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Topological Properties of a Non-Hermitian Quasi-1D Chain
with a Flat Band

C. Martínez-Strasser,* M. A. J. Herrera, A. García-Etxarri, G. Palumbo, F. K. Kunst,
and D. Bercioux*

The spectral properties of a non-Hermitian quasi-1D lattice in two of the
possible dimerization configurations are investigated. Specifically, it focuses
on a non-Hermitian diamond chain that presents a zero-energy flat band. The
flat band originates from wave interference and results in eigenstates with a
finite contribution only on two sites of the unit cell. To achieve the
non-Hermitian characteristics, the system under study presents
non-reciprocal hopping terms in the chain. This leads to the accumulation of
eigenstates on the boundary of the system, known as the non-Hermitian skin
effect. Despite this accumulation of eigenstates, for one of the two considered
configurations, it is possible to characterize the presence of non-trivial edge
states at zero energy by a real-space topological invariant known as the
biorthogonal polarization. This work shows that this invariant, evaluated using
the destructive interference method, characterizes the non-trivial phase of the
non-Hermitian diamond chain. For the second non-Hermitian configuration,
there is a finite quantum metric associated with the flat band. Additionally, the
system presents the skin effect despite the system having a purely real or
imaginary spectrum. The two non-Hermitian diamond chains can be mapped
into two models of the Su-Schrieffer-Heeger chains, either non-Hermitian,
and Hermitian, both in the presence of a flat band. This mapping allows to
draw valuable insights into the behavior and properties of these systems.

1. Introduction

Non-Hermitian (NH) physics is an emergent field of research
that has important implications both for quantum and classi-
cal physics.[1–6] A systematic study of this field started with the
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cornerstone works by Bender and Boettcher
on Hamiltonian systems preserving
the combination of parity and time-
reversal ( ) symmetry, ensuring a real
spectrum.[7,8] At the moment, model
Hamiltonian systems respecting  sym-
metry are considered excellent models
for describing dissipative systems with
balanced gain and loss in an effective
way.[1]

The condition of reality of the spectrum
can be extended by considering a more
general symmetry class known as pseudo-
Hermiticity that includes the  -one.[9] In
general, NH operators exhibit intriguing
phenomena such as non-orthogonal eigen-
states and complex energy spectra contain-
ing exceptional points (EPs), representing
stable points of band degeneracies at which
not only the eigenvalues but also the eigen-
vectors coalesce.[1,3,4]

Recent research has focused on the topo-
logical characterization of NH systems,[1,3,4]

expanding upon the framework established
for Hermitian condensed-matter systems.
One of the key effects of moving to the

NH realm leads to the extension of the topological classification,
considering now that complex conjugation and transposition are
no longer equivalent for non-Hermitian Hamiltonians, moving
to 38 classes[10] instead of the tenfold classification of the Hermi-
tian counterpart.[11]

A key difference between NH and Hermitian systems is
the breakdown of the traditional bulk-boundary correspondence
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Figure 1. Sketch of the non-Hermitian diamond lattice in the A and B configurations, panel (a) and (b), respectively. The gray area denotes the unit cell
of each lattice configuration. The lattice periodicity is a0. In both panels, the blue arrows correspond to a hopping term of strength t1 +

𝛾

2
, whereas the

red ones to t1 −
𝛾

2
.

(BBC), which predicts the appearance of boundary modes based
on bulk topological invariants. This breakdown can be mani-
fested through the non-Hermitian skin effect, where bulk states
accumulate at the edges of the system.[12–14] Two possible re-
search lines have been developed for reestablishing the BBC. The
first one is based on the biorthogonal bulk-boundary correspon-
dence approach[15]; here, right and left eigenvectors of the sys-
tem under open boundary conditions (OBCs) are combined to
project the boundary mode localization and predict gap closings
accurately. The second method is based on the concept of the so-
called generalized Brillouin zone (BZ),[12,16,17] in which additional
information is encoded inside the standard Bloch bands.
For the investigation of topological effects in NH sys-

tems, 1D systems are ideal platforms for presenting the
key features.[15,18–21] These simple 1D models exhibit many
of the unusual properties of NH systems. A paradigmatic
example is the Hatano-Nelson model,[18] which is a one-
band system with anisotropic nearest-neighbor couplings
originally proposed to study localization transitions in su-
perconductors. Under periodic boundary conditions (PBCs),
this model features loops in the complex spectrum resulting
in a non-trivial spectral winding number.[22,23] When go-
ing to OBCs, this translates into the appearance of the NH
skin effect, thus establishing a new, truly NH bulk-boundary
correspondence.[24–26]

Even richer NH phenomena can be observed in NH versions
of the Su-Schrieffer-Heeger (SSH) chains.[27–29] This 1D two-
band system features zero-energy end modes in the Hermitian
case, which are topologically protected by a non-trivial winding
number. A NH version of this chain with asymmetric hopping
has been shown to host zero-energy boundary states as well as
NH skin states.[12,15] As such, this system breaks the conven-
tional BBC and needs to be treated either in the biorthogonal
picture[15] or within the framework of the generalized BZ.[12] A
 -symmetric version of the SSH chain has also been stud-
ied, which features an onsite complex potential with alternating
sign.[20,30] In this case, the boundary states acquire an imaginary
energy, while the NH skin effect is absent, such that the tradi-
tional BBC applies.

In this work, we present the topological properties of a quasi-
1D system: the diamond chain (DC).[31–34] The unit cell of this
quasi-1D system contains three sites with unequal connectivity;
in the following, we will name the site with higher connectivity
as H, whereas the sites with lower connectivity will be named A
and B| see Figure 1. This lattice model has also been studied with
respect to the effects of localization due to an external magnetic
field andmany-body effects.[31,35,36] The imbalance in the connec-
tivity results in the appearance of a bulk zero-energymode, where
the wave function is localized only in the sites of lower connec-
tivity with opposite amplitudes, while it has zero amplitude on
the remaining H sites. In the Hermitian case, in Ref. [34], it was
shown that two possible dimerizations could be chosen for the
DC, but only one of these presents topological properties analo-
gous to the SSH model.[27–29] Possible experimental implemen-
tations for the Hermitian system involve cold atoms in optical
lattices,[37] photonic,[38] and solid-state platform.[39] Within this
work, we investigate two possible NH configurations of the DC
chain. A NH version of the DC has already been investigated with
particular emphasis on possible photonic realizations and focus-
ing mainly on the  -symmetric version.[3,40–45] Additional re-
search has investigated the possibility of obtaining lasing from
the flat band.[46] Within this work, we will relax this symme-
try constriction.
We introduce non-Hermiticity by imposing a preferred hop-

ping direction within unit cells, resulting in two non-reciprocal
tight-binding models. The motivation beyond studying the NH
diamond lattice stems from its potential for realizing two distinct
dimerization configurations within the lattice. The first configu-
ration displays zero-energy edge states, which can be character-
ized through the evaluation of the biorthogonal polarization.[15,21]

The interest in the second configuration arises from the proper-
ties of the flat band[47–49] resulting in a giant boost of the quantum
metric properties.[50] Additionally, we show how tomap these two
systems into a combination of Hermitian and NH SSH mod-
els coupled to a flat band. This mapping allows us to draw valu-
able insights into the behavior and properties of these systems,
opening new avenues for further exploration of non-Hermitian
1D systems.
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This article is structured as follows: in Section 2, we describe
the NH DC in the two possible dimerization configurations that
we have uncovered. In Section 3, we explore the topological prop-
erties of these two NH lattice configurations, focusing in particu-
lar on the biorthogonal polarization and the quantum metric. In
Section 4, we present the path toward the unitary transformation
of the lattices into SSH chains, plus an extra site describing the
flat band. We conclude in Section 5 with a summary of our find-
ings. We include technical appendices: Appendix A.1 presenting
an analytical expression for the systemwave functions in the case
of translational invariance, and Appendix A.2 summarizing the
symmetry properties is the two lattices at the end of our work.

2. Results

2.1. Systems and Formalisms

2.1.1. Spectrum and Symmetries

The non-Hermitian counterpart of the diamond chain under “lat-
tice I” configuration from Ref. [34] can be divided into two dif-
ferent systems according to their NH coupling configuration —
DCA and DCB. The main differences imply an intracell hopping
from site H to site B of t1 − 𝛾∕2 in DCA and t1 + 𝛾∕2 in DCB.
We present a sketch of these two lattices in Figure 1. In the NH
version, both lattice systems still present a zero-energy flat band
in the energy spectrum; this originates in the unequal connectiv-
ity between the three lattice sites in the unit cell| H connected to
four neighbors, and A and B connected to two. The two chains
could be thought of as two joined NH SSH models[20]; however,
the sharing of a common lattice site (H) drastically changes the
spectral properties of both the Hermitian and NH systems.

2.1.2. Diamond Chain A (DCA)

The tight-binding Hamiltonian of the non-Hermitian diamond
chain in the DCA configuration [see Figure 1a)] reads:

DCA =
∑
n

{[
t2(c

†
A,n + c†B,n)cH,n+1 + h.c.

]
+
(
t1 −

𝛾

2

)
(c†A,n + c†B,n)cH,n (1)

+
(
t1 +

𝛾

2

)
c†H,n(cA,n + cB,n)

}
The operators c†

𝛼,n and c𝛼,n create and annihilate a state on
sub-lattice site 𝛼 ∈ {A,B,H} of unit cell n, respectively. Here, n
ranges from 1 to N, where N is the total number of unit cells.
The parameters t1 and t2 represent the intracell and intercell
hopping parameters, respectively, while 𝛾 is an asymmetry term
that introduces the non-Hermitian character into the system| see
Figure 1a. Throughout this paper, we fix all these parameters to
be real-valued, i.e., {t1, t2, 𝛾} ∈ ℝ.
Assuming translational invariance, the NHHamiltonian oper-

ator can be written in reciprocal space as

hDCA(𝜅) = dxΣx + dyΣy (2)

after an overall rotation ei𝜅∕2 over H sites in reciprocal space,
where 𝜅 = ka0 is a real and dimensionless quasi momentum, a0
is the lattice periodicity constant, and the momentum k ∈ BZ.
We have defined the matrices Σx and Σy as:

Σx =
1√
2

⎛⎜⎜⎝
0 1 0
1 0 1
0 1 0

⎞⎟⎟⎠ and Σy =
1√
2

⎛⎜⎜⎝
0 i 0
−i 0 −i
0 i 0

⎞⎟⎟⎠ (3a)

accompanied by

Σz =
1
2

⎛⎜⎜⎝
1 0 1
0 −2 0
1 0 1

⎞⎟⎟⎠ and �̃� = 1
2

⎛⎜⎜⎝
1 0 1
0 2 0
1 0 1

⎞⎟⎟⎠ (3b)

Therefore, the characteristic d-vector, d = (dx, dy, dz) reads ex-
plicitly

d(𝜅) =
√
2(t1 + t2 cos(𝜅), t2 sin(𝜅) + i𝛾∕2, 0) (4)

It has to be noted that the set {�̃�,Σx,Σy,Σz} forms an or-
thogonal base with SU(2) Lie algebra with [Σn,Σm] = 2i𝜖nmkΣk �̃�
and {Σn,Σm} = 2𝛿nm �̃�, where 𝜖nmk is the Levi-Civita tensor with
n,m, k ∈ {x, y, z}, and [., .] and {., .} are the commutator and the
anticommutator, respectively.[34]

The representation in Equation (2) results in a three-band
model. This can be considered equivalent to the one obtained for
the NH SSH two-band model[15,51] with the inclusion of a zero-
energy flat band. This analogy will be made more explicit in Sec-
tion 4.
The energy spectrum of DCA is

EDCA
𝛼

= 𝛼

√
2
(
t21 + t22

)
+ 4t1t2 cos(𝜅) + 2i𝛾t2 sin(𝜅) −

𝛾2

2
(5)

with 𝛼 ∈ {0,±}.We note in passing that this spectrum is identical
to the NH-SSHmodel up to a factor

√
2,[15] see Equation (4). We

present in Appendix A.1 the analytical expression of the eigen-
states of Equation (2).
By inspecting the Jordan decomposition of the DCA Hamil-

tonian and the spectrum in Equation (5), we find four excep-
tional points at Im[E±] = Re[E±] = 0. These points are located at
t1 = −t2 ± 𝛾∕2 for 𝜅 = 0 and t1 = t2 ± 𝛾∕2 for 𝜅 = 𝜋, recognizing
the similarity with the standard non-Hermitian SSH model.[15]

As 𝜅 ranges from 0 to 2𝜋, the system’s energy spectrum on the
complex energy plane is formed of two bands and a zero-energy
point that signals the zero-energy flat band of the system un-
der OBC (see the inset of Figure 3). Depending on the choice
of parameters, the two-band energies can either braid into two
separate loops (inside which a reference point can be placed act-
ing as a point gap) or into a single loop (also presenting a point
gap).[48] Both phases display a qualitative change in the spec-
trum, in which the phase transitions correspond to the crossings
of exceptional points at which the Hamiltonian becomes defec-
tive. We find a real and a fully imaginary gap for 𝜅 = {0, 𝜋} with|𝛾∕2| ≤ |t1 ± t2| and |𝛾∕2| ≥ |t1 ± t2|, respectively.
The finite-size system presents edge modes under the appro-

priate choice of system parameters. In Figure 2, we compare the
energy spectrum|now denoted through  | of a finite-size system
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Figure 2. The absolute value of the eigenenergies is examined as a func-
tion of the hopping parameters, denoted as t1, in the non-Hermitian DCA
model with a fixed asymmetry term 𝛾 = 3 and a system size N = 16. The
pink lines represent the bulk spectra obtained under periodic boundary
conditions (PBC), and the blue (red) lines correspond to the bulk (edge)
spectra obtained under open boundary conditions (OBC), signaling the
phase-transition points through arrows.
The zero-energy flat band, depicted in purple, is present in both the PBC
and OBC scenarios. Moreover, the black dashed line at t1∕t2 = 2 indicates
the hopping parameter values at which the skin effect in Figure 3 has been
computed.

with open boundary conditions, inwhich edgemodes appear, and
with periodic boundary conditions. In Section 3, we will char-
acterize the presence of these edge states using the biorthogo-
nal polarization,[15] enabling us to differentiate them from bulk
eigenstates that pile up at the boundaries, a topologically trivial
effect in non-Hermitian systems lacking parity symmetry. This is
known as the non-Hermitian skin effect and corresponds to a pil-
ing of the system eigenstates at the system’s boundary. We show

Figure 3. Skin effect of the non-Hermitian DCA chain represented through
the sum of the squared amplitudes of each site i with N = 30, 𝛾 = 3
and t1∕t2 = 2 To visualize the eigenstates, we are considering the base
(Hn,An,Bn). Additionally, we are rescaling their expectation value for
comparative reasons. Inset: complex plane with the corresponding pos-
itive(green), negative(yellow), and flat(blue) energy bands.

in Figure 3 the skin effect for left and right eigenstates for the
DCA system. Upon evaluating the Jordan canonical form of the
non-Hermitian DCA system at t1 = 𝛾∕2, we find N + 3 indepen-
dent eigenvectors, N corresponding to the zero-energy flat band
and three corresponding to EPs. Similar to the non-Hermitian
SSH.[52] From these three EPs, we obtain that two EPs are of
higher order and are located at  = ±

√
2t2, whereas the last one

is a zero-energy EP of order two.

2.1.3. Diamond Chain B (DCB)

For the DCB lattice, the non-Hermitian tight-binding Hamilto-
nian will read:

DCB =
∑
n

{[
t2(c

†
A,n + c†B,n)cH,n+1 + h.c.

]
+
(
t1 +

𝛾

2

)
(c†H,ncA,n + c†B,ncH,n) (6)

+
(
t1 −

𝛾

2

)
(c†A,ncH,n + c†H,ncB,n)

}
in which the primary distinction compared to the DCA lattice is
the orientation of the intracell hoppings (t1 ± 𝛾∕2) connecting the
H and B sites| see Figure 1b. In the translational invariant form,
the corresponding Hamiltonian cannot be expressed anymore
only as a function of the characteristic vector d and the matrices
in Equations (3), but requires the addition of the 𝜆7 Gell-Mann
matrix:

hDCB(𝜅) = hDCA(𝜅) − i
⎛⎜⎜⎝
0 0 0
0 0 −i
0 i 0

⎞⎟⎟⎠ 𝛾 (7)

This last term is essential in order to change the sign of the
non-reciprocal hopping term on the connections between the H
and the B sites| see Figure 1b.
The corresponding energy spectrum reads

EDCB
𝛼

= 𝛼

√
2
(
t21 + t22

)
+ 4t1t2 cos(𝜅) −

𝛾2

2
(8)

with 𝛼 ∈ {0,±}. Contrary to the case of DCA in Equation (5), here
we no longer find terms coupling together 𝛾 with 𝜅. We present
in Appendix A.1 the analytical expression of the eigenstates of
Equation (7).
Importantly, the expression for the energy spectrum for DCB

is, up to a constant factor, the same as the energy spectrum for
the -symmetric NH-SSHmodel,[20] with the addition of a zero
energy flat band. When the magnitudes of the first two terms in
Equation (8) exceed that of the third term, a real gap emerges.
Conversely, if the first two terms are smaller than the third term,
an entirely imaginary gap is present. When plotted on the com-
plex energy plane, contrary to the case of DCA, the eigenener-
gies (8) collapse into fully imaginary or real lines or a combina-
tion of both| see insets of Figure 5.
In spite of the similarities of the energy spectrum for a finite

DCB system with a finite  -symmetric NH-SSH system (see
Figure 4), theDCBmodel does not possess EPs underOBCdue to

Adv. Quantum Technol. 2023, 2300225 2300225 (4 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202300225 by M

PI 387 Science of L
ight, W

iley O
nline L

ibrary on [26/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 4. Absolute value of the eigenenergies as a function of the hopping
parameters t1 of the non-Hermitian DCBmodel for 𝛾 = 3 andN = 16. The
pink lines depict the bulk spectra under periodic boundary conditions. The
blue (red) lines correspond to the bulk (edge) spectra obtained under open
boundary conditions (OBC), signaling the phase transition points through
arrows. The black dashed lines indicate the specific values of the hopping
parameters i) t1∕t2 = 0.3, ii) t1∕t2 = 1.2 and iii) t1∕t2 = 2.7 at which the
corresponding skin effects have been computed (see Figure 5). The zero-
energy flat band is depicted in purple, present under both boundary con-
ditions.

its non-Hermitian nature being attributed to non-reciprocal hop-
pings rather than on-site potentials. As a result, there is no phase
transition between a  -broken and  -unbroken phase in the
DCBmodel.The complex energy spectrum of the DCB collapsing
into lines should signal the disappearance of the skin effect.[53]

However, from Figure 5 ii,iii, we can clearly observe that the skin
effect is still present for the DCB case despite the shape of the en-
ergy spectrum in the complex plane.Wewill give some additional
insight into the skin effect of DCB in Section 3.

2.2. Topological Properties

In this section, we are going to explore the topological proper-
ties of DCA and DCB. While both exhibit edge modes, DCA pos-
sesses zero-energy edge modes, whereas DCB has them at finite
energy. Additionally, the flat band eigenstate of the system for
the DCB, unlike for DCA, is k-dependent| see Equations (A5a)
and (A6a). Consequently, we will concentrate on characterizing
non-trivial topological properties of the zero-energymodes on the
DCA through the biorthogonal polarization.[1,15] Whereas, for the
case of DCB, we will focus on the quantum metric properties of
its flat band.
The DCA model exhibits several relevant symmetries con-

sidering the 38-fold classification typical on NH systems.[10]

It presents the Hermitian conjugated particle-hole symmetry
(PHSc), with eigenenergies coming as either pure imaginary en-

ergies or pairs (E(k),−E(−k)∗). Additionally, it shows the stan-
dard time-reversal symmetry (TRSc), where eigenenergies come
as real eigenvalues or in complex conjugate pairs, (E(k), E(−k)∗).
Moreover, the DCA model possesses the standard sublattice
symmetry (SLS), for which the eigenvalues come in ± pairs at
each k point. The DCB model shares the same symmetries as
DCA and, in addition, possesses the Hermitian conjugated time-
reversal symmetry (TRSt) where the eigenenergies are paired
by (E(k), E(−k)) and the standard pseudo-Hermiticity symmetry,
which restricts the eigenenergies to be real. For a comprehensive
overview of the symmetries discussed, please refer to the sym-
metry table in Appendix A.2.

2.2.1. Biorthogonal Polarization for DCA

In this section, we focus on the characterization of the zero-
energy boundary modes of the non-Hermitian diamond chain
and their localization over the parameter spectrum. We start by
combining the left and right non-orthogonal eigenvectors of the
non-Hermitian Hamiltonian operators to map the weight dis-
tribution of a given band—in this case, the edge-band—over
the finite system.[54] This arrangement is obtained through the
biorthogonal projection expectation value, ⟨Πn⟩LR, also found as
the biorthogonal density[15] where the biorthogonal projection
operator is defined asΠn =

∑
𝛼
|e𝛼,n⟩ ⟨e𝛼,n|with |e𝛼,n⟩ = c†

𝛼,n |0⟩.[55]
Therefore a real-parameter space topological invariant can be de-
fined, namely the biorthogonal polarization:

 = M − lim
N→∞

⟨ΨL
0|N−1

N∑
n=1

nΠ̂n|ΨR
0 ⟩ (9)

whereM is the number of boundary modes and |ΨR[L]
0 ⟩ are zero-

energy right and left boundarymodes. The biorthogonal polariza-
tion will therefore be = M(0) when boundary states are present
(absent) at the beginning of a quasi-1D chain. In order for the
wave functions |ΨR[L]

0 ⟩ in Equation (9) to provide significant in-
formation for the appearance and the disappearance of boundary
states in the corresponding lattices, the destructive interference
method is used.
This local interference is naturally present on a quasi-1D lattice

that begins and also ends with the same motif, in this case with
anH site or with AB sites, under the constraint of presenting only
nearest-neighbor hopping.[56,57] Under these circumstances, two
chains can be obtained, the so-called broken chains, character-
ized by an exactly disappearing weight on one of the motifs. As a
result, the localization factors of the broken chains’ eigenmodes,
rL[R], can be exactly solved. These factors, whose magnitude will
solely depend on the hopping terms |rL[R]| = f (t1, t2, 𝛾), will even-
tually give the dispersion rate of the eigenmode, signaling the
parameter regions at which the topological phase transitions oc-
cur, i.e., at which the zero-energy wavefunctions correspond to
bulk states |r∗LrR| > 1 or to boundary states |r∗LrR| < 1.[15] In spite
of the eigenstates of the broken chains not being exact to the ones
of the original unbroken chain, the phase transition points will
stay unchanged up to finite-size effects in both broken and un-
broken lattices.[15]

To further understand the destructive interferencemethod, we
will now solve the biorthogonal polarization for the DCA. The

Adv. Quantum Technol. 2023, 2300225 2300225 (5 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 5. Skin effect of the non-Hermitian DCB chain represented through the sum of the squared amplitudes of each site i with N = 30 and 𝛾 = 3
considering the base (Hn,An,Bn). The upper diagram i) represents the sum of the squared amplitudes of each site considering the case in which the
eigenvalues are fully imaginary pairs and where also edge states are present, like at t1∕t2 = 0.3. The middle diagram ii) shows the skin effect under
eigenvalues coming in complex conjugate pairs as in t1∕t2 = 1.2, where the edge states are fading out into the bulk and the lower one iii) represents
the case in which the spectra is fully real as it happens for t1∕t2 = 2.7, with no edge states. Each inset depicts the corresponding positive(green),
negative(yellow) and flat(blue) energy bands in the complex plane.

Adv. Quantum Technol. 2023, 2300225 2300225 (6 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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number of boundary modes for this model is M = 1 for an H-
broken chain andM = 1 for an AB-broken chain.
For DCA, the zero-energy eigenmodes for the H-broken chain,|ΨR[L]
0 ⟩

H
, and for the AB-broken chain, |ΨR[L]

0 ⟩
AB
, will be described

through

|ΨR[L]
0 ⟩

H
= R[L]

(
1, 0, 0, rR[L], 0, 0,… , rN−2

R[L] , 0, 0, r
N−1
R[L] , 0, 0

)
(10a)

|ΨR[L]
0 ⟩

AB
= R[L]

(
1, 1, 0, 1

rR[L]
, 1
rR[L]

, 0,

… , 1
rN−2
R[L]

, 1
rN−2
R[L]

, 0, frac1rN−1
R[L] ,

1
rN−1
R[L]

, 0

)
(10b)

where we consider a base of (Hn,An,Bn) for the H-broken chain
and of (An,Bn,Hn) for the AB-broken chain to describe each unit
cell n. In Equations (10), R[L] are the right or left normaliza-
tion factors and rL[R] are the left and right localization factors,
which are equivalent to those derived for the non-Hermitian SSH
model[15]:

rL = −
t1 + 𝛾∕2

t2
and rR = −

t1 − 𝛾∕2
t2

(11)

The presence of destructive interference in the previous eigen-
modes of Equations (10) can be clearly visualized through the
vanishing amplitudes on A and B sites for the H-broken chain
and in H sites for the AB-broken one.
Considering the exponential (de)localization of the eigen-

modes into the boundaries, ⟨n|ΨR[L]
0 ⟩ = e−n∕𝜉R[L] where |n⟩ =|eA,n⟩ + |eH,n⟩ + |eB,n⟩, the jump on the biorthogonal polarization

is constructed through the right and left penetration lengths
𝜉R[L] of the boundary modes. Knowing that a biorthogonal bulk
state forms from right and left states localized at opposite ends
𝜉R = −𝜉L and considering that under translational invariance the
inverse penetration lengths can be defined through the localiza-
tion factors as

𝜉−1R[L](k) = ln |rR[L](k)| (12)

the condition for having a jump between bulk and bound-
ary eigenmodes will be given by |r∗LrR| = 1.[56] As a result, the
biorthogonal polarization acts as an indicator of the topological
phase transition using real-space parameters,  = f (t1, t2, 𝛾), re-
sulting in a real-space topological invariant.[54]

Despite the fact that the left and right states might be localized
at opposite or the same edges, only one of the boundaries will be
considered at a timewhen analyzing the broken lattices reflecting
each end of our unbroken chain. This means that the computa-
tion of  with the left and right eigenstates of Equation (10a) will
represent the localization of boundary states at n = 1 (see purple
lines of Figure 6) and the computation of M −  through Equa-
tion (10b) will represent the localization of boundary states at
n = N (see orange lines of Figure 6) for the original chain (start-
ing with an H site and ending with A and B sites). Considering
the shortcut solution used in Ref. [12] for the NH SSH, we ob-
tain the phase transition points of the DCA unbroken chain to be

defined as

t1 = ±
√

t22 +
(
𝛾

2

)2
for |t2| > |𝛾|

2
and (13a)

t1 = ±
√

−t22 +
(
𝛾

2

)2
for |t2| < |𝛾|

2
(13b)

which have been represented in blue lines at Figure 6b and in
blue dashed lines at Figure 6a,c. This shows that the appearance
of the zero-energy edge states delimited by the biorthogonal po-
larization is in accordance with the predicted phase transitions
from the generalized BZ method used in Ref. [12].

2.2.2. Band Geometry and Topology for DCB

As described before, the wave function associated with the flat
band of DCB has a non-trivial dependence on the momentum 𝜅|
see Appendix A.1. In the following, we will show that this leads to
non-trivial quantum metric properties. To begin with, we briefly
recall the definition and main properties of the quantum metric
g𝜇𝜈 in Hermitian and non-Hermitian systems. In the Hermitian
case, the quantummetric[58] is a gauge invariant andmeasurable
quantity[59–61] that can be seen as a momentum-space Rieman-
nian metric.[62–65] It has been shown that g𝜇𝜈 plays a central role
in Chern insulators,[66–69] spreading of theWannier functions,[70]

superconductingweight in flat-band superconductors,[71–74] topo-
logical semimetals,[75–78] quantum phase transitions[79–81] and
in the semiclassical equations for wave-packets.[82] Moreover,
the non-Hermitian version of the quantum metric has been
originally introduced in Ref. [83] and has been recently shown
to be relevant in different kinds of non-Hermitian topological
phases[84] (see also Ref. [85] for a more recent work on the sub-
ject). In order to define this geometric quantity in the NH case,
we first introduce the NH quantum geometric tensor (QGT)Qn

𝜇𝜈
,

given by

Qn
𝜇𝜈

= 1
2
[⟨𝜕𝜇uLn|(1 − Pn)|𝜕𝜈uRn ⟩+ (14)

+ ⟨𝜕𝜇uRn |(1 − P†
n)|𝜕𝜈uLn⟩]

where n is the band index, |uL/Rn ⟩ are the left/right Bloch wave-
eigenvectors, 𝜕𝜇 = 𝜕k𝜇 and Pn = |uRn ⟩⟨uLn| is the projector opera-
tor. Thus, the corresponding NH quantummetric tensor is given
by the real part of the above tensor, i.e., g𝜇𝜈 = Re(Qn

𝜇𝜈
) while the

imaginary part of the NHQGT corresponds to the NH Berry cur-
vature, namely Fn

𝜇𝜈
= −2Im(Qn

𝜇𝜈
). However, we notice that in 1D

systems, the imaginary part of the QGT is absent such that g𝜇𝜈 is
the only non-trivial geometric quantity that can be built. For the
DCB, the NH quantum metric for the flat and negative energy
bands are respectively given by

g0xx(𝜅) = −
t22 𝛾

2(
EDCB−

)4 (15)

g−xx(𝜅) = −
t22 (𝛾

2 − t21 − 2t22 − 4t1t2 cos 𝜅 − t21 cos 2𝜅)

2
(
EDCB−

)4
Adv. Quantum Technol. 2023, 2300225 2300225 (7 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 6. Phase diagram of the DCA model along with the biorthogonal polarization of two cuts in this phase diagram. b) Phase diagram of the non-
Hermitian DCA model. In this analysis, pink lines represent the parameter values where exceptional points (EPs) emerge in the eigenenergies under

Adv. Quantum Technol. 2023, 2300225 2300225 (8 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 7. Plot of the quantum metric associated to the flat band (15)of
lattice DCB as a function of t1 and of the non-reciprocal coupling term 𝛾 .

We can now make some relevant observations concerning the
peculiar band geometry of DCB: first, g0xx is non-zero only in the
NH regime, in which even the flat band acquires some non-trivial
geometric features differently from the Hermitian case. In fact,
due to its dependence on the energy dispersion, EDCB, the band
geometry of the flat band contains information about the excep-
tional points of DCB. Thus the corresponding quantum metric
is divergent at those points, similar to what has been shown in
NHmodels without flat bands.[86,87] Second, anothermain conse-
quence of the non-trivial behavior of g0xx is related to the conduc-
tivity at the flat band that is robust in the presence of disorder and
can even be tremendously boosted, similar to the Hermitian case
discussed in Ref. [50]. The boost is obtained for values of 𝛾 chang-
ing the spectrum from real to imaginary (8)| see Figure 7. Third,
in the limit t1 → 0, DCB supports three completely flat bands,
and the quantum metric becomes constant for all the bands.
This quantum geometry behavior resembles the one related to
the Hermitian two-band Creutz ladder, where the quantum met-
ric has been shown to be constant for both flat bands.[88] In this
limit, the ratio between g0xx and g

−
xx acquires a simple expression

g0xx
g−xx

= 2𝛾2

𝛾2 − 2t22
(16)

which converges to 2 for 𝛾 ≫ t2, i.e., in the strongly NH regime.
On the other hand, in the opposite Hermitian limit 𝛾 = 0 and for
t1 → 0, g−xx is still constant and equal to 1∕4 while g

0
xx becomes

identically null.
To characterize the band topology of DCB, we employ the ap-

proach originally proposed in the Hermitian framework in Ref.
[89] and then extended in the non-Hermitian systems in Ref. [84],

which is based on the construction of suitable momentum-space
scalar fields 𝜙L

n and 𝜙R
n , given by

𝜙L
n = − i

2
log

∏
ℵ

uLn,ℵ, 𝜙R
n = − i

2
log

∏
ℵ

uRn,ℵ (17)

where uLn,ℵ and u
R
n,ℵ denote the non-zero components of |uLn⟩ and|uRn ⟩, respectively. From the above scalar fields in our 1D case, we

can define a NH Zak-like phase for the DCB as follows

wn = −∫
2𝜋

0
d𝜅 𝜕𝜅𝜙

L
n = −∫

2𝜋

0
d𝜅 𝜕𝜅𝜙

R
n (18)

where the integration is performed in the first Brillouin zone.
From this expression, we observe that for the flat band, w0 is
never quantized, which implies a trivial band topology. On the
other hand, the lower band carries non-trivial band topology in
the following regime

w− = 𝜋, |t2| − |t1| > |𝛾|∕2 (19)

This result represents a natural but non-trivial generalization
of the topological phase supported for |t2| > |t1| in the Hermitian
model.[34]

2.3. Rotation into a 1D Model with a Flat Band?

In the following, we show how to perform a rotation to a new base
choice of the diamond chain, which allows us to have a better un-
derstanding of several of the properties we have shown so far. We
obtain the new base considering a real or complex linear combi-
nation of the site with lower connectivity. The site operators in
this new base read

𝛽

n =
1√
2
(cA,n + 𝛽cB,n) (20a)

n = cH,n (20b)

𝛽

n =
1√
2
(cA,n − 𝛽cB,n) (20c)

where 𝛽 = {1, i}. The matrices U𝛽 associated with this rotation
result in:

U𝛽 =
1√
2

⎛⎜⎜⎝
1 0 𝛽

0
√
2 0

1 0 −𝛽

⎞⎟⎟⎠ (21)

periodic boundary conditions (PBC), while blue lines indicate the appearance or disappearance of zero-energy edge states under open boundary condi-
tions (OBC). In the Hermitian system (𝛾 = 0) under OBC, the phase transition coincides with the one observed in the system under PBC. However, in
the non-Hermitian case, the topological phase (purple area) is defined by the OBC system, which broadens the range in which the trivial phase appears
(both the pink-shaded and white areas). The dashed lines correspond to the values at which the polarization has been computed analytically for a DCA
chain of N = 100. In panel (a), the calculation is performed for 𝛾∕t2 = 3, and in panel (c), it is done at 𝛾∕t2 = 1, such that when the zero-energy edge
states are present (absent), the biorthogonal polarization is = 1(0) for the H-broken chain (purple lines) and = 0(1) for the AB-broken chain (orange
lines). The dashed lines in pink and blue indicate the values of the parameters where EPs occur under PBC and phase transition points arise under OBC,
respectively.

Adv. Quantum Technol. 2023, 2300225 2300225 (9 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 8. Rotated diamond chain from the DCA to a) a non-Hermitian SSH chain with non-reciprocal hoppings plus disconnected  sites and from the
DCB to a Hermitian SSH chain coupled through b) non-reciprocal hopping parameters to sites using U1 matrix transformation or c) complex hopping
parameters to the virtual sites using Ui, respectively.

and applied to the NH Hamiltonian operator in reciprocal space
of Equation (2), give rise to the same rotated model of the DCA.
The resulting Hamiltonian in reciprocal space reads:

hRotDCA(𝜅) = dxΣRot
x + dyΣRot

y (22)

being the ΣRot
x and ΣRot

y matrices defined as:

ΣRot
x =

⎛⎜⎜⎝
0 1 0
1 0 0
0 0 0

⎞⎟⎟⎠ and ΣRot
y =

⎛⎜⎜⎝
0 i 0
−i 0 0
0 0 0

⎞⎟⎟⎠ (23)

which is analogous to the non-Hermitian Stub model of Ref. [48]
with t3 = 0. The rotated DCA model, therefore, describes a non-
Hermitian SSH chain with non-reciprocal hopping parameters
[see Figure 8a] formed by and H sites decoupled to the  sites
originating the flat band. This rotation helps to understand that
in this new base, theNH skin effect and the topological properties
should be analogous to the one of the NH SSH model.[15]

The transformation matrices defined in Equation (21) applied
to the DCB lattice in reciprocal space described in Equation (7)

give rise to two equivalent systems for real and complex 𝛽:

hRot1DCB(𝜅) = U−1
1 hDCB(𝜅)U1

=
√
2
⎛⎜⎜⎝

0 t1 + t2e
i𝜅 0

t1 + t2e
−i𝜅 0 𝛾

2
0 − 𝛾

2
0

⎞⎟⎟⎠ (24a)

hRot2DCB(𝜅) = U−1
i hDCB(𝜅)Ui

=
√
2
⎛⎜⎜⎝

0 t1 + t2e
i𝜅 0

t1 + t2e
−i𝜅 0 i 𝛾

2
0 i 𝛾

2
0

⎞⎟⎟⎠ (24b)

Both of these models contain a Hermitian SSH chain formed
by  and  sites that are now coupled to the  sites in a non-
Hermitian fashion, cf. Figures 8b,c. It is important to note that
the  sites are disconnected from each other, thus representing
the flat band. However, they are coupled to the Hermitian SSH
model. This coupling is found to be non-reciprocal for the first
rotation in Equation (24a), where we observe that we have broken

Adv. Quantum Technol. 2023, 2300225 2300225 (10 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 9. Skin effect for the rotated non-Hermitian DCA and DCB chains represented through the sum of the squared amplitudes of each site i with
N = 30 and 𝛾 = 3. The upper diagram (a) represents the skin effect of the rotated non-Hermitian DCA system at t1∕t2 = 2, the second panel (b), shows
the first case of the rotated non-Hermitian DCB system where the eigenvalues are fully imaginary pairs like at t1∕t2 = 0.3, the third diagram (c) shows
the skin effect of the rotated non-Hermitian DCB model skin effect under eigenvalues coming in complex conjugate pairs as in t1∕t2 = 1.2 and the lower
one (d) represents the rotated non-Hermitian DCB skin effect for the case in which the spectra is fully real as it happens for t1∕t2 = 2.7. In the present

Adv. Quantum Technol. 2023, 2300225 2300225 (11 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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the inversion symmetry  = Σx| see Figure 8b. While the case of
the imaginary rotation in Equation (24b), the coupling between
the flat band and the Hermitian SSH chain breaks time-reversal
symmetry  = | see Figure 8c. This rotation helps us to unveil
the nature of the NH skin effect we have presented in Figure 5.
The dispersive part of the system is a Hermitian SSHmodel and
should not present any skin effect; however, it is connected in a
NH fashion to the flat band giving rise to a finite skin effect. It
has to be noted that the strength of this skin effect is smaller than
in the case of DCA since it originates in the flat band where all
the  sites are disconnected.
In Figure 9, we present the results for the skin effect for DCA

and DCB, considering the tight-binding representations of Equa-
tions (22) and (24). For DCA in Figure 9a, we can clearly ob-
serve a skin effect identical to the case of the NH SSH for the
 and , whereas, for the  sites corresponding to the flat
band, the skin effect is absent. For the case of DCB, we show in
Figure 9b–d the results for the same parameter values we used
in Figure 5 but in the rotated base, i.e., {,,}. We clearly
observe that now the skin effect that arises in the flat band is
transmitted by proximity to the Hermitian SSH model via the
NH coupling. Most importantly, within this choice of the base,
the right, and the left eigenvectors differ only up to a phase fac-
tor, for the reason they are identical when representing them in
Figure 9b,d.

3. Discussions and Conclusions

In this article, we have investigated the topological properties of
a non-Hermitian version of the diamond chain. We have shown
that compared to the Hermitian case, there exist two possible
non-Hermitian configurations presenting non-trivial topological
properties. Specifically, for one of the two configurations that we
have named DCA, the system presents properties analogous to
a non-Hermitian SSH chain plus a flat band. We have character-
ized this system by investigating the biorthogonal polarization.
The second configuration, which we have named DCB, presents
a non-zero quantummetric for the flat band due to the wave func-
tion’s k dependency. This quantum metric becomes highly di-
vergent near the exceptional points, providing a significant boost
when tuning the non-Hermitian parameter 𝛾 . The band topology
of the DCB configuration indicates that the flat band possesses
a trivial nature, while the non-Hermitian Zak phase of the lower
band can exhibit a non-trivial band topology. Both systems can be
mapped to the SSHmodel. The DCA system can be transformed
into a non-Hermitian SSH model with disconnected sites repre-
senting the flat band. In contrast, the DCBmodel can be similarly
transformed into a Hermitian SSH chain, connected in a non-
Hermitian fashion to these additional sites representing the flat
band. Interestingly, both systems present a NH skin effect. This
is especially surprising for DCB, which presents a spectrum in
the complex plane that is either real, imaginary, or a combina-
tion of both.

Appendix A: Eigenvectors of the Non-Hermitian
Diamond Chain

In this appendix, we will present the analytical expressions for the eigen-
vectors of the two lattice systems, DCA and DCB. We start by introducing
the following quantities:

𝜌±(𝜅) =
t1 ±

𝛾

2

t2
+ cos 𝜅 + i sin 𝜅

= |𝜌±(𝜅)|ei𝜙±(𝜅) (A1)

The biorthogonal base for DCA reads:

|𝜓0,R⟩ = 1√
2
(−1, 0, 1) (A2a)

|𝜓𝛼,R⟩ = 1
2

(
1,

EDCA
𝛼

t2|𝜌−(𝜅)|ei𝜙− , 1
)

(A2b)

and

|𝜓0,L⟩ = 1√
2
(−1, 0, 1) (A3a)

|𝜓𝛼,L⟩ = 1
2

(
1,

EDCA
𝛼

t2|𝜌+(𝜅)|ei𝜙+ , 1
)

(A3b)

These states fulfill the biorthogonal scalar product[55]:

⟨𝜓𝛼,𝛽,R|𝜓𝛼′ ,𝛽′ ,L⟩ = 𝛿𝛼,𝛼′𝛿𝛽,𝛽′ (A4)

whereas the biorthogonal base for DCB reads:

|𝜓0,R⟩ =  (
−|𝜌+(𝜅)|e−i𝜙+ + 𝛾 , 0, |𝜌+(𝜅)|ei𝜙+), (A5a)

|𝜓𝛼,R⟩ = 
(
−t2|𝜌−(𝜅)|e−i𝜙− + 𝛾

t2|𝜌+(𝜅)|ei𝜙+ ,
EDCB
𝛼

t2|𝜌+(𝜅)|ei𝜙+ , 1
)

(A5b)

and

|𝜓0,L⟩ =  (
−|𝜌+(𝜅)|e−i𝜙+ |, 0, |𝜌−(𝜅)|ei𝜙− |) (A6a)

|𝜓𝛼,L⟩ = 
(
t2|𝜌+(𝜅)|ei𝜙+ + 𝛾

t2|𝜌−(𝜅)|ei𝜙− ,
EDCB
𝛼

t2|𝜌−(𝜅)|ei𝜙− , 1
)

(A6b)

Here, we have introduced the factor of normalization  in order to
fulfill the biorthogonal scalar product in Equation (A4); the normalization
factor is defined as

 =
√

1
2
+

2i𝛾t2 sin 𝜅

4
(
t21 + t22

)
− 𝛾2 + 8t1t2 cos 𝜅

(A7)

figure, the rotated systems have been represented considering the base (n,n,n). Additionally, the sites of the open chain have been redistributed
such that the skin effect of the corresponding  sites are depicted in the inset of each figure, leaving the main figure for the skin effect originated from
the and sites, respectively.
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Table A1. The DCA model is subject to symmetry conditions, each with its
specific constraint equation. These equations are fulfilled by applying the
symmetry operator on the Hamiltonian, where 𝛽 = {1, i}.

Symmetry Equation Operator

PHSt, CC
∗ = 1 h(−k) = −ChT (k)C−1 −

PHSt, CC
∗ = −1 h(−k) = −ChT (k)C−1 −

TRSt, TT
∗ = 1 h(−k) = ThT (k)T−1 −

TRSt, TT
∗ = −1 h(−k) = ChT (k)C−1 −

PHSc , CC
∗ = 1 h(−k) = −Ch∗(k)C−1 𝛽RA,B, 𝛽RH,

𝛽GA,B, 𝛽GH

PHSc , CC
∗ = −1 h(−k) = −Ch∗(k)C−1 −

TRSc , TT
∗ = 1 h(−k) = Th∗(k)T−1 𝛽𝕀3×3, 𝛽PB,A

TRSc , TT
∗ = −1 h(−k) = Th∗(k)T−1 −

CS, Γ2 = 1 h(k) = −Γh†(k)Γ−1 −

Pseudo-Hermiticity,

𝜂2 = 1 h(k) = 𝜂h†(k)𝜂−1 −

SLS, S2 = 1 h(k) = −Sh(k)S−1 RA,B, RH,

GA,B, GH

Parity, P2 = 1 h(−k) = Ph(k)P−1 −

Parity-time,

(PT)(PT)∗ = 1 h(k) = (PT)h∗(k)(PT)−1 −

Parity-time,

(PT)(PT)∗ = −1 h(k) = (PT)h∗(k)(PT)−1 −

Table A2. The DCB model is subject to symmetry conditions, each with its
specific constraint equation. These equations are fulfilled by applying the
symmetry operator on the Hamiltonian, where 𝛽 = {1, i}.

Symmetry Equation Operator

PHSt, CC
∗ = 1 h(−k) = −ChT (k)C−1 −

PHSt, CC
∗ = −1 h(−k) = −ChT (k)C−1 𝛽GA,B, 𝛽GH

TRSt, TT
∗ = 1 h(−k) = ThT (k)T−1 𝛽PB,A

TRSt, TT
∗ = −1 h(−k) = ChT (k)C−1 −

PHSc , CC
∗ = 1 h(−k) = −Ch∗(k)C−1 𝛽RA,B, 𝛽RH

PHSc , CC
∗ = −1 h(−k) = −Ch∗(k)C−1 −

TRSc , TT
∗ = 1 h(−k) = Th∗(k)T−1 𝛽𝕀3×3

TRSc , TT
∗ = −1 h(−k) = Th∗(k)T−1 −

CS, Γ2 = 1 h(k) = −Γh†(k)Γ−1 GA,B, GH

Pseudo-Hermiticity,

𝜂2 = 1 h(k) = 𝜂h†(k)𝜂−1 PB,A
SLS, S2 = 1 h(k) = −Sh(k)S−1 RA,B, RH
Parity, P2 = 1 h(−k) = Ph(k)P−1 −

Parity-time,

(PT)(PT)∗ = 1 h(k) = (PT)h∗(k)(PT)−1 −

Parity-time,

(PT)(PT)∗ = −1 h(k) = (PT)h∗(k)(PT)−1 −

A.2. Table of Symmetries

In this appendix, we present the table on the symmetries of DBA and DCB
(Tables A1 and A2). We introduce the following auxiliary matrices:

RH =
⎛⎜⎜⎝
−1 0 0
0 1 0
0 0 −1

⎞⎟⎟⎠ (A8a)

RA,B =
⎛⎜⎜⎝
1 0 0
0 −1 0
0 0 1

⎞⎟⎟⎠ (A8b)

PB,A =
⎛⎜⎜⎝
0 0 1
0 1 0
1 0 0

⎞⎟⎟⎠ (A8c)

GH = RHPB,A, and (A8d)

GA,B = RA,BPB,A, (A8e)

which represent different symmetry operations. Let’s consider the follow-
ing matrices representing a simplified version of the Hamiltonians of the
DCA and DCB models in reciprocal space:

hDC =
⎛⎜⎜⎜⎝

0 tA→H 0

tH→A 0 tH→B

0 tB→H 0

⎞⎟⎟⎟⎠ (A9)

being hDCB like hDCA but changing t → t′. The matrix RH when applied at
the left of the Hamiltonians described in Equation (A10) changes the sign

of the H-outgoing hoppings, t(
′)
H→A,B ⇒ −t(

′)
H→A,B. Similarly, the matrix RA,B,

when applied at the left of the Hamiltonians, changes the sign of the A–

and B–outgoing hoppings, t(
′)
A,B→H ⇒ −t(

′)
A,B→H. Consequently, when the full

transformations are applied, the resultingmatrix is a complete sign flip for
both transformations: h ⇒ RHhR

−1
H = −h and h ⇒ RA,BhR

−1
A,B = −h.

The permutation matrix PB,A exchanges the hopping parameters be-

tween the A and B sites t(
′)
H→A,B ⇒ t(

′)
H→B,A and t(

′)
A,B→H ⇒ t(

′)
B,A→H. Conse-

quently, the transformation matrices GH and GA,B combine both transfor-
mations, resulting in an overall sign flip and a permutation between the A
and B sites:

GhDCG
−1 =

⎛⎜⎜⎜⎝
0 −tB→H 0

−tH→B 0 −tH→A

0 −tA→H 0

⎞⎟⎟⎟⎠ (A10)
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