19 ) and ( 21 ), re-
spectively. Note that for Ē(2)

max ≥ 2emax there are no truncations on the
radial HO quantum numbers in the Jacobi NO framework.

single-particle basis size of emax. An overview of the quan-
tum numbers and truncation schemes in both NO frameworks
is given in Table  I .

In Fig.  1 we compare the memory requirements for stor-
ing the relevant intermediate matrix elements in the differ-
ent NO frameworks. The light blue line shows the dimen-
sions of the full 3N operator in a given single-particle ba-
sis size emax without employing any additional truncations,
i.e., E(3)

max = 3emax. In this case the matrix sizes become in-
tractable very quickly and this option is consequently not vi-
able for practical applications. When employing the new stor-
age scheme of Ref. [  15 ], the dimensions get reduced signifi-
cantly (dark blue lines), allowing to push the NO2B limits to-
wards larger basis sizes, especially when applying additional
cuts on E(3)

max (crosses). The displayed cuts E(3)
max = 24 and 28

provide sufficiently well converged calculations for soft inter-
actions up to 132Sn and even 208Pb, as shown in Refs. [ 15 ,  16 ]
and also in Sec.  IV below. Finally, we show the storage space
required for Γ3N in the HO basis defined in Eq. (  26 ) in the
new Jacobi NO framework. Here we show the two cases
L̄max

CM = J̄max
tot = 6 and 14. For both, the file sizes are sig-

nificantly smaller than for the single-particle NO framework.

2 4 6 8 10 12 14 16
emax

105

106

107

108

109

1010

1011

1012

1013

fi
le

si
ze

(b
y
te

s)

100 GB

1 GB

full 3N

s.p. NO2B

s.p. NO2B (E
(3)
max = 24)

s.p. NO2B (E
(3)
max = 28)

Jacobi NO2B Lmax
CM = Jmax

tot = 6

Jacobi NO2B Lmax
CM = Jmax

tot = 14

FIG. 1. Memory requirements for the storage of intermediate op-
erators in the different NO frameworks as a function of the single-
particle basis size emax. The light blue line refers to the dimen-
sion of the full three-body operator in a single-particle representa-
tion with E(3)

max = 3emax. The dark blue lines show the storage space
for only those 3N matrix elements needed in the NO2B approxima-
tion (see Ref. [ 15 ]), without E(3)

max cut (circles) and using the cuts
E(3)

max = 24 and 28 (crosses). The red lines show the dimension of Γ3N

in the basis defined in Eq. ( 26 ) for E(2)
max = 2emax and the truncations

L̄max
CM , J̄

max
tot = 6 and 14.

D. Transformation to single-particle basis

For the discussion of the final transformation to single-
particle states, we consider JT -coupled two-body states in the
basis defined in Eq. ( 2 )∣∣∣(ab)J̄totMJ̄tot

T̄ MT̄

〉
=

∑
m ja m jb
mta mtb

C
J̄tot MJ̄tot
jam ja jbm jb

C
T̄ MT̄
1
2 mta

1
2 mtb

|ab〉 , (29)

by coupling the single-particle angular momenta and isospins
to the total angular momentum J̄tot and T̄ , respectively, with
the uncoupled single-particle states given by

|ab〉 =
∣∣∣na(la 1

2 ) jam ja
1
2 mta nb(lb 1

2 ) jbm jb
1
2 mtb

〉
. (30)

Many-body frameworks usually require as input JT -
coupled matrix elements in the single-particle basis〈

(ab)J̄totT̄ ′MT̄

∣∣∣ Γ3N
∣∣∣(cd)J̄totT̄ MT̄

〉
. (31)

Note that in general Γ3N has nonvanishing matrix elements for
off-diagonal T̄ , T̄ ′ and will depend on MT̄ , while it is diago-
nal in J̄tot and independent of MJ̄tot

, as discussed for Eq. ( 21 ).
However, since the transformation to the single-particle basis
does not modify the isospin dependence of the states, we will
in the following suppress the isospin quantum numbers for
simplicity. In the first step of the transformation, we factorize
the spin part of the states by recoupling the two-body states
from a j-coupling scheme to an ls-coupling scheme:∣∣∣[na(lasa) janb(lbsb) jb

]
J̄tot

〉



7

=
∑
λS

ĵa ĵbλ̂Ŝ


la sa ja
lb sb jb
λ S J̄tot

 ∣∣∣[(nalanblb)λ(sasb)S ] J̄tot

〉
, (32)

where the orbital angular momenta la and lb couple to the to-
tal orbital angular momentum λ. In order to make use of the
standard definitions of the Talmi-Moshinsky transformation
brackets of Ref. [ 35 ], which are given by

|(nalanblb) λ〉 =
∑

NCM L̄CMNL̄

〈
(NCML̄CMNL̄)λ

∣∣∣(nalanblb)λ
〉

×

∣∣∣∣(NCML̄CMNL̄
)
λ
〉
, (33)

we need to recouple also the angular momenta of the Jacobi
HO basis defined in Eq. ( 21 ) to first couple the relative and
CM angular momentum to λ:∣∣∣∣NCMN

[
(L̄CML̄)λS̄ )

]
J̄tot

〉
=

∑
J̄

(−1)L̄+S̄ +J̄ ˆ̄Jλ̂
{

S̄ L̄ J̄
L̄CM J̄tot λ

}
×

∣∣∣∣NCMN
[
(L̄S̄ )J̄L̄CM

]
J̄tot

〉
,

(34)

where we changed the coupling order of L̄ and L̄CM, which
introduces an additional phase. Summarizing, this leads to
the final transformation relation for the (non-normalized) two-
body states:

∣∣∣(ab)J̄tot

〉
=

∑
λS̄

ĵa ĵbλ̂2 ˆ̄S ˆ̄J


la sa ja
lb sb jb
λ S̄ J̄tot

 ∑
NCM L̄CM

NL̄

〈
(NCML̄CMNL̄)λ

∣∣∣(nalanblb)λ
〉∑

J̄

(−1)L̄+S̄ +J̄
{

S̄ L̄ J̄
L̄CM J̄tot λ

} ∣∣∣∣NCMN
[
(L̄S̄ )J̄L̄CM

]
J̄tot

〉
.

(35)

IV. RESULTS

A. Matrix-element comparison

Throughout this work, we use the chiral NN+3N interac-
tion constructed in Ref. [ 36 ], labeled as 1.8/2.0 EM. This in-
teraction provides a good reproduction of ground-state en-
ergies over a large range of mass numbers from A = 4 −
132 [ 9 ,  10 ,  15 ,  37 ] as well as reasonable saturation proper-
ties of nuclear matter [  34 ,  36 ] and hence offers an ideal test
case for investigating the Jacobi NO framework.

We first benchmark the new NO framework by explicitly
comparing matrix elements of the effective two-body interac-
tion Γ3N in the single-particle and Jacobi approach. The ref-
erence state employed for all NO applications in the Jacobi
basis in this work is given by an HF reference state calculated
in the single-particle basis using the 1.8/2.0 EM interaction.
The corresponding model space is characterized by the trun-
cation of the single-particle states emax and the additional trun-
cation in the space of three-body states E(3)

max. The HF orbitals
can then be easily applied in the Jacobi NO based on Eq. ( 3 ).
We note that the construction of the reference state still in-
volves the representation of the 3N interaction in a single-
particle basis. However, the HF solution is known to converge
rapidly with respect to the model-space size. Consequently,
values of E(3)

max . 16 are typically sufficient to obtain suffi-
ciently converged reference states for light to medium-mass
nuclei. The reference-state dependence is further investigated
in Sec.  IV C .

In Fig.  2 , we show the difference between the normal-
ordered two-body matrix elements Γ3N, defined in Eq. ( 10 ),
in the Jacobi and single-particle basis for an 16O HF reference

state. We employ a model space of emax = 4 with E(3)
max = 12

such that there is no active E(3)
max cut. The maximum total

three-body angular momentum is set to Jmax = 9/2, which
is typically enough to obtain reasonably converged results for
finite nuclei and nuclear matter [ 3 ]. Using the same HF refer-
ence state in both frameworks allows for a clean comparison
of the normal-ordered matrix elements. For a better under-
standing of the different contributions to the two-body inter-
action, we divide the set of matrix elements into three blocks
of total angular momentum J̄tot in the two-body basis. We
consider blocks of J̄tot < 2, 2 ≤ J̄tot ≤ 5, and J̄tot ≥ 5 and
show the percentage of matrix elements as a function of the
absolute difference in the corresponding blocks. By varying
the J̄max

tot and L̄max
CM truncations in the Jacobi framework from 3

to 9, we see that increasing J̄tot and L̄CM systematically brings
the matrix elements in the Jacobi in better agreement with the
single-particle NO framework. In general, both truncations
of J̄tot and L̄CM can be varied independently. However, here
we truncate both quantum numbers at the same value for the
sake of simplicity. Smaller J̄tot blocks (green) already show
an excellent agreement for small J̄max

tot and L̄max
CM , while ma-

trix elements for larger J̄tot values (orange and blue) require
larger values for a good agreement. For the highest truncation
of J̄max

tot = L̄max
CM = 9 shown here, both methods yield essen-

tially identical matrix elements. This can be understood by
the generalized transformation to the single-particle basis in
Sec.  III D for the Jacobi framework. The two-body CM quan-
tum number L̄CM couples with L̄ and S̄ to the total angular
momentum J̄tot, such that for a complete basis we would need
to take L̄max

CM to J̄max
tot + L̄max+S̄ max, with J̄max

tot = 9 in an emax = 4
model space and S̄ max = 1. However, the contributions from
very high L̄CM in larger model spaces are found to be very
small and the rightmost panel in Fig.  2 shows almost perfect



8

−0.1 0.0 0.1

0.01

0.1

1

10

100
Pe

rc
en

t
of

m
at

rix
el

em
en

ts
in

se
le

ct
ed

gr
ou

p J̄max
tot = L̄max

CM = 3

−0.1 0.0 0.1

J̄max
tot = L̄max

CM = 5

J̄tot ≥ 5
2 ≤ J̄tot < 5
J̄tot < 2

−0.1 0.0 0.1

J̄max
tot = L̄max

CM = 7

−0.1 0.0 0.1

J̄max
tot = L̄max

CM = 9

ΓJ̄tot
Jac − ΓJ̄tot

sp (MeV)

FIG. 2. Distributions of differences Γ3N
Jac − Γ3N

sp of two-body matrix elements in the Jacobi and single-particle NO for different J̄tot blocks of
J̄tot < 2 (green), 2 ≤ J̄tot ≤ 5 (orange), and J̄tot ≥ 5 (blue) in the effective two-body interaction. We show results for different truncations
in the Jacobi NO, using J̄max

tot = L̄max
CM = 3, 5, 7, and 9 in the first through fourth panel, respectively. The y-axis shows the percentage of

matrix elements with the difference specified on the x-axis in the selected J̄tot block. Results are shown for the 1.8/2.0 EM 3N interaction with
emax = 4, E(3)

max = 12, and ~ω = 16 MeV using an 16O HF reference state.

agreement for J̄max
tot = L̄max

CM = 9 for all J̄tot blocks.

B. Benchmarks for light and medium-mass nuclei

We extend our benchmarks from a detailed comparison of
matrix elements to ground-state energies of light and medium-
mass nuclei, again comparing the Jacobi and single-particle
NO frameworks. All many-body calculations in this work use
the ab initio in-medium similarity renormalization group (IM-
SRG) [  21 ] with the publicly available IMSRG(2) solver by
Stroberg [ 38 ], and we denote the calculated ground-state en-
ergies by EIMSRG. In the following we compare correlation
energies defined by

Ecorr = EIMSRG − EHF , (36)

where EHF is the energy of the HF reference state. We fo-
cus on this, because the HF solution converges faster than the
many-body solution with respect to E(3)

max, so that any resid-
ual energy dependence on E(3)

max is mostly due to correlation
effects in the many-body expansion. For all following calcu-
lations, unless otherwise specified, we use a model-space size
of emax = 14, which is sufficient to obtain converged results
up to medium-mass nuclei [ 9 ]. In our calculations based on
the 1.8/2.0 EM interaction we find that emax = 14 is sufficient
for converged results up to 132Sn, only requiring emax = 16 for
208Pb. We emphasize that the two frameworks apply slightly
different truncations regarding the relative angular momenta J
and l in the 3N basis (see also Table  I ). The Jacobi framework
uses J ≤ 5 and l ≤ 5 for all three-body partial waves, whereas
the single-particle approach uses a truncation of J = 8, J = 7,

and J = 6 for channels with total three-body angular mo-
menta of J ≤ 5/2, J = 7/2, and J ≥ 9/2, respectively,
while applying no explicit cuts on the l values. The different
choices are related to the fact that the Jacobi NO framework
is based on antisymmetrized 3N matrix elements in momen-
tum space, while the antisymmetrization for the traditional
NO framework is typically performed in a complete HO sub-
space. Since the antisymmetrization in momentum space for-
mally requires a complete sum over intermediate partial-wave
quantum numbers (see also [ 3 ,  39 ]), it is advantageous to limit
the number of partial-wave states to ensure proper antisym-
metry of the retained states. However, the impact of matrix
elements beyond J = 5 for calculations of finite nuclei and
nuclear matter is observed to be typically small [  3 ]. Neverthe-
less, for our detailed benchmarks for heavier systems at the
level of one per mille of the total binding energy we start to
become sensitive to these details (see next section).

In Fig.  3 , we show the correlation energy obtained within
the traditional single-particle NO framework as a function of
E(3)

max and in the Jacobi NO as a function of L̄max
CM and J̄max

tot for
16O and 48Ca. For E(3)

max ≈ 16 the effect of this truncation
for light and medium-mass nuclei in the single-particle NO is
known to be small. Here we show results up to E(3)

max = 18
in the left panels of Fig.  3 , and use an E(3)

max = 16 reference
state for the Jacobi NO in the right panels. Note that for the
choices E(3)

max ≤ 18 and emax = 14, we have an active cut in
the single-particle NO (only E(3)

max ≥ 42 would be complete),
in contrast to the matrix-element comparison for small model
spaces shown in Fig.  2 .

Converged correlation (and ground-state) energies in the
single-particle approach are observed around E(3)

max ≈ 13 and
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FIG. 3. Correlation energy in the single-particle (left panels) and
Jacobi (right panels) NO frameworks as a function of E(3)

max (left pan-
els) and L̄max

CM or J̄max
tot (right panels). In the right panels, the blue lines

show Ecorr as a function of L̄max
CM while keeping J̄max

tot at its maximal
value of 10, and the red lines show Ecorr as a function of J̄max

tot while
keeping L̄max

CM at its maximal value of 10. We show results for 16O and
48Ca in the top and bottom panels, respectively, using the 1.8/2.0 EM
interaction, an emax = 14 model space, and an oscillator frequency of
~ω = 16 MeV in the HF basis. The Jacobi NO uses an E(3)

max = 16 HF
reference state.

E(3)
max ≈ 18 for 16O and 48Ca in the top and bottom panels of

Fig.  3 , respectively. The HF energy is already converged for
smaller truncations of E(3)

max = 10 for 16O and E(3)
max = 12 for

48Ca (not shown). In the Jacobi NO, we find that truncating
the partial-wave quantum numbers at L̄max

CM = J̄max
tot ≈ 5 is suffi-

cient to obtain converged energies for 16O, while for 48Ca we
need L̄max

CM = J̄max
tot ≈ 8. This slightly larger truncation for 48Ca

indicates that an increased number of partial-wave channels
is required for converged results for larger mass numbers. We
study this trend in more detail in the next section where we in-
vestigate heavier nuclei. Comparing the results in the Jacobi
and single-particle NO, we observe essentially perfect agree-
ment of converged energies in both frameworks. The only re-
maining dependence on E(3)

max in the Jacobi NO framework is
given by the reference-state calculation in the single-particle
basis. While we observe no residual dependence on the E(3)

max
cut for the ground-state energies of 16O and 48Ca when using
an E(3)

max = 16 reference state, the dependence on the reference
state could become relevant when computing heavier nuclei.
We also investigate this in the following section.

10 12 14 16 18 20 22 24

E
(3)
max

−180

−176

−172

−168

−164

E
c
o
rr

(M
eV

)

78Ni

1.8/2.0 EM

emax = 14

sp NO

56789101112

L̄max
CM /J̄max

tot

L̄max
CM (E

(3)
max = 16)

J̄max
tot (E

(3)
max = 16)

FIG. 4. Same as Fig.  3 but for 78Ni.

C. Application to heavier systems

We now turn our attention to heavier nuclei, first explor-
ing the correlation energy of 78Ni in Fig.  4 . As discussed be-
fore, increasing the E(3)

max cut becomes important to obtain con-
verged ground-state energies in the single-particle NO when
approaching heavier systems. This can be seen in the left
panel of Fig.  4 , where we study the correlation energy up to
E(3)

max = 24 and find converged results for E(3)
max ≈ 20. Increas-

ing the E(3)
max cut to higher values was possible due to Ref. [ 15 ],

and 3N matrix elements in the single-particle basis for the re-
sults in this section were provided by T. Miyagi [ 40 ]. In con-
trast, for the Jacobi NO framework a basis size of E(3)

max = 16
for the reference state is already sufficient for converged IM-
SRG results. This can be understood based on the fact that
HF calculations converge significantly faster than the IMSRG
calculations. In fact, we find converged HF energies already
around E(3)

max ≈ 14 for 78Ni (not shown). Consequently, no
large-scale reference state calculations are needed in the Ja-
cobi NO.

As for 16O and 48Ca, the Jacobi and single-particle NO
frameworks provide the same converged energies. We note
that by going to heavier nuclei, also the truncations L̄max

CM and
J̄max

tot in the Jacobi NO have to be increased and we observe
converged results for L̄max

CM = J̄max
tot ≈ 9, slightly larger than

what was observed for 48Ca.
The trends observed for 78Ni hold for even heavier systems.

In Fig.  5 , we show a detailed comparison of the HF, IMSRG,
and correlation energies of 132Sn in the single-particle and
Jacobi NO. The results in the single-particle basis are again
shown up to E(3)

max = 28. Note that we employ an oscillator
frequency of ~ω = 12 MeV and include all matrix elements
up to a total three-body angular momentum ofJmax = 15/2 in
order to be consistent with the choices of Ref. [  15 ]. As shown
in the top panel of Fig.  5 , the HF energy converges rapidly
with respect to E(3)

max. This suggests that a reference state with
E(3)

max ≈ 18, for which the HF calculation is already reason-
ably converged, is sufficient to obtain converged ground-state
and correlation energies in the Jacobi NO framework. In fact,
for the Jacobi NO we find essentially identical results using
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FIG. 5. Same as Fig.  4 but for 132Sn and ~ω = 12 MeV. The Ja-
cobi NO (right panels) uses an E(3)

max = 28 HF reference state (filled
circles) and an E(3)

max = 18 HF reference state (open circles). We also
show the HF energy and IMSRG energy in the top and middle panel,
respectively, and increased the E(3)

max range in the single-particle NO
(left) to E(3)

max = 28.

E(3)
max = 28 or E(3)

max = 18 for the reference state. The ground-
state and correlation energy in the single-particle NO still de-
pend on the E(3)

max truncation beyond E(3)
max = 18 and increasing

this to E(3)
max ≈ 24 are required to obtain converged results.

In the Jacobi NO, the L̄max
CM and J̄max

tot truncations required
for converged calculations follow the trends observed for 78Ni
in Fig.  4 and slightly increase to L̄max

CM = J̄max
tot ≈ 11. The

converged results for the ground-state energies of the two
NO frameworks differ by about 2 MeV. These deviations can
be traced back to the slightly different angular momentum
quantum number truncations, the different antisymmetrization
methods for the 3N interaction matrix elements (see discus-
sion in Sec.  IV B ), and the floating point precision employed
in the two frameworks (in our work single precision or better

EHF (MeV) EIMSRG (MeV)

Antisymmetrization in Jacobi HO basis

single precision -806.11 -1109.02

Jmax = lmax = 5 truncation -808.79 -1111.83

half precision -807.84 -1110.49

Antisymmetrization in Jacobi momentum-space basis

single precision -807.19 -1110.27

Jmax = lmax = 5 truncation -809.05 -1112.29

Jacobi normal ordering

L̄max
CM = J̄max

tot = 13 -809.49 -1113.33

TABLE II. Hartree-Fock and ground-state energies for 132Sn for an
emax = 14 and E(3)

max = 24 basis space. Results are given for different
3N interaction files in the single-particle NO. The first three rows ap-
ply the antisymmetrization in the Jacobi HO basis, whereas the next
two rows perform the antisymmetrization in the Jacobi momentum-
space basis in comparison to the Jacobi NO results in the bottom row.
If not stated otherwise, the single-particle NO uses the truncation of
Jmax = 8, 7, and 6 (as described in the main text) and no l truncation.
The truncation Jmax = lmax = 5 is used in the Jacobi NO framework.

is used, whereas Ref. [ 15 ] uses a combination of single and
half precision). Table  II shows in detail the effects of the dif-
ferent choices for 132Sn. First, it is obvious that even though
the sensitivity of the results to these choices is rather small, at
the few per-mille level, the effects are still noticeable in heavy
nuclei. Second, the results obtained in the single-particle NO
framework systematically approach the Jacobi NO results as
the computational treatment of the interactions and the basis
space size are adjusted properly. In particular, when using the
exact same partial-wave truncations and antisymmetrization
method of the 3N interaction in both frameworks, differences
of only 500 keV and about 1 MeV remain for EHF and EIMSRG,
respectively (last two rows in the table).

We further apply the Jacobi NO framework to even heavier
systems, studying 208Pb in Fig.  6 . For comparison we show
calculations using an increased model space of emax = 16 in
the single-particle approach. As before, the HF energy is well
converged around E(3)

max ≈ 20. This is in contrast to the IMSRG
energy, where the ground-state and thus the correlation energy
are not fully converged with respect to emax and still show
an E(3)

max-sensitivity beyond E(3)
max = 28. The Jacobi frame-

work shows similar trends as for 132Sn in Fig.  5 . We observe
more binding for the HF and IMSRG energy compared to the
single-particle NO and only slight differences for the correla-
tion energy. As for 132Sn, the differences are again due to dif-
ferent choices of angular momentum quantum number trunca-
tions, antisymmetrization and floating point precision (see Ta-
ble  II ). Converged results to within 2 MeV (based on the con-
vergence in L̄max

CM and J̄max
tot ) are obtained for L̄max

CM = J̄max
tot ≈ 13,

being only slightly larger than in 132Sn. We emphasize again
that the reference-state construction is computationally cheap
and that the final emax truncation for the effective two-body
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spaces. The Jacobi NO framework (right panels) uses an emax = 16
and E(3)

max = 28 HF reference state.

interaction can be scaled up in the Jacobi NO framework.

In Fig.  7 we show the convergence behavior of the Jacobi
NO results for the ground-state energy of 208Pb as a function
of the E(2)

max truncation parameter using a single-particle basis
size of emax = 16. In this case, E(2)

max ≥ 32 corresponds to
untruncated NO calculations in the radial HO quantum num-
bers, while smaller values imply some cuts on NCM and N (see
Eq. ( 28 ) and the related discussion). The results of the figure
clearly show that E(2)

max = 26 is already sufficient for obtaining
practically converged calculations for 208Pb.

All these results highlight the versatility of the novel Ja-
cobi NO framework, being able to target heavy nuclei in good
agreement with standard NO methods and without being lim-
ited by an E(3)

max truncation. The only remaining dependence
on the single-particle basis, due to the reference-state con-
struction, is found to be resolved once the HF solution is con-
verged.
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FIG. 7. Ground-state energy energy of 208Pb based on the normal-
ordered matrix elements obtained in the Jacobi NO framework as a
function of the model-space parameter E(2)

max as defined in Eq. ( 28 ).
As in Fig.  6 an oscillator frequency of ~ω = 12 MeV was used.

D. Charge radii

In addition to ground-state energies, we also benchmark re-
sults for charge radii. To this end, we evolve the point-proton
mean-square radius operator R2

p in the IMSRG. To obtain the
charge radius, we add the relativistic Darwin-Foldy correc-
tion 3/(4M2) = 0.033 fm2 [ 41 ] (with M denoting the nu-
cleon mass), the spin-orbit correction 〈r2〉so [ 42 ], as well as the
mean-square radii of the proton and neutron 〈r2

p〉 = 0.770 fm2

and 〈r2
n〉 = −0.1149 fm2, respectively, to obtain the charge ra-

dius

R2
ch = R2

p + 〈r2
p〉 +

N
Z
〈r2

n〉 +
3

4M2 + 〈r2〉so . (37)

As for the ground-state energies, we compare results in the
Jacobi and single-particle NO frameworks for 132Sn and 208Pb
in Figs.  8 and  9 , respectively.

The charge radius operator is known to be already quite
well described at the HF level. With an HF charge radius of
Rch = 4.396 fm (Rch = 5.141 fm) for 132Sn (208Pb), we find
only small contributions from the correlation expansion to the
charge radius for both NO frameworks. The results in the
single-particle NO are converged with respect to E(3)

max for both
cases and show only minor differences when increasing the
model space to emax = 16 in Fig.  9 for 208Pb. We find excellent
agreement between both NO approaches and slightly faster
convergence in the Jacobi framework with respect to L̄max

CM and
J̄max

tot compared to the energies in Figs.  5 and  6 .

V. SUMMARY AND CONCLUSIONS

In this work, we introduced a new Jacobi NO framework to
efficiently and accurately include 3N interactions in ab initio
many-body calculations up to heavy nuclei at the two-body
operator level. The Jacobi NO allows to circumvent the need
to represent 3N interactions in a single-particle basis in an
intermediate step, as required in the traditional NO frame-
work, and hence allows to perform NO in large basis spaces
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without truncations in energy quantum numbers. The result-
ing effective interaction in the Jacobi basis explicitly depends
on the CM degrees of freedom, characterized by two addi-
tional quantum numbers L̄CM and J̄tot and can be subsequently
transformed to a single-particle basis in a straightforward way.
We studied the convergence behavior with respect to the new
quantum numbers and found excellent agreement for individ-
ual matrix elements obtained in the Jacobi and the traditional
NO approach for an 16O HF reference state.

We then explored ground-state energies of light, medium-
mass, and heavy closed-shell nuclei from 16O to 208Pb using
the IMSRG based on the 1.8/2.0 EM interaction of Ref. [  36 ]
and investigated in detail the convergence of the results for
both NO frameworks. Excellent agreement was found for the
converged energies of 16O, 48Ca, and 78Ni, while for the heav-
ier systems 132Sn and 208Pb we found small relative energy
differences on the order of about one per mille of the total
ground-state energy, which can be traced back to differences
in the treatment of the antisymmetrization of the 3N interac-

tion and the employed floating point precision, which we had
kept higher in this work.

In addition, we explored the impact of the E(3)
max cut used

for the HF calculation of the reference state in the Jacobi NO.
Even for heavy nuclei like 132Sn we obtained basically iden-
tical results for references states computed using E(3)

max = 18
and E(3)

max = 28. Thus, at the HF level, smaller E(3)
max values are

needed than for the correlation energy.
Furthermore we observed a systematic increase in the max-

imum values of L̄CM and J̄tot required to obtain converged en-
ergies as the mass number of the nucleus increases. While
L̄max

CM = J̄max
tot ≈ 5 is sufficient for 16O, we need to go to

L̄max
CM = J̄max

tot ≈ 9 for 78Ni and eventually to L̄max
CM = J̄max

tot ≈ 13
for 208Pb. This trend is comparable to the single-particle ap-
proach, where increased E(3)

max values are required to obtain
converged energies for higher mass numbers. However, go-
ing to larger E(3)

max is significantly more expensive in mem-
ory and computing time. Of course, increasing the cuts on
the quantum numbers L̄max

CM and J̄max
tot increases the basis size

and hence also the computational complexity of the Jacobi
NO framework as well. In its current version the run time for
one NO calculation for heavy nuclei like 132Sn takes approxi-
mately one day per J̄tot channel. Calculations for lighter sys-
tems are significantly faster. However, speed-ups may be re-
alized by future optimizations. More refined reference states,
such as natural orbital basis states could also be straightfor-
wardly applied in the Jacobi NO. Moreover, the framework
can be straightforwardly applied to any rotationally invariant
density [ 43 ]. Therefore, the Jacobi NO approach can be ex-
tended to open-shell nuclei by using, e.g., equal-filling HF or
spherical Hartree-Fock-Bogoliubov reference states [ 44 ,  45 ].
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