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Abstract   

Ceria has been extensively utilized in different fields, with surface oxygen vacancies playing a 
central role. However, versatile oxygen vacancy regulation is still in its infancy. In this work, we 
propose an effective strategy to manipulate the oxygen vacancy formation energy via transition 
metal doping by combining first-principles calculations and analytical learning. We elucidate the 
underlying mechanism driving the formation of oxygen vacancies using combined symbolic 
regression and data analytics techniques. The results show that the Fermi level of the system, along 
with the electronegativity of the dopants, are the paramount parameters (features) influencing the 
formation of oxygen vacancies. These insights not only enhance our understanding of the oxygen 
vacancy formation mechanism in ceria-based materials to improve their functionality but also 
potentially lay the groundwork for future strategies in the rational design of other transition metal 
oxide-based catalysts. 
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Introduction 

 

Ceria-based materials are the key components in catalysts used for automotive exhaust treatment 
and hydrogen purification, as well as in many other functional materials, such as oxide-ion 
conductors and sensors.1-5 In all such applications, the formation of oxygen vacancy (Ov) is a 
critical step. These Ovs serve as anchor sites to stabilize small transition metal (TM) clusters and 
prevent them from aggregating in ceria-supported TM catalysts.6-8 Two electrons remaining after 
the removal of one neutral oxygen localize in the empty 4f orbital of Ce,9, 10 resulting in the 
reduction of two Ce cations from the +4 oxidation state to the +3 oxidation state; this reduction 
changes the surface chemistry of the ceria and consequently its catalytic performance.11, 12 Thus, 
the effective regulation of the Ov formation energy is extremely important, especially in catalytic 
applications. 
 
In recent decades, tremendous efforts have been devoted to designing and synthesizing TM oxides 
with optimized Ov populations and distributions. Some examples of such efforts include modifying 
the Ov dynamic behavior and concentration of CeO2 by suitable doping and strong metal-support 
interactions;13-18 tuning the oxygen storage capacity and Ov formation energy of CeO2 through 
large biaxial strain;19 and altering the formation, distribution, and mobility of Ov and ion defects 
of CeO2 via dislocation.20 TM doping has been thoroughly utilized to manipulate the surface 
chemistry and Ov behaviors of ceria-based catalysts.21-23 Ke and coworkers proposed a robust 
approach to tune the CO oxidation activity over CeO2 nanowires through careful modulation of 
local structure and surface states by doping lanthanides with continuous variation in the ionic 
radii.21 Zhang et al. successfully synthesized CeO2 solid solutions with an ultrahigh manganese 
doping concentration and found that highly reducible Mn4+ ions strongly facilitate the migration 
of Ov from the bulk to the surface.22 Jiang and coworkers found that cobalt-doped ceria nanosheets 
possess high efficiency toward the hydrogen evolution reaction due to the increased concentration 
of Ov and the increased number of active sites.23 
 
Theoretical calculations also play an essential role in investigating the origins of the increased 
performance of TM-doped ceria materials.24-28 Guo et al. investigated the effects of Pd, Ru, and 
Cu dopants on the reduction selectivity of CO2 on CeO2(111) and found that the doped metals 
distorted the local geometry of the ceria surface by weakening the Ce-O bond and thus generating 
highly active Ov sites.24 Yang et al. investigated the CO oxidation reaction on Cu-adsorbed and 
Cu-doped ceria systems and found that the Cu-adsorbed system inhibited the formation of Ov, 
while the Cu-doped system facilitated the formation of Ov.26 Krcha and coworkers systematically 
calculated the Ov formation energies and reaction activity for hydrocarbon conversion on various 
TM-doped CeO2(111) surfaces, and clear periodic trends in the Ov formation energies and C-H 
bond activations were observed.25 Despite extensive efforts, the mechanisms underlying the 
changes in the dopant-induced Ov formation energy remain unclear. 
 
In this work, we performed systematic calculations on the stabilities and surface Ov formation 
energies for 97 TM-doped ceria systems, with dopants occupying the surface cerium sites. An in-
depth analysis was conducted to explore the correlations between the properties of these systems 
(including stabilities and surface Ov formation energies) and the features of the dopants, employing 
a combined approach of sure independence screening and sparsifying operator (SISSO)29 and 



 

 

subgroup discovery (SGD) methodologies.30-35 These techniques facilitated the unveiling of the 
underlying mechanisms that drive the observed trends in the data. 
 
Results and Discussion 

The stability of catalysts is as significant as their catalytic performance. To begin, we conducted a 
comprehensive investigation into the stabilities of 97 TM-doped ceria systems, including those of 
CeO2(100), CeO2(110), and CeO2(111). We considered 30 different d-block TM dopants. As 
shown in Figure 1, the TM dopants were positioned at the surface cerium sites of the ceria 
substrates. The formation energies of the TM-doped ceria systems are collected in Table S1-S3. 
Given the existence of multiple localizations of Ce3+ polarons,36 we have taken care to include a 
variety of Ce3+ polaron configurations in our dataset to ensure that our analytical learning 
approaches adequately capture these features (refer to Figure S1). 
 

 
Figure 1. Structural models of the TM-doped ceria systems. The dopant is positioned at the top 
cerium site of (a) CeO2(100), (b) CeO2(110), and (c) CeO2(111) surface. The oxygen vacancy sites 
under consideration are highlighted with dashed circles. 
 
To evaluate the impact of TM dopants on the stability of various TM-doped ceria systems, we 
systematically explored the correlations between the formation energies of the TM-doped ceria 
systems (the property) and the characteristics of the dopants (the features) using analytical learning 
techniques. The proper selection of initial features is of paramount importance in analytical 
learning. The guiding principles for initial feature selection are as follows: (a) the features can be 
obtained or calculated in convenient ways, and (b) the features are already evaluated and shown 
to have close correlations with properties investigated either experimentally or theoretically. We 
considered two classes of features: fourteen atomic features and five system-based features, as 
detailed in Table 1. The Pearson’s correlation coefficient matrix among the considered features of 
the TM-doped ceria systems was checked first, with the results summarized in Figure 2a-d. The 
results reveal that certain features, including Ndsm, Ndm, Mm, and Rm, are closely correlated 
with each other for the subgroup data set encompassing 3d-, 4d-, and 5d-block metals (Figure 2a-



 

 

c). However, their correlation significantly diminished for the entire data set comprising all d-
block metals (Figure 2d). This observation suggests a high degree of diversity within the primary 
feature space, which is well-suited for subsequent analytical learning analyses. 
 
Table 1. The nineteen considered features of the TM dopants. 
class name abbreviation 

atomic 
 

First ionization energy (eV) EIm 

Highest occupied molecular orbital (eV) Hm 

Lowest unoccupied molecular orbital (eV) Lm 

Atomic radius (empirical) (Å) Rm 

Bond dissociation energy of homo-diatomic molecules (eV) BDEm 
 Cohesive energy (eV) ECm 

Radius of s-orbital (Å) RSm 

Radius of d-orbital (Å) RDm 

Electronegativity  ENm 

Number of d valence electrons Ndm 

Total number of d and s valence electrons Ndsm 

Miedema parameters (volt) MdLm 

Miedema parameters (density unit) MdNm 

Relative atomic mass (a.m.u.) Mm 

system Bader charge of the dopant (e-) q 

Fermi level (eV) FL 

Work function (eV) WF 

d-band center of dopant (eV)  DC 

p-band center of oxygen (eV) PC 

 

https://www.schoolmykids.com/learn/periodic-table/electronegativity-of-all-the-elements


 

 

 
Figure 2. Heat map of the Pearson’s correlation coefficient matrix among the nineteen features of 
the (a) 3d-, (b) 4d-, (c) 5d-, and (d) total d-block transition metals for the TM-doped ceria systems. 
 
An in-depth investigation was conducted to explore the correlations between the primary features 
and the formation energies of the TM-doped ceria systems. The findings are presented in Figure 3 
and Figure S2, which reveals that the formation energies exhibit a continuous distribution within 
a wide energy range (-12.0 eV to 3.0 eV) and display clear periodic trends that are associated with 
the number of d electrons (Ndm) and the radius of d orbitals (RDm) of the TM dopants.37 The 
discerned linear relationship between Ndm and ΔEF can be interpreted based on the significant 
influence the d-orbitals of TM atoms exert on their interaction with oxygen. Transition metals are 
characterized by their distinct numbers of d-electrons, and those with fewer d-electrons tend to 
have less strong correlations within their d-orbitals. This reduced correlation promotes the 
delocalization of the d-orbitals, which in turn makes it easier for other atoms to extract electrons 
and consequently form bonds. Furthermore, the formation of a covalent bond necessitates an 
effective overlap of orbitals with matching energies. Transition metals with fewer d-electrons 
generally have d-orbitals with energy levels closer to the 2p orbitals of oxygen. This facilitates the 
formation of stronger covalent bonds due to enhanced orbital overlap. These combined factors 
contribute to the strong binding between TM dopants with a small number of d-electrons and the 
lattice oxygen within ceria. This, in turn, stabilizes the TM-doped ceria systems. Similarly, an 



 

 

increase in the size of d-orbitals can lead to enhanced orbital overlap with the oxygen’s p-orbitals. 
If the d-orbitals of a metal atom are larger, they hold a greater potential for overlapping with the 
p-orbitals of the oxygen atom, leading to the creation of a stronger covalent bond. These 
observations provide a crucial understanding of the key factors contributing to the stabilities of 
TM-doped ceria systems. 
 

 
Figure 3. Correlation between the formation energies (ΔEF) of TM-doped ceria systems and 
features of transition metal dopants. (a) The correlation between ΔEF and Ndm, and (b) the 
correlation between ΔEF and RDm. 
 
We further explored the correlation between the surface Ov formation energies of the TM-doped 
ceria systems and the primary features. The corresponding results are displayed in Figure S3. It is 
evident that the surface Ov formation energies of the TM-doped ceria systems exhibit much weaker 
correlations with the primary features than that of the formation energies of the TM-doped ceria 
systems. Thus, more complex features are required to describe the Ov formation energies of the 
TM-doped ceria systems. To identify the key descriptive features, we employed the state-of-the-
art compressed-sensing based approach SISSO. The SISSO approach enables us to identify the 
best low-dimensional descriptor in an immensity of offered candidates. The SISSO model 
comprises a linear combination of a few derived features, which are typically non-linear 
expressions produced by applying mathematical operations on and between the primary features. 
These derived features are selected from a massive set of more than one billion candidate derived 
features, with feature complexity (the number of operators in each derived feature) of up to five in 
this work. Figure S4 illustrates that the five-dimensional (5D) SISSO model, which incorporates 
five derived features, demonstrates a high level of accuracy and predictive power, as validated 
through 10 iterations of a leave-5%-out validation method (Table S4). Therefore, to maintain the 
simplicity of the model and to prevent overfitting, we decided not to explore higher-dimensional 
models. Interestingly, throughout the 10 iterations of the leave-5%-out validation, a similar set of 
primary features was consistently identified, especially the primary features WF, ECm, FL, PC, 
Hm, and BDEm, all of which were consistently selected (Table S5). It’s not surprising that the 
systems-based features WF, FL, and PC were chosen, considering their strong correlation with the 
systems’ redox abilities, a factor that directly influences the formation and healing of Ov. Moreover, 
features like ECm and BDEm encapsulate the interaction characteristics of the TM dopant with 
other species, while Hm captures the electron sharing capacity of the TM dopants with other 
species. All these features were consistently selected throughout the validation process, indicating 



 

 

the SISSO model’s capability to capture the underlying physics that govern the formation of Ov. 
The frequent selection of these descriptor components, despite changes in system size and 
composition, underscores the robustness of the model, affirming its reliability in comprehending 
such complex systems. 
 
Table 2. Components of descriptors and their coefficient(C) and intercept(I) of the SISSO-
identified best model.  

Dimension Descriptor C I 

1D (q+ECm)+(FL*ENm)*(FL+RSm) -0.222 

-1.055 

2D (ECm+MdLm)/((DC/ECm)+(WF−MdLm)) 0.058 

3D (BDEm−ENm)/((Hm+PC)−(q*WF)) 0.134 

4D (MdNm/q)/((Hm*BDEm)−(Ndsm/PC)) -0.136 

5D (q+BDEm)/((Lm+Rm)+(FL*RSm)) -0.034 

 
The components of the optimal model identified by the SISSO approach are presented in Table 2. 
Additionally, Figure 4 displays the error distribution of the Ov formation energies as predicted by 
the optimal SISSO model, alongside the distribution of the Ov formation energies themselves. 
While the SISSO model provides mathematical formulas, gaining a deeper understanding of the 
mechanisms underlying the formation of Ovs at various TM-doped ceria systems using the SISSO 
model remains a challenging task. In an attempt to identify the key descriptive parameters and 
facilitate physical understanding of the actuating mechanisms, we applied the SGD local artificial 
intelligence approach.32 SGD is a method designed to identify local patterns in data that maximize 
a specific quality function. The identified pattern/subgroup is defined as an intersection of simple 
inequalities involving provided features.38 The so-called quality function measures the degree of 
distinctiveness of a pattern/subgroup is comparison to the entire data set (further details about the 
implementation of the SGD approach can be found in the Supporting Information).  
 



 

 

 
Figure 4. Analytical learning of surface Ov formation energies of the TM-doped ceria systems. (a) 
The histogram distribution of data samples for Ov formation energies of the TM-doped ceria 
systems, (b) the error distribution between the SISSO model predicted energies and DFT 
calculated energies for the TM-doped ceria systems, and the results of the SGD by maximizing (c) 
and minimizing (d) the surface Ov formation energies. 
 
To gain better insight into the factors and mechanisms that facilitate the formation of Ov on various 
TM-doped ceria systems, we utilized the SGD approach. Starting with the identification of 
subgroups that maximize the Ov formation energies, one specific subgroup was singled out. This 
subgroup, which consists of 51 data points or 52.58% of the total dataset as depicted in Figure 4c, 
was distinguished by the conditions FL ≤ 0.38 eV, q ≥ 1.33 |e|, and Lm ≤ -1.69 eV. On the other 
hand, the identification of subgroups that minimize Ov formation energies led to the discovery of 
another subgroup. This subgroup contained 43 data points or 44.33% of the total dataset as shown 
in Figure 4d, and was characterized by the conditions ENm ≥ 1.64, PC ≥ -3.24 eV, and MdLm 
≤ 5.45. The importance of each feature was determined by its respective support score (SC), 
which is derived from the quality function value (Q). Initially, a specific feature is removed from 
the entire feature set, then Q is recalculated with the remaining features. The score is calculated 
using the equation [1–Q (with all features)]/Q (with all features minus the removed one). A score 
of 0 suggests that removing this specific feature does not affect the value of Q, indicating that this 
feature does not influence the SGD result. Among these features, FL ≤ 0.38 eV and q ≥ 1.33 |e| 



 

 

stood out for their relatively high SCs, which the SGD approach identified as key in inhibiting Ov 
formation. In contrast, features ENm ≥ 1.64 and PC ≥ -3.24 eV were noted to facilitate Ov 
formation. In a physical context, a lower Fermi lever (FL ≤ 0.38 eV) implies that the highest 
occupied 2p orbitals of lattice oxygen should be situated at relatively lower energy levels. As a 
result, electron transfer from the removed neutral oxygen to the empty d orbitals of the TM dopants 
or the f orbitals of the lattice cerium site becomes less feasible, inhibiting surface Ov formation. 
Similarly, the condition q ≥ 1.33 |e| can be interpreted by the fact that four positive charges (4e+) 
are retained when one neutral cerium atom is removed. If these positive charges are not adequately 
compensated by the TM dopant (as can occur when the q is small), the remaining positive charges 
will form empty hole states that can combine with the electrons left after oxygen removal, thereby 
facilitating Ov formation. Thus, a larger q is crucial to suppress Ov formation. Furthermore, a larger 
dopant electronegativity (ENm ≥ 1.64) and a larger p orbital center (PC ≥ -3.24 eV) of the lattice 
oxygen can facilitate Ov formation. Dopants with lower electronegativity, due to their large 
electronegativity difference, bind strongly with the lattice oxygen, inhibiting Ov formation. On the 
other hand, a higher p orbital center eases the electron transfer from oxygen to TM sites upon 
oxygen removal, promoting Ov formation. With the help of SGD, a sophisticated understanding 
was developed that would have been challenging to achieve without local artificial intelligence. 
SGD has proven useful in identifying multiple alternative subgroups, each corresponding to 
different mechanisms affecting the target properties. The target properties with desired values that 
lie in a specific range are also a factor affecting the identified subgroups.38 Exploring the role of 
different factors can significantly improve the interpretability of the subgroups. 
 

 
Figure 5. Species projected density of states for surface doped CeO2(111) surfaces. The TM-doped 
CeO2(111) surfaces with low Ov formation energy (a, Cu doping), moderate Ov formation energy 
(b, La doping), and high Ov formation energy (c, Nb doping). 
 
The interpretation of SGD results is sometimes limited by our domain knowledge. To validate the 
abovementioned explanations, we further analyzed the species projected density of states of three 
represent CeO2(111) systems with low (Cu-doped), moderate (La-doped), and high (Nb-doped) Ov 
formation energies (Figure 5). For the Cu-doped surface, pronounced 3d empty states of Cu exist 



 

 

near the Fermi level due to the relatively large q of Cu (-1.10 e-) (Figure 5a). These empty states 
will be occupied by extra electrons to facilitate the removal of neutral oxygen and the formation 
of Ovs. For the Nb-doped surface, there are no empty d orbitals near the Fermi level due to the 
relatively small q of Nb (-2.58 e-). The electrons remaining after removal of neutral oxygen must 
occupy the 4f states of the cerium atoms, splitting from the stable unoccupied 4f states of cerium 
atoms, which makes Ov formation difficult (Figure 5c). The density of empty states decreases in 
the order of Cu-doped > La-doped > Nb-doped surfaces, resulting in Ov formation energies that 
increase in the order of Cu-doped < La-doped < Nb-doped surfaces.  
 
Conclusion 

In summary, by synergistically utilizing first-principles calculations and an interpretable artificial 
intelligence approach, we have successfully identified the key descriptive features and 
mechanisms that facilitate the formation of oxygen vacancies at various transition metal-doped 
CeO2 systems. The Fermi level of the system, along with the electronegativity of the dopants, are 
the paramount parameters (features) influencing the formation of oxygen vacancies. By integrating 
domain knowledge, symbolic regression, subgroup discovery, and electronic structure analysis, 
the facilitated formation mechanism of oxygen vacancies was attributed to the distributions and 
behaviors of occupied 2p states of lattice oxygen and the empty states of the transition metal 
dopants near the Fermi level. Our methodology can be easily adapted to other transition metal 
oxide-based functional materials. It demonstrates that powerful potential of artificial intelligence 
to provide new understanding and insights into the physical principles underlying data. 
 

Methods 

Spin-polarized DFT calculations were carried out using the generalized gradient approximation 
(GGA) of Perdew-Burke-Ernzerhof (PBE) as implemented in the Vienna ab initio Simulation 
Package (VASP).39, 40 A Hubbard-type term U = 5.0 eV was used for the Ce 4f states to describe 
the localization of the excess charges, which is within the range of suitable values to describe 
reduced ceria-based systems.41 The Kohn-Sham valence states were expanded in a plane-wave 
basis set with a cutoff energy of 400 eV. The core-valence interactions were represented using the 
projector augmented wave (PAW) approach,42 where the (4f, 5s, 5p, 5d, 6s) and (2s, 2p) states of 
the Ce and O atoms were treated as valence states. A periodic slab with a (4×4), (3×4), and (4×4) 
surface unit cell was employed to model the CeO2(100), CeO2(110), and CeO2(111) surfaces, 
respectively. The slabs consisted of nine, five, and twelve atomic layers, respectively, with an 
additional vacuum layer of 15 Å. During the geometry optimizations, the bottom two layers (O-
Ce), three layers (O-Ce-O), and three layers (O-Ce-O) were held fixed at their bulk positions for 
CeO2(100), CeO2(110), and CeO2(111) surfaces, respectively. Due to the large supercell 
dimensions, the k-point sampling was restricted to the Γ point. 

The formation energy (ΔEF ) of the TM-doped CeO2 surfaces was calculated using formula (1): ΔEF = ETM−slab − Eslab + EbulkCeO2NbulkCeO2 − EO2 − EbulkTMNbulkTM                                      (1) 

where ETM−slab is the total energy of the whole system, Eslab is the energy of the clean CeO2 
surfaces, EbulkCeO2 is the energy of the conventional cell of ceria, NbulkCeO2 is the number of O-Ce-O 
units in the conventional cell, EO2 is the total energy of the gas phase O2 molecule, EbulkTM  is the 



 

 

energy of the conventional cell of TM, and NbulkCeO2 is the number of TM atoms in the conventional 
cell. 

The Ov formation energy of the TM-doped CeO2 surfaces was calculated by means of formula (2): ∆EOv = EOv − ETM−slab + 12EO2                                                       (2) 

where EOv, ETM−slab, and EO2 are the total energies of the TM-doped CeO2 surfaces with oxygen 
vacancies, the TM-doped CeO2 surfaces, and the gas-phase O2 molecule, respectively. 

Subgroup discovery (SGD) was performed using the RealKD package.43 Each feature was split 
into 14 subsets using a 14-means clustering algorithm.44 The candidate subgroups were built as 
conjunctions of obtained simple inequalities. The main idea of SGD is that the subgroups are 
unique if the distribution of the data they contain is as different as possible from the data 
distribution in the whole sample. Detailed information about the SGD approach can be found in 
the Supplementary Methods. 
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