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A common obstacle of many organic semiconductorsis that they show

highly unipolar charge transport. This unipolarity is caused by trapping

of either electrons or holes by extrinsic impurities, such as water or

oxygen. For devices that benefit from balanced transport, such as organic
light-emitting diodes, organic solar cells and organic ambipolar transistors,
the energy levels of the organic semiconductors are ideally situated within
anenergetic window with a width of 2.5 eV where charge trapping is strongly
suppressed. However, for semiconductors with aband gap larger than

this window, as used in blue-emitting organic light-emitting diodes, the
removal or disabling of charge traps poses alongstanding challenge. Here
we demonstrate amolecular strategy where the highest occupied molecular
orbital and lowest unoccupied molecular orbital are spatially separated on
different parts of the molecules. By tuning their stacking by modification

of the chemical structure, the lowest unoccupied molecular orbitals can be
spatially protected from impurities that cause electron trapping, increasing
the electron current by orders of magnitude. In this way, the trap-free
window can be substantially broadened, opening a path towards large band
gap organic semiconductors with balanced and trap-free transport.

Organic semiconductors often show relatively poor charge transport
properties compared with theirinorganic counterparts. There are two
fundamental reasons limiting their charge transport: the first oneisa
low carrier mobility, arising from the fact that organic molecules are
held together by weak van der Waals and -1t non-covalent forces,
making them susceptible to energetic and structural disorder. As a
result, the charge transportis governed by hopping between localized
states, whichisless efficient thanband conductionin crystallineinor-
ganic semiconductors'. In the past three decades, by optimizing the
molecular packing? mobility values exceeding 10 cm?> V™' s for both
n-and p-type organic semiconductors have been reported®. Asecond
reason leadingto poor charge transport, even for high mobility materi-
als, istrapping of charge carriers by impurities. Inthis case, only asmall
fraction of the injected carriers contribute to the charge transport.
Trapping of either electrons or holes is the main cause of imbalanced
transportinorganic semiconductors*’. Recently, an energy window was

identified, inside which organic semiconductors are not susceptible
to charge trapping. Trap-free bipolar charge transport can be accom-
plished when the electron affinity (EA) of the organic semiconductor
ishigher than3.5 eV and theionization energy (IE) is lower than 6.0 eV°.
This universal window, which applies to semiconducting polymers as
well as to small molecules, indicates that the extrinsic charge trapsin
organic semiconductors share acommon origin. Electron trapping has
been attributed to oxygen-related impurities’, whereas hole traps are
linked to water clusters®®. Furthermore, next to oxygen, also omnipres-
entwater has been proposed asa possible source for electron trapping’.
However, the relation between processing conditions and trapping is
stillunder debate.

The fundamental question remains whether it is possible to
achieve intrinsic trap-free transport of both electrons and holes for
organic semiconductors with a band gap larger than the trap-free
window of 2.5 eV. In that case, either the highest occupied molecular
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Fig.1|Molecular structures. a,b, Structural formulas of series 1 consisting of 1CzTrz, 2CzTrz, 3CzTrz, 4CzTrzand 5CzTrz (a), and series 2 consisting of DTPT-DCz,
DTPT-DFCzand DTPT-D2FCz (b). The triazine acceptor is indicated in pink, whereas the colour of the carbazole donor is varied, corresponding to the symbols of the

J-Vcharacteristicsin Fig. 2.

orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) or
both are outside the trap-free window. As trapping is detrimental to
the efficiency of single-layer organic light-emitting diodes (OLEDs)",
trap-freeambipolar charge transportis a prerequisite to achieve highly
efficient devices" . The limited width of 2.5 eV of the energy window
implies that for large band gap materials, as used in blue OLEDs, it is
fundamentally not possible to obtain trap-free transport of both carri-
ers, thus preventing the realization of efficient printed single-layer blue
OLEDs infuture.Inaddition, for multilayer blue OLEDs, theimbalance
in electron and hole transport in the large band gap host™ leads to an
unevenly distributed emission zone as well as to unwanted interactions
of excess holes with excitons, which decrease the operational lifetime
of the device™.

Here we demonstrate an approach onhow simultaneous trap-free
electronand hole transport can be intrinsically accomplished in wide
band gap organic semiconductors through molecular design. The
basicideais to use donor-acceptor based molecules, with the LUMO
localized on the acceptor part and the HOMO localized on the donor
part. By shielding the acceptor core where the electron transport takes
place with the donor moieties, the interaction of impurities with the
LUMO leading to electron trapping can be effectively blocked. This
work therefore represents a universal molecular bottom-up concept
to eliminate the detrimental effects of external impurities in organic
semiconductors.

Materials

The basic structure of a series of blue-emitting molecules presented
in this study consists of a triazine (Trz) acceptor linked to carbazole
(Cz) donor(s) by a phenylene linker (Fig. 1). Triazine-based materials
are well known for their efficient transport of electrons”. A similar
combination of triazine and carbazole has been used as blue emit-
ter exploiting thermally activated delayed fluorescence, where it was
shown that an increase of the amount of Cz donor units from two to
three led to an enhancement of the OLED efficiency'®. However, the
individual charge transport properties of these CzTrz-based materials
were not addressed.

Two series of organic semiconducting blue emitters have been
synthesized (Fig.1) and were investigated in terms of electron transport
and molecular arrangement in thin films. In the first series, the blue
emitters share the same triazine acceptor but a different number of
donating carbazole units (bridged by a phenylene linker): 9-(4-(4,6-
diphenyl-1,3,5-triazin-2-yl)-2,6-dimethylphenyl)-9H-carbazole

(1CzTrz), 9,9’-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)
bis(9H-carbazole) (2CzTrz), 9,9’,9”-(5-(4,6-diphenyl-1,3,5-triazin-
2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (3CzTrz), 9,9°,9”,9”-
(3-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,4,5-tetrayl)
tetrakis(9H-carbazole) (4CzTrz) and 9,9’,9”7,9”,9””-(6-(4,6-diphenyl-
1,3,5-triazin-2-yl)benzene-1,2,3,4,5-pentayl)pentakis(9H-carbazole)
(5CzTrz). The second series consists of the same triazine accep-
tor and two donating carbazole units, also bridged by a phenylene
linker, but with different number of fluorine substituents on the
carbazole unit: 9,9’-(5-(4,6-di-tert-butyl-1,3,5-triazin-2-yl)-1,3-
phenylene)bis(9H-carbazole) (DTPT-DCz), 9,9’-(5-(4,6-di-tert-
butyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(3-fluoro-9H-carbazole)
(DTPT-DFCz) and 9,9’-(5-(4,6-di-tert-butyl-1,3,5-triazin-2-yl)-
1,3-phenylene)bis(3,6-difluoro-9H-carbazole (DTPT-D2FCz).

First, we measured the IE and EA of the five 1-5CzTrz compounds
(Fig. 1a) using a combination of ultraviolet photoelectron spec-
troscopy (UPS) (Supplementary Fig. 1 and Supplementary Table 1),
cyclic-voltammetry measurements (Supplementary Fig.2) and solution
ultraviolet-visible absorption and photoluminescence (PL) measure-
ments (Supplementary Fig. 3). The IE of this series of molecules of
~5.8 eV is within the trap-free energy window, meaning that trap-free
hole transport is expected for all of these compounds®. The meas-
ured EA (Supplementary Table 1) amounts to 3.1+ 0.1 eV for all com-
pounds, clearly well below the value of 3.6 eV for trap-free electron
transport®. Hence, in contrast to the hole current, the electron current
isexpected tobe strongly trap-limitedin all cases based on energy-level
considerations.

Electron transport

Subsequently, we investigated the electron transport in the emitters
1CzTrz-5CzTrz using electron-only devices. We refer to the Methods
for details. InFig. 2a, the measured (symbols) electron current density
(J)asafunction of voltage (V) for the 1-5CzTrz seriesis displayed. The
thickness of the investigated devicesis in the range of 80-100 nm.
Despite the fact that allmolecules comprise the same donor and accep-
tor moieties, we observe afour to five orders of magnitude difference
in the electron current density, depending on the number of donor
substituents. Intriguingly, the electron currentin3CzTrz shows a quad-
ratic dependence of the current on voltage, indicative of trap-free
space-charge-limited electron transport, despite having its LUMO
energy outside the trap-free window. The fact that the lower current
density for the other compounds is accompanied by an increased
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Fig.2|Electron current of CzTrz-based and DTPT-DFCz-based compounds.
a, Experimental (symbols) and simulated (lines) current density (/)-voltage (V)
characteristics of 1CzTrz (94 nm), 2CzTrz (100 nm), 3CzTrz (98 nm), 4CzTrz
(79 nm) and 5CzTrz (102 nm). b, Experimental (symbols) and simulated (lines)
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J-Vcharacteristics of the fluorinated compounds 3CzTrz-F (118 nm), 2CzTrz-F
(91nm) and 1CzTrz-F (95 nm). ¢, Experimental (symbols) and simulated (lines)
J-Vcharacteristics of DTPT-DCz (106 nm), DTPT-DFCz (95 nm) and DTPT-
D2FCz (99 nm).

voltage dependence of the currentindicates that the strong reduction
in transport is caused by electron trapping®.

Similar behaviour occurs for the fluorinated 1-3CzTrz-F series:
the EAs as obtained from cyclic-voltammetry measurements (Sup-
plementary Table 1) range from 2.7 eV to 2.9 eV and are all far outside
the trap-free window. However, as shown in Fig. 2b, also for this series
the compound with three Cz units 3CzTrz-F shows nearly trap-free
electrontransport, whereasthe electron current of 1CzTrz-F is strongly
reduced, showing a steep /-V curve with a slope of around 6 in the
log(/)-log(V) plot. For both series an optimum electron current is
reached for three Cz units, for which a nearly trap-free space-charge
limited current (J ~ V2) ismeasured. A further decrease or increase in
the number of Cz moieties results in more severe electron trapping.
To quantify the trap density, the/-Vcharacteristics are modelled (lines,
Fig.2) witha previously developed drift-diffusion model”. The electron
mobility is obtained from the quadratic trap-free regime observed for
the3CzTrzmolecule andamounts to2 x 10 m*V*s™. The currents of
the other compounds are then described by the addition of electron
traps, assuming a Gaussian energy distribution of trap states*. The trap
concentrations and transport parameters for the 1-5CzTrz compounds
and1-3CzTrz-F series are givenin Supplementary Tables 2-4, respec-
tively. By studying the dependence on layer thickness and temperature,
we confirmed that the observed difference of orders of magnitude in
the electron currentis not the result of a variation in injection barrier
or built-involtage V,; (Supplementary Figs 4-7). Ohmic contacts have
been realized by using a 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)
benzene (TPBi) tunnel barrier to decouple the semiconductor from
the electrode®.

Energy distribution

To obtain more insightinto the molecular mechanism of trapping, we
have as the next step computed the density of states (DOS) of the five
1-5CzTrz and three 1-3CzTrz-F compounds assuming the films to be
amorphous (disordered molecular arrangement), with traps due to
molecular oxygen (Supplementary Table 6; for further computational
details, see Supplementary Information). The calculated ionization
energies (Supplementary Table 7) agree well with the experimentally
obtained numbers (Supplementary Table 1). The DOS distribution of
the EA of molecular oxygen and amorphous 1-5CzTrz (LUMO) show
that, as expected, the value of the EA increases with increasing number
of carbazoles from1CzTrzto3CzTrz (Supplementary Fig. 8). Asthe EA
distributions of O, are not notably different (Supplementary Table 8),
theincreased EA results in reduced trapping. Further increase of the
number of carbazoles (4-5CzTrz) results in lower EA and enhanced
trapping (Supplementary Table 7), which agrees with the trend of trap
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Fig.3|Molecular structures obtained from XRD. a-d, Crystal structures
ofthe1CzTrz-F (a,b) and 3CzTrz-F (c,d) compounds, determined by XRD.

a,c, Diagrams of the two dimers of both crystallographic unit cells to show the
molecular packing. b,d, Spatial arrangement of the acceptor-donor contacts
inthe 3D crystal structure. The triazine acceptor and the carbazole donor units
are coloured orange and blue, respectively. The green features ind indicate co-
crystallized chloroform molecules.

densities obtained from the drift-diffusion model (Supplementary
Table 2). In contrast, for the fluorinated 1-3CzTrz-F compounds, the
value of EA and distributions of O, do not notably vary, such thatidenti-
cal trapping is expected for all compounds (Supplementary Tables 9
and10). Thisisclearly in contrast with the strong variationin electron
current, showninFig.2b. This suggests thatitisnot only the energetics
ofthe moleculesbeing responsible for the observed large variationin
electron transport of the various CzTrz-based compounds. An open
questionis whether extrinsic electron trappingis also strongly depend-
ent on the molecular arrangement of the molecules in the solid film.
Of course, this can only be the caseif the films are not fully amorphous
but rather show molecular ordering to some extent, for instance in a
coexisting phase comprising (nano-)crystalline domains®?,

Morphology

Toinvestigate the molecular ordering inthe compounds with three or
fewer carbazole units, we subjected the fluorinated monocarbazole
and tricarbazole species to acomparative analysis using two comple-
mentary experimental methods, namely, X-ray diffraction (XRD) and
magic angle spinning (MAS) solid-state nuclear magnetic resonance
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Fig. 4| Calculated density-of-states distributions. a-d, The DOS of EA of
amorphous1CzTrz-F (a), crystalline 1CzTrz-F (b), amorphous 3CzTrz-F (c)
and crystalline 3CzTrz-F (d). e-h, Magnitude of electronic transfer integral
versus occurrence frequency in amorphous 1CzTrz-F (e), crystalline 1CzTrz-F
(f), amorphous 3CzTrz-F (g) and crystalline 3CzTrz-F (h). The dotted lines are

the gas-phases EA for molecular oxygen (EA, ,,) and organic materials (EA, c,).
Theblue solid line represents the energy u. - 20,, with g, corresponding to the
average of the calculated solid-state EA values and o, the standard deviation

of the Gaussian distribution (Table S9). The energy p. - 20, is expected to
correspond to the onset of the solid-state EA from UPS measurements.

(SS-NMR)*?*, XRD was applied tosingle crystals, grown by anti-solvent
diffusion as described in Methods. The SS-NMR analysis was used to
establish the extent of orderingin the evaporated thin film. The reason
toselectthe1CzTrz-F and 3CzTrz-F for this analysisis that the fluorine
substituent provides for a highly sensitive marker, owing to the fact
thatits naturalisotope (*F) has spin of +1/2%. Furthermore, the 1CzTrz-F
and 3CzTrz-F show a few orders of magnitude difference in their elec-
trontransport, with the transportin1CzTrz-F heavily trap limited and
anearly trap-free transport in 3CzTrz-F. In addition, we managed to
grow crystals of sufficient quality for XRD of both1CzTrz-F and 3CzTrz-F
compounds.

To characterize the structure of the single crystals, XRD analysis
(see for details Supplementary Table 15) revealed the space group for
1CzTrz-F to be P1 (monoclinic), with no co-crystallized solvent mol-
ecules. Asdisplayed in Fig. 3a,b, the unit cell contains four molecules,
pairedinto two dimers with antiparallel stacking of the triazine planes
and considerable spatial overlap between the outer phenylgroups. The
distance between the molecular planes is 3.5 A. The carbazole units
arearrangedinanangle close to 90° relative to the connecting phenyl
ring, caused by the steric hindrance of the two ortho-methyl groups.

Furthermore, asshownin Fig.3a, the Czunits of the species within
one dimer are rotated relative to each other by approximately 60°
aroundthe centres of the triazinerings. The three-dimensional arrange-
ment leads to a structure with alternating two-dimensional layers of
carbazole and triazine rings perpendicular to the crystallographic a
axis. Dimer formation agrees with earlier work by Monkman et al.”®
who demonstrated that dimers are responsible for the spectral shifts
observedin carbazole-based thermally activated delayed fluorescence
emitters®. The 3CzTrz-F crystal structure falls in the P2,/c space group
(triclinic), showing solvent co-crystallization. Again, we encounter four

molecules in a single unit cell (Fig. 3¢,d), showing a dimeric arrange-
ment. However, now the dimers are formed by antiparallel molecu-
lar alignment, and the stacking involves not only the triazine rings
but also the outer phenyl rings. The torsion angles of the carbazole
groups are120 +10°, possibly resulting from weak m-minteraction of
neighbouring units bound to the same phenyl ring. The stacking of
neighbouring moleculesisslightly tilted, and the t systems of adjacent
molecules do not perfectly superimpose. The stacking of neighbour-
ing molecular planes, however, connects molecules within a plane,
forming a one-dimensional double layer of acceptor units along the
crystallographic a axis. The distance between the molecular planesis
3.4 A.Insummary, 3CzTrz-F shows aninclined face-to-face stacking of
the phenylsubstituted triazine cores along the crystallographic a axis,
which effectively may act as a ‘tunnel’ for electron transport, crowded
by carbazole units. In contrast, in 1CzTrz-F such crowding is lacking.
We therefore propose that the origin of the difference in the electron
trapping between the monocarbazole and tricarbazole species is the
result of the stacking geometry: ‘open’ for the monocarbazole species
and ‘closed’ for the tricarbazole compounds, meaning thatin the latter
theelectrontransporting coreis effectively shielded frominteractions
with extrinsic contaminants such as oxygen.

In what follows, we confirm using MAS SS-NMR that molecular
ordering indeed occurs in vapor-deposited material, supporting our
explanation of differences in electron transport in terms of differ-
ences in molecular packing. The spectra of 1CzTrz-F (*H and F) and
3CzTrz-F (*Hand F) are plotted in Supplementary Fig.15.For1CzTrz-F
the F signal is split despite the symmetry in the molecular structure
(Supplementary Fig. 15a). This shows that there is a preferred local
molecular packing arrangement that breaks the molecular symmetry
of the two *F sites in the molecule. In a random or fully amorphous
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Fig.5|Molecular structures obtained from XRD. a-d, Crystal structures of

the DTPT-DCz (a, b) and DTPT-D2FCz (¢, d) compounds, determined by XRD.

a,c, Diagrams of the two dimers of both crystallographic unit cells to show the
molecular packing. b,d, Spatial arrangement of the acceptor-donor contacts in
the 3D crystal structure. The triazine acceptor and the carbazole donor units are
coloured orange and blue, respectively. The white features indicate the tert-butyl
groups, whereas the green features ind indicate the fluorine atoms.

arrangement, there should also be molecules where the molecular
symmetry is preserved, and then only asingle very broad peak should
be seen. Similar as for 1CzTrz also in the ’F MAS NMR spectrum of
the 3CzTrz-F (Supplementary Fig. 15b) compounds, two signals are
observed, again pointing to adifference in the local chemical environ-
ment between the two “F sites.

Having established that there is a local ordering in the films, it is
evident that the theoretical interpretation based on the amorphous
phase of 1-5CzTrz (Supplementary Fig. 8) and 1-3CzTrz-F (Supple-
mentary Fig.9) should be handled with care, as the impact of molecular
packingis not captured by these simulations. For this purpose, we also
simulated the DOS of the crystalline phases using the structural data
(Fig.3) obtained from XRD for 1CzTrz-F and 3CzTrz-F (Supplementary
Figs10-13 and Supplementary Tables11-13). Asshownin Fig. 4, the EA
distributions of oxygen are quite similar in crystallineand amorphous
3CzTrz-F.In contrast, for 1CzTrz-F the oxygen EAs are much higher in
the crystalline phase than in the amorphous phase, implying deeper
traps. The energetic shift of the EA distributionin the crystalline state
(Supplementary Table 11) is largely attributed to a change in the elec-
trostatic contributionto the EA, as seenin Supplementary Figs 10 and
11. Considering the fact that there are regions in organic thin films
with molecular packing resembling the crystalline state, the deep
O, traps (Supplementary Table 12) in crystalline 1CzTrz-F resultin a
higher overall trap density compared with 3CzTrz-F, which agrees with
the trend of trap densities obtained from the drift-diffusion model
(Supplementary Table 4).

However, as shown in Fig. 4c,d energetic considerations alone
cannotaccount for the trap-free transport observed in 3CzTrz-F. This
clearly suggests that the molecular packing is also an essential ingre-
dient to obtain a trap-free current due to shielding of the electron
transporting core fromimpurities by the stacking geometry. To further
elucidate the effectiveness of the O, traps in the 1CzTrz-F and 3CzTrz
compounds, we have evaluated the electronic transfer integrals rep-
resenting the coupling between close-lying oxygen and CzTrz-F pairs
(Fig. 4e-h). It is shown that the total coupling strength, represented
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Fig. 6 |Electron and hole currentin 3CzTrz and electron current in TPBi.
Current density (/)-voltage (V) characteristics of electron- and hole-only devices
of 3CzTrzand TPBi. The active layer thickness in each device is100 nm.

by the area under the histogram, is largest in the 1CzTrz-F crystalline
phase, thereby stabilizing the oxygen and resulting in oxygenbecoming
adeeper and more effective trap in the crystalline 1CzTrz-F.

Effect of fluorine

To demonstrate the generality of our approach, we have applied the
same strategy for obtaining trap-free transport in large energy gap
organic semiconductors toasecond series of blue-emitting materials,
consisting of a triazine acceptor with two carbazole units with(out)
fluorine constituents, DTPT-DCz, DTPT-DFCz and DTPT-D2FCz
(Fig. 1b). It is expected that the addition of electronegative fluorine
moieties will enhance both the ionization energy and EA of the mole-
cules. Thisisindeed observed experimentally from cyclic-voltammetry
measurements (Supplementary Table 5), where the EA is enhanced
from2.6 eV (DTPT-DCz, no fluorine) to 2.8 eV (DTPT-D2FCz, 4 fluorine).
For similar oxygen levels, the strongest electron trapping is therefore
expected for the non-fluorinated DTPT-DCz compound. However,
experimentally, the opposite behaviour is observed, as shown in
Fig. 2c. DTPT-DCz shows nearly trap-free transport, whereas with
increasing number of fluorine constituents the electron current is
strongly reduced. Thereduced current of the fluorinated compounds
iswell described by drift-diffusion simulations combining Ohmic con-
tacts and trapping; the resulting transport and trapping parameters
aregivenin Supplementary Table 14.

To obtain further insight, we simulated the DOS of both the
amorphous and crystalline phases of these three compounds, shown
in Supplementary Fig. 14. According to the amorphous phase simu-
lations, similar trapping behaviour would be expected for all com-
pounds, clearly in disagreement with the experiment. Similar to the
1CzTrz-F compound (Fig. 4b) the EA distribution of oxygenis consider-
ably lowered in the crystalline phase of DTPT-D2FCz (Supplementary
Fig.14f), leading to enhanced trapping. Thus, also for this compound
the enhanced trappingin the crystalline phaseisaresult of achangein
theenergetics. However, similar to the 3CzTrz-F case, the occurrence of
atrap-free currentin DTPT-DCz cannot be explained by the simulations
(Supplementary Fig. 14a,b). In both the amorphous and crystalline
phase severe trapping is predicted. This again strongly suggests that
another packing-related mechanism plays animportantrole.

For this purpose, we have investigated the crystal structure
using XRD on crystals of the tetrafluorinated DTPT-D2FCz and the
non-fluorinated DTPT-DCz. In the latter sample, shown in Fig. 5a,b,
the Cz substituents are arranged edge-on with a tilting angle of
~40° on top of the triazine ring. This arrangement together with the
tert-butyl-groups protects the Trz rings from contact with small mol-
eculessuchas O,or H,0.Boththe phenylsubstituted triazinering and
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the carbazole substituents show anin-plane arrangement with the same
molecular building blocks of neighbouring molecules (Czin-plane with
Cz, Trzin-plane with Trz). Moreover, the phenyl ring and the triazine
ring arein-plane, indicating an electronic conjugation between these
moieties. In contrast, in the tetrafluorinated DTPT-D2FCz the phenyl
ring and the triazine ring are no longer in plane but show a relative
tilt of more than 10°. Here the molecular ordering is clearly driven by
pairwise m-stacking of the fluorinated carbazole substituents. In this
crystal structure thetriazine rings are completely unprotected against
contact with small electron-trapping molecules suchas O, or H,0. This
againshowsthat a‘closed’ stacking geometryis a prerequisite to obtain
trap-free transport by shielding the electron transporting core from
extrinsic contaminants.

To put the trap-free electron transport in 3CzTrz further in
perspective, in Fig. 6 the electron and hole current for 3CzTrz are
shown, together with the electron current of TPBi, a state-of-the-art
electron transport material used in multilayer OLEDs and perovskite-
based LEDs*"*,

For 3CzTrz both the electron and hole current of 3CzTrz are not
only nearly trap-free but also balanced in charge-carrier mobility, which
amounts to 2 x10°m? Vs, In terms of electron transport, 3CzTrz
clearly outperforms TPBi. Figure 6 shows that, due to trapping, the
electron current in TPBi is more than two orders of magnitude lower
compared with the trap-free 3CzTrz material.

Outlook

Due to stack integrity issues, printed blue OLEDs consist preferably
of only one or two solution-processed layers. However, the absence of
simultaneous trap-free transport of both electrons and holesinlarge
band gap organic semiconductors so far has prevented the realization
of efficient single-layer blue OLEDs (3 eV band gap), as trapping has
astrongnegative effect on their efficiency. The approach presented
here shows that by manipulating the molecular structure of donor-
acceptor molecules the trapping by defects can be prevented. As a
result, this work paves the way towards efficient printed blue OLEDs
in future.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41563-023-01592-3.
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Methods

Synthesis

1CzTrz-5CzTrz and their fluorinated analogues (1CzTrz-F-3CzTrz-F)
as well as DTPT-DCz, DTPT-DFCz and DTPT-D2FCz were synthesized
according to procedures in literature and purified by vacuum subli-
mation. Details are givenin the Supplementary Information. TPBi was
purchased from Luminescence Technology. Chemicals for synthetic
operations were purchased from common suppliers (Sigma-Aldrich,
Fisher Scientific, VWR etc.) and were used as received.

Device fabrication and measurements

Electron-only devices were fabricated on glass substrates. The sub-
strates were cleaned with detergent solution and were ultrasonicated
in acetone and isopropyl alcohol. The substrates were heated to
140 °C for 10 min and subsequently treated with ultraviolet-ozone
for 20 min. The substrates were transferred into a nitrogen-filled
glove box, and 30 nm of Al was thermally evaporated, followed by
the organic layer (-100 nm) and a4 nm TPBi layer. For completion, a
5nm Baand 100 nm Al layer was evaporated on top. Electrical char-
acterization was carried out under N, atmosphere with a Keithley
2400 source meter.

Solution NMR measurements

All solution NMR spectra (*H, ®*C{H}) were measured using a Bruker
Avance Ill setup at 700.25 MHz 'H Larmor frequency and were
performed at 298 K with deuterated tetrachloroethane if not dif-
ferently specified. Chemical shift values 6 are given in parts per
million, and coupling constants/ are given in hertz. The multiplic-
ity of signals is described using the following shortcuts: s (singlet),
d (doublet), dd (doublet of doublets), t (triplet), q (quartet) and m
(multiplet).

Solid state NMR measurements

Thesolid samples were packed into Bruker BioSpin zirconia rotors with
1.3 mm outer diameter.'H MAS NMR spectra were acquired with four
scans of direct excitation using a 2.0 ps 90 degree excitation pulse and
arecycledelay of 30 sonaBruker Avance NEO spectrometer operating
at850.27 MHz'H Larmor frequency ata MAS spinning speed of 50 kHz.
F MAS NMR spectra were acquired with 16 scans of direct excitation
usinga2.5 pus 90° excitation pulse and arecycle delay of 30 sonaBruker
Avancelll spectrometer at 470.61 MHz °F Larmor frequency and 25 kHz
MAS spinning frequency.

Photoelectron spectroscopy
lonization energies were measured with an atmospheric photoemis-
sionyield spectrometer (AC-2) from Riken Keiki Co., Ltd.

Mass spectrometry

Matrix-assisted laser desorption ionization with time-of-flight analysis
was performed onarapifleX MALDI-ToF/ToF from Bruker. Atmospheric
pressure chemicalionization MS was recorded with atmospheric pres-
sure solids analysis probe using an Advion expression compact mass
spectrometer.

Cyclic voltammetry

Cyclic voltammetry was carried out on a computer-controlled
GSTAT12inathree-electrode cellin anhydrous acetonitrile solution of
n-Bu4NPF6 (0.05 M) with ascanrate of 100 mV s at room temperature
under argon. Pt wires were used as the counter and working electrodes;
asilver wire was applied as the reference electrode.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.
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