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We explore the nonlinear response of ultrafast strong-field driven excitons in a one-dimensional
solid with ab initio simulations. We demonstrate from our simulations and analytical model that a
finite population of excitons imprints unique signatures to the high-harmonic spectra of materials.
We show the exciton population can be retrieved from the spectra. We further demonstrate signa-
tures of exciton recombination and that a shift of the exciton level is imprinted into the harmonic
signal. The results open the door to high-harmonic spectroscopy of excitons in condensed-matter
systems.

When semiconductor or insulator systems interact
with light, their optical linear and non linear responses
is often dominated by features arising due to bound
electron-hole pairs known as excitons [1]. Excitons are
consequential in photonic technology [2] and play a sig-
nificant role in many processes, such as energy transfer
and light absorption in bio-molecules [3, 4], nanostruc-
tures [4], and solids[5, 6], and have fundamental and
technological applications. Bound excitons give rise to
sharp peaks in absorption and photoluminescence spec-
tra, which exhibit optical features such as the Stark effect
[7], Rabi oscillations [8] and Fano resonances [9]. Under-
standing how they behave under external perturbations
such as ultrafast intense fields is therefore key to make
use of them for future applications like PHz electronics
and guide experimental observations by providing micro-
scopical understanding of their pump probe date.

Excitons arise in different forms, such as interlayer ex-
citons, optically dark excitons, strongly bound excitons
to name a few [10, 11], and are important for the prop-
erties of bulk materials but also low-dimensional mate-
rials [12–15], van der Walls heterostructures [16], and
twistronics [17, 18]. The development of methods al-
lowing to study the dynamics of excitons, is an active
area of research, including the study of exciton forma-
tion [19], ultrafast dynamics [20–22], condensation [23],
dissociation [24], and coupling to other degrees of free-
dom [25, 26].

While excitons are know to play important roles in
many aspects of material science, and can even domi-
nate in linear and perturbative nonlinear spectroscopies
in solids, it is common to neglect excitonic effects in de-
scribing electron dynamics induced by intense laser fields.
This approach is in the spirit of the strong-field approx-
imation of atomic physics, in which the laser field is as-
sumed to dominate over the Coulomb interaction [27] ,
thus motivated a description in terms of independent par-
ticles. It is thus rationalized, that either excitons do not
form or that any bound exciton present in the material

would dissociate during strong-field processes [28]. In
this work, however, we show that for typical laser pa-
rameters used for strong-field physics in solids, this ar-
gument fails for strongly bound excitons. Indeed, the
latter are shown to modify the ultrafast optical response
of condensed matter systems.

With recent experiments on nonlinear exciton dynam-
ics in THz harmonic sideband generation [29, 30] and
in attosecond transient reflection and absorption spec-
troscopy [31–34], it is crucial to elucidate the dynamics
of excitons under intense laser fields, in order to sup-
port a complete understanding of light-matter interac-
tions. Here we consider their impact on the process
of high-order harmonic generation (HHG). HHG utilizes
the ultrafast nonlinear response of a material to generate
ultrashort coherent pulses, which inherit spectrographic
information from the underlying electron dynamics [35–
43]. So far, most condensed-matter HHG experiments
are rationalized in terms of independent-electron mod-
els, which ignore excitons, but are capable of describing
energy-cutoff scaling, spectral features [41, 44–47], orien-
tation and polarization dependencies [48, 49], as well as
reconstruction of bandstructure [50, 51] and Berry cur-
vature [52] even if topological signatures in HHG remain
elusive [53]. Experimental indications of possible exci-
tonic effects have arisen in HHG as a plateau in rare-
gas solids [54], an increased efficiency of monolayer com-
pared to bulk crystals [55] and a characteristic delay-
dependency in pump-probe HHG [47]. However, a clear
demonstration of excitonic effects related to a controlled
exciton population in HHG remains elusive. In the semi-
conductor Bloch equations (SBE) formalism, it was al-
ready indicated that excitons could be important for in-
terpreting the HHG mechanisms, as the relative impor-
tance of inter- or intraband contributions are altered if
the Coulomb interaction is tuned to reproduce accurate
exciton binding energies [56]. Recently, excitons have
also been predicted to influence HHG in Mott insulators
and monolayer transition metal dichalcogenides, in the
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framework of effective Hamiltonian models [57–59].
A few approaches may capture excitons in real-time ab

initio simulations, like non-equilibrium Green’s functions
(NEGF) [60–62], based on the generalized Kadanoff-
Baym ansatz [63]. While important progresses have
been made [22, 64], this method is still numerically pro-
hibitive, and one needs to employ simpler methods like
time-dependent Hartree-Fock (TDHF)[65], or the related
hybrid functionals in TDDFT [66]. Hybrid functionals al-
low to explore ultrafast and nonlinear electrons dynamics
[67] with low-cost and accurate alternatives to NEGF [68]
but is restricted on e.g. the dimensionality. Further-
more, the formalism within TDDFT to provide access to
time-resolved visualization of the exciton wavefunction
[69], and thus provide insights on the exciton dynamics
in space and time is also applicable for the more estab-
lished TDHF formalism.

In light of this, we perform here real-time ab initio
wavefunction-based TDHF simulations to characterize
nonlinear ultrafast exciton dynamics and how excitons
modify the HHG response in realistic pump-probe set-
ting. Simulations are performed for an one-dimensional
insulating hydrogen crystal, that has strongly bound ex-
citons [67, 70], and is therefore ideal for unraveling the
fundamental ultrafast exciton dynamics. Detail are given
in Supplemental Material (SM) Sec. I [84].

We first investigate how an exciton population in the
material is created. For this, we pump the material
with a laser under different excitation conditions. We
need to define a criterion to isolate the effect of the
pump laser regarding excitation of free-carriers or ex-
citons. We determine the nature of the excitation by
analyzing the real-time dynamics of the exciton wave-
function [69] From the norm of the approximated exci-
ton wavefunction, Γs(x, x

′, t), we obtain the conditional
probability for an electron to be at the position x while
having a hole at x′ (see SM Sec. I [84]). The first moment
of the exciton wavefunction [88, 89]

m =

∫
dx|x||Γs(x, 0, t)|2

/∫
dx|Γs(x, 0, t)|2 , (1)

reveals the degree of localization of an excitation (in this
case around x′ = 0), and therefore can in principle al-
low us to distinguish between bound excitons and free
carriers. Indeed, if the material contains strongly-bound
excitons, m is small since the electron is very likely to
remain near its hole. Note that m is used to define the
exciton radius from ab initio simulation [90]. Inversely,
if a material contains free carriers and conduction bands
are dispersive, then electrons are delocalized throughout
the crystal, and m increases to the size of the crystal.
Figure 1 (a) reveals that while for band-gap resonant
pumping we only generate free carriers, for exciton res-
onant pumping, m attains smaller values suggesting ap-
preciable population of excitons, as expected for resonant
pumping [60]. At low intensity, indicated by the blue

FIG. 1. (a) First moment, m of Eq. (1), of the approximated
exciton wavefunction for different pump frequencies and in-
tensities. The areas denote regimes where the ωex-pump gen-
erates dominantly bound excitons (blue) or free carriers (red).
(b) Excitation pathways from the valence band (VB) to con-
duction band (CB) or to exciton (Ex). The corresponding
energies are ωbg = 9.45 eV and ωex = 3.86 eV. (c)-(e) Ex-
citon density for a hole at x′ = 0, after excitation by a 25
fs pump pulse with intensities of 106 W cm−2, 109 W cm−2,
and 1011 W cm−2, respectively. (f) Number of pumped ex-
citons Nex and free carriers Nfc in the system. The dashed
lines show the linear perturbative scaling behavior for reso-
nant excitation. The highest intensity value for the ωex-pump
is omitted due to the excitation exceeding the damage thresh-
old predicted under the electron-hole plasma model of ≈10%
of excited electrons [85–87]. The quantities of (a)-(f) are eval-
uated after the pump preparation, just before the system is
driven to produce HHG. (See SM [84] for pulse and system
details.)

area, we generate mostly bound excitons, as also shown
by the exciton density [Fig. 1(c)]. For high intensity,
indicated by the red area, the population of free-carriers
clearly dominates the excitation. This is also visible from
the exciton density [Figs. 1(d,e)]. Therefore we use m
to differentiate the nature of the excitation, and extract
the number of excitons Nex and number of free carriers
Nfc for the various excited systems in Fig. 1 (f), see SM
Sec. I [84]. We observe that the generation of excitons
by the ωex-pump deviates from the first-order perturba-
tive response, indicated by the dashed blue line. This
deviation can be attributed to a subsequent exciton dis-
sociation process occurring during the pumping, as the
pump ionize the excitons it creates. This is confirmed
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FIG. 2. Time-frequency analysis of the harmonic radia-
tion of the region above the exciton binding energy in (a),(b),
magnified in (c),(d) and below the bandgap (e),(f) for, respec-
tively, an unpumped (a),(c),(e) and an exciton-seeded sample
(b),(d),(f), obtained by an exciton-resonant pump with an in-
tensity of 107 W cm−2. The 2000 nm driving electric field is
sketched in green in (a),(d). In (a),(d) we used a window of
σ = 0.40 fs for the Gabor transform, and of width σ = 10
fs for (e),(f). Trajectories from our exciton-extended semi-
classical model, see SM Sec. V [84], is depicted with dotted
lines in (c),(d). Black color depicts trajectories recombining
to the valence band and the blue color corresponds to recom-
bination in form of a bound exciton. Dashed lines in (e),(f)
denote the locations of exciton peak, as well as the first exci-
ton sidebands.

by the ionization for a bound exciton model within the
effective mass approximation, see SM Sec. II [84]. Alter-
native mechanisms, such as nonlinear effects associated
with three-photon excitations directly to the bandgap are
excluded as this would reflect in a change of the slope of
the power-law in Fig. 1 (f). On the contrary, the ωbg-
pumped systems prepare dominantly free carriers at all
intensities and follow the perturbative scaling. We note
that the difference in the excitation magnitudes for the
two pump frequencies in Figs. 1(c)-(f) can be rationalized
from the relative resonance magnitudes in the linear ab-
sorption spectra, see SM Fig. 2 [84]. In a pump-probe set-
ting, the pump intensity for the exciton transition needs
to be selected with care, to not dissociate them with the
pump itself.

We now investigate the effect of a finite exciton popu-
lation on the HHG spectra, by performing simulations
where the material is excited by an exciton-resonant
pump compared to the unpumped material. Differences
between the considered cases (unpumped, band-gap res-
onant pumping and exciton-resonant pumping) start to
emerge when the pump excites more than 10−5 valence
electrons per unit cell, see SM Sec. III [84]. To investigate
the signatures of exciton dynamics in HHG, we perform a
time-frequency analysis, see Fig. 2 of the harmonic emis-
sion comparing the exciton-resonant pump case, to the
unpumped case. Above the bandgap [Figs. 2 (a)-(b)], the
time-frequency analysis reveals that the exciton-seeded
system is starting to emit harmonics prior to the un-
pumped sample. The initial emission time, at 75 fs in
Fig. 2 (a) correspond to the time where substantial exci-
ton dissociation is observed, see SM Fig. 6 [84], indicating
that ionization of excitons are primarily responsible for
the early stage of the harmonic emission. Indeed, the dis-
sociate of exciton requires a weaker field strength than
the excitation of electrons through the bandgap given
the large binding energy of our system. The two-step
process in which an exciton is generated and afterwards
dissociated could thus play a dominant role. Based on
our results, we note that pumping excitons in the sample
looks favorable with regard to decreasing the nonlinear
response time of a condensed-matter system compared
to an unpumped system. Similarly, pumping excitons in
the sample also looks favorable for enhancing interband
emission, see SM Sec. IV [84].

Commonly, the time-frequency analysis of the har-
monic emission in solids consists of two contributions, a
chirped emission related to the interband emission chan-
nel, and a chirpless emission due to the intraband motion
of the electrons [91]. However, we observe not one set of
chirped trajectories, but two, as shown more clearly in
Fig. 2 (c)-(d). The standard approach to explain the
chirped trajectories is to use a semiclassical interband
model that propagates the relative electron-hole distance
∆x(t) as predicted by the band dispersion εj (k(t′)) of the
valence and conduction bands (j ∈ {v, c}) with

∆x(t) =

∫ t

t0

∂ [εc (k(t′))− εv (k(t′))]
∂k

dt′ ,

where t0 plays the role of the ionization time, see
SM Sec. V [84]. The recombination time tr is then
conditioned by ∆x(tr) = 0 (i.e. neglecting imperfect
recombination discussed in Ref. [81, 92, 93]). This
leads to an emission of light at the separation energy
εc [k (tr)] − εv [k (tr)]. Using this model, we find the
emission pattern shown by the black dots in Fig. 2
(c)-(d).

Here we extended this semiclassical model in order to
explain the other set of trajectories. More precisely, we
modify the recombination step to allow recombination
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into an exciton with binding energy Eb with emission of
εc [k (tr)]−Eb. This leads to the emission pattern shown
by the blue dots. This recombination channel captures
the second set of trajectories, thus revealing the impor-
tance of exciton recombination in the subcycle nonlinear
electron dynamics. Since the energy goes into the for-
mation of the exciton, the resulting harmonic emission
energy is reduced, and the trajectories do not affect the
high-energy part of the spectrum nor the energy cutoff.
We note that dissociation of excitons can also impact
the ionization step of the semiclassical model. However,
this leads to the same trajectories as the formation of free
carriers when pumping electrons directly to the CBs. We
cannot therefore distinguish signatures of exciton disso-
ciation directly from the trajectories or energy cutoff.
Apart from the new set of exciton-related trajectories,
our simulations also reveal the appearance of exciton-
related features in the below-bandgap energies, as shown
in Figs. 2 (e) and (f). For the unpumped system [Fig. 2
(e)], a continuous emission of clean odd-order harmon-
ics is observed, as well as a resonance corresponding to
the energy for generating or annihilating an exciton, as
also observed in Ref. [70]. This is the expected subcycle
dynamics for intraband emission [94]. For the exciton-
seeded system [Fig. 2 (f)] we see that the exciton reso-
nance is enhanced throughout and leads to continuous
emission of weaker spectral features, corresponding to
sidebands of the exciton resonance, located at ωex ± 2ω.
Such sidebands occur as a consequence of the prepared
population of excitons being driven by the probe pulse
to annihilate. In doing so, the partly dissociated exci-
tons can undergo a laser-assisted electron-hole recollision
process where photons can be exchanged with the strong
electromagnetic field [29, 30]. Opposed to these THz ex-
citonic sideband experiments, here we predict sideband
generation, where energies above 1 eV are exchanged with
the electromagnetic field. For these quasiparticle colli-
sions to occur, the sample needs a significant population
of excitons. We note from that the exciton resonance and
sidebands are shifted slightly in energy, with increasing
probe intensity, see SM Sec. VI [84].

To utilize the spectroscopic capabilities of the har-
monic exciton resonance and sidebands, we consider the
harmonic emission spectra in Figs. 3 (a)-(c) for a sys-
tem driven with a 1600, 2000 or 2600 nm probe pulse
using an intensity of 107 W cm−2 and probe duration
of 100 fs. All our simulations showed exciton-induced
sidebands, irrespective of probe duration and intensity.
The signals from the unexcited system are given by the
black curves and provide clean harmonic peaks with the
inclusion of an exciton resonance at ωex. For the exciton-
seeded system, the bound-exciton population contributes
to an enhancement of the harmonic spectrum at the ex-
citon energy, and its spectral sidebands in the regions
marked with blue and green. This result shows that the
sidebands can be observed over a laser range of wave-

FIG. 3. (a)-(c) HHG spectra for various wavelengths for
the unpumped system versus the system prepared by an
exciton-resonant pump. The HHG driving probe wavelength
is scanned across 1600, 2000, and 2600 nm, respectively,
for (a)-(c). The colored areas denote the exciton resonance
(blue) and the first excitonic associated sidebands, at ωex±2ω
(green). (d) Harmonic yield enhancement of the exciton reso-
nance and sidebands for λ = 2000 nm as a function of bound
exciton population, utilizing a 105 − 108 W cm−2 exciton-
resonant pump. Dashed lines are explained in the main text.

lengths and are a robust feature of HHG from exciton-
pump materials. Using our simulated pump-probe set-
up, we now vary the exciton population by varying the
pump intensity, and we track how the exciton resonance
and sidebands are enhanced when increasing the exciton
population. We find that the exciton peak and the side-
bands follow the same power law N0.92

ex (see dashed lines
in Fig. 3 (d)), confirming their common origin. This scal-
ing deviates from the expected linear scaling, indicating
that other processes such as probe-induced exciton dis-
sociation are taking place during the probe pulse. We
note that at high degree of exciton preparation, ±4ω
sidebands start to emerge in the HHG spectra but the
associated enhancement is too low to be properly ana-
lyzed. Importantly, the direct relation between the pop-
ulation of bound excitons and the spectral weight of the
exciton peak and sidebands opens the doors to ultrafast
all-optical method of probing of exciton population. We
also note that longer wavelengths seem to produce more
intense exciton peaks and sidebands. It is therefore inter-
esting to employ longer wavelengths to probe excitonic



5

signatures.

In summary, we investigated how a prepared popula-
tion of strongly bound excitons affect HHG in a one-
dimensional solid, by modelling a pump-probe setup,
thus getting insight into ultrafast exciton dynamics and
revealed effects due to exciton dissociation and recom-
bination. The behavior of exciton preparation under an
intense pump was studied, revealing that the pump can
dissociate the excitons it is creating, leading to more free
carriers than excitons when the pump reaches high inten-
sities. The spectral features were found to be two fold:
the presence of an exciton level allow for new excitation
and recombination pathways. To reveal this, we devel-
oped an exciton-extended semiclassical interband model,
from which we could explain how the carriers recombine
into bound excitons. In addition, we observed how the
presence of a finite population of bound excitons is able
to enhance the HHG process in the region of the exci-
tonic resonance, in particular leading to excitonic side-
bands whose intensity was found to be close to propor-
tional to the exciton population. We finally proposed
HHG spectroscopy as a viable method of extracting in-
formation regarding a finite exciton population and ex-
citon processes in solids exhibiting strongly bound ex-
citons. The emergence of sensitive on-chip techniques
for PHz-scale optical-field sampling provide experimen-
tal possibilities to temporally unravel such ultrafast light-
driven exciton dynamics [91]. There are still interesting
questions to be addressed. While we have investigated
strongly-bound excitons, the role of continuum excitons
as observed in semiconductors, carrier-induced screening,
exciton-exciton interaction and dimensionality remains
to be explored.
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[32] R. Géneaux, C. J. Kaplan, L. Yue, A. D. Ross, J. E.
Bækhøj, P. M. Kraus, H.-T. Chang, A. Guggenmos, M.-
Y. Huang, M. Zürch, K. J. Schafer, D. M. Neumark,
M. B. Gaarde, and S. R. Leone, Phys. Rev. Lett. 124,
207401 (2020).

[33] A. Moulet, J. B. Bertrand, T. Klostermann, A. Guggen-
mos, N. Karpowicz, and E. Goulielmakis, Science 357,
1134 (2017).

[34] Y. Kobayashi, C. Heide, A. C. Johnson, V. Tiwari,
F. Liu, D. A. Reis, T. F. Heinz, and S. Ghimire, Nature
Physics 19, 171 (2023).

[35] M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L.
Knight, Phys. Rev. A 66, 023805 (2002).

[36] R. Torres, N. Kajumba, J. G. Underwood, J. S. Robin-
son, S. Baker, J. W. G. Tisch, R. de Nalda, W. A. Bryan,
R. Velotta, C. Altucci, I. C. E. Turcu, and J. P. Maran-
gos, Phys. Rev. Lett. 98, 203007 (2007).

[37] W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow,
H. C. Kapteyn, and M. M. Murnane, Science 322, 1207
(2008).

[38] S. Baker, J. S. Robinson, C. A. Haworth, H. Teng, R. A.
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I. Numerical Methods

Time-dependent Hartree-Fock (TDHF) simulations

For the TDHF simulations, we employ a hydrogen crystal system, which is known to exhibit strongly bound excitons
[1, 2]. Electrons are driven along the laser polarization direction through a periodic chain of hydrogen dimers with
a bond length of 1.6 Bohr and lattice constant of a = 3.6 Bohr. The interaction between nuclei, located at xi, and
electrons are described with the softened Coulomb potential vion (x) = −∑i[(x− xi)

2
+ 1]−1/2. The dynamics are

solved by propagating a set of orthonormal electron orbitals ϕHF
i (x, t), through the velocity gauge formalism of the

TDHF equation

i∂tϕ
HF
i (t) =

{
1

2
[−i∂x +A (t)]

2
+ vion(x) + vH [n] (x, t) + v̂X

[
{ϕHF

j (t)}
]}

ϕHF
i (t). (1)

Here A (t) is the vector potential describing the applied laser pulse in the electric dipole approximation. The electron-

electron interaction is described by the Hartree potential vH [n] (x, t) =
∫
dx′n (x′, t) [(x− x′)2

+ 1]−1/2, and the
nonlocal exchange operator, which applied to an orbital is given as

v̂X
[
{ϕHF

j (t)}
]
ϕHF
i (t) = −

N∑

k=1

ϕHF
k (x, t)

∫
dx′ϕHF∗

k (x′, t)ϕHF
i (x′, t)[(x− x′)2

+ 1]−1/2. (2)

The density is n (x, t) =
∑N
i=1

∣∣ϕHF
i (x, t)

∣∣2. The ground state orbitals are obtained by a self-consistent iterative process
of solving the HF equation starting from a linear combination of atomic orbitals using the Octopus software package
[3]. Hereafter, the TDHF equation is propagated using an enforced time-reversal symmetry propagator utilizing the
adaptively compressed exchange operator formulation [4], and using a predictor-corrector scheme to guarantee that
we reach self-consistency at every time step ∆t, with ∆t = 0.242 as. Furthermore, we apply a singularity correction
to treat divergent terms from the exchange energy [5], that we adapted to the one-dimensional case.

The calculation for the periodic hydrogen chain model is performed using a converged real-space grid spacing of 0.4
Bohr. For the crystal momentum-space grid, convergence was achieved using 1024 grid points or increasing to 2048
grid points for the highly excited systems. Part of the bandstructure of the system is given in Fig. 1. From the band
structure, we observe a direct bandgap of 9.45 eV, which corresponds to 15.24 harmonic orders of the HHG-generating
probe pulse with a wavelength of 2000 nm (∼ 0.62 eV).

The linear absorption spectrum is obtained by the application of the small δ-kick [6] followed by a time evolution,
and is shown in Fig. 2. With this, we obtain the pump frequencies for exciting the system. The first one, ωex = 3.86
eV, corresponds to resonantly driving the transition to the strongly bound exciton. The second one, ωbg = 9.45 eV,
is resonant with the minimum bandgap, where valence and conduction bands have a high density of states. This
second transition can provide energy for an exciton resonant transition from lower-energy electrons of the valence
band, however, with a weak coupling due to the low density of states at the associated section of the valence band.

Time-resolved exciton wavefunctions

The exciton wavefunction is constructed from the single-particle transition density matrix (TDM), by the procedure
of Ref. [7]. The protocol relies on the transition density matrix, which has been helpful for the analysis and interpreta-
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FIG. 1. Part of the band structure with the valence band and lowest energy conduction bands. The bandgap is found to be
9.45 eV.

FIG. 2. Linear absorption spectrum calculated through TDHF with exponential dampening of the electronic current, corre-
sponding to an Lorentzian broadening of the absorption spectrum. The vertical lines denote the two applied pump frequencies,
the exciton-resonant one, at ωex = 3.86 eV, and the bandgap-resonant one, at ωbg = 9.45 eV. We associate the peak just below
the bandgap energy to be a signature of excited excitonic states.

tion of excited states of molecular systems. When extended beyond the linear response regime for TDDFT and TDHF,
the time-dependent TDM is constructed as a sum of weighted transition amplitudes. What makes it particularly use-
ful, is that the TDM offers a way to resolve a given excitation in a spatial map constructed of pure single-particle
excitations. In that way, the time-dependent TDM, Γs(x, x

′, t), for a given excitation represents weighted transition
amplitudes of processes where a particle is annihilated at position x and created at position x′ [8]. One can thus think
of the TDM as accounting for the conditional probability of finding an electron at a certain place given the position of
the associated hole. For real-time TDHF, the time-dependent TDM can be calculated at a specific time t utilizing the
HF orbitals at that time ϕHF

σ,i (x, t), which has been propagated from their ground state ϕHF
σ,i (x, t = 0) = ϕHF

σ,i (x). The
time-dependent TDM is denoted here as the difference between the time-dependent and the ground state one-body
density matrices, which can be evaluated as

Γs(x, x
′, t) =

occ∑

i

[
ϕHF
i (x, t)ϕHF∗

i (x′, t)− ϕHF
i (x)ϕHF∗

i (x′)
]
.

For periodic systems, it is expressed using the knowledge of orbitals inside the unit cell thanks to Bloch’s theorem.
However, the distances x and x′ of the time-dependent TDM reside in the full crystal, given by the unit cell volume
multiplied by the number of k-points used in the simulation. Indeed, the exciton occupies the entire crystal structure.
To associate some physical insight into the TDM, we note that the diagonal of the TDM contains the time-dependent
density response associated with the given excitation Γs(x, x, t) = δn(x, t), with δn(x, t) = n(x, t)−n(x, t = 0). Since
the integrated density remains constant with time, this enforces that

∫
dx [Γs(x, x, t)] = 0. In quantum chemistry,
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the time-dependent TDM has been shown to be analogous to the exciton wavefunction given from Green’s function
theory [9]. In obtaining the time-dependent TDM in real space, one can extract information with regards to the
dynamical exciton processes, such as dissociation rates or charge separation rates. In the present work, we fix the
hole at x′ = 0. A complete quantitative analysis would require to scan both the electron and hole coordinate. But
due to the large-scale structure of the TDM being diagonally dominated, we conclude that qualitative features can be
inferred from the TDM with the hole placed at the center between the two nuclei. In the following and in the main
text, we refer to Γs(x, x

′ = 0, t) as the exciton wavefunction for the case of the hole being localized at x′ = 0.

First moment of the exciton wave function

In the reference frame of the hole, the first moment is given as

m =

∫
dx|x||Γs(x, 0, t)|2∫
dx|Γs(x, 0, t)|2

(3)

and normalized to the excitation magnitude. As observed in Fig. 1 of the main text and argued in the main text,
the system prepared with bound excitons have a first moment of a few Å. If the system is pumped with free carriers,
then the first moment will be hundreds of Å for our system.

Number of excitons and free carriers

We now want to extract information from the exciton wavefunction Γs(x, x
′ = 0, t), to give a description of the

number of excitons or free carriers in a given excitation. To do this, we consider the exciton wavefunction and assume
that it consists of the contributions from excitons and free carriers. We assume that exciton population, gives a
localized exciton wavefunction, or in other words, a large conditional probability of finding the electron near its hole.
As observed in Figs. 1 (c),(d) of the main text, this contribution has an exponential scaling with distance and a first
moment of less than 5 Å. The other contribution to the exciton wavefunction is originating from free carriers. We
assume that these latter carriers provide a relatively uniform distribution of the exciton wavefunction with regards
to distance. This is since the excited carriers are traversing freely throughout the lattice and thus have a uniform
conditional probability for finding electron relative to its hole. Based on these two different contributions to the
exciton wavefunction, we can interpret the ratio of such contributions to imply the ratio of excitons to free carriers
for a given excitation. Normalizing these measures with the number of excited valence electrons per unit cell, Ne, we
can obtain the number of excitons Nex and the number of free carriers Nfc for a given excitation.

The number of free carriers can be calculated as the contribution of the exciton wavefunction, which is uniform
with respect to distance. To calculate this contribution, we integrate the exciton wavefunction from beyond the point
at which the excitonic contribution is dominant, which we denote as the exciton radius xex. The average value of the
exciton wavefunction in this region is then extended across the full crystal length L to give the free-carrier contribution
to the exciton wavefunction. The ratio of this contribution to the total size of the exciton wavefunction, provide the
ratio of free carriers for the excitation and multiplying with number of excited valence electrons, we obtain the number
of free carriers as

Nfc(t) = Ne(t)
L

L− xex

∫ L
xex

dx|Γs(x, 0, t)|2
∫ L

0
dx|Γs(x, 0, t)|2

. (4)

From Fig. 1 (a) in the main text we identify rex = 5 Å as the radius of the bound exciton, in the low-exciton
concentration regime, and we use this xex for characterising the excitonic localization. The number of excited valence
electrons per unit cell is defined as

Ne(t) = Ntot −
occ∑

n,n′

∣∣〈ϕHF
n (t)

∣∣ϕHF
n′ (t = 0)

〉∣∣2 (5)

and is computed during our simulations, with Ntot being the total number of valence electrons. This allows us to
compute Nfc(t) from Ne(t) and Γs(x, 0, t). The remaining excitation must then consist of excitons, which can be
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found from

Nex(t) = Ne(t)−Nfc(t) (6)

We note, that with the definitions from Eqs. (4),(5) and (6) a completely uniform exciton wavefunction will give
Nfc = Ne and Nex = 0. Similarly the limit of completely localized electron wavefunction within rex will provide
Nfc = 0 and Nex = Ne.

II. Exciton model within the effective mass approximation

To further understand the effect of the probe laser on the exciton population, we modelled the dynamics of the
exciton within the effect mass approximation. For this we follow the works of Ogawa and Takagahara [10, 11] that
we extend to the time-dependent case. Here we review the derivation starting from a three-dimensional two-body
electron-hole time-dependent Schrödinger equation within a laser field linearly polarized along the z direction

i~∂tΦ(re, rh, t) =
( 1

2me
(−i~∇e −

e

c
A(t))2 +

1

2mh
(−i~∇h +

e

c
A(t))2 + Ue(re) +

Uh(rh) + V (re, rh)
)

Φ(re, rh, t) ,

where Φ(re, rh) is commonly referred to as the exciton envelope function, me (mh) is the effective mass of an
electron (a hole), V is the Coulomb interaction, Ue (Uh) the confining potential acting on the electron (hole), and
A(t) = A(t)êz is the vector potential of the laser.

Assuming a strong confinement of the carriers in the lateral directions, we can apply the envelope approximation,
which assumes that [11]

Φ(re, rh, t) = eiKZfe(xe, ye, t)fh(xh, yh, t)φ(re − rh, t) , (7)

where Z and K are z coordinate of the center of mass of the exciton and the corresponding wavenumber, and fe and
fh are the lowest sub-band functions in the lateral directions for the electron and the hole. Finally φ describes the
relative motion of the electron and the hole. After some algebra, and assuming that fe and fh remain normalized to
unity at all times and that φ only depend on z = ze − zh, we obtain a one-dimensional time-dependent Schrödinger
equation

i~∂tφ(z, t) =
( 1

2µ
(∂2
z −

e

c
A(t)) +

~2

2(me +mh)
K2 + Veff(z) + eE(t)z

)
φ(z, t) ,

where µ is the exciton reduced mass, Veff(z) =
∫
dxedyedxhdyhV (re, rh)|fe(xe, ye)|2|fh(xe, ye)|2 is the confinement

potential. We used here the fact that the confining potentials Ue and Uh are time independent, and hence the

Veff is time independent. Assuming that the energy of the center-of-mass motion ~2

2(me+mh)K
2 remain constant

during the time evolution, this term can be transformed away and we have thus reduced the exciton problem to
time-evolution of a one-dimensional problem of a single particle within an electric field, with the only change that the
particle has a reduced mass µ. This equation is easily solved using any software capable of propagating in time a one-
dimension time-dependent Scrödinger equation, and in this work, this is numerically solved using the Octopus code [3].

In order to estimate how much the exciton are dissociated by the pump itself, we now perform simulations of the
exciton dynamics under the envelope approximation, as described above, to simulate the dissociation process induced
by pump laser. For this, we let the exciton wavepacket evolve in time under the influence of the pump laser and we
place absorbing boundaries at a distance of 500 Bohr from the center of the simulation box, to absorb the part of the
wavepacket that dissociates under the influence of the laser. This allows us to estimate the fraction of dissociated
exciton population for various laser intensities. The results of the simulations are shown in Fig. 3. We employed here
a grid spacing of 0.4 Bohr, and used a simulation for a radius 600 Bohr, including 100 Bohr wide absorbing boundary
region using a complex absorbing potential of height -0.2 with a sin-square envelope [12].

This simple modelling shows that pump-induced exciton dissociation is a very important when the intensity reaches
values closes to 1011 W cm−2 and above.
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FIG. 3. Ionization of the exciton induced by a pump laser as in the main text versus different intensities. We employ the same
laser parameters as for Fig. 1 in the main text.

FIG. 4. High-harmonic generation spectra for systems that are seeded to an insignificant degree with excitons and free carriers
and compared to the spectrum for an unexcited system. The excited systems are prepared with a 106 W cm−2 ωex-pump or a
1010 W cm−2 ωbg-pump to generate a weak excitation of, respectively, bound excitons or free carriers as given in Fig. 1 (f) of
the main text. All system are driven with a 2000 nm probe of intensity 1012 W cm−2. The exciton resonance and the bandgap
energy is marked with a blue dashed and red dashed-dotted line, respectively. See text in Sec. III for pulse durations and delay.

III. HHG spectra for weakly excited or unexcited systems

Throughout our work a sin2-pulseshape is applied for both pump and probe pulses. The duration of the pump
(probe) pulse is 25 fs (100 fs) with a peak-to-peak delay of 72.5 fs. The probe intensity is kept at 1012 W cm−2,
whereas a wide scan of pump intensities has been explored. For the pump-probe systems, we consider an experiment
of orthogonally oriented polarization for the pump and probe pulse respectively, such that the perturbative response
of the pump is not present in the HHG spectra. To account for this along the one-dimensional model, we only consider
the probe-induced current for the spectra, which is the current induced by the probe when affecting a pump-prepared
system. Numerically this corresponds to considering J(t) = Jpump-probe(t) − Jpump(t), with Jpump-probe(t) being the
system response to a pump-probe scheme, and Jpump(t) being the system response to only a pump pulse. Here J(t)
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FIG. 5. High-harmonic generation spectra for the systems prepared with a large population of bound excitons with ωex or free
carriers with ωbg. The excited systems are prepared with a 108 W cm−2 ωex-pump or a 1012 W cm−2 ωbg-pump to generate a
strong excitation of, respectively, bound excitons or free carriers. The total excitation prepared by the ωbg-pump is 2.3 times
larger than the excitation generated by the ωex-pump, as given in Fig. 1 (f) of the main text. The harmonics are obtained
when driven with a 2000 nm probe of intensity 1012 W cm−2. The exciton resonance and the bandgap energy is marked with
a blue dashed and red dashed-dotted line, respectively. For illustrative purposes, the spectra have been smoothed. See text in
Sec. III for pulse durations and delay.

is the electric current, evaluated by

J(t) =
∑

i,σ

∫
dxRe

[
ϕHF∗
i,σ (x, t)

(
−i ∂
∂x

+A (t)

)
ϕHF
i,σ (x, t)

]
. (8)

From this, the HHG spectra are obtained as

S(ω) ∝
∣∣∣∣ω
∫
dtJ (t) e−iωt

∣∣∣∣
2

(9)

When performing the Fourier transform, a window function is applied with a cos8 decay to attenuate the current at
the very end of the simulated interval to avoid numerical artifacts. We have investigated the response for samples
prepared with a low degree of excitation of either excitons or free carriers in Fig. 4. The exciton-seeded system is
prepared with a 106 W cm−2 ωex-pump and the free carrier-seeded system is prepared with a 1010 W cm−2 ωbg-pump.
The degree of excitation can be retrieved from Fig. 1 (f) in the main text. We observe the harmonic emission of both
seeded systems to largely resemble the response from the unpumped system. The small discrepancies are observed
around the pump-frequencies. An intensity scan reveals, that for modification of the HHG process due to the seeding
of the sample, the pump must provide an excitation of 10−5−10−4 valence electrons per unit cell. For the unpumped
system, we recover similar features as in Ref. [1].

IV. Exciton-seeded interband enhancement

In the strong excitation regime, we have investigated the effect of a large degree of free carriers or exciton excitation.
To do this, we consider a bound exciton-seeded system prepared with a 108 W cm−2 ωex-pump, which is known to
produce a large population of bound excitons from Fig. 1 (f) in the main text. To compare, we chose a 1012 W
cm−2 ωbg-pump, as this generates an excitation, which is 2.3 times larger in magnitude than the ωex-pump, but
consist mainly of free carriers, but also a fraction 1% of bound excitons. The excitons can be generated both as a
consequence of free carriers recombining to form excitons, or by the ωbg-pump coupling directly to excited exciton
states from the valence band. Both system are now prepared in a state with a large excitation and we thus observe
a more convoluted system response in Fig. 5. Considering, e.g., the free carrier-seeded system response, we see an
enhancement of the exciton resonance and sidepeaks as well, since this system is also seeded with an significant
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FIG. 6. Norm squared exciton wavefunction as a function of distance and time, during the HHG process. Comparing an (a)
unpumped system with (b) an exciton-seeded system with parameters of Fig. 5. The exciton wavefunction is considered within
the temporal region of the probe pulse, which electric field is inserted in green.

fraction of excitons. Actually, the number of excitons generated here is comparable with the exciton-seeded system
of Fig. 3 (b) in the main text, which show a similar enhancement of the exciton-related peaks. For the intense
exciton-seeded spectrum in Fig. 5, we observe a more significant enhancement of the exciton peak and sidepeaks.
Furthermore, here we also observe the exciton-seeded sample to have an enhancement across the first plateau. This
enhancement can be explained as a significant part of the seeded bound exciton population can dissociate to free
carriers, during the probe pulse. This dissociation is directly observed if considering the exciton wavefunction in
Fig. 6 (b) where an additional contribution is observed from dissociated excitons, which form carriers into the first
conduction band and can contribute to intraband transitions across the first plateau, as observed in Fig. 2 (b) in the
main text. Interestingly, our TDHF calculation predicts, that seeding the sample with excitons is expected to be more
efficient than seeding the sample with free carriers for above bandgap harmonic enhancement. This is despite of the
fact, that here in Fig. 5, degree of excitation in the free carrier-seeded system is 2.3 times larger than the excitation
of the exciton-seeded sample. In Fig. 6 (a) we also observe, that around 75 fs, a substantial dissociation of excitons is
observed, which correspond to the time at which the interband harmonics are initially generated in Fig. 2 (a) in the
main text.

V. Exciton-extended semiclassical interband model

For interband HHG processes a trajectory-based semiclassical model have been developed based on solving the
semiconductor Bloch equations with the saddle-point approximation [13]. It has succeeded in describing cutoff energies,
and extended to capture imperfect collisions and Umklapp scattering [14, 15]. Here we extend this model to include
recombination paths associated with excitons, but note that imperfect collisions and Umklapp scattering might also
intricate the dynamics here. First step of the interband model, is the generation of a electron-hole pair at the bandgap
of the solid. We do not distinguish whether the electron-hole pair is generated from exciting an electron from the
valence to conduction band, or whether these are generated by the dissociation of an exciton. As both these processes
will most likely result in the generation of a electron-hole pair at the bandgap of the solid. The relative distance
between the electron and hole ∆x(t) is now propagated from the generation time t0 using the conduction and valence
band velocity vc(k) and vv(k) as

∆x(t) =

∫ t

t0

{vc[k(t′)]− vv[k(t′)]}dt′, (10)

The relative velocity is expressed from the curvature of the bandstructure for the valence and conduction bands, εv(k)
and εc(k) as

vc(k(t′))− vv(k(t′)) =
∂ [εc (k(t′))− εv (k(t′))]

∂k
(11)

with crystal momenta governed by the acceleration theorem

k(t) = k0 +A(t). (12)
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FIG. 7. Time-frequency analysis of the below-bandgap harmonic radiation for an exciton-seeded sample, obtained by an
exciton-resonant pump with an intensity of 107 W cm−2. The probe pulse intensity is scanned in the regime of 1011 to 2× 1012

W cm−1 and given in the caption. We used a window of σ = 10 fs for the Gabor transform. The position of the exciton peak
and the first exciton sidebands are denoted with dashed lines.

During propagation, the electron and hole might recombine at a recombination time tr, where ∆x(tr) = 0. At the
recombination step, the electron and hole pair is assumed to recombine and emit their excess energy. This leads to
two pathways, (1) recombination to the valence band, and (2) recombination to an exciton. The second pathway is
the exciton-extension to the model, and is constructed similar to the recombination into a donor-doped state of Ref.
[16]. The energies emitted for the different recombination steps are given as

1. Recombination with emission of the electron-hole pair energy of εc [k (tr)]− εv [k (tr)]

2. Recombination into an exciton of exciton binding energy Eb with emission of εc [k (tr)]− Eb

With these two pathways of recombination, the time-frequency profile of the harmonic emission is two bands, following
the well-established interband emission chirp.

VI. Exciton energy shift

In the time-frequency analysis of Fig. 2 of the main text, it is observed that the exciton features of the harmonic
spectra is shifted in energy during the interaction with the driving pulse. This leads to, e.g., the exciton features
of the harmonic spectrum having a wider spectral width, when considering the HHG spectra of Fig. 3 of the main
text. Such energy shift could be a result of a weakening of the binding energy due to presence of excited carriers, or
mechanisms such as the excitonic Stark effect. We report the energy shift to be increasing with the intensity of the
probe pulse, and thus the degree of excited carriers. To support this, we provide time-frequency analysis with a scan
of probe intensities in the regime of 1011 to 2× 1012 W cm−1 for the exciton-seeded sample of Fig. 2 (d) in the main
text. A time-frequency analysis of the emitted harmonics during the probe pulse is given in Fig. 7, and we clearly
observe how the exciton resonance, and sidebands have a larger displacement in energy at higher pulse intensities.
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