
ARTICLE

An unsupervised deep learning algorithm for
single-site reconstruction in quantum gas
microscopes
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Monika Aidelsburger 1,2✉

In quantum gas microscopy experiments, reconstructing the site-resolved lattice occupation

with high fidelity is essential for the accurate extraction of physical observables. For short

interatomic separations and limited signal-to-noise ratio, this task becomes increasingly

challenging. Common methods rapidly decline in performance as the lattice spacing is

decreased below half the imaging resolution. Here, we present an algorithm based on deep

convolutional neural networks to reconstruct the site-resolved lattice occupation with high

fidelity. The algorithm can be directly trained in an unsupervised fashion with experimental

fluorescence images and allows for a fast reconstruction of large images containing several

thousand lattice sites. We benchmark its performance using a quantum gas microscope with

cesium atoms that utilizes short-spaced optical lattices with lattice constant 383.5 nm and a

typical Rayleigh resolution of 850 nm. We obtain promising reconstruction fidelities≳ 96%

across all fillings based on a statistical analysis. We anticipate this algorithm to enable novel

experiments with shorter lattice spacing, boost the readout fidelity and speed of lower-

resolution imaging systems, and furthermore find application in related experiments such as

trapped ions.

https://doi.org/10.1038/s42005-023-01287-w OPEN

1 Department of Physics, Ludwig-Maximilians-Universität München, Schellingstr. 4, D-80799 Munich, Germany. 2Munich Center for Quantum Science and
Technology (MCQST), Schellingstr. 4, D-80799 Munich, Germany. 3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748
Garching, Germany. ✉email: a.impertro@lmu.de; monika.aidelsburger@physik.uni-muenchen.de

COMMUNICATIONS PHYSICS |           (2023) 6:166 | https://doi.org/10.1038/s42005-023-01287-w |www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01287-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01287-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01287-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-023-01287-w&domain=pdf
http://orcid.org/0000-0002-0609-4189
http://orcid.org/0000-0002-0609-4189
http://orcid.org/0000-0002-0609-4189
http://orcid.org/0000-0002-0609-4189
http://orcid.org/0000-0002-0609-4189
http://orcid.org/0000-0001-9347-0850
http://orcid.org/0000-0001-9347-0850
http://orcid.org/0000-0001-9347-0850
http://orcid.org/0000-0001-9347-0850
http://orcid.org/0000-0001-9347-0850
http://orcid.org/0000-0001-8543-6433
http://orcid.org/0000-0001-8543-6433
http://orcid.org/0000-0001-8543-6433
http://orcid.org/0000-0001-8543-6433
http://orcid.org/0000-0001-8543-6433
http://orcid.org/0000-0002-1029-081X
http://orcid.org/0000-0002-1029-081X
http://orcid.org/0000-0002-1029-081X
http://orcid.org/0000-0002-1029-081X
http://orcid.org/0000-0002-1029-081X
http://orcid.org/0000-0003-3867-9074
http://orcid.org/0000-0003-3867-9074
http://orcid.org/0000-0003-3867-9074
http://orcid.org/0000-0003-3867-9074
http://orcid.org/0000-0003-3867-9074
http://orcid.org/0000-0002-9476-3337
http://orcid.org/0000-0002-9476-3337
http://orcid.org/0000-0002-9476-3337
http://orcid.org/0000-0002-9476-3337
http://orcid.org/0000-0002-9476-3337
mailto:a.impertro@lmu.de
mailto:monika.aidelsburger@physik.uni-muenchen.de
www.nature.com/commsphys
www.nature.com/commsphys


Efficient data processing based on machine learning techni-
ques has found numerous applications ranging from pattern
recognition to the classification of quantum many-body

phases1,2. The potential of machine learning algorithms for
applications in experimental quantum physics lies in its power to
extract information from experimental or numerical data by
reducing the available information to a few essential character-
istics. Examples include the classification of topological phases of
matter based on a limited number of experimental observables3,4,
investigations of the phase diagram of the Fermi-Hubbard model
based on (spin-resolved) density snapshots5,6 or the multi-
parameter optimization of experimental cooling techniques for
trapping and imaging of atoms7,8. These examples highlight the
potential of machine learning techniques for faster and more
accurate data analysis, in particular in the presence of noise or
experimental imperfections. Machine learning has recently been
considered theoretically in the context of quantum gas micro-
scopes in order to relax the stringent experimental requirements
for high-fidelity imaging9. In this work, we demonstrate a deep-
learning architecture for reconstructing the optical lattice occu-
pation from fluorescence images and benchmark it using
experimental data.

Quantum gas microscopy has facilitated unprecedented levels
of control and observation for the study of quantum many-body
systems based on neutral atoms in optical lattices10–12. Experi-
mentally, the system is typically probed using fluorescence ima-
ging, where the atoms are pinned in deep optical lattices and
scatter fluorescence photons which are recorded on a camera
through a high-resolution imaging system. In order to extract
complex observables such as counting statistics and (multi-point)
correlation functions13, the lattice occupation needs to be
reconstructed in a site-resolved fashion. The attainable accuracy
of an observable thus directly depends on the accuracy of the
reconstruction. The latter is fundamentally limited by two
quantities: (1) The signal-to-noise ratio (SNR) of the recorded
image and (2) the ratio β between the imaging resolution and the
lattice spacing. Defining the resolution according to the Rayleigh
criterion, most existing quantum gas microscopes work with
resolutions that are close to the lattice spacing or up to a factor of
1.5 worse11,12,14–23.

In the past, several techniques have been developed to enable
high-fidelity reconstruction: One of the first microscope experi-
ments employed an iterative least-squares-based approach which
is, however, computationally expensive and limited in fidelity
for smaller SNR12,24. Deconvolution with a linear kernel that is
constructed to have minimum overlap with atoms on adjacent
sites in order to cancel the signal spillover25, on the other hand, is
computationally fast, but limited in performance as it assumes a
single kernel that does not depend on the number of neighboring
atoms. However, especially for shorter lattice spacings, where
the small interatomic separation enhances density-dependent
effects during imaging such as superradiance, this assumption is
violated26. Further approaches are based on image restoration
techniques such as Wiener filtering27 or Richardson–Lucy
deconvolution17,28,29. Both methods, however, rapidly decrease in
fidelity for β≳ 224. Moreover, unconstrained deconvolution
methods can be improved by adding further information, such as
the discrete lattice grid and a sophisticated noise model, as shown
in ref. 30 for a one-dimensional (1D) system.

In general, all these algorithms aim to invert the convolution of
the atomic distribution with the point spread function (PSF) of
the imaging system, i.e., to realize a deconvolution, which is,
however, ill-conditioned in the presence of experimental noise31.
It has recently been recognized that neural networks can have
advantages in solving such inverse problems due to their ability to
approximate nonlinear relationships32,33. In addition, their low

computational complexity promises a fast evaluation, especially
compared to iterative algorithms. With respect to quantum gas
microscopy, a reconstruction approach based on supervised
neural networks has previously been proposed and benchmarked
with simulated data9. The supervised nature, however, requires
training using simulated fluorescence images. Hence, the per-
formance in reconstructing experimental data will ultimately be
limited by the accuracy of the simulation.

In this paper, we present an unsupervised deep-learning
algorithm for the reconstruction of the lattice occupation from
fluorescence images. The unsupervised nature allows us to train
the network directly with experimental data, avoiding the need
for any simulated training data. We experimentally benchmark
the fidelity by analyzing the deconvolved count distributions as
well as repeated exposures with data produced by our cesium
quantum gas microscope that operates at a rather large
resolution-to-spacing ratio of β= 2.2 (Fig. 1c). In particular, we
find reconstruction fidelities ≳96% across all fillings, and we are
able to reconstruct large images containing several thousand
lattice sites in less than one second. Our scheme enables high-
fidelity reconstruction at shorter lattice spacing compared to
previous reconstruction algorithms. Besides potentially reducing
the technical complexity of the imaging system, this is also
important for special lattice configurations such as superlattices,
triangular34–36, or state-dependent lattices37, as well as experi-
ments working with dipolar interactions where close atomic
distances are favorable38,39.

Results
Network architecture. The problem at hand—reconstructing the
binary lattice site occupation from a recorded fluorescence image
—can be understood in the framework of data analysis as a
problem of dimensionality reduction. Here, a high-dimensional
noisy input image is transformed into the underlying binary
lattice occupation of strongly reduced dimensionality. There exist
a variety of dimensionality reduction techniques, with both linear
approaches such as principal component analysis (PCA) as well
as nonlinear methods40. In this work, we leverage the power of
artificial neural networks, which fall into the latter category. Their
inherent nonlinearity allows them to efficiently approximate the
deconvolution32 as well as to capture density-dependent effects
such as superradiance12,26. Among neural networks, the auto-
encoder is a popular architecture for various dimensionality
reduction tasks41,42. Autoencoders consist of a stacked encoder
and decoder network, separated by an interface layer that pro-
vides an encoded representation of the input data. The combined
network is optimized to replicate the input data, enabling unsu-
pervised training. We restrict the interface layer to a significantly
lower dimensionality than the input, forcing the network to learn
to extract the salient features of the input data in order to allow
information flow through this bottleneck (Fig. 1a). In our context,
the encoder learns the deconvolution from fluorescence image to
site occupation, while the decoder learns to simulate a fluores-
cence image corresponding to this occupation.

We design and implement a regularized convolutional
autoencoder architecture that is tailored to our reconstruction
task. The network topology is depicted in Fig. 1a. Beginning from
the left, the input layer takes a lattice section containing 16 × 16
lattice sites, corresponding to 256 × 256 pixels. The input image is
then subsequently down-sampled by a set of four convolution
layers (step size two, ReLU activation, Fig. 1b), before a final
convolution operation (step size one, tanh activation, Fig. 1b)
implements the bottleneck layer with an output matrix of 16 × 16
entries. This concludes the encoder part of the network, whose
task is to reduce the input image to an array of site occupations.
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In the decoder part, the bottleneck layer is up-sampled by three
transposed convolution layers (step size two, ReLu activation)
and a final transposed convolution layer (step size one, tanh
activation) to arrive at one output matrix with the same size as
the input image.

In each of these layers, the input data is traversed by a set of
kernels with entries learned during training, locally performing
scalar multiplication (see Supplementary Note 2 for details on the
convolution operations). After this discrete convolution, a
nonlinear activation function is applied, producing one output
for each kernel. The size of the output in the down-/up-sampling
layers is always a factor of two lower/higher than the input
resulting from the step size of two. An important aspect of our
autoencoder implementation is that it consists exclusively of such
convolution layers, which is required to retain spatial order
throughout the network. Additionally, we split both the encoder
and decoder into several convolution layers. Compared to a single
convolution layer with kernels spanning the whole input, it was
shown that deeper networks with smaller kernels perform
significantly better in related applications43–46. While kernels in
the first layer act directly on the raw image, subsequent layers are
able to learn more complex, high-level features by combining the
outputs of the previous layer. Additionally, the stride of two
continuously changes the receptive field of kernels such that each
layer is sensitive to correlations on different length scales47.

The final operation for determining the site occupancy in the
bottleneck layer is the application of the activation function.
Considering its sigmoidal shape (Fig. 1b), a truthful reconstruc-
tion of the occupation requires that the input values correspond-
ing to empty and occupied sites saturate the activation function
on opposite extremes, respectively. Therefore, the deconvolution
implemented by the encoder must lead to a bimodal distribution

of count values before binarization. The overlap between the two
distributions is a signature of the quality of the reconstruction,
which in principle, further enables a quantitative estimation of
the reconstruction fidelity if the functional form of the two modes
is known, as we will detail below.

The network is trained using a composite loss function

Ltot x; x
0; y

� � ¼ LL1 x; x0ð Þ þ λ

Nsites
∑
Nsites

i¼1
1� jyij
� �

; ð1Þ

where x and x0 are the input and output images, respectively, yi
are the node values in the bottleneck layer and Nsites is the
number of sites in the image (here, Nsites= 162). The reconstruc-
tion loss LL1 x; x0ð Þ ¼ ∑pixeljx � x0j is augmented by an additional
bottleneck regularization loss, where the regularization strength λ
determines the relative weight between the two terms. The
regularization term Nsites

�1 ∑Nsites
i¼1 1� jyij
� �

penalizes non-binary
values in the bottleneck layer, forcing the network to learn a
transformation from the input image to the site occupation.
Without the bottleneck regularizer (λ= 0), the network would
learn to replicate the input image, but the bottleneck would
contain a reduced representation of the input image with
properties that are difficult to interpret. Our chosen form is one
of several possible relations to promote binary node values48.

Training and application to experimental data. We benchmark
the proposed reconstruction algorithm using experimental data.
To this end, we prepare a single layer of ultracold cesium atoms
in a two-dimensional optical lattice and image the atoms by
scattering fluorescence photons on the D2 line with a high-
resolution microscope (see Methods and Supplementary
Note 1)49–51. The minimal distance between atoms during

Fig. 1 Network architecture and imaging characterization. a Regularized convolutional autoencoder architecture, consisting of an encoder and a decoder.
The input data passed to the encoder is a lattice section containing 16 × 16 lattice sites (256 × 256 pixels, white dots mark the lattice sites). This data is
transformed by a sequence of five convolution layers, where in each layer, a discrete convolution with a set of learned kernels, is applied to the respective
input. The third dimension in the output shape denotes the number of distinct kernels utilized per layer. Using a step size (stride) of two when advancing
the kernels through the input during the convolution allows to reduce the image size by a factor of two in each step. At the end of the encoder, the node
values of the bottleneck layer, after applying a tanh activation function, represent the binarized lattice occupancy. The node values before binarization
contain the deconvolved counts in each lattice site, which exhibit a bimodal distribution owing to the saturating effect of the tanh function. Subsequently,
the occupation matrix is processed by the decoder with the goal of replicating the input image. The decoder network transforms and upsamples the
bottleneck layer using four transposed convolution layers. b Rectified Linear Unit (ReLU) activation functions are used in all layers except in the bottleneck
and the last decoder layer, which use a tanh activation function. c Measured experimental point spread function (PSF, averaged over around 2000
individual PSFs) overlaid with the lattice grid. The central peak spans several sites and we observe long-range asymmetric features extending over the
whole region of 16 × 16 lattice sites. d Signal-to-noise ratio determined from the count distributions of crops (1.6 μm crop width) containing exactly zero
atoms or one atom. A background image without atoms was subtracted to shift the center of the background peak closer to zero.
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imaging is set by the pinning lattice, which has a spacing of
a= 383.5 nm and the typical resolution according to the Rayleigh
criterion is about 850 nm. The corresponding resolution-to-
spacing ratio is β= 2.2, setting very challenging conditions for the
reconstruction. Achieving a high reconstruction fidelity despite
the short lattice spacing requires working at a comparably high
SNR. Using the definition SNR= (catom− cbg)/(σatom+ σbg),
where catom,bg is the mean and σatom,bg the standard deviation of
the count distribution for atoms and background, respectively, we
find an experimental SNR of 5.2 for an exposure time of 300 ms
(Fig. 1d).

In preparation for the reconstruction, we extract the lattice
vectors from the Fourier transform of the positions of around 20
dilute atom images. The absolute position of the lattice phase with
respect to the image origin is determined for each image by
fitting the positions of a few isolated atoms (see Methods and
Supplementary Note 2). Together, this fully defines the lattice grid
and ensures that the sites are consistently located at the same
positions within the local crops, spanning 16 × 16 lattice sites.
During the training, the network learns that atoms can only be
located at this discrete set of positions, which is important
additional information to overcome the resolution limit.

We train the network using an experimental dataset of around
100,000 crops extracted from homogeneous clouds of various
average fillings between zero and n ≈ 0.98 (see Methods and
Supplementary Note 1 for information on how this data is
obtained). The training procedure takes about 100 epochs (full
passes through the training set) using the ADAM optimizer
(initial learning rate 4 × 10−4)52. We performed hyperparameter
tuning for the kernel sizes of the encoder and decoder, as well as
the regularization strength λ. The latter strongly influences the
performance of the network, which we optimize using the final
training loss as well as the separation in the bimodal distribution
of the deconvolved site counts. According to this, we determined
an optimal value of λopt= 0.4. Additionally, we found optimal
kernel sizes of 10 × 10 for the encoder and 22 × 22 for the
decoder, respectively. Note, however, that beyond some minimal
kernel size of about 8 × 8, the exact choice does not influence the
performance of the network significantly. After successful
training, we only use the encoder section of the network for
reconstruction.

The reconstruction process is illustrated in Fig. 2, using an
example image with a total size of 70 × 70 lattice sites. The raw
image (Fig. 2a) is first decomposed into crops containing
16 × 16 sites. We advance only by one lattice site between each
crop region, such that every site occurs in several analyses at
different locations. Each crop is then fed into the encoder part of
the network, where we extract the output of the bottleneck layer
before binarization via the activation function. The encoder

performs the learned deconvolution and transforms the input to a
16 × 16 matrix of deconvolved site counts. These matrices are
finally reassembled according to their position in the original
image, averaging the deconvolved counts across overlapping
sites (Fig. 2b). During the assembly, we only take the central
12 × 12 sites of each crop into account as the border region suffers
from a reduced fidelity due to edge effects as a result of missing
neighboring sites that are important for the deconvolution. We
find that the deconvolution results in a strong enhancement of
the contrast of individual holes in the high-density plateau and
vice versa of isolated atoms in the outside region. A histogram of
all deconvolved site counts (Fig. 2c) reveals a bimodal distribution
with two well-separated peaks, which we identify as empty and
occupied sites, respectively. Since the tanh activation function
that is used in the bottleneck layer is symmetric around zero, the
correct discrimination threshold is, in general, zero as well.
Applying this threshold to the deconvolved site count matrix
finally gives the reconstructed occupation (Fig. 2d).

A key challenge in employing artificial neural networks for data
analysis is to ensure that the network learns a robust, physically
reasonable transformation that generalizes to unseen data instead
of memorizing the training samples or focusing on coincidental
correlations. The symmetric structure of our network enables us
to gain more insight into the learned behavior by isolating the
decoder part and examining the generated output for varying
binary input occupation matrices. We start by setting a single
entry of the 16 × 16 occupation matrix to one, expecting that a
single PSF appears at the appropriate location in the image
generated by the decoder. Figure 3a, b show a comparison
between the learned PSF and the measured one, which was
extracted from many dilute images (similar to Fig. 1c). Both the
cross-section and the 2D images visualize that the network learns
a PSF matching the experimental one in size and shape, with the
only difference between them being a small overall offset. As a
second test, we investigate to what extent the network is able to
approximate density-dependent effects, which are present in our
experimental data. To this end, we generate an occupation matrix
representing a block of occupied sites (Fig. 3c). We find that the
resulting output image from the decoder is significantly brighter
than a simple convolution of the occupation matrix with the
measured PSF. To study this quantitatively, we generate random
16 × 16 occupation matrices at various filling fractions and
process them using the decoder network. The output is compared
to a convolution of the occupation matrix with the measured PSF
as well as crops from experimental data (12 × 12 sites crop size) at
the same mean filling. Plotting the mean counts as a function of
the filling (Fig. 3d) reveals a significantly increased brightness
for higher fillings in the decoder-generated images, which is
compatible with the experimental data. This implies that the

Fig. 2 Example reconstruction of an experimental image. a Raw fluorescence image showing a Mott-insulating state (~2500 atoms) in a box potential
(arrows mark the lattice orientation). Crops containing 16 × 16 sites are extracted from the full image and fed into the encoder part. b The deconvolved site
counts are extracted from the bottleneck layer before binarization and reassembled according to their position in the full image. c A histogram of these
values reveals a bimodal distribution with a clear separation between empty and occupied lattices sites, allowing to set a threshold for the site occupation.
d Applying this threshold finally gives the reconstructed lattice occupation corresponding to the input image. Light gray circles denote empty and dark
purple occupied sites.
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network is indeed able to capture the density-dependent effects
due to superradiance, which in our experiment leads to a 22%
higher signal at unity filling.

Performance evaluation. In an experimental setting, the recon-
struction fidelity is limited by the finite SNR, systematic errors
such as spatially inhomogeneous fluorescence as well as hopping
and atom loss. A direct measurement of the fidelity in the pre-
sence of these effects is hindered by the imperfect knowledge of
the occupation labels in experimental images. One option would
be to benchmark the algorithm on simulated data, but conceiving
a simulation that accurately captures all effects present in the
experiment is a highly challenging task and beyond the scope of
this work. Instead, we present two approaches that allow us to
estimate the experimental fidelity directly from the reconstruction
process applied to experimental images.

First, we analyze the distribution of deconvolved site counts by
extracting the node values of the bottleneck layer before
binarization. Figure 4 shows the extracted site count distributions
for four selected average fillings, where the value for the filling is
computed from the reconstruction. We find well-discriminated
bimodal distributions across all fillings, with a vanishing overlap
at low filling (upper left panel), and a slightly increased overlap
towards higher fillings. Without any processing, the distributions
of empty and occupied sites would completely overlap due to
imaging noise and the spillover of neighboring sites (see
Supplementary Note 2). The effect of the deconvolution is now
to separate these distributions again, which is possible up to a
certain limit given by the aforementioned experimental

imperfections. The remaining overlap can then be used as an
approximation to estimate the reconstruction fidelity. In
principle, it is expected that the fidelity is maximal for fillings
close to zero and unity, and drops to a minimum around half-
filling due to the maximum possible number of nearest and next-
nearest neighbor configurations. In addition, density-dependent
effects such as superradiance and the increased effective atom loss
due to hopping can reduce the contrast of holes in experiments at
high filling.

A drawback of the nonlinear transformation applied by the
encoder is that the resulting functional form of the bimodal
distribution is a priori not known. This makes it challenging to
accurately quantify the reconstruction fidelity. Nevertheless, the
deconvolved counts for the case of half-filling appear to be well
described by a bimodal normal distribution. We can therefore
estimate the fidelity of the reconstruction process from the
overlap region between the two peaks by fitting two Gaussians to
the deconvolved counts at half-filling (upper right panel). The
overlap area corresponds to wrongly classified sites when
discriminating via a threshold value, and the reconstruction
fidelity is given by the fraction of this overlap area to the total
area under the bimodal distribution. From the fit, we determine
an experimental reconstruction fidelity for half-filling of
F � 99%.

Second, we quantify the reconstruction fidelity by taking two
consecutive images of an atomic sample in the same experimental
realization and comparing the reconstruction results. Such a
double-imaging protocol has previously been used to quantify the
probability of losses and hopping during imaging when assuming
a perfect reconstruction12,14,16,18. However, as we will detail
below, this can also be used to estimate the reconstruction fidelity
in the presence of both finite hopping and losses during imaging
as well as reconstruction errors. This method is sensitive to
statistical fluctuations of the recorded counts at finite SNR, which
limits the overall detection fidelity. We can derive a relation for

Fig. 3 Visualization of the decoder. The transformations learned by the
network can be visualized by extracting the decoder part and feeding
different occupation matrices into the bottleneck layer. a Analysis of a
single occupied site: comparison of the decoder output to the measured
point spread function (PSF, averaged over around 2000 individual PSFs).
b Cut through the center of the 2D images shown in a. c Analysis of a group
of 9 × 9 occupied sites: Compared to a convolution with the measured PSF,
the decoder output yields a significantly brighter image. dMean intensity as
a function of filling in regions cropped from experimental data (gray
triangles), the decoder output for random occupation matrices at a given
filling (purple circles) and a convolution of the same occupation with the
measured PSF shown in a (orange diamonds). We only use the central
12 × 12 sites of the crops to avoid edge effects, and the experimental data
points are computed from ~1500 crops per filling bin (same crop size). The
lines are linear fits through the respective data points and the error bars
denote the standard deviation.

Fig. 4 Deconvolved site count distributions for different fillings. The
deconvolved site counts are extracted from the bottleneck layer before
binarization via the activation function. A bimodal distribution
distinguishing between empty and occupied sites is found across all fillings.
The overlap vanishes for small fillings and increases slightly towards higher
fillings. To quantify the fidelity from the overlap, we fit two Gaussians to the
data for half-filling (solid line), capturing the distributions of empty (dotted
line, left peak) and occupied (dashed line, right peak) sites, respectively.
Insets show a zoom-in of the overlap region. The filling values were
obtained directly from the reconstruction using a threshold of zero, and the
occurrences are normalized to the respective maximum in each plot. Each
histogram is computed from ~1500 crops with 12 × 12 sites.
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the reconstruction fidelity F :

F ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2δ

1� 2 pδðnÞ

s !
; ð2Þ

where δ is the probability of finding different reconstruction
results on a lattice site between the two images and pδ accounts
for thermal hopping and atom loss, which was calibrated
independently (see Supplementary Note 4 for a detailed
derivation).

Figure 5 shows the measured reconstruction fidelity F as a
function of the average filling n. We show data points both with
(pδ(n)= n ⋅ 5.9 × 10−3) and without (pδ= 0) the hopping and loss
correction. We find a reconstruction fidelity above 99% close to
unity filling, and for n≲ 0.2. A minimum occurs around n= 0.7,
yielding an uncorrected reconstruction fidelity of 96.3(3)%.

While the double-imaging analysis enables to quantify the
reconstruction fidelity, it is primarily sensitive to statistical errors
stemming from a finite SNR. An analysis of the algorithm with
simulated fluorescence images for our experimental resolution
and SNR suggests that we do not expect large systematic errors
(see Supplementary Note 3 for details). However, there is
currently no straightforward method to accurately quantify
systematic errors with experimental data.

Conclusions
We have presented an unsupervised deep-learning algorithm for
the reconstruction of the lattice occupation from fluorescence
images obtained with quantum gas microscopes. Using experi-
mental images from our cesium experiment, we demonstrated
high-fidelity reconstruction of the site occupation using the
proposed algorithm in a challenging regime, where the lattice
spacing is more than two times smaller than the imaging reso-
lution. Based on a convolutional neural network that is able to
efficiently approximate a wide variety of nonlinear relationships,
our approach has an inherent advantage in solving the

deconvolution problem and capturing density-dependent
effects12,26. The autoencoder architecture allows training
directly with experimental images, using a dataset with about 200
fluorescence images that can be taken within a few hours in a
typical microscope setup. This also obviates the need for a
detailed calibration of imaging parameters such as PSF or image
noise. The well-optimized tensor operations allow the recon-
struction of a full image in less than a second on standard
computer hardware. Finally, we have developed and implemented
methods for benchmarking the reconstruction performance,
providing a path to estimate the fidelity with experimental data
where the true occupation is a priori not known. In particular, we
have shown how a network structure as employed here allows one
to extract the bimodal distribution of deconvolved counts before
the final binarization step. This carries a lot of information about
the reconstruction process, facilitating an evaluation of the
reconstruction fidelity as well as the detection of possible drifts in
a day-to-day operation. Additionally, we demonstrated how a
double-imaging protocol can be used to estimate the recon-
struction fidelity in the presence of finite hopping and losses
during imaging.

Our work enables high-fidelity reconstruction in experiments
with short-spaced optical lattices, paving the way for new
experiments with exotic lattice configurations34–36. We anticipate
our scheme to remain applicable for even shorter lattice spacings,
as long as the SNR is increased appropriately. Beyond the field of
quantum gas microscopy, this algorithm can also be applied to
other experimental platforms, such as Rydberg-atom arrays53,54

or ion trap experiments55.

Methods
Experimental setup. The science chamber is a glass cell equipped with an external
high-resolution objective at a numerical aperture of 0.8. The atoms are loaded into a
2D square optical lattice created from the interference of two perpendicular retro-
reflected laser beams with wavelength λ= 767 nm (spacing a= 383.5 nm). We per-
form fluorescence imaging by suddenly increasing the lattice depth to about 400 μK
and adding optical molasses on the D2 line (λ= 852 nm). The scattered fluorescence
photons are collected through the microscope objective and focused onto an sCMOS
camera. With this imaging system, a resolution of about 850 nm is obtained.

To prepare experimental images at different filling fractions, we start from
unity-filling Mott insulators, and then randomly remove a certain fraction of atoms
by driving coherent microwave transfers on the F= 3, mF= 3↔ F= 4,mF= 4
transition for a variable duration and then removing the transferred atoms using an
optical blowout pulse (resonant with the F ¼ 4 $ F0 ¼ 5 transition).

Lattice extraction. The reconstruction scheme relies on the fact that the lattice
sites are always at the same position in each processed crop. To determine the
lattice grid, we first extract the lattice base vectors from a set of dilute fluorescence
images. In each image, isolated atoms are fitted with 2D Gaussians to determine
their location with sub-pixel accuracy. Fourier transforming the fitted positions and
averaging over all images yields distinct peaks, corresponding to the lattice wave
vectors. Finally, the phase in each analyzed image is fixed by fitting a grid spanned
by the previously determined base vectors to the positions of a few isolated atoms
around the central region of interest.

Data processing. For training and reconstruction, experimental images are first
rotated to align the lattice axes close to horizontal/vertical, and then cut into crops
containing exactly 16 × 16 lattice sites. Furthermore, the pixel values are re-scaled
to the range (−1,1) using a linear minimum-maximum scaling, where the mini-
mum and maximum values are determined across the entire training set. The same
scaling is applied to each processed crop.

Data availability
The data that supports the plots within this paper and other findings of this study are
available at https://doi.org/10.17617/3.RNICHV.

Code availability
The code for the model and evaluation within this paper are available from the
corresponding author upon reasonable request.

Fig. 5 Reconstruction fidelity estimation from double-exposure imaging.
By measuring the same many-body state twice, we can estimate the
reconstruction fidelity from the difference in the reconstructed occupations
via Eq. (2). The uncorrected data is obtained by neglecting hopping and
loss, i.e., pδ= 0, while the corrected points (shaded) take the independently
calibrated value pδ(n)= n ⋅ 5.9 × 10−3 into account. The zoom-in panels
show two typical images at the indicated mean filling with the respective
first and second exposure. The blue squares in the second image indicate
sites that changed from unoccupied to occupied, and the green crosses vice
versa. Error bars denote the standard error of the mean.
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