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Abstract

Phase behavior observed in biology remains puzzling. For instance, the
plasma membrane of cells exhibits signs of criticality, as it is controlled
to remain near a demixing point. This membrane contains thousand of
components, and it is largely unclear how its composition is controlled.
Beyond this, one can ask whether cells should obey the traditional thermo-
dynamic picture, given their small size, large number of components and
the presence of non-equilibrium processes.

Here, we study toy systems, lattice models containing many (>30)
components. We show that these systems exhibit strong finite-size effects.
These manifest as behavior that appears similar to traditional critical be-
havior, but vanish logarithmically with system size. We examine scaling
laws, and whether traditional paradigms from macroscopic thermodynam-
ics can be broken in such systems.
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1 Introduction

The cell is the basic unit of life. In eukaryotes its fluid membrane separates the
cytoplasm from the environment and forms a complex interface with functions
such as filtration and communication. It is embedded in a constantly changing
environment and consists of a vast variety of different molecules. Additionally
its components get constantly removed, added or exchanged [1] which adds
further complexity. The understanding of a membrane of many constituents
with complex interactions is important because the cells health depends on its
membrane functioning normally. Nonetheless the behaviour of such complex
membranes is still largely unexplored.

It has been hypothesized that cell membranes posses some lateral homo-
geneity through different liquid phases [2]. Functional platforms termed ’lipid
rafts’ could persist to facilitate reactions with molecules in the environment as
well as exo- and endocytosis. These represent liquid ordered phases in a liq-
uid disordered environment. One of the possible explanations is that the cell
membrane is near a critical point in composition under physiological conditions
[3]. Proximity to a critical point would imply enhanced correlation lengths and
fluctuations on larger scales which has many advantages for membrane orga-
nization in cells. But keeping the membrane close to criticality seems like a
difficult task as the many membrane components have to be tuned just to the
right composition under constantly changing external conditions.

In the past the phase behaviour of these complex membranes has usually
been studied by simplification to ternary mixtures since each new components
adds a further dimension to the problem. These models consist of a component
with high melting temperature Tm, a component with low Tm and cholesterol.
They display critical demixing with a critical point depending on their compo-
sition [4]. While they capture the basic phase behaviour of cell membranes the
resulting phases are more structured than what is observed in recent experi-
ments. In real cell membranes the phases display nematic disorder below the
critical temperature indicating a over-simplification by ternary mixtures [5].

Some time ago an experimental technique to study cell membranes with ad-
equate composition has been developed [6]. Giant plasma membrane vesicles
(GPMVs) are extracted from living cells such that their composition repre-
sents that of living cells. When these vesicles get cooled 10-15K below growth
temperature they display a demixing transition with typical 2D Ising critical
exponents, thus supporting the critical hypothesis [7] [8]. Cells seem to be able
to adapt their membrane composition depending on the environment such that
they remain critical, making use of many different components which seem to
relax the need for precise component control. This further questions the validity
of ternary mixtures as model membranes as they need to be precisely tuned in
composition.

This project continues a previous study in which the phase behaviour of such
membranes was investigated by a 2D lattice model which focuses on the effect of
the large variety of membrane constituents [9]. Lattice models are powerful tools
to study phase behaviour since they drastically reduce the degrees of freedom of
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a system while making it possible to do finite size scaling up to large systems.
Many real systems can be mapped onto such lattices by only regarding the
important features for their collective behaviour. This drastically reduces the
computational costs. Since a demixing transition is expected the model is a
generalization of the 2D Ising model toN available spin states. It can be mapped
onto a membrane with a fixed number of N chemically different lipids which can
be transformed into one another by some chemical reaction which is controlled
by a chemical potential for each lipid. The spin values can be mapped e.g.
onto the degree of lipid saturation where it is energetically favourable for lipids
with similar saturation to group. This system displays distinct features in the
continuous limit N −→ ∞ as to the case where N is small (e.g. N = 2). Below
a system-size depending onset temperature Tfs the continuous system displays
finite size effects, such as system spanning correlations over a temperature range
and non-ergodicty, which vanish in the thermodynamic limit. Instead of an
ordered phase we observe a quasi-ordered phase with orientational disorder.

The model reproduces many of the trends found in GPMV experiments
such as a growth-temperature depended demixing temperature and composi-
tion regulation near criticality. A critical exponent was found for the demixing
transition which deviates from the 2D Ising universality class but further ap-
parent scaling laws below Tfs were observed which could be responsible for the
deviation by finite size effects. Additionally the behaviour was found to be
qualitatively invariant under exact form of the hamiltonian of the model as long
as it is translational invariant making it robust to the exact values of chemical
potentials for each lipid as well as for their interactions.

In the first part of this work we try to generalize this model to a 2D order
parameter which could be used to add e.g. charged head-group interactions to
the model. For this purpose we use the 2D XY model. We observe the same
quantitative behaviour for both models indicating an independence of the be-
haviour of order parameter dimension. The same critical exponent for one of
the apparent scaling laws was found suggesting ’broken’ universality below Tfs.
Secondly, we try to find the origin of that apparent scaling law by characteriz-
ing the instantaneous spin distributions. Their moments indicate Gaussian-like
behaviour and we employ an analytically solvable model for this purpose; a
Gaussian-like model. One of the apparent scaling laws turns out to be a finite
size effect of logarithmic origin in this model but independence of spin order
dimension becomes trivial. It is unclear however if this model fully covers all
aspects of the previously induced model as it is free of cross-correlations.

Cells are small objects and fall into the peculiar finite size regime introduced
above and we are curious which finite size effects they can use to organise their
membrane and what the experimental signatures would be.
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2 Statistical Mechanics

In order to understand the physical approaches and reasoning used in this study
we first lay out the relation between thermodynamics and statistical mechanics.
Then we introduce the notion of lattice models in statistical mechanics and how
they can be mapped onto statistical ensembles. By doing so we get to know
some of the important techniques to study such systems and remember some
important insights into the field like finite size scaling and universality. Finally
we introduce the lattice models subject in this thesis - continuous spin models.
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2.1 Thermodynamics and Statistical Mechanics

In thermodynamics a system like a box of gas particles is described by a few
macroscopic variables such as the internal energy E, the volume V, tempera-
ture T, number of particles N and so on. In classical statistical mechanics the
macroscopic behaviour of a system is derived from the motion of its many com-
ponents e.g. molecules in a glass of water. To obtain a good approximation
of thermodynamic observables of such systems we are interested in the ther-
modynamic limit where N −→ ∞, V −→ ∞ such that N/V = constant [10].
Probabilistic arguments derived from stochastic considerations become effective
tools as the standard deviation of a stochastic variable decays with the number
of components:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2

where µ = 1
N

∑N
i=1 xi is the mean value for an observable measured N times.

By the law of large numbers stochastic observables will converge towards a mean
value if we repeat the same experiment many times [11]. But we are not able
anymore to calculate exact quantities. But the central limit theorem ensures
that our values for observables converge towards a normal distribution from
which we can extract their mean and variance [12]. In thermal equilibrium the
mean values will converge to a static value around which they fluctuate over
time as the components of a system for any temperature T > 0 are in motion.

If we observe a thermodynamic system we will find it with some probability
in a certain configuration or state, called microstate. We then take snapshots of
its microstates over time, calculate the macroscopic quantities from the particles
of a snapshot and average over all of the snapshots. But we can also imagine an
infinite number of copies of the system each in a different microstate, present
all at the same time. The microstates are possible configurations of the sys-
tem compatible with the specific external conditions which affect the system
and define a macrostate (see figure 1). Depending on the external parameters
which affect the system we can define different statistical ensembles. For a given
macrostate they make it possible to assign probabilities to all compatible mi-
crostates which makes it possible to extract thermodynamic quantities of the
system which the statistical ensemble represents [13]. Statistical ensembles de-
scribe equilibrium phenomena.

Three main statistical ensembles are studied which are defined by different
thermodynamic potentials and represent constrained systems. The internal en-
ergy U describes the effect of all possible thermodynamic processes which can
affect a system (first thermodynamic law):
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Figure 1: Macro- and microstates of a thermodynamic ensemble. The graphic depicts the
consideration of all microstates at the same time compatible with the macrostate. Figure
adapted from [14].

dU = δQ− δW +
∑
i

µidNi (1)

Figure 2: Example of
two thermodynamic
ensembles with their
respective character-
istic thermodynamic
potential. The orange
box depicts inex-
haustible baths. Figure
adapted from [16]

Here δQ describes the infinitesimal heat transfer through
configurational or temperature changes, δW the infinitesi-
mal mechanical work done on the system through changes
in volume or pressure and dN the exchange of particles
e.g. through chemical reactions. δ is used to denote the
path dependence of heat and work changes and describes
an inexact differential. µ is called the chemical potential
and quantifies the cost of adding or removing a particle
from the system (or transformation into another parti-
cle type). When there is more than one particle type
a sum is needed to account for particles with different
chemical potentials which are related to each other (see
Gibbs-Duhem relation [15]). The contributions to dU are
pairs of conjugate variables similar to the formalism in
mechanics: they are combinations of an intensive vari-
able (non-additive thermodynamic ’forces’ like tempera-
ture, pressure and chemical potential) and an extensive
variable (additive like entropy, volume and particle num-
ber) leading to an extensive internal energy [13]. Similarly
to mechanics a change in energy is the product of a force
and a displacement.

The microcanonical ensemble deals with isolated
(non-interacting) systems. Its macrostate is defined by
the total number of particles, the confining volume and
the internal energy (N,V,E) which are fixed. Its appro-
priate thermodynamic potential (which describes changes in its energy) is the
entropy S. The 2nd law of thermodynamics states that dS ≥ 0 which describes
the intuition that it is most probable to find repelling particles in the box evenly
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distributed for any T > 0 [17]. For a microcanonical ensemble only changes in
configuration are possible and thus a system will relax to its equilibrium by
internal energy changes due to configurational changes only:

dU = TdS (2)

The second model is the canonical ensemble where the particles can in-
terchange energy with an ideal (inexhaustible) heat bath (see figure 2). It is
characterised by the external variables (N,V,T) and its thermodynamic poten-
tial is given by the free energy:

F = U − TS

The system strives towards equilibrium with an external heat bath thus changing
its internal energy by giving its components more mean kinetic energy which
makes different microstates accessible. It is useful when describing a system
where the temperature is changed.

The last ensemble I want to mention is the grand-canonical ensemble where
the system can also interchange particles with an infinite reservoir and is de-
scribed by (µ, V, T) and the grand potential :

ΦG = U − TS −
∑
i

µiNi

In principle there are many more ensembles one can construct to efficiently
extract the thermodynamic observables of interest depending on the external
conditions. A nice thing about these ensembles is that we do not have to model
the baths explicitly in practice but its enough to impose constrains with differ-
ent thermodynamic potentials to efficiently obtain the correct observable values
in the thermodynamic limit.

The relation of these ensembles to thermodynamic systems was first noted by
L. Boltzmann and J.W. Gibbs [15] [54]. Boltzmann related the configurational
entropy of a system to what he called the multiplicity Ω, which counts the
number of available microstates for a given macrostate stochastically. For this,
one has to partition the box which contains indistinguishable particles (see Gibbs
paradox [19]) into small volumes of particle size which can either be occupied
or unoccupied. It is given by:

S = kB log Ω

Gas particles with a non-zero internal energy will spread out evenly in the vol-
ume as the number of possible configurations is higher. Since dS > 0 the sys-
tem’s entropy is maximal in thermal equilibrium. Gibbs noted that this entropy
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is the thermodynamic potential for the microcanonical ensemble as its energy
can only change through heat changes when T is constant (see eq. (2)). Thus
establishing a connection between thermodynamics and statistical mechanics.

A useful quantity which fully describes an ensemble is the partition function
[10]. It is the normalization factor in the probability of finding the system
in a certain microstates among all other microstates compatible with a given
macrostate. For a canonical ensemble it is given by

Z =
∑
i

e−βF

where e−βF is the Boltzmann distribution with inverse temperature β = 1/(kBT )
and F is the appropriate thermodynamic potential; the Helmholtz free energy.
The sum runs over all microstates of the ensemble. It can be derived by max-
imizing the entropy of two systems in thermal contact [10]. kB is called the
Boltzmann factor. The probability of finding a microstate is then given by

pi =
1

Z
e−Ei/(kBT )

where Ei is the energy of microstate i. In this way we can assign probabilities
to microstates under given external conditions and can see how pi changes upon
changing the external parameters.

The partition function takes different thermodynamic potentials in consid-
eration depending on the statistical ensemble. While all the above ensembles
seem to be very different they are all equivalent in the thermodynamic limit.
Mathematically the ensembles are connected by Legendre transformations which
induce different constrains [20]. Formally a Legendre transform transforms a
variable of a convex function into its conjugate quantity. For example the fun-
damental equation for the internal energy is:

dU = TdS − PdV +
∑
i

µidNi

It is described by a set of natural variables (S, V,Ni) (extensive). By introducing
additional pairs of conjugate variables we can define a new thermodynamic
potential, for example the Helmholtz free energy:

F = U − TS

In differential form this can be written as

dF = −SdT − PdV +
∑
i

µidNi
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which is now described by natural variables (T, V,Ni). Similarly one can derive
the Gibbs free energy :

G(T, P,Ni) = F (T, V,Ni) + PV

−→ dG = −SdT + V dP +
∑
i

µdNi

Different thermodynamic potentials are suited well for extracting certain ob-
servables. For example a change in the Helmholtz free energy dF is related to
a change in temperature or a change in volume (if we neglect chemical reac-
tions). When fixing the temperature in the experiment we directly obtain the
mechanical work δW = −PdV done by the system by observing dF . Since the
ensembles are all equivalent just the exact definitions of the observables change
and we can choose a convenient thermodynamic potential.

Now coming back to the partition function; if Z is known then one can derive
all thermodynamic quantities of the system in equilibrium as thermal averages
and derivatives of Z as it is an equation of state. For example the total mean
energy of the system can be calculate as:

⟨E⟩ = − ∂

∂β
logZ

The brackets denote a thermal average over space and time. For a system in
equilibrium fluctuations around this mean value can be seen as the response
of the system to perturbations. These perturbations on the other hand can
be caused by spontaneous fluctuations in the system itself which in turn per-
turb the system again through dissipation (e.g. friction). This is stated by the
fluctuation-dissipation theorem [21] which relates response functions to fluctu-
ations.

For energy fluctuations for example the response function is the heat capacity
C (here at constant volume):

CV =
1

kBT

∂2 logZ

∂β2
=
〈
(E − ⟨E⟩)2

〉
For us they are important here since they give insight into the critical behaviour
of a system as we will see later. The above relations imply that derivatives
of Z with respect to some control parameter (here the inverse temperature)
can be used to obtain statistical moments which describe observables and their
fluctuations. It again highlights the connection between statistical mechanics
and thermodynamics since the partition function is derived through stochastic
considerations.
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2.2 Phase Transitions

An interesting behaviour of thermodynamic systems is their ability to undergo
phase transitions [22]. As the thermodynamic variables are changed the system
changes its macroscopic behaviour.

Figure 3: Phase diagram of water for intrinsic variables T and P . Figure adapted from [23].

Figure 4: The molar volume can
be obtained by differentiating the
Gibbs free energy with respect to P
at constant T. In a (V, T ) diagram
V displays a finite jump at the
transition. Figure adapted from
[25]

Phases can be quantified by looking at an or-
der parameter which takes on different values in
different phases (see figure 5). As a typical ex-
ample we will consider water where the density ρ
can be used as an order parameter as its states
(gas-, liquid- or solid-like) have very different
densities. Its thermodynamic behaviour can be
illustrated in a phase diagram of two intrinsic
(non-additive) variables T and P (see figure 3).

At a phase transition the free energy of the
system is not analytical as quantities which are
derivatives of the free energy display a discon-
tinuity. Two common types of phase transi-
tions are 1st order (discontinuous) and 2nd or-
der (continuous) transitions.

A first order transition can be characterized
by a discontinuity in the first derivative in the
thermodynamic potential which translates to a discontinuity in the correspond-
ing state variable [24]. Examples are the melting or evaporation transition,
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where the temperature stays constant but the volume changes abruptly (see
figure 4). In figure 3 these correspond to the red lines.

Figure 5: In this (ρ, T ) plot a 2nd or-
der phase transition occurs at Tc if the
density is just right. Otherwise one
goes to the two phase region by a first
order phase transition, indicated by a
coexistence parabola. Figure adapted
from [26]

A second order phase transition can be
characterised by a discontinuity in the 2nd
derivative of the free energy but the 1st
derivative stays continuous. There exist
points of intrinsic variables (e.g. (Tc, Pc))
where the free energy difference between dif-
ferent phases becomes negligible. These are
called critical points and distinguishing dif-
ferent phases of a system becomes impossi-
ble. In figure 3 these are points where the
coexistence lines end.

This phenomenon is accompanied by
critical opalescence: water looks beclouded
as correlations between the particles be-
come system spanning and fluctuations on
all scales are observed. This translates to
diverging susceptibilities, compressibilities and heat capacities since they are
related to fluctuations (2nd moments) in e.g. particle density or velocity.

As we will see later knowledge about the behaviour at the phase transi-
tion can be used to group different systems into broader ’simplified’ groups of
systems.

Also note that the true phase behaviour of a system can only exist in the
thermodynamic limit as otherwise the finite size of the system can alter its
behaviour through the boundaries. A boundary creates an interface which con-
tributes to changes in the free energy dF ∝ γdA where γ is the surface tension
and dA is the increment in surface area. Picture for example a cubic lattice. As
V −→ ∞ the contribution of this term vanishes as dA becomes more and more
negligible compared to the overall volume since the boundaries only increase as
4L2 whereas the volume increases as L3, where L is the length of the box. Also
fluctuations can create interfaces but by a similar argument the central limit
theorem predicts that their contribution vanishes in the thermodynamic limit
as ∝ 1/

√
N where N is the number of components [10].
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2.3 Lattice gas mapping

As we have seen, simulating phase transitions requires macroscopic systems.
Thus it can become computational expensive to simulate phase transitions by
the use of atomistic simulations. It is necessary to reduce the degrees of freedom
for such systems to efficiently extract statistics. Therefor we want to reduce a
system to its most important aspects which still capture the macroscopic be-
haviour correctly. For simulating phase transitions lattice systems become pow-
erful tools. Here we will show that they can be mapped onto the thermodynamic
ensembles introduced before.

Consider a single species of N gas particles in a box of size L with con-
straint N = constant. For illustration we consider a 2d gas. We discretise the
area in volumes of particle size and end up with a lattice gas (see figure 6).

Figure 6: Sketch of a lattice gas (left)
and spin lattice model (right). Figure
adapted from [26]

After discretization let ni = {0, 1} denote
the occupation of a site (ni = 0 unoccupied,
ni = 1 occupied). The energy of a gas of
identical particles can be described by

E(r⃗i) =
∑
i<j

u(|r⃗i − r⃗j |)

where u is a potential which shall represent
their interactions. For an ideal gas one can
approximate this potential by a Lennard-
Jones (LJ) potential (see figure 7). For a lattice gas we further approximate
such a potential by letting only nearest neighbours interact (unoccupied sites
do not interact (thus ni = 0)). For |r⃗i − r⃗j | < a we have to set u −→ ∞, where
a is the lattice spacing. Translating the original potential to the lattice gas can
be done by:

u(|r⃗i − r⃗j |) −→ u′(i, j) =

{
−ϵ, if (i, j) are nearest neighbors
0, otherwise

Figure 7: Form of the Lennard-Jones
potential e.g. given by VLJ (r) =
4ϵ

[
(σ
r
)12 − (σ

r
)6
]
, where ϵ is an inter-

action strength between the particles.
Figure adapted from [26].

where ϵ is the interaction strength between
two particles.

Since the energy of the system only de-
pends on the interactions of the particles we
can think of a lattice gas Hamiltonian of the
form:

Hgas = −ϵ
∑
⟨i,j⟩

ninj

The sum runs over nearest neighbours ⟨i, j⟩.
Again we have to consider all possible con-
figurations of an ensemble with fixed number
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of particles to obtain the canonical partition function:

ZC =
∑

∑
i ni=N

e−βHgas

where the sum is constrained to microstates with total particle number N .
We can now describe a lattice gas with identical particles in the grand canon-

ical ensemble where the total number of particles is not fixed. We saw that we
can do this by imposing different constrains on the ensemble and the grand
canonical partition function is given by:

ZGC =

N∑
n=0

zNZC =
∑

all config.

e−(βHgas−µ
∑

i ni)

where N is the total number of particles in the system. The sum is now un-
constrained and runs over all possible configurations. µ is again the chemical
potential which depends on temperature and the concentration of the particles
but is equivalent for all particles of the same type. z = eβµ is called the fugacity
and connects the canonical ensemble with the grand-canonical ensemble. Note
that the fugacity can be rewritten as kBT log(z) = µ. We can now introduce an
effective Hamiltonian Heff = Hgas − µ

∑
i ni.

Now we can make the transition to a spin lattice. Here we identify an
occupied site by si = +1 and an unoccupied site by si = −1 with ni =

1
2 (1+si),

where si are scalar ’spins’ (pointing up or down). Now all sites will interact and
by rewriting Heff with ϵ = 4J for the lattice gas we get:

Heff = HI −N(
ϵ

2
+

µ

2
)

with the famous Ising Hamiltonian

HI = −J
∑
⟨i,j⟩

sisj

where si is the spin value at site i and J is the coupling strength between two
spins which here are equal for all sites.

Effective Hamiltonians arise for example in mean field theories where a many
body problem is reduced to a one body problem. For the Ising model for example
one can replace the spins in the Hamiltonian by fluctuations around the mean
magnetization m (orientation) of a spin:

HI = −J
∑
⟨i,j⟩

sisj − h
∑
i

si = −J
∑
⟨i,j⟩

(mi + δsi)(mj + δsj)− h
∑
i

si

If the fluctuations are small we can neglect the O(δs2i )-terms and we can ap-
proximate the original Hamiltonian by an effective mean field Hamiltonian:

HI ≈ HMF = 2Jm2N − (h+ 4Jm)︸ ︷︷ ︸
heff

∑
i

si
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where heff is an effective field of all the other spins acting on spin si. Thus
we can describe an Ising system as if it consists of a single spin on which an
external field acts. Since fluctuations are not negligible near a second order
phase transition this formalism breaks down there (see Ginzburg criterion [28]).

With that we see the relation of the partition functions:

Zgas = ZIe
β( ϵ

2+
µ
2 )N = ZHeff

where ZI is the canonical Ising partition function, Zgas is the grand canonical
partition function for the lattice gas and ZHeff

is a partition function expressed
with Heff . Thus we can model a box of gas particles equivalently by a spin
lattice with different constrains which appear similar to an external field acting
on the system.

Figure 8: Corresponding phase diagrams and order parameters for a 2nd order transition. b)
the difference in density ρ of distinct phases corresponds to a) the magnetization (the mean
spin orientation). Figure adapted from [26].

The equivalence can be illustrated with the phase diagram of both models.
The order parameter of the Ising model is the magnetisation, which is just the
mean value of the spins at a given moment m = 1

N

∑
i si and for the lattice gas

it’s the particle’s density ρ = 1
N

∑
i ni (see figure 8). Both phase diagrams show

a 2nd order phase transition; a discontinuity in the order parameter corresponds
to a divergence in the second derivative of the free energy. Thus we see that we
can break down complicated systems to their basic properties with spin lattices
and still capture their thermodynamic phase behaviour.

The above can be extended to multi-component mixtures. But now we have
to include all of the different interactions between the particles. As an example
consider a binary mixture of species A and B [29]. The change in free energy
has two contributions:

∆Fmix = ∆Umix − T∆Smix

Smix is the entropy of mixing and can be described by fraction of the mixture’s
components:

∆Smix = −NkB(xA lnxA + xB lnxB)

where xA = nA/N is the fraction which is occupied by A particles of total
number nA, for xB = nB/N respectively. It is a concave function (see figure 9).
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Figure 9: Entropy of mixing for a bi-
nary mixture of non interacting parti-
cles. Figure adapted from [27].

For a non-interacting gas (where ∆Umix =
0) this immediately gives the chemical po-
tential of inserting a particle A:

µA =

(
∂F

∂NA

)
T,V,NB

= −kBT (lnxA − lnxB)

= −kBT
∑
i

lnxi

where the subscript indicated which quan-
tities are held constant. In equilibrium the

chemical potentials of all components have to match (then dF = 0).
For interacting particles the entropic term competes with the energy of mix-

ing Umix. We can introduce a χ-parameter which describes the energetic mis-
match between particles A and B:

∆Umix = Umix − Upure,A − Upure,B

= xAxBNkBTχAB

Figure 10: The Gibbs free energy
of mixing as a function of the con-
centration of particles A and B for
different temperatures T . As T is
lowered the free energy develops a
maximum. Figure adapted from
[30].

where Upure describes the energy of a pure liq-
uid. χAB > 0 for favourable A-B interactions
and χAB < 0 for unfavourable ones and the ex-
act value defines their interaction strength. The
total change in the free energy of mixing is then
given by:

∆Fmix = NkBT (xAxBχAB + xA lnxA + xB lnxB)

For χAB > 0 the free energy of mixing develops
a maximum at low temperatures. This means
that a system which exists in a mixed phase
at high temperatures will eventually demix into
two phases at low temperatures since the system
always strives to minimize its free energy as we
will see in the next part (see figure 10).
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2.4 Demixing

Demixing occurs e.g. due to a sudden temperature quench in systems undergo-
ing a 2nd order transition. We can take the example of a binary mixture again
(see section 2.3).

Figure 11: An isobaric (C-T) phase diagram
of a system with a 2nd order phase transition.
After a sudden temperature change (quench)
crossing the coexistence curve, the system is
found in a un-/metastable state. It will slowly
demix over time depending on the miscibility
gap. Figure adapted from [31]

Above the critical point e.g. char-
acterised by the critical temperature
Tc the system is in a disordered phase.
When cooled very rapidly small inho-
mogeneities, stemming from thermal
fluctuations, persist and below the co-
existing line the system ends up in
an un-/metastable state and slowly
distinct macroscopic phases form as
the ordered domains ’grow’ (see fig-
ure 11). Interfacial energy can slow
the demixing down.

As we have seen the free energy
gets quite complicated when we add
particles to a solution with differ-
ent chemical interaction strengths (see
section 2.3). For simplicity we will
again focus on a binary (A-B) mix-
ture; for χAB > 0 at low temperatures this is depicted in figure 12. It can
be seen as the overlap of two free energy curves of two pure substances. F ′

describes the free energy of the system as if it consists of a single phase and F
represents the system consisting of two phases, each rich in A or B.

Figure 12: Free energy F as a function of
concentration of species B. Meta- and unstable
regions are shown depending on the behaviour
of the 2nd derivative of F with respect to cB .
Figure adapted from [31].

When the system was in a mixed
state and gets quenched and crosses
e.g. the transition where it is de-
scribed by demixed phases it is at first
not in equilibrium. Non equilibrium
processes are irreversible and it can be
shown from the first law of thermody-
namics (see eq. (1)) and dS ≥ 0 that
(dF )T,V ≤ 0 as the system relaxes to-
wards equilibrium where (dF )T,V = 0
[32]. From that also follows that the
free energy of a system must be a con-
vex function to be stable in equilib-
rium. Therefor the system is now in
a state where we have two phases and
their equilibrium free energy is given

by a straight line connecting the pure states where F ′ has minima. One can
find the equilibrium F by a common tangent construction. F is constructed
by the lever rule, which states that one can find the equilibrium free energy of
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intermediate concentrations by a weighted average (straight line) between the
phase separated concentrations.

When we look at F ′ of such a system we get values for the concentration
cB (measuring with respect to B) where a single phase becomes unstable. The
points where ∂2F ′/∂c2 > 0 but F ′ ̸= F are called metastable; they are ’robust’
to fluctuations but strive towards equilibrium by demixing. For a cB inside this
region one can always find a lower lying c′B by a common tangent construction.
In an isobaric phase diagram (see figure 11) the binodal or coexistence curve is
defined by the line where the free energy differences between a one phase and
two phase description match; the phases coexist. Here one starts to see distinct
phases. Above Tc a 2nd order phase transition occurs as we have a single phase
for any concentration.

For ∂2F ′/∂c2 < 0 the system becomes unstable; any concentration fluctua-
tions drive the system towards the demixed phases as fluctuations are related
to 2nd derivatives of the free energy (see section 2.1). This defines the spin-
odal curve inside which long wavelength fluctuations (low energy temperature
fluctuations) are sufficient to initiate the growth of ordered domains. Hence
these regimes characterise the kinetics with which the system moves towards
equilibrium.
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2.5 Renormalization group

To get an understanding for universality we will look at the real space renor-
malization group from a block spin transformation point of view (see figure
13).

Figure 13: Sketch of a block spin
transformation. The dots represent
spins and are grouped into blocks of
bigger and bigger size under Rb. Fig-
ure adapted from [33].

The idea of block spins was introduced
by Kadanoff in 1966 [34]. Imagine a e.g. 2d
spin system with nearest neighbour interac-
tions. It is governed by a Hamiltonian which
depends on many degrees of freedom (the
spins) and a set of coupling constants {Kα}
which define the interaction strengths. The
lattice spacing a defines the smallest scale l
on which fluctuations can occur. Now we ap-
ply a scale transformation by grouping spins
in bigger blocks, for example l′ = 2a. We
can assign a new spin value to the coarsened
block spin e.g. for the Ising model (where
si = ±1) with the majority rule:

τ(σ′
j , {σi}) =

{
1 ,if σ′

j = sgn(
∑bd

i=1 σj,i)
0 ,otherwise

Here d is the lattice dimension, b is the current block size and the spins are
scalar. j indexes the coarsened blocks and i the spins in such a block. τ is called
a block spin projector [35].

We already saw that at the critical point the system exhibits fluctuations on
all scales; it becomes scale invariant. Macroscopic systems should be describable
by renormalizable theories which should entail all phases of the system.

In terms of renormalization a scale invariant system is describable by a
rescaled Hamiltonian which has the same form as the unscaled Hamiltonian
but is described by a new set of rescaled coupling constants and a length scale
Rb(K, l) −→ (K ′, l′):

Z =
∑
{σi}

e−βH({σi}) =
∑
{σ′

j}

e−βH′({σ′
j})

with

e−βH′({σ′
j}) =

∑
{σi}

e−βH({σi})Πjτ(σ
′
j , {σi})

For renormalizable systems we are able to apply successive iterations of such
scale transformations RbR′

b where l′ = bl and end up with a rescaled set that
doesn’t change anymore under Rb. These are fixed points in coupling space and
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describe critical points. At a fixed point one can linearly approximate the change
in a coupling constant invoked by a change in a state variable (e.g. temperature
or pressure). Some of the coupling constants grow under Rb (are relevant)
while others shrink (are irrelevant). For example is the correlation length ξ a
relevant variable as it diverges upon approaching Tc whereas the lattice spacing
is an irrelevant variable. The behaviour of some coupling constants is not
deducible from the linear approximation and they are called marginal (higher
orders needed). The divergences are characterised by critical exponents which
indicate the algebraic behaviour (see section 2.6), e.g. ξ ∝ τ−ν where ν is the
critical exponent.

With the block spin transformation we essentially integrate out the details
of the system up to the correlation length ξ which are not needed to describe
the macroscopic behaviour of the system in a certain state. After n iterations of
Rb the correlation length behaves as ξ(K) = b−nξ(K ′) which tells us that the
correlation length must be infinite at the critical point. This makes the block
spin picture intuitive.

Now we can understand the behaviour of F ′ of last section better (see section
2.4).

Figure 14: Coarse-grained free energy fcg as a function of a rescaled concentration Φ =
(c− ccrit)/ccrit where ccrit describes the concentration at which the phases coexist. Here fcg
is taken to be symmetric (like in the Ising model). L is the coarse grained length scale and ℓ
is the interfacial width stemming from e.g. fluctuations. Figure adapted and modified from
[31].

In order to arrive at meaningful ’concentrations’ from a lattice type approach
we have to coarsen over lattice sites, since concentrations fluctuate discontinu-
ously on the lattice spacing scale (think of two neighbouring sites with different
particle types). Usually the scale up to which we coarsen L has to be small
compared to the fluctuation scales which can not always be satisfied. We can
introduce a coarse-grained (’mean-field type’) concentration-gradient free energy
fcg (see figure 14) which describes the inhomogeneous mixture (thermal fluctua-
tions) as a homogeneous phase (compare to section 2.4). The dependence of the
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form of fcg on the interfacial length scale ℓ is depicted in figure 14. The length
scales at which the free energy describes a homogeneous mixture depends on
the length scale of the coarsening L and on external conditions since fluctuation
scales change upon approaching Tc. In the ’coexisting’ region this coarsening
is not valid if ℓ is smaller than L. As L is decreased the free energy landscape
becomes more complicated than e.g. in a common tangent construction. The
’mean-field’ approach can then be interpreted as an inaccurate description of
the system where the coarsening is too rough. If this coarsening is valid on the
other hand and we can do it for the whole lattice we will end up with a system
where the mean field approach is valid.

In this sense many different looking systems actually can be described by the
same Hamiltonian with rescaled coupling parameters. But note that renormal-
ization is only possible if a fixed point exists in the first place. Its validity also
depends on the spatial dimension. For example does the Ising model not have a
transition in 1d (lower critical dimension, renormalising not valid) and for d ≥ 4
its critical exponents coincide with exponents found in a mean-field description
(upper critical dimension). If the number of neighbouring spins is large enough
we can treat fluctuations as small since the ordering effect is stronger the more
nearest neighbours a single spin has. For a regular lattice the number of nearest
neighbours ∝ 2d.

Not every Hamiltonian is renormalizable and the ones that are can be
grouped into symmetry groups. The Ising model is invariant under the Z(2)
symmetry and many system fall into that symmetry group. The order parame-
ter, the total magnetization, can be seen as capturing a spontaneous symmetry
breaking of the system at a critical point. Below Tc the Z(2) symmetry of the
Ising model is broken as the system becomes ordered. The types of symmetries
a system posses can be used to determine the universality class it belongs to as
these Hamiltonians will have the same critical exponents for their divergences.

Therefor the lattice dimension (which depends on its geometry), the order
parameter dimension and its symmetries are sufficient to distinguish between
different universality classes.
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2.6 Finite Size Scaling

When modeling thermodynamic systems, like spin lattice systems, we are not
able to simulate them in the thermodynamic limit due to limited computer
power and time. Instead we want to be able to deduce the behaviour of an infi-
nite system through the simulation of finite systems and observe how it changes
when we change the system size. This is necessary since the true thermodynamic
behaviour only exists in that limit as finite size effects can mask the behaviour.
By understanding finite size effects one can understand the behaviour in the
limit. We will focus on 2nd order phase transitions.

As mentioned before for a 2nd order transition the important regime to
study is in the vicinity of the critical point as the behaviour there characterises
a system (see section 2.5). We saw that the correlation length ξ diverges and
response functions can have singularities in the thermodynamic limit.

Observables for lattice systems can be defined on the basis of statistical
moments of the spins which is evident from the relation of the partition function
to e.g. the free energy F = −kBT log(Z). From F we can derive observables by
differentiation (see section 2.1).

The correlation function is related to the covariance of spins:

G(s00, srxry ) =
〈
s00srxry

〉
− ⟨s00⟩

〈
srxry

〉
where s00 is a reference spin and (rx, ry) is the distance to that reference spin on
a 2d grid. From the correlation function the correlation length can be calculated
which is usually done by fitting the correlation function since its behaviour is
phase depended. For T ̸= Tc we have usually an exponential (fast) decay of
correlations G(r) ∝ e−r/ξ and for T = Tc we have fluctuations on all length
scales and an algebraic (slow) decay G(r) ∝ r−d+2−η, where d is the spatial
dimension, η is the critical exponent for the correlation function and r := |r⃗|.
The susceptibility is related to spin fluctuations and therefor to the 2nd spin
moment as well as to the correlation function:

χ =
1

kBT

(〈
s2ij
〉
− ⟨sij⟩2

)
∝
∫

ddrG(r)

Hence χ must also show an algebraic divergence at Tc. Also the other response
functions behave algebraically near Tc as they are related to fluctuations. Most
commonly the reduced temperature τ = T−Tc

Tc
is used to describe the divergence

to highlight the behaviour close to the critical temperature Tc at which the
transition occurs.

Due to the finite lattice size the divergences e.g. of the correlation length is
now limited; a finite size effect. This alters the critical behaviour, e.g. it shifts
Tc. To make the transition from finite systems to systems in the thermodynamic
limit we will use the susceptibility as an example. In the thermodynamic limit
it diverges as χ(T ) ∝ τ−γ with critical exponent γ. Since the correlation length
also diverges as ξ ∝ τ−ν with critical exponent ν we can rewrite χ(T ) ∝ ξ

γ
ν .

We now introduce a scaling function Φ(L, ξ) which takes care of the finite size
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effects and recovers the correct behaviour in the thermodynamic limit. L is
the system size and ξ again the correlation length and at the critical point this
function can only depend on the finite system size L and ξ. The lattice spacing
becomes irrelevant as the details of the system should not matter. Also we have
fluctuations on all length scales and no intermediate length scale should therefor
be ’special’. The behaviour χL for finite L can then be described as:

χL(τ) ∝ ξ
γ
ν Φ(L/ξ)

Φ(L/ξ) recovers the correct limits: 1 if L −→ ∞ or the system is far from
criticality Φ(L/ξ) = const. and we just end up with χL(τ) ∝ ξ

γ
ν . 2 If L is finite

and ξ ∝ L (critical), Φ(L/ξ) ∝ (L/ξ)
γ
ν such that χL(T ) ∝ L

γ
ν . To highlight the

behaviour with system size the relation is usually written in the form

χL(τ) = (L/ξ)
γ
ν Φ̃(L−ντ−ν)

Thus we can extrapolate the behaviour in the thermodynamic limit from
finite systems through rescaling. In a rescaling procedure observables (e.g. the
susceptibility) can be plotted for different sizes and after rescaling the graphs
with the scaling function and the critical exponents all the curves fall on top of
each other (see figure 15).

Figure 15: Susceptibility χL extracted for different system sizes and temperatures crossing
Tc for the 2d Ising model. After rescaling the x and y axis with the critical exponents (for 2d
Ising: γ = 7/4, ν = 1/4) the curves collapse and thus the underlying system indeed behaves
like a 2d Ising model near a 2nd order phase transition. Figure adapted from [36]

Systems with the same critical exponents are grouped into universality classes.
For example we have seen that a system of gas particles belongs to the Ising
universality class. The critical exponents can be calculated with the renormal-
ization group flow and hence a universality class is deeply connected with the
symmetries of the Hamiltonian by which it is described.
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2.7 Continuous Fields

In this work we look at lattice systems with continuous spin distributions which
I want to shortly introduce. We look at systems with continuous N -dimensional
rotational symmetry O(N) and translational symmetry (invariance under a shift
si −→ si + a, with a ∈ R).

The spin space of models with O(N) symmetry is given by N -dimensional
unit vectors:

ΩO(N) = {s⃗ ∈ RN : ||s⃗|| = 1}

The interaction hamiltonian is given by the scalar product of neighbouring spins:

HO(N) = −J
∑
⟨i,j⟩

s⃗is⃗j (3)

where J is some interaction strength which we will take to be independent on
grid location. For J > 0 spins favour to align.

For this work we are interested in the case d = 2. For N = 1 the Hamilto-
nian above (eq. (3)) corresponds to the 2D Ising model.

As we will need it later I want to mention the case N = 2 explicitly.

Figure 16: The spin space
of the 2d XY model.

For this case eq. (3) is called the 2d XY model
which was studied intensively by Berezinskii, Koster-
litz and Thouless (short BKT) [37]. The spins live
on a unit circle (see figure 16). In contrast to the
Ising model this system has a 2d order parameter e.g.
m⃗ = (mx,my)

⊥ = ⟨s⃗⟩ and since it belongs to the O(2)
symmetry group it is in another universality class.

It can be shown for the 1d and 2d case with
N ≥ 2 that there is no finite order phase transition.
This is summarized by the Mermin-Wagner theorem
[38]:

”A continuous symmetry cannot spontaneously be
broken at any finite temperature for systems with O(N)-symmetry with N ≥ 2
and short range interactions (e.g. nearest neighbour-interactions) in d =
{1, 2}.”

Continuous symmetries are more ’robust’ than discrete symmetries in the
sense that it is harder to break them (see Ising model transition where N = 1
(discrete symmetry)).

Intuitively one can understand this by looking at a snapshot of a simulation
of the 2d XY model at low temperatures (see figure 17).
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Figure 17: Simulation snapshot of the 2d
XY model at low temperatures with fixed
boundary conditions. The spins do not
fully order but have quasi-long range or-
der. Figure adapted from [38].

To illustrate the concept fixed bound-
ary conditions where chosen. At high
temperatures the spins will be disordered
and point in all directions due to the high
thermal energy. At low temperatures the
spins do not fully order but have quasi
long range order: the 2-point correlation
function decays algebraically

⟨s⃗is⃗j⟩ = ⟨cos(θi − θj)⟩ ≈ |i− j|−C/β

for some C > 0. θi is the angle of spin i to
some reference axis. At low temperatures
neighbouring spins will point in roughly
the same direction and one can approxi-
mate cos(θi − θj) ≈ 1 − 1

2 (θi − θj)
2. For

N > 2 the correlations decay exponen-
tially fast for any T > 0 [39], although
this is debated e.g. for the Heisenberg
model with N = 3 [40].

The absence of true long range order is due to the continuous symmetry:
neighbouring spin deviations contribute with arbitrarily low energies.

Figure 18: Ground state of the system
for an enforced flipped spin in the centre.
Figure adapted from [38].

In figure 18 a spin is flipped in the
middle of the grid and it can be shown
that the contribution to the Hamiltonian
has an upper bound ∆H ≤ 8Cβπ2

log(1+N)

where C > 0 and N is the total num-
ber of spins [38]. It can be derived by
a Taylor expansion of the potential en-
ergy V between two neighbouring spins:
V (θi − θj) ≈ V (0) + 1

2C(θi − θj)
2, where

V ′(0) = 0 since V is symmetric. The an-
gle is a continuous variable here and the
angle difference (enforced by the bound-
ary) vanishes as N −→ ∞. These spin
waves prevent any long range order at
finite temperature and no finite order
phase transition can occur in the ther-
modynamic limit.

The XY model is quite complicated and exhibits a topological phase transi-
tion, the BKT phase transition. It describes the (un-)binding of vortices and is
of infinite order; but will not be of relevance here.

Last I want to mention gradient models and keep the discussion to scalar
spins. These are models where the Hamiltonian is continuously translational
invariant since they only depend on neighbouring spin value differences. As it
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will be useful later we consider as an example the Gaussian gradient model (or
Gaussian free field) which is given by the Hamiltonian:

HG = J
∑
⟨i,j⟩

(si − sj)
2 + r

∑
i

s2i

Figure 19: Example of a configuration of
the Gaussian gradient model with bound-
ary condition ν = 0 for a 30x30 grid. Fig-
ure adapted from [38].

The sum runs again over nearest
neighbours and the spins are scalar val-
ues. The term r keeps the spins bound
to finite values. All terms are quadratic
and thus the modes decouple in fourier
space and this model is exactly solvable
(see section x). For r = 0 the spins be-
come unbound and can take on very large
values. The variance of a spin diverges as

σ2(s0) ∝
{

L ,in 1d
log(L) ,in 2d

where L is the system size. For r ̸= 0 the correlations decay exponentially fast
for all T > 0. Without the penalty term ∝ r one would not be able to define
Gibbs measures for d = {1, 2}.

For dimensions d ≥ 3 the number of neighbours is high enough such that
σ2(s0) becomes bounded even for r = 0. The correlations decay slowly as
G(s0, sr) ∝ r−(d−2) (here η = 0 = ηMF ) and the susceptibility becomes infinite
[38].
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3 Biological Background

We have a general interest in the understanding of a complex membrane of many
components and of finite size. To establish a connection to cell membranes I
want to introduce some biological aspects of membranes. We orientate our
simulations along Giant Plasma Membrane Vesicles (GPMV) experiments which
I shortly want to introduce.
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3.1 The Plasma Membrane

Figure 20: Sketch of an eukaryotic plasma membrane. Lipids (red/brownish) form the basic
bilayer sheet by hydrophobic interactions in which proteins (blue) and cholesterol (yellow)
are embedded. Such a membrane consists up to 50% of lipids, around 20-50% of sterols and
of around 30% of proteins (by weight). The exact composition can vary drastically between
different cells. Also shown is the cytoskeleton which runs along the cytosolic leaflet. Figure
adapted from [41].

The interior of an eukaryotic cell (cytoplasm) is separated from the envi-
ronment by the plasma membrane (see figure 20) and is embedded in a liquid
(mostly aqueous) solution. Up to 50% of the plasma membrane are lipids (by
weight). Lipids consists of usually two hydrocarbon chains attached to a po-
lar headgroup (see figure 21). The bilayer structure of a membrane forms by
’polar’ forces which let lipids spontaneously phase separate. In a bilayer the
polar heads shield the apolar lipid tails from the water which minimizes the free
energy. There are many different types of lipids in a plasma membrane which

Figure 21: Example of a typ-
ical plasma membrane lipid,
here a phospholipid. They
are amphiphile molecules: they
posses a hydrophilic headgroup
(red) and a hydrophobic tail
(yellowish). The tail consists of
two hydrocarbon chains which
can be different making the
lipid asymmetric. They can
be fully saturated (only sin-
gle C-C bonds) or have unsat-
urated positions (double C=C
bonds). A double bond creates
a kink in the chain and makes
lipids with many unsaturations
floppy. Figure adapted from
[41].

differ by their headgroup and tail length or saturation level. While their head-
groups can differ substantially to fulfill many functions we just want to focus
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on the tail. The carbon chains can differ in saturation levels, tail length (12-
24 C-atoms) and saturation position. These considerations alone yields around
O(102)−O(103) distinct lipids.

Figure 22: Structure of the most
abundant eukaryotic cell mem-
brane sterol: Cholesterol. The hy-
drocarbon rings give it a bulky and
rigid shape and make it mostly
unpolar except for the OH ’head-
group’.

Embedded in that bilayer sheet are many
different types of molecules like proteins and
sterols (see figure 20). We will come back to
the role of proteins in the outlook and for now
look at the most important sterol for animal cell
membranes: cholesterol. These are rigid and
bulky molecules made up of cyclic apolar hy-
drocarbon chains and an attached polar group
(see figure 22). It’s bulky hydrophilic part sits in
between the spaces of the lipid tails making the
membrane more rigid and allows for the control
of membrane fluidity [42].

If we consider a simplified membrane of
only lipids and look at a single sheet of
the bilayer (see figure 23) we see that unsaturated lipids occupy more
space due to their kinks. They strive towards regions where they
have a lot of space such that their configurational entropy maximizes.
On the other hand saturated lipids have straighter tails which have stronger Van-
der-Waals attraction and they can come closer together. Unsaturated lipids are
identified with a high melting temperature Tm and saturated lipids with low Tm.
Together with cholesterol in ternary mixtures they show phase separation into
liquid ordered (rich in cholesterol and low Tm molecules) and liquid disordered
phases (high Tm rich) [4].

Figure 23: A monolayer of a
lipid membrane. Lipid phases
coexist (top) and lipid phase
separation into liquid ordered
and liquid disordered phases
(bottom). Figure adapted and
modified from [43].

In the liquid ordered phase cholesterol can fit in
between the gaps of the saturated lipid tails to fur-
ther magnifying the attractive forces. This suggests
that the phase behaviour of a cell membrane is af-
fected by the concentration proportion of saturated
and unsaturated lipids (see section 2.4).

The complex chemical space creates a complex
phase behaviour of the overall membrane in cells.
In a constantly changing environment the mem-
brane has to retain the right composition to guar-
antee unobstructed cell functionalities and its com-
position is constantly regulated [1]. I also want
to mention that the two leaflets are asymmetric in
compositions and by a process which burns ATP,
components can be interchanged or pumped be-
tween leaflets with flippases from the inner to the
outer leaflet [44]. This adds another level of com-
plexity to the plasma membrane. Furthermore the
membrane is attached to the cytoskeleton which

creates non-diffusive points in the membrane.
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3.2 GPMV experiments

In this work we are interested in studying the phase behaviour of a complex
membrane of finite size. Cells are not macroscopic thermodynamic systems but
micron-sized (≈ 10 − 100µm). Giant Plasma Membrane Vesicle (GPMV) ex-
periments give insights into cell phase behaviour.

We saw in section 3.1 that research regarding plasma membrane phase be-
haviour was often conducted with ternary mixtures and their limitations.

Figure 24: Sketch of a GPMV
extraction. Functioning cells are
grown at a temperature T0 and
vesicles are extracted which are
fixed in composition. Figure
adapted and modified from [46]

With the introduction of GPMVs a more
accurate cell membrane composition can be
achieved [45]. These are vesicles (5 − 20µm in
diameter) which are directly obtained by vesic-
ulation from living cells, grown at a certain tem-
perature T0 (see figure 24). During this process
the leaflet asymmetry gets lost and the vesi-
cles have no cytoskeleton. They have no intra-
cellular processes which together with the ac-
curate cell composition makes them good toy
models to study cell membrane phase behaviour.
When they get cooled 10-15K below T0 they
spontaneously phase separate which is observed
through optical fluorescence microscopy (see fig-
ure 25) [47].

By measuring e.g. the structure factor or the line-tension and averaging
over a number of GPMVs (ensemble average) critical exponents were extracted
which suggest that the demixing is critical and belongs to the 2D Ising univer-
sality class [3]. Upon changing the cell growth temperature T0 the cell ’adapts’
the composition of its membrane (as it is regulated) such that it always phase
separates 10-15K below T0. This suggests that cells are close to a critical point
(see figure 26) and actively controlling their composition to remain ’critical’.

Figure 25: A GPMV extracted at T0 = 25◦C and then slowly cooled down to 20◦C. A
demixing into two phases is observed with fluorescent imaging with a critical point Tc ≈
22.7◦C. The length scale (white) is 5µm. Figure adapted from [47].

Many open questions arise. For example is it unclear if the cell membrane’s
phase behaviour gets altered by the GPMV extraction. Furthermore is it unclear
how to reproduce the extraction procedure in simulations and do finite size
scaling to extract critical exponents.
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Figure 26: Cell membranes could be tuned
close to a critical point a physiological condi-
tions (red). The Ising isobaric phase diagram
with the miscibility gap is shown. Below the
critical temperature the membrane phase sep-
arates into a liquid ordered and liquid disor-
dered phase. The contours indicate regions of
constant correlation lengths. Figure adapted
from [48].

It is not clear how a cell can main-
tain a critical composition (a compo-
sition that demixes when fixed and
cooled). It would require a fine tun-
ing of its composition which would re-
quire a sophisticated regulation mech-
anism. The exact cell composition
also varies for individual cells during
their lifetime, for example through di-
etary changes [49]. This suggests a
manifold of ’critical compositions’.
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4 Methods

4.1 Metropolis algorithm

To simulate lattice models we have to generate many microstates of the system
to obtain statistical information about the thermodynamics. Here we employ a
Metropolis algorithm to generate the states. Through iterated Markov Chain
Monte Carlo (MCMC) steps we approximate the Boltzmann distribution of the
system. A Markov Chain takes a microstate of a system, which is defined by a
set of variables X to another microstate characterised by X ′, where the proba-
bility of a transition only depends on the current microstate and is independent
of all other previous microstates ’visited’. A Monte Carlo step can be used in
many ways but first I want to talk about the basic idea of Metropolis sampling
[50].

We want to sample a collection of states based on an arbitrary distribution,
which describes a thermodynamic ensemble in equilibrium; lets call it P(X),
where X is a microstate of the system. In equilibrium P(X) is stationary and
we have the detailed balance condition:

w(X ′ −→ X)

w(X −→ X ′)
=

P (X)

P (X ′)
(4)

where w(X −→ X ′) is the weight of going from state X to X ′. In equilibrium
all processes are reversible and going from X to X ′ is equally probable as going
from X ′ to X.

The Metropolis approach is now to sub divide the transition from one state
to another into two steps:

w(X −→ X ′) = wacc(X −→ X ′)A(X −→ X ′)

where wacc is a proposal step which e.g. flips a spin and creates a new state X ′

with a new probability. This new configuration is then accepted based on some
criterion which is described by the acceptance ratio A(X −→ X ′). Inserting
this into the detailed balance equation (eq. (4)) leaves us with:

A(X ′ −→ X)

A(X −→ X ′)
=

P (X ′)wacc(X −→ X ′

P (X)wacc(X ′ −→ X)

There are different choices for the acceptance ratio. The Metropolis choice is
either A(X −→ X ′) = 1 or A(X ′ −→ X) = 1 leaving us with the criterion:

A(X ′ −→ X) = min

(
1,

P (X ′)wacc(X −→ X ′)

P (X)wacc(X ′ −→ X)

)
For a canonical ensemble P (X) is the Boltzmann distribution. The accep-

tance ratio will depend on the energy differences ∆U of the two configurations:
A′(X ′ −→ X) ∝ min(1, exp(−β∆U)). Thus if a configuration is energetically
more favourable it will always be accepted.

34



The distribution of the visited states X0, .., Xt converges towards P (X) as
a stationary solution. Initially the distribution is very different from P (X) but
since a Markov chain only depends on the current state (’memory-less’) it will
explore all possible states. The probability of finding the system in a state X
will eventually be given by P (X). A Markov processes is therefor ergodic. If
the stationary solution is reached the system is in equilibrium.

Once in equilibrium we calculate statistics through spin moments of config-
uration snapshots and average them.

If two states are separated by a large energy barrier this algorithm has
trouble to efficiently sample the full distribution since states with high energy
have a small acceptance ratio. For example will an ordered Ising-like system
practically never go from a state where all si = 1 to si = −1 since the energy
cost for flipping a spin is proportional −4J (J is the interaction strength).

The Metropolis algorithm is a local algorithm: it e.g. goes through each
lattice site and attempts to swap a spin value based on the Metropolis criterion.
Then for critical phenomena critical slowing down is observed. At the critical
point large scale fluctuations are present in the system and correlation times
are increased. A local algorithm will have trouble sampling all the microstates
efficiently (that is in a reasonable amount of time) and higher order moments
become difficult to compute. Therefor one often employs accelerated algorithms
to speed up the simulation.
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4.2 Replica exchange

To speed up the simulations we use replica exchange which is an example of a
global update [51]. Especially near a critical point correlation times τ are en-
hanced which causes local algorithms to take a long time to explore the full phase
space. Fluctuations will need exponentially long to relax back to equilibrium
since the system is highly correlated.

Figure 27: Sketch of walkers ex-
changing temperatures during the
time of the simulation. Replicas
from low temperatures eventually
will be sampled at high tempera-
tures as well. Figure adapted from
[52]

Replica exchange speeds up simulations by
running N different copies of an ensemble at
different temperatures TN . They are separated
by ∆T . We now have a set of replicas {X} =
{X1

T1
, ..., XN

TN
} where the upper index denotes

the replica or walker index which is later needed
for reweighting.

It is more efficient to exchange the temper-
atures of the replicas and to rescale the energy

like E′ =
√

Tf

T0
E, where Tf and T0 are the new

temperature and the initial temperature respec-
tively. Again we impose detailed balance:

P ({X})ω(X −→ X ′) = P ({X ′})ω(X ′ −→ X)

where P ({X}) is the weight of the whole ensem-
ble of replicas which is given by a product of the weights of each replica (see
Metropolis algorithm).

We then find a Metropolis-like criterion to interchange the temperatures of
two replicas:

A(1 −→ 2) = min

(
1, exp

([(
1

kBT1
− 1

kBT2

)
(E1 − E2)

]))

Figure 28: Sketch of replicas at different temperatures exploring a free energy landscape.
Figure adapted from [53]
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The acceptance rate is higher the smaller ∆T is but having more replicas
also means higher computational cost.

By interchanging the configurations a system stuck in a free energy minima
(e.g. low T ) is able to overcome that barrier as its height effectively gets reduced
at higher T (see figure 28). Similarly a system at high temperatures is able
to relax and explore the ’valleys’ of the free energy surface in more detail.
Information on the kinetics get lost by implementing such algorithms.
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4.3 Overcoming interfacial energy

To overcome interfacial energy in a demixing process (critical slowing down)
we employ additional Gibbs frames (Gibbs ensemble MC) depending on the
number of phase separations present [54].

Figure 29: Sketch of the extra MC
step used in Gibbs ensemble Monte
Carlo. µ is the chemical potential.
Figure adapted from [54].

An additional Gibbs frame introduces a copy
of all replicas and now additionally two ensem-
bles at same temperature can interchange par-
ticles/spins (see figure 29). When we consider
a canonical ensemble of a binary mixture this
will create two ensembles with opposite kind of
species if the system demixes. In the current
implementation the chemical potentials and vol-
umes have to match in equilibrium and the par-
ticle number in each box is conserved. We do
not impose equal pressure which is reasonable for large enough systems and
symmetric spin distributions.

Again we can come up with a Metropolis acceptance criterion for particle
exchange and we have to impose that the boxes are now part of the grand
canonical ensemble. If we try to insert a particle into box 1:

Ainsert(1 −→ 2) = min

(
1, exp

(
−β∆U1 + ln

(
zV1

N1 + 1

)))
where z is the activity (which can be related to a χ parameter [55]), N1 is the
number of particles in volume V1 of box 1 and ∆U is the energy change when
a particle gets inserted. Note that we then also have to insert a particle into
box 2 from box 1 in order to keep the particle number in both (’canonical’)
ensembles fixed. This is done by choosing the box of insertion/removal with
equal probabilities which guarantees reversibility. The overall acceptance ratio
is the product of the two processes, here for inserting a particle into box 1 and
removing a particle from box 2:

pexchange = pinsert,1premove,2

= min

(
1, exp

(
−β

(
∆U1 +∆U2 + TkB ln

[
V2 (N1 + 1)

V1N2

])))
and similarly for the other Gibbs frame.
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4.4 Numerical implementation details

The code uses the C, C++, python and cuda languages and runs on single
graphic card without parallelisation schemes [9]. We only employ lattice sys-
tems sizes of powers of 2 for convenience.

Simulations are performed in semi-grand canonical and canonical ensembles.
Semi-grand canonical ensembles are often used in simulations of mixtures. The
overall particle number of a system is fixed but different components are allowed
to get exchanged for components on the grid (e.g. spin flips).

The canonical ensemble is simulated by constraining the spins of the semi-
grand canonical ensemble. The constraint does not allow the spins to change
their individual values anymore. They are now only allowed to diffuse on the
lattice. We are not interested in the dynamics of a demixing process and to
speed up the diffusion non-local MC moves are implemented. Instead of only
swapping nearest neighbours, spins are exchanged up to a distance of ℓ = 2l

every time step, where l < log2(L).

We will fix periodic boundary conditions, such that 2d lattice is wrapped
upon a torus. Simulations were equilibrated with the number of MC sweeps
depending on system size (105 − 5 · 106 for equilibration) where the number of
exchanges per sweep is 4L2. Statistics were taken every 4th sweep for 105− 106

sweeps. The code gathers the first four centered moments of different quantities
like the spins, the spins with subtracted spatial mean, the magnetisation, the
absolute magnetisation, the energy, ...

The autocorrelation function is a convolution of a signal with itself at dif-
ferent times. Here it is computed for every spin pair and with FFTs to reduce
computational cost: G(r) =

〈
F−1

(
|F(s(r)− ⟨s⟩L)|2

)〉
t
(see Wiener-Khinchin

Theorem [56]), where ⟨s⟩L is the instantaneous spatial spin average. The FFT
reduces the computational cost of a fourier transform O(L2) to O(L log(L))
which is more efficient than calculating G(r) with a convolution (which is also
of O(2)). For more details see ’Support information’ of [9].

For single temperatures equilibration was done gradually: A system was ini-
tialised at a high temperature where it was allowed to relax before a slightly
lower temperature was superimposed until the desired low temperature was
reached. This was effective to avoid the system getting stuck e.g. in a vortex
conformation in the XY model which takes a long time to relax. For parallel
tempering the replicas (≈ 64−256) were spaced logarithmically to ensure effec-
tive swapping of replicas (P (X) ∝ e−βH(X)).

For simulations the intern thinc-cluster of the MPI-P was used as well as the
external TALOS cluster [57] were multiple simulations were run simultaneously
on different graphic cards.
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5 Previous Results

5.1 N-state 2D Ising model

The work in this thesis continues research conducted on a first model to de-
scribe a complex membrane of many components [9]. I therefor want to shortly
introduce the model as well as mention some of the results. I will call it the
N-state 2D Ising model which is given by the Hamiltonian:

HN = χ
∑
⟨i,j⟩

|si − sj | (5)

The subscript N indicates the dependence on the number of available scalar
spin states which are assigned as si = {−1,−1+2/(N−1), ..., 1}. The sum runs
over nearest neighbours, χ > 0 is some energy scale which defines the interaction
strength (maximal energetic mismatch) and HN is given in units of kBT . For
N = 2 this can be mapped onto the 2D Ising (ferromagnetic) model since the
model conserves the Z(2) symmetry of the Ising model. It is a gradient model
and translational invariant (see section 2.7).

We are interested in the case N −→ ∞. As N increases one can imagine
that a particle with slightly different interaction strength is added to the mixture
where the individual differences become more subtle. As a simplified model for
a cell membrane one can map the spins onto (a monolayer of) lipids with slightly
different saturation (see section 3.1) where s = −1 represents a highly saturated
lipid and s = 1 a highly unsaturated lipid. This choice reflects experimental
results where unsaturated lipids phase separate from saturated lipids.

Figure 30: Snapshot of a L = 128 simulation in the limit N −→ ∞ at a) high temperature
(1/χ = 80) and b) low temperature (1/χ = 0.1). Figure adapted from [9].

Figure 30 shows simulation snapshots at two different temperatures for this
model in the limit N −→ ∞. At high temperatures the full spin space is sampled
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uniformly and the system is completely disordered. At low temperatures we do
not find a single ordered phase (⟨m⟩ remains 0) but a quasi ordered phase and
instantaneously only part of the spin space is sampled.

Figure 31: The correlation length as a function of temperature for a L = 64 system is shown
where N is gradually increased from N = 2 to N = 38. The onset temperature is marked as
Tfs for the case N = 38. Figure adapted from [9].

Figure 31 shows the correlation length as a function of temperature (trans-
lated to the energy scale χ) for a L = 64 system and increasing values of N .
For N = 2 the usual phase transition peak in the correlation length is ob-
served which corresponds to the ’critical temperature’ which is identified with
the 2D Ising model critical temperature Tc,Ising (for a finite system size). As
N increases a plateau region over a temperature range manifests below an on-
set temperature Tfs which becomes independent of N if N is sufficiently large.
For finite but large N the plateau region ends at Tc ∝ Tc,Ising/(N − 1) (thus
Tc −→ 0). The plateau persists down to T = 0 in the limit N −→ ∞. Finite
systems display this feature already if N is sufficiently large (here for N ≥ 38).
A plateau region suggests system spanning correlation lengths over a range of
temperatures Tc < T < Tfs which is a departure from discrete systems. The
correlation length divergence is limited by the finite system size.

In figure 32 N is set to be sufficiently large and L is varied. The plateau
region vanishes as L increases; the onset temperature Tfs is a function of L:

T−1
fs − 1

2
log (Tfs) ≈ 1.12 log(L)− 1

This suggest that the critical behaviour vanishes in the macroscopic (thermo-
dynamic) limit and that the behaviour stems from finite size effects. For each
size we have quasi long range order with system spanning correlation lengths
below Tfs.
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Figure 32: The correlation length as a function of temperature in the continuous limit where
N is sufficiently large for different system sizes. Figure adapted from [9].

Figure 33: Uniform spin distribution un-
derlying the N-state 2D Ising model. At
high temperatures the full spin space is
sampled at every instance whereas at low
temperatures (red) only part of the spins
space is sampled which drifts between s =
−1 and s = 1.

The spin space of the model can be vi-
sualized as in figure 33 where Ω(s) is the
spin space density. At high temperatures
a uniform distribution is sampled (black)
and at low temperatures only a fraction
of the spin space is instantaneously sam-
pled (red) (see σL in figure 34). For low
T the system acquires a translational in-
variance: the instantaneous sampled spin
distribution is free to translate between
−1 and 1.

To fully understand the hamiltonian
we can explicitly include the chemical po-
tential term from the semi-grand canon-
ical simulation in the Hamiltonian (eq.
(5)):

HN = χ
∑
⟨i,j⟩

|si − sj | − kBT
∑
i

log Ω(si)

µi = −kBT log (Ω(si)) is the chemical potential for spin value si based on a
density of states which in this case is the uniform distribution which keeps the
spins in the interval [−1, 1]. It generally follows from similar considerations as
in the lattice gas section where a chemical potential appeared when describing
the system in a grand canonical ensemble (see section 2.3):

ZGC =
1

(2N + 1)K

1∑
s1=−1

1∑
s2=−1

...

1∑
sN=−1

e−H ≈
∫ 1

−1

Ω(s1)ds1...

∫ 1

−1

Ω(sK)dsKe−H
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=

∫ 1

−1

ds1

∫ 1

−1

ds2...e
ln Ω(s1)+lnΩ(s2)+...e−H

where the sum contains 2N +1 states, K = L2 is the total number of spins and
H is the interaction Hamiltonian (eq. (5)). This lets us again define an effective
Hamiltonian:

βHeff = βH−
N∑
i=1

lnΩ(si),with

∫ 1

−1

Ω(s)ds = 1

The chemical potential can be seen as an external field of entropic origin. In
the N State Ising model we choose all states to be equally dense. Biologically
speaking this can be seen as a lipid exchange/insertion mechanism that does
not distinguish between different types of lipids.

Figure 34: σ2 and σ2
L are plotted as a function of temperature in the limit N −→ ∞ as a

function of temperature. Below Tfs the quantities are unequal. Figure adapted from [9]

To get insight into the behaviour below Tfs the system is characterised by
its spin distribution. Two different distributions are considered: a time av-
eraged distribution D(T, s) and an instantaneous spatial averaged distribution
DL(T, s). They are related by D(T, s) = ⟨DL(T, s)⟩t where ⟨.⟩t is a statistical
time average. These distributions are characterised by their variances: the usual

ensemble averaged variance σ2 =
〈〈

s2
〉
t
− ⟨s⟩2t

〉
L
and the instantaneous spatial

variance σ2
L =

〈〈
s2
〉
L
− ⟨s⟩2L

〉
t
which differ in the order in which the averages

are taken and ⟨.⟩L is a statistical space average. Figure 34 shows the two vari-
ances as a function of temperature for different system sizes in the ’continuous’
limit (for N sufficiently large). Due to the continuous nature of the model the
system never fully orders as there are arbitrarily low energy excitations (see
section 2.7). The instantaneous spin distribution becomes narrower than the
available spin states as T is lowered. Below Tfs σ

2
L ∝ T and σ2

L ̸= σ2. The ther-
mal average can be decomposed into a spatial and a temporal average and the
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order of taking them should not yield different results in thermal equilibrium.
The discrepancy of these two quantities below Tfs means that ’macroscopic’
thermodynamics is ’broken’ in that regime: systems of finite size are not er-
godic anymore. But as we saw, the behaviour vanishes for L −→ ∞, where also
σ2 = σ2

L.
Since σ2

L becomes linear below Tfs one can take the fraction of σ2
L for dif-

ferent sizes in the linear regime. By doing so one finds an apparent scaling law
whose origin we explore in this work:

σ2
L(T0) ∝ L−0.2

Lastly I want to mention that the finite size regime of the system was found
to be qualitatively unaffected by the exact form of the chemical potential. Here
we want to further explore if the behaviour is robust to other modifications to
HN , e.g. like the changing the spin dimension. For further details on the system
see [9].
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6 Results

This work is divided into two parts. In the first part we will examine the 2D
XY model to show that they behave similar to models of the type introduced
in section 5 although we change the order parameter dimension. Secondly we
approximate such models by an analytically solvable model. We then analyse
it to find the origin of the apparent scaling law of section 5.
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6.1 2D XY model analysis

6.1.1 Correlation length of the 2D XY model

The 2D XY model was introduced in section 2.7. One can rewrite the Hamilto-
nian

H = −J
∑
⟨i,j⟩

s⃗is⃗j = −J
∑
⟨i,j⟩

cos(θi − θj)

Here we implement it using squared spin differences (with a uniform underlying
distribution [−π, π] for the angle θ):

HXY = J
∑
⟨i,j⟩

(s⃗i − s⃗j)
2

This can be mapped onto the 2D XY model Hamiltonian introduced before:

(s⃗i − s⃗j)
2 = s⃗i

2 + s⃗j
2 − 2s⃗is⃗j = 2s2 − 2s2(cos θi cos θj + sin θi sin θj)

=
1

2
(1− cos(θi − θj))

where s⃗ = |s⃗|(cos θi, sin θj) with |s⃗| := s = 0.5 and cos θi cos θj + sin θi sin θj =
cos (θi − θj) was used. We can ignore the constant factor in the Hamiltonian.
Thus β′

BKT = 1
2βBKT where β′

BKT is the critical inverse temperature for our
model for the BKT-transition and βBKT ≈ 1.13 [58] from the 2D XY model
introduced in section 2.7.

First we reproduce the plateau plots for the correlation function of the 2D
N-State Ising model. To do so we equilibrate 3 systems of different size with
replica numbers depending on that size for an inverse temperature range crossing
β′
BKT ≈ 0.565. The correlation function is calculated by FFTs and averaged

for every reference point on the grid (see section 4.4). A reference point on the
grid was chosen and the correlation function was reduced to 1d by using the
radial symmetry of the model:

G(s⃗00s⃗xy) −→ G(s00sx0)

Note that due to the periodic boundary conditions only points up to L/
√
2 are

independent.
The correlation length ξ was extracted by fitting an exponential e−|x|/ξ (with

x = (0, .., L/
√
2)) to the correlation function. ξ of a fit from the previous (higher)

temperature was used as an estimate for the next fit. Note that at low T the
exponential decay changes in the low temperature regime to an algebraic decay
in the 2d XY model (quasi long-range order). We are only interested in the
quantitative trend of the correlation length and by always fitting an exponential
we still can observe the approximate course of ξ.

46



Figure 35: Correlation length over a range of inverse temperatures β for the 2D XY model,
crossing βBKT . The BKT-transition is visible with βBKT approaching the value 0.565 as
L increases. For high β the correlation length plateaus and reaches a characteristic value
depending on system size. The label indicates different system sizes L.

Figure 35 shows the extracted correlation lengths for 3 different system sizes.
In the low β regime (above the BKT-transition) the spins are uncorrelated (dis-
ordered phase) and upon lowering the temperature the correlation length in-
creases (binding of vortices) until it reaches a peak which we identify with the
BKT-transition temperature. Below the transition the correlation length first
decreases (binding of vortices) and then starts increasing again before finally set-
tling to a system size depending value. The onset for the plateau region (where
the correlation length reaches its final value) appears to move to βfs −→ ∞
for increasing system sizes. Thus the XY model displays a qualitative similar
feature (finite size effect) as the 2D N-state Ising model with system spanning
correlation lengths above βfs.

A plateau region was found for the 2d Heisenberg model as well by P. Schmoll
et al., but for extrapolations to infinite systems with a tensor network approxi-
mation (for details see [59], figure 7). Thus indicating that the behaviour found
here could be extrapolated to even higher spin dimensions, although this needs
to be shown explicitly for finite systems without approximations.
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6.1.2 Patching Distributions - Simulating GPMV experiments

To imitate the GPMV experiment procedure we equilibrate a system in the
semi-grand canonical ensemble by gradually cooling it down (setting a slightly
lower temperature over the curse of 106 equilibration sweeps) until a tempera-
ture T0 deep in the plateau region is reached. Then a switch from the semi-grand
canonical to a ’canonical’ ensemble is performed by fixing the spin values, al-
lowing them only to diffuse on the lattice. MC moves do not attempt to replace
a spin by a completely new one but only attempt to swap spin values on the
grid (see section 4.4). For abbreviation I will refer to these spin distributions
as ’constrained’. To be able to compare the spin distributions they were ro-
tated after constraining such that < sx >= 0 (where sx is the x-component of
spins). To overcome interfacial energy a second Gibbs frame was set up (see sec-
tion 4.3) and the demixing was simulated by copying the equilibrated grid onto
replicas (number depending on system size) around T0. After another equilibra-
tion we extract statistical moments and calculate the susceptibility χ. When
χ is plotted against the rescaled temperature T/T0 we observe a peak in the
susceptibility which we identify with a demixing temperature Tdemix (see figure
36). We associate the plateau with a pseudo-critical regime; in that regime all
properly equilibrated distributions show a demixing while for T0 > Tfs they do
not (no peak in e.g. the susceptibility). It appears as if the system keeps the
instantaneous spin variance narrow enough such that demixing can occur at any
temperature for T0 < Tfs. Interestingly the peak height is not diverging as L is
increased.

Figure 36: Example of a demixing transition for a) L = 32 and b) L = 64. The peak in
the susceptibility is identified with the demixing temperature Tdemix. T0 = 0.02 for both
systems. In all following plots only 1 of the Gibbs frames is shown since they are symmetric
when looking at observables related to |m|.

We could now proceed by equilibrating systems of different sizes, cooling
them down and extracting a critical exponent by finite size scaling. But due
to the underlying continuous spin distribution the frozen spin distributions are
always characterized by slightly different moments since we can have excitations
of arbitrarily low energy (see section 2.7). The susceptibility peak position
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sensitively depends on the underlying instantaneous spin distribution and is a
stochastic variable.

Figure 37: Sketch of patch-
ing procedure. Here for next
biggest system size. Figure
adapted and modified from
[38].

The peak position also depends on system size
and to do finite size scaling we take a small (L0 =
16), equilibrated system, fix the spin values and
patch its spins onto larger grids of size L0 · 2n,
where n is an integer ≥ 1, by multiplying the grid
(and thus each spin) by 4n (see figure 37). Al-
though a distribution where 2 or more spins are
identical would never be generated the (entropic)
error by doing the patching is small (∝ 4n/L2).
We then again distribute these grids onto an addi-
tional Gibbs frame and replicas and let the systems
demix. Thus we constrain the instantaneous vari-
ance σ2

L0
for all grids to be that of a L = 16 system, allowing for finite size

scaling. It is unclear if this procedure works in reverse though.
The susceptibility peak height is largely unaffected by system size but the

peak position moves towards lower Tdemix with increasing system size, suggesting
Tdemix = 0 for L −→ ∞ (see Appendix). It is possible to collapse the peak
position with an apparent scaling law Tdemix/T0 ∝ (L/L0)

−0.2 (see figure 38).
Since the variance σ2 decreases with system size we see that for the patched
systems the imposed σ2

L is slightly too small causing them to be further off
criticality (Tdemix ≪ 1).

Figure 38: Rescaled susceptibilities for different system sizes. The peak position collapses
for an apparent exponent −0.2 while the peak height is not rescaled. T0 = 1/30 here.

To gain insight into what attributes of the spin distribution affect Tdemix we
go back to a single system size and let many of such systems demix. We then
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fit the peak in the susceptibility by a Gaussian and extract the mean as a value
for Tdemix/T0 and extract moments of the instantaneous spin distribution. If
we plot Tdemix/T0 against σ2

L we find a linear dependence (see figure 39). Of

Figure 39: Tdemix/T0 plotted against σ2
L (instantaneous variance) for a L = 64 grid deep in

the plateau (T0 = 0.02) for ≈ 1000 simulations. The relation is linear and the slight influence
of the kurtosis (b)) on Tdemix/T0 is shown while the skew (a)) has no influence.

the 4 moments σ2
L has the biggest impact on Tdemix. The skew seems to have

no impact on Tdemix, although we do not have a pressure piston for the Gibbs
ensemble updates (see section 4.3).

Figure 40: The spins in the XY model are 2
dimensional and uniformly distributed along the
unit circle at high temperatures. At low temper-
atures only a part of the circle is sampled due to
quasi long-range order.

That is, the two Gibbs frames
have identical volumes and a
demixing results only in identical
volumes if the fixed spin distribu-
tion is symmetric, but a skewed
distribution is asymmetric. The
dependence on the skewness could
therefor be hidden. The higher
the value of the kurtosis is the
more tailed is a distribution. The
kurtosis of the distributions sug-
gests that they are roughly Gaus-
sian and that spin distributions
with less pronounced tails demix
at higher temperatures than heav-
ily tailed spin distributions. With the linear dependence of Tdemix and σ2

L we
find that the apparent exponent matches

T

T0
∝
(

L

L0

)−0.2

∝ σ2
L

the one which was found previously for the 2D N-state Ising model. If this is a
real scaling law it would show that the order parameter dimension for finite sys-

50



tems below Tfs with many components does not affect the universal behaviour of
the system, surprisingly ’breaking’ universality as we know it from macroscopic
thermodynamics since usually systems with different spin dimension belong to
different universality classes.

We rationalize this by looking at the spin space of states of the 2D XY model
(see figure 40). In the low temperature regime we have quasi long-range order
which instantaneously breaks the rotational symmetry (only a fraction of the
spin values is sampled) as the spins align along a common direction. Below Tfs

the circle can locally be thought of as a 1D interval. We thus end up with a
uniform spin state density Ω(s) as for the 2D N-state Ising model.
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6.1.3 Attributes of spin distributions below Tfs

To see if the demixing is well behaved, Tdemix/T0 was extracted again. A his-
togram of the values was approximated by a kernel-density estimation (see figure
41).

Figure 41: Kernel-density estimation of the extracted Tdemix/T0 values for ≈ 1000 values for
each system size. The label shows [system size, mean, variance] of the distributions. Statistics
are not good enough to tell whether the tail is an artefact of poor statistics.

The mean of the distribution appears to move towards Tdemix/T0 −→ 1
for L −→ ∞ suggesting that finite size systems are slightly ’off criticality’; an
infinite system appears to be right ’on criticality’ with Tdemix/T0 = 1 (then
T0 = Tdemix). At the same time the distributions become narrower as L in-
creases and seem to converge towards a delta function for L −→ ∞. In this
sense the apparent critical demixing behaviour would be well behaved.

Since we have a linear dependence between Tdemix/T0 and σ2
L we only have

to extract the moments of the equilibrated distributions before patching and
identify σ2

L with Tdemix/T0 up to some proportionality constant. This drastically
reduces the computation time (by more than 10 times) and it was now possible
to extract moments from 10000 individual simulations. With this we increase
the accuracy of the statistics describing the equilibrated spin distributions. The
extracted instantaneous variances as a histogram are shown in figure 42 for a
L = 64 system.

The distribution of σ2
L is well fitted by a Gamma distribution and the CDF

shows that the tails of distributions are not an artefact of poor statistics (see
Appendix). A potential source for a Gamma distribution is a (sum of) Gaussian
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Figure 42: Histogram of σ2
L for the equilibrated spin distributions of a L = 64 grid for 10000

entries (at T0 = 0.02).

distribution(s) squared:

N2(0, σ2
L) = Gamma(

1

2
, 2σ2

L)

where 0 is the mean of the Gaussian and N stands for Gaussian distributed
random variable. This can be seen e.g. for the Maxwell-Boltzmann distribu-

Figure 43: Shape parameter against system size of the Gamma distributions for different
system sizes. The shape parameter captures how skewed the distribution is or how pronounced
the tail w.r.t. overall distribution is (it regards the ’shape’ of the distribution). It is therefor
related to higher moments. Here again it suggests a convergence to a delta-function as L
increases.

tion which is the distribution of the random velocities of particles squared in
equilibrium. The sum of independent Gamma distributions is again a Gamma
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distribution. This behaviour of σ2
L hints towards that the underlying instanta-

neous variances are Gaussian distributed random variables influencing Tdemix/T0

quadratically. But this will become more apparent in later sections of the re-
sults.

One can extract the parameters for the Gamma fits. Figure 43 shows the
shape parameter, which decreases as L increases. It verifies that the tails con-
tribute less to the histogram and it becomes more symmetric as L is increased.
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6.2 2D FFT analysis

It would be really helpful to have analytical access to the apparent scaling be-
haviour of the observables, especially the instantaneous spin variance σ2

L where
the peculiar 1

5 apparent scaling exponent was observed. For simplicity we come
back to scalar spin systems now.

An analytical solvable model would be a Gaussian-like model where the spins
enter the Hamiltonian quadratically since the modes then decouple in fourier
space. Therefor, for squared interactions, we qualitatively tested the behaviour
of σ2

L at low temperatures for different underlying spin distributions (see figure
44).

Figure 44: σ2
L for low T for a) a Gaussian (with variance γ2 = 1) and b) a Cauchy spin

distribution (with scale parameter γ = 1). Again a splitting is observed as well as a linear
behaviour below Tfs (Tfs depends on the distribution used).

All of the distributions show a linear behaviour of σ2
L below an onset tem-

perature Tfs and a splitting for different system sizes. The exact value for
Tfs depends on the distribution used but the qualitative behaviour is the same
for all distributions. The variances of the underlying distributions rescales the
temperature e.g. T ′ ∝ γT (for the gamma distribution) and could have been
adjusted to make the comparison more clear.

To get further insight into the low temperature behaviour of such models
we used the 2d fast fourier transform (FFT) of the correlation function (with
subtracted instantaneous spatial average) to extract the scaling exponent µ
for the correlation length. For an arbitrary spin distribution this correlation
function with respect to a reference spin s0,0 can be expressed as (see section
6.3.3 for details):

G(s0,0, s0+d,0+e) := Gde =

L−1∑
n,m=0

′
〈
a2nm cos(

2πn

L
d) cos(

2πm

L
e)

〉
t

Figure 45 shows a log-log plot of the mode amplitude |anm|2 versus k := |⃗k|,
with k⃗ = (n,m)⊥. This was done for uniform distributions and L = 32 only.
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Figure 45: Mode amplitude plotted against |⃗k| for a L = 32 system. Example for a) squared
difference and b) absolute difference interactions and an underlying Gaussian distribution to
generate the spins. The departure from the linear behaviour is caused by the cosine terms
which contribute for large |⃗k|.

Changing the interactions left the slope of the linear curve unchanged. From
the slope we can read of the behaviour of the fourier amplitudes |ak|2 ∝ |⃗k|−2.
This corresponds to a mean field exponent [η = ηMF = 0] as shown by Ornstein
and Zernike (see section 6.3.3 and appendix for details) [60].
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6.3 Analytical model

The above considerations show that gradient models with continuous spin dis-
tribution below Tfs behave all similar to the 2d N-state Ising model. Therefor
we will look at a Gaussian-like model which is analytically solvable. We will
introduce the Gaussian Hamiltonian and solve it. We are then able to calculate
σ2
L explicitly which enables us to get insight into the apparent scaling law we

saw in section 5. For simplicity we use scalar spins but it is straight forward to
generalise the results to higher spin dimensions.

6.3.1 The Gaussian Model

The Hamiltonian of the model in the semi-grand canonical ensemble is given
by squared-difference interactions and an entropic external field like term with
underlying Gaussian density of states:

HG′ = J
∑
⟨i,j⟩

(si − sj)
2 − kBT

∑
i

ln (Ω(si)) = HG′
1
+HG′

2

where J > 0, the sum runs over nearest neighbours and Ω(si) = γ−1 exp (− s2i
2γ2 )

is the continuous density of states with underlying Gaussian distribution and
variance γ. The Gaussian is centered around 0 and we set γ = 1 (the exact value
rescales the temperature again T ′ ∝ γ2T ). For later convenience we split the
Hamiltonian into two parts: HG′

1
is the interaction part and HG′

2
the entropic

external field part. If we write out the nearest neighbour interactions explicitly
we get:

HG′ = J

L−1∑
i,j=0

(
[si,j − si+1,j ]

2
+ [si,j − si,j+1]

2
)
− kBT

L−1∑
i,j=0

ln (Ω(si,j))

= 2J

L−1∑
i,j=0

s2i,j (2− si,j (si+1,j + si,j+1)) +
1

2
kBT

L−1∑
i,j=0

s2i,j

where
∑L−1

i,j=0 s
2
i+1,j =

∑L−1
i,j=0 s

2
i,j for periodic boundary conditions was used

and the sum over nearest neighbours only is written out for two of the four
neighbours in order to avoid double counting.

Since we only have square terms for the spins the Hamiltonian decouples in
fourier space. The spins are real and we use a cosine expansion instead of com-
plex exponentials. We will use the basis si,j =

2
L

∑L−1
n,m=0 anm cos( 2πnL i) cos( 2πmL j),

where n and m are the fourier indices and anm is the fourier coefficient of mode
{n,m}. Then the transform of the sum over the squared spins is:

L−1∑
i,j=0

s2i,j

57



=
4

L2

L−1∑
i,j=0

L−1∑
n,m=0

L−1∑
n′,m′=0

anman′m′ cos

(
2πn

L
i

)
cos

(
2πm

L
j

)
cos

(
2πn′

L
i

)
cos

(
2πm′

L
j

)
Performing the sum over {i, j} yields 0 if {n′,m′} ≠ {n,m}, therefor we get

Parseval’s theorem:

L−1∑
i,j=0

s2ij =
4

L2

L−1∑
n,m=0

L−1∑
i,j=0

a2nm cos2
(
2πn

L
j

)
cos2

(
2πm

L
l

)
=

L−1∑
n,m=0

a2nm

Where
∑L−1

i=0 cos2( 2πnL i) = L/2 was used for the last equality. The other terms
in HG′

1
yield:

L−1∑
i,j=0

si,jsi+1,j =
4

L2

L−1∑
n,m=0

L−1∑
i,j=0

a2nm cos
2πn

L
i cos(

2πn

L
(i+ 1)) cos2(

2πm

L
j)

=

L−1∑
n,m=0

a2nm cos(
2πn

L
)

where
∑L−1

i=0 cos( 2πnL i) cos( 2πnL (i+ 1)) = L
2 cos( 2πnL ) was used.

With that the Hamiltonian becomes

HG′ =

L−1∑
n,m=0

a2nm

(
1

2
kBT + 2J

(
2−

[
cos(

2πn

L
) + cos(

2πm

L
)

]))
Lets define bnm = 2− [cos( 2πnL ) + cos(2πmL )].
Now we can write down the partition function with a (convenient) normal-

ization constant:

Z(β) =
1√
2π

L−1∏
n,m=0

∫ ∞

−∞
danm exp

(
−βa2nm

[
1

2
kBT + 2Jbnm

])

The above is a Gaussian integral
∫∞
−∞ dxe−a(x+b)2 =

√
π
a such that:

Z(β) =
1√
2π

L−1∏
n,m=0

√
2π/[β(kBT + 4Jbn,m)] = exp

(
L−1∑

n,m=0

ln[(1 + 4Jβbn,m)]−0.5

)

= exp

(
−

L−1∑
n,m=0

ln
√
1 + 4Jβbnm

)
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Unfortunately it is not possible to analytically solve the sum over bnm due
to the cosine terms. But still we can now in principle derive all observables from
the partition function. Approximations we make can be checked easily since the
computer has no trouble computing the exact sum even for large values of L.
Furthermore we will check our analytical results against simulations.

6.3.2 Observables of the Gaussian model

We start with thermal average of the fourier coefficients. Since the modes
decouple in fourier space we can read of < a2nm >= kBT/κ (equipartition theo-
rem) which immediately gives:

< a2nm >= kBT/(kBT + 4Jbnm)

Also the free energy is straightforward to write down:

F = −kBT ln(Z) = kBT
∑
n,m

ln
√
1 + 4βJbnm

Energy moments
For the computation of the internal energy and heat capacity the code uses

only the interaction term HG′
1
of the model. Analytically we can achieve this

for example by assigning two different ’inverse temperature parameters’ (β1, β2)
to the partition function:

Z(β1, β2) =
1√
2π

L−1∏
n,m=0

∫ ∞

−∞
danm exp

(
−a2nm

[
2Jβ1bnm +

1

2
kBTβ2

])

= exp

(
−

L−1∑
n,m=0

ln
√
kBTβ2 + 4Jβ1bnm

)

The internal energy is then:

< E >= −∂ ln(Z(β1, β2))

∂β1
=
∑
n,m

Jbnm
2Jβ1bnm + kBTβ2

= 2J
∑
n,m

bnm[1 + 4βJbnm]−1

where in the last step we then set β1 = β2 = β.

From the mean energy we can obtain the heat capacity at constant volume
CV :

CV = − 1

kBT 2

∂

∂β1
< E >=

8J2

kBT 2

∑
n,m

b2nm[kBTβ2 + 4β1Jbnm]−2
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=
8J2

kBT 2

∑
n,m

b2nm[1 + 4βJbnm]−2

Figure 46 shows the right trend for the intrinsic heat capacity.

Figure 46: Comparison of intrinsic heat capacities for the analytic result and simulation for
2 system sizes.

The Variance(s) of spins:
There are 2 variances computed by the code which used to characterise the

spin distributions below Tfs (see section 5). The first one is the usual spin
variance:

σ2 =
〈
s2i,j
〉
− ⟨si,j⟩2

The 2nd term is 0 because we draw the spins from a Gaussian distribution
centered around 0. The first term is straight-forward using our earlier result

〈
s2i,j
〉
=

L−1∑
n,m=0

〈
a2nm

〉
t

Here we used that we can rewrite the thermal average ⟨.⟩th as ⟨⟨.⟩L⟩t where ⟨.⟩L
again is the instantaneous lattice average. So (see figure 47):

σ2 =

L−1∑
n,m=0

〈
a2nm

〉
t

60



Figure 47: Spin variance σ2 theory against simulation for 3 system sizes (label).

The other variance term computed by the code is the ’spatial’ or instan-
taneous spin variance where the instantaneous lattice average is subtracted
from the random spin variable:

σ2
L =

〈
(si,j − ⟨si,j⟩L)

2
〉
−
〈
si,j − ⟨si,j⟩L

〉2
The instantaneous lattice average is just the {0, 0}-th mode in fourier space:

⟨si,j⟩L =
1

L2

L−1∑
i,j=0

si,j =
1

L2

2

L

L−1∑
i,j=0

L−1∑
n,m=0

anm cos(
2πn

L
i) cos(

2πm

L
j)

If {n,m} ≠ {0, 0} the sum over space becomes 0 due to the cosine terms. If
{n,m} = {0, 0} the cosine terms are 1 and the sum over space just gives L2.
Therefor:

⟨si,j⟩L =
2

L
a00

The second term of σ2
L equals 0:

〈
si,j − ⟨si,j⟩L

〉
th

=

〈
2

L

L−1∑
i,j=0

(
L−1∑

n,m=0

anm cos(
2πn

L
i) cos(

2πm

L
j)− 2

L
a00

)〉
t
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〈
2

L

L−1∑
i,j=0

(
L−1∑

n,m=0

′anm cos(
2πn

L
i) cos(

2πm

L
j)

)〉
t

= 0

since {n,m} cannot be {0, 0} now.
∑′

indicates that the {0, 0} mode is omitted.
The first term is therefor just σ2 without the {0, 0}-mode:

〈
(s0,0 − ⟨si,j⟩L)

2
〉
=

〈
2

L

L−1∑
n,m=0

L−1∑
i,j=0

anm cos(
2πn

L
i) cos(

2πm

L
j)− 2

L
a00)

2

〉
t

=

L−1∑
n,m=0

′ 〈a2nm〉t
So explicitly (see figure 48):

σ2
L =

L−1∑
n,m=0

′ 〈a2nm〉t

Figure 48: Instantaneous spin variance σ2
L theory against simulation for 3 system sizes (label).

The Correlation Function
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The correlation function is given by the covariance of two spins separated
by a distance {d, e}. The instantaneous lattice average is again subtracted
from the random spin variable and we omit the second term which is given by〈
si,j − ⟨si,j⟩L

〉
th

〈
si+d,j+e − ⟨si,j⟩L

〉
th

because it equals 0 again (as for σ2
L).

G(si,j , s(i+d)(j+e)) =
〈
(si,j − ⟨si,j⟩L)(si+d,j+e − ⟨si,j⟩L

〉
Without loss of generality we choose s0,0 as a reference spin. Using the result
from σ2

L we can simplify:

G(s0,0, s0+d,0+e) := Gde

=
4

L2

〈
L−1∑
i,j=0

L−1∑
n,m=0

′anm

L−1∑
n′,m′=0

′an′m′ cos(
2πn′

L
d) cos(

2πm′

L
e)

〉
t

= 4

L−1∑
n,m=0

′
〈
a2nm cos(

2πn

L
d) cos(

2πm

L
e)

〉
t

When {d, e} = {0, 0} we want Gde = 1 (normalized). Therefor we have to divide
by the distributions instantaneous variance:

Gde =

L−1∑
n,m=0

′
〈
a2nm cos(

2πn

L
d) cos(

2πm

L
e)

〉
t

/(

L−1∑
n,m=0

′ 〈a2nm〉t)
To check the theory against the simulation we plot Gde in one spatial direc-

tion e.g. by setting e = 0 (see figure 49).

Magnetization
The magnetization is equal 0 for all T > 0 since our Hamiltonian is quadratic

and the Gaussian spin-distribution is centered around 0. This model does not
have a phase transition for any T > 0.

⟨m⟩ = 1

L2

L2−1∑
i,j=0

si,j =
1

L2

L2−1∑
i,j=0

L2−1∑
n,m=0

anm cos

(
2πn

L
i

)
cos

(
2πm

L
j

)

which is equal 0 since the sums can be interchanged and
∑L2−1

i=0 cos
(
2πn
L i
)
= 0.

6.3.3 Mean field exponents

Now we want to verify that this model belongs to the mean field universality
class. Therefor we calculate two exponents of the model for infinite size in the
limit T −→ 0.
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Figure 49: Theory vs simulation of the correlation function for 3 system sizes (label) for
low temperatures. Due to the periodic boundary conditions only half of the grid length is
uncorrelated.

We start with the exponent for the correlation function where it is sufficient
to use the unnormalized quantity. We can exploit the summation over cosines
again if we transform the correlation function to fourier space:

F(Gde) =
2

L

L−1∑
d,e=0

L−1∑
n,m=0

′
〈
a2nm cos(

2πn

L
d) cos(

2πm

L
e) cos(

2πn′

L
d) cos(

2πm′

L
e)

〉
t

=

L−1∑
n,m=0

′ 〈a2nm〉t
To explore the behaviour in the thermodynamic limit we take the limit

L −→ ∞. For large L one can approximate the sum as an integral since the

modes lie close together. Furthermore we approximate 1−cos( 2πnL ) ≈ 2π2n2

L2 (this
is rationalized in section 6.6) and perform our calculation in the first Brioullin
zone. We obtain an Ornstein-Zernike form:

F(Gde) ≈
∫ L/2

−L/2

∫ L/2

−L/2

1

1 + 8Jπ2

kBTL2 (n2 +m2)
dndm−

∫ ϵ

−ϵ

∫ ϵ

−ϵ

〈
a2nm

〉
t
dndm

where the subtraction stems from the {0, 0}-mode. The fourier amplitude for
{n,m} = {0, 0} is finite and we can treat the subtraction as small. The Ornstein-
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Zernike form is given by:

F(GOZ) ∝
∫
|⃗k|

1

1 + ξ2(T )|⃗k|2
d|⃗k|

If one transforms F(GOZ) back to real space we get G(r) ∝ 1/rd−2+η where

η = 0 = ηMF for |⃗k|2 in the integral (see Appendix). Thus confirming the first
mean field exponent.

Additionally we obtain an approximate form for the correlation length, which
depends on T and L:

ξ(T ) ≈

√
8Jπ2

kBTL2

Figure 50: Intrinsic heat capacity cV for 4 different system sizes (label) computed from the
analytical results (sum).

The second exponent was obtained from the analytical expression of the
heat capacity which takes on a constant value of 1/2 as T −→ 0 independent of
system size (see figure 50). Since their is no divergence as Tc = 0 is approached
we know α = 0 which again is a mean field exponent.

6.3.4 Looking for the apparent scaling exponent

In section 5 the apparent exponent was found in the instantaneous spin variance
σ2
L. Below Tfs it becomes linear (σ2

L ∝ T ) and deviates from the ensemble
averaged spin variance σ2. The ratio of σ2

L for different system sizes was found
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to be a constant value of 1/5. We find a similar behaviour for our model here
(see figure 51). But for the Gaussian model the variance σ2 settles on a system
size depending value.

Figure 51: Variance σ2 and instantaneous variance σ2
L for the Gaussian model. Again

we find distinct behaviour of the quantities below an system size depending onset
temperature (here only visually indicated by the black line). σ2 settles at a value
1/L2 and for L −→ ∞ the quantities seem to become identical. The label indicates
the system sizes.

To explore the apparent scaling law we take the analytical result for σ2
L and

explore the limiting case as T −→ 0 and L −→ ∞. The order to take the limits
is important and it is not clear in which order to take them.

General case first:
First we will look at the case where we take the general equation for σ2

L and
send L −→ ∞. Let’s write down the expression for σ2

L again:

σ2
L =

L−1∑
n,m=0

′ 〈a2nm〉t = L−1∑
n,m=0

′ kBT

kBT + 4Jbn,m

where again bnm = 2 − [cos( 2πnL ) + cos( 2πmL )]. Since all 4 quarters of the first
Brioullin zone contribute equally we only look at 1 quarter and multiply by 4.
For L large enough we can replace the sum by an integral but we have to be
careful to include all the parts (since we cut out a square at the origin for σ2

L).
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The cut-out parts have equal portions and we get:

σ2
L ≈ 4

L2

[∫ L/2

1

dn

∫ L/2

1

dm
1

1 + 4J
kBT bnm

+ 2

∫ L/2

1

dn

∫ 1

0

dm
1

1 + 4J
kBT bnm

]

We then use the substitution x = n/L and y = m/L (see figure 52) and bnm
becomes bxy = 2− cos(2πx)− cos(2πy). This highlights the contribution of the
origin with system size which is approached as 1/L. This contribution is the
difference between σ2 and σ2

L. We get:

σ2
L = 4

[∫ 1/2

1/L

dx

∫ 1/2

1/L

dy
1

1 + 4J
kBT bxy

+ 2

∫ 1/2

1/L

dx

∫ 1/L

0

dy
1

1 + 4J
kBT bxy

]

Figure 52: Sketch of the inte-
gral calculation for substituted
variables x and y.

To be able to solve the integral we again approx-
imate cos(2πx) ≈ 1 − 2π2x2. This valid for small
{n,m} and these modes should contribute the most
at low temperatures as L increases (see small tem-
perature expansion (next part)). In figure 52 the
slightly shaded area is what is left out by the in-
tegral for σ2

L whereas the integral for σ2 leaves out
no mode. The integral becomes:

σ2
L ≈ 4

[∫ 1/2

1/L

dx

∫ 1/2

1/L

dy
1

1 + 4J
kBT (x

2 + y2)

+2

∫ 1/2

1/L

dx

∫ 1/L

0

dy
1

1 + 4J
kBT (x

2 + y2)

]

= 4

∫ 1/2

1/L

dr

∫ π/2

0

dφ
r

1 + 4J
kBT r

2
= 2π ln

[
1 + 2π2J

kBT

1 + 8π2J
kBTL2

]

Thus we see that this limit only tells us that σ2
L does not diverge as L is

increased at any finite temperature.

Small temperature expansion:
In the limit T −→ 0 we can replace the term in the sum by a geometric

series (series expansion around T = 0):

kT

kT + 4Jbnm
=

kT

4Jbnm
−O(T 2)

Since we saw a linear behaviour below Tfs is it sufficient to expand the series only
up to first order. Now we see that σ2, which includes the {0, 0}-mode diverges
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in this low T expansion. Since σ2
L approaches σ2 for L −→ ∞ the modes close

to the origin should contribute the most, justifying the cosine expansion.
We can make the same simplifications as before and end up with a polar

integral. With that we obtain our final result:

σ2
L ≈ kBT

2π2J

∫ 1/2

1/L

dr

∫ π/2

0

dϕ
1

r
=

kBT

4πJ
ln(L/2)

This logarithmic divergence is confirmed by comparing it to the sum expres-
sion for the series expansion around T = 0. At large values of L the curves are
in good agreement (see figure 53).

Figure 53: Confirmation of the logarithmic divergence of σ2
L with system size in the linear

(low T) regime.

In this model the apparent 0.2 exponent turns out to be a logarithmic be-
haviour with system size for finite sizes. But note if L is large the linear T
expansion is not valid anymore since σ2

L never diverges.

6.3.5 Independence of order parameter dimension

Lastly I quickly want to mention the independence of the order parameter di-
mension in the Gaussian model. Recall the Hamiltonian for the scalar spins:

HG′ = 2J

L−1∑
i,j=0

s2i,j (2− si,j (si+1,j + si,j+1)) +
1

2
kBT

L−1∑
i,j=0

s2i,j
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It only has contributions where the spins appear squared. Therefor it decoupled
in Fourier space:

HG′ =

L−1∑
n,m=0

a2nm

(
1

2
kBT + 2Jbnm

)

with bnm = 2− [cos( 2πnL )+cos( 2πmL )]. If we use vector spins in the Hamiltonian

we get terms like s⃗2 in it. These themselves can be written as a sum s⃗2 =
∑d

i=1 s
2
i

where d is the spin dimension. Therefor the modes of a cosine expansion again
decouple and each spin dimension contributes identically:

HG′ =

d∑
i=1

(∑
n,m

a2nm

(
kBT

2
+ 2Jbnm

))
i

This again motivates to rigorously test if the results for models similar to
the 2d N-state Ising model are independent of the order parameter dimension.
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7 Summary and Outlook

In this work we have explored the peculiar behaviour of the 2d N-state Ising
Hamiltonian further. From simulations we saw that finite size effects like the
critical plateau region for the correlation length, persisting over a range of tem-
peratures, is independent of the order parameter dimension. Systems which
were equilibrated deep in the plateau regime below an onset temperature Tfs

show demixing when the systems instantaneous variance is constrained. These
results seem to be robust under the exact form of the Hamiltonian. Furthermore
we saw that we can approximate the various Hamiltonians by an analytically
solvable Gaussian model below Tfs. Here we again found a difference between
temporal and spatial averages (σ2 ̸= σ2

L) and the apparent scaling law in this
model is a logarithmic effect which vanishes for big system sizes.

The extension of the order parameter dimension could be used to expand
the chemical space by e.g. including head group interactions of lipids as well,
since it introduces another degree of freedom to the system. Thus making
the model robust to even more complicated systems, naturally explaining how
a complicated cell membrane could organise itself without the need to tune its
composition explicitly. However it is not clear if proteins can be included straight
forwardly since they often posses specific lipid binding domains (’fingerprints’)
[61].

Our model predicts that cells would adapt their lipid composition (in our
model σ2

L ∝ T below Tfs) to always remain close to a critical demixing tran-
sition. An ongoing debate about cell membranes is whether they posses some
lateral organization and homogeneities which are termed lipid rafts [62]. These
are regions of liquid ordered domains where specific lipids and proteins are con-
centrated to provide platforms which e.g. could facilitate reactions with mem-
brane proteins and the environment. In our model the enhanced correlation
lengths suggest that lipid rafts could arise from critical behaviour. However, for
micron-sized (∼ cell size) systems (L ≈ 64−256) the correlation lengths are too
big, since rafts are predicted to be only of size 10− 200nm. A possible ’natural
limitation’ for the correlation lengths could arise through the cytoskeleton. It is
a dynamic network of actin filaments extending through the cytoplasm as well
as across the inner leaflet of the plasma membrane. A network runs along the
inner leaflet and they form a rather long lived bond where they are anchored in
the plasma membrane. There they restrict the lateral diffusion of the membrane
components by creating fixed points in the membrane. This disrupts the long
correlations to the typical cytoskeleton-network size of 40− 230nm [48].

Also chemostatic controlled components could cause a similar effect. Choles-
terol for example has ideal fractions for which the membrane functions optimally
but it gets constantly removed or added to it [63]. In an environment which con-
stantly changes the cell adapts a steady state of cholesterol levels to keep their
levels constant. Cholesterol is associated with liquid ordered raft domains: they
control membrane fluidity and raft domains are thought to be more solid like
[2]. Proteins with specific lipid binding domains could further enhance phase
separation and domain formation and it would be interesting to try to include
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them in our model.

It is still not clear how to theoretically model the GPMV experimental pro-
cedure. Thermodynamic systems should be describable in any ensemble since
they are all connected by Legendre transformations. But below Tfs we observe
demixing in our model when we constrain the spins which does not occur in the
unconstrained system. This seems to be stemming from non-ergodic behaviour
in that regime for finite systems. But this behaviour vanishes for L −→ ∞ and
it is unclear how to e.g. properly extract critical exponents since we do not have
a true fixed point.

Although we did not find the apparent scaling law in the analytical model
it is still unclear whether it translates to the 2d N-state Ising model. It has
an underlying uniform distribution which has highly correlated fourier modes
while a Gaussian model has completely decoupled fourier modes. The uniform
distribution can be parameterised as Ω(s) ∝ exp (−|s|m) for m −→ ∞ and even.
The scaling could stem from cross-correlations where one must include higher
order spin contributions to the chemical potential, for example as pertubative
effects to the Gaussian model. This is reminiscent of a Φ4-theory where a quartic
term introduces ’interactions’ to a free field theory.
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Figure 54: Rescaled a) correlation length and b) Binder cumulant as a function of the
reduced inverse temperature. The correlation length peak collapses in the vicinity to
the critical reduced inverse temperature with (T − Tc)/Tc = (βc − β)/β. ξ ∝ L at the

critical point and the Binder cumulant is given by U = 1−
〈
s4
〉
/(3

〈
s2
〉2
).

A Appendix

A.1 Ising Model

First the code was tested by verifying the known scaling laws of the 2D Ising
model. The model was implemented with s = 0.5, 1 and absolute differences
which lead to T ′

c = Tc/4. The collapsed plots verify T ′
c.

Susceptibility:
The finite size scaling (FSS) is derived as follows: Since ξ ∝ t−ν and ξ ∝ L

near T = Tc with t = (T − Tc)/Tc we can rewrite χ ∝ t−γ = ξν/γ = Lν/γ . For
the x-axis we can directly use t ∝ ξν = Lν . To collapse the curves we have to
rescale the plots with the inverse exponents. ν = 1 and γ = 7/4 for the 2D Ising
model.

Binder cumulant
It collapses by construction for rescaled x-axis.

Correlation Length
Here also the y-axis is rescaled as ξ/L since ν = 1. For more accuracy at Tc

the log was taken as well.
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Figure 55: Testing the code with the XY model. a) Mean square magnetization
< m2 > against inverse temperature β. Again β′

BKT ≈ 0.565 is verified visually. For
the calculation for β′

BKT see (section 6.1.1) b) Heat capacity, showing a feature below
TBKT . It is independent of system size which and consistent with results of Nguyen
[64].

A.2 XY Model
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A.2.1 XY model correlations

Figure 56: Correlation length over a wider range of inverse temperatures β for the
2D XY model, crossing βBKT .

Figure 57: Correlation function in one spatial direction d fitted by an exponential
exp(−d/ξ) where ξ is the correlation length for L = 32. For T a) below Tfs and b) far
above Tfs.
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A.2.2 XY model patching and demixing

Figure 58: a) Susceptibility and b) correlation length show a small peak at the same
T/T0 value which is identified with the demixing temperature Tdemix.

Figure 59: An example of unrescaled susceptibilities of the freezing and patching
procedure (see section 6.1.2). Visually Tdemix −→ 0 as L −→ ∞. The symmetry of
the Gibbs frames for observables regarding |m| is visible.
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Figure 60: CDF of the σ2
L histogram (section 6.1.3, figure 42) which was fitted by a

Gamma distribution. The fit approximates the histogram really well. Label shows the
’likelihood’ value.
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A.3 Gaussian model

A.3.1 Variance

Figure 61: Analytical result for σ2 up to L = 516 plotted against T . It settles for
finite systems at 1/L2 for T −→ 0. For infinite systems we have σ2

L = σ2.
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A.3.2 Variances, integral approximations

Figure 62: a) Exact sum and integral approximation for σ2
L (no low T expansion)

plotted against L. b) The approximation converges to the sum expression for increasing
L −→ ∞. σ2

L does not diverge for large L.

Figure 63: Analytical results for taking the limit L −→ ∞ without a linear temperature
expansion and setting T to a small value below Tfs. a) For T = 10−2 and b) T = 10−6.
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A.4 Ornstein-Zernike form

|⃗k| := k, r⃗ := r, d is the spatial dimension, G(−r) = G(r) (conjugate symmetry
for real functions), κ ∝

√
T − Tc for T ≥ Tc is related to the inverse correlation

length ξ. The calculation is adapted from [60].

F(F(G(r))) = G(r) ∝
∫

dk⃗
eik⃗r⃗

k2 + κ2
=

∫
dk⃗eik⃗r⃗

∫ ∞

0

dte−t(k+κ2)

=

∫ ∞

0

dte−tκ2

∫
dk⃗e−tk2+ik⃗r⃗ =

∫ ∞

0

dte−tκ2

∫
dk⃗e−t(k⃗− i

2t r⃗)
2− r2

4t

=

∫ ∞

0

dt
(π
t

) d
2

e−tκ2− r2

4t

where we completed the square in the second last equality. For T = Tc the
correlation length diverges and we can neglect κ, e.g. κ = 0. Also

G(r) ∝
∫ ∞

0

dt
(π
t

) d
2

e−
r2

4t =

(
r2

4

)1− d
2

π
d
2Γ(

d

2
− 1) ∝ 1

rd−2

Where Γ is the gamma function. Per definition: G(r) ∝ (rd−2+η)−1; thus
η = ηMF = 0.

79



References

[1] Lands, W. E. 1960. Metabolism of glycerolipids. 2. The enzymatic acylation
of lysolecithin. J. Biol. Chem. 235:2233–2237.

[2] Simons, K., and E. Ikonen. 1997. Functional rafts in cell membranes. Nature.
387:569–572.

[3] Honerkamp-Smith, A. R., S. L. Veatch, and S. L. Keller. 2009. An intro-
duction to critical points for biophysicists; observations of compo- sitional
heterogeneity in lipid membranes. Biochim. Biophys. Acta. 1788:53–63.

[4] Carpenter, T. S., C. A. Lopez, ., S. Gnanakaran. 2018. Capturing phase
behavior of ternary lipid mixtures with a refined martini coarse-grained force
field. J. Chem. Theory Comput. 14:6050–6062.

[5] Ingólfsson, H. I., M. N. Melo, ., S. J. Marrink. 2014. Lipid organiza- tion of
the plasma membrane. J. Am. Chem. Soc. 136:14554–14559.

[6] Robert E. Scott, Plasma Membrane Vesiculation: A New Technique for
Isolation of Plasma Membranes. Science 194,743-745 (1976).

[7] Kaiser, H.-J., D. Lingwood, ., K. Simons. 2009. Order of lipid
phases in model and plasma membranes. Proc. Natl. Acad. Sci. USA.
106:16645–16650.

[8] Veatch, S. L., P. Cicuta, ., B. Baird. 2008. Critical fluctuations in plasma
membrane vesicles. ACS Chem. Biol. 3:287–293.

[9] Girard, M., and T. Bereau. 2021. Finite-size transitions in complex mem-
branes. Biophys. J. 120:2436–2443.

[10] Huang, Kerson (1987). Statistical Mechanics. Wiley .

[11] Dekking, Michel (2005). A Modern Introduction to Probability and Statis-
tics. Springer, chapter 13.

[12] Montgomery, Douglas C.; Runger, George C. (2014). Applied Statistics and
Probability for Engineers (6th ed.). Wiley, chapter 7.

[13] Landau, L.D.; Lifshitz, E.M. (1980). Statistical Physics. Pergamon Press.
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