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In ecology, climate and other fields, (sub)systems have been
identified that can transition into a qualitatively different state
when a critical threshold or tipping point in a driving process is
crossed. An understanding of those tipping elements is of great
interest given the increasing influence of humans on the
biophysical Earth system. Complex interactions exist between
tipping elements, e.g. physical mechanisms connect subsystems
of the climate system. Based on earlier work on such coupled
nonlinear systems, we systematically assessed the qualitative
long-term behaviour of interacting tipping elements. We
developed an understanding of the consequences of interactions
on the tipping behaviour allowing for tipping cascades to
emerge under certain conditions. The (narrative) application of
these qualitative results to real-world examples of interacting
tipping elements indicates that tipping cascades with profound
consequences may occur: the interacting Greenland ice sheet and
thermohaline ocean circulation might tip before the tipping
points of the isolated subsystems are crossed. The eutrophication
of the first lake in a lake chain might propagate through the
following lakes without a crossing of their individual critical
nutrient input levels. The possibility of emerging cascading
tipping dynamics calls for the development of a unified theory
of interacting tipping elements and the quantitative analysis of
interacting real-world tipping elements.
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1. Introduction
Many natural systems exhibit nonlinear dynamics and can undergo a transition into a qualitatively
different state when a critical threshold is crossed. Those systems are called tipping elements and the
corresponding threshold in terms of a critical parameter is the tipping point of the system. A precise
mathematical definition is given in [1]. Examples for tipping elements can be found in ecology as a
specific type of regime shifts [2,3] such as the transition of a shallow lake from a clear to a turbid state
[4–9]. Furthermore, subsystems of the Earth system [1,10,11] such as the thermohaline circulation
[12–18] or the Greenland ice sheet [19,20] have been identified as tipping elements.

The term tipping point among other roots originated from describing the changing prevalence of
ethnically diverse population in a US community [21–25] and has been applied to natural systems
more recently. However, the idea that systems may show such nonlinear behaviour has already been
developed within the frameworks of dynamical systems and catastrophe theory [26–30]. The latter
theory received increasing attention and has been applied to several real-world systems in the period
after its introduction [31]. Its extensive use has been criticized [32–35] so that it became a
mathematical theory without much recent influence [36]. Mostly independently of the results given by
catastrophe theory, critical transitions, tipping points and regime shifts have been analysed in ecology
[2,9,37–39] using the concepts of multistability and resilience [40,41]. Some first attempts to define a
climatic tipping element relating to abrupt climate shifts can be found in [42–44].

Different types of tipping points are discussed in the literature [9,23,37–39,45]. First, a qualitative
change of the system’s state when a continuously changing control parameter crosses a threshold is
called bifurcation-induced tipping [23,46–48]. Noise can induce a transition into an alternative stable
state without a change of the system’s control parameter [23,38,49]. Furthermore, rate-induced tipping
describes the shift to a qualitatively different state when the rate of change of a control parameter
crosses a critical threshold [23,45,49,50].

It is known that bifurcation-induced tipping, even though often mentioned, is not the only possible
type of tipping [24,45,49,51]. Nevertheless, the response of many natural systems to a control parameter
can be described in terms of a double fold bifurcation [48,52,53].

Real-world tipping elements are not independent from each other [52], but there may exist complex
interactions between them. Potential interactions through various physical mechanisms were revealed for
tipping elements in the climate system [54]. As an example, meltwater influx into the North Atlantic as a
result of a tipping of the Greenland ice sheet could weaken the Atlantic meridional overturning
circulation [55]. Lake chains or rivers can be seen as an ecological example for coupled tipping
elements. Each lake or river section in the chain can undergo a transition from a clear to a turbid state
in response to nutrient input [5,6,8]. The single lakes can in reality be connected through small rivers
or streams and can therefore not be considered independently [56–58].

The tipping probability of a certain tipping element might be influenced by the behaviour of other
interacting tipping elements [54,59]. As a consequence, crossing of a critical threshold of a first tipping
element could trigger, as a domino effect, a critical transition in a coupled tipping element or even
tipping cascades [37,59–64]. In the following, we use the term tipping cascade for a critical transition
triggered by a preceding tipping event of an influencing system. The heterogeneity of the subsystems
as well as the coupling strength may be important factors that influence the overall system behaviour
[65] and should be considered in the analysis of coupled tipping elements. In the case of interacting
climate tipping elements, a tipping cascade may impose a considerable risk on human societies [66].

Different attempts to analyse the influence of coupling between different tipping elements on their
tipping behaviour have been followed. The development of critical transitions in lake chains was
studied using established models of lake eutrophication [58,67,68]. In analogy to wave propagation in
discrete media [69–72], the spread of local disturbances in spatially extended, bistable ecosystems was
analysed for explicit ecological examples [73] and more theoretically [74]. In addition, cascades may
occur on networks [75–78] and networks of networks [79–83]. [52,84,85] analysed the system
behaviour of special cases of coupled cusp catastrophes. The possible appearance of tipping cascades
in coupled bifurcational systems and, in particular, in the climate system was supported by results
from coupling conceptual models of the Atlantic meridional overturning circulation and El Niño-
Southern Oscillation [86].

Consequences of interactions between tipping elements, their nonlinear dynamics as well as the
possible development of tipping cascades in systems of interacting tipping elements have not been
assessed systematically so far. Here, we make an advance in the theory of interacting tipping elements
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focusing on bifurcation-induced tipping in the form of cusp catastrophes. The special cases presented in
[52,85] were extended by looking at uni- and bi-directional coupling and tipping chains consisting of two
and three elements. We explored the tipping behaviour of the interacting system extensively under the
influence of different coupling types (positive and negative interactions) and the coupling strength
and particularly focused on identifying conditions that favour tipping cascades. In addition, we
applied our theoretical results to real-world systems to reveal mathematically possible tipping
cascades in ecological systems such as lake chains and in the climate system.
2. Model
We use a conceptual model of tipping elements in order to investigate the qualitative long-term
behaviour of coupled subsystems each of which exhibits critical transitions. In particular, we consider
a continuous dynamical system _xi(t) ¼ fi(x1, . . . , xn) in n-dimensions, where each component xi(t) [ R

corresponds to a generic tipping element Xi.
The dynamics of the tipping elements is modelled with the topological normal form of the cusp

bifurcation [52,85], i.e. the most generic polynomial system exhibiting this type of tipping behaviour
(figure 1). The long-term behaviour of many real-world systems in terms of the system’s state, such as
the strength of the thermohaline circulation [12,15,17,18], the ice thickness of the Greenland ice sheet
[19] and the algae density in shallow lakes [6,8], is qualitatively represented by a slice of the cusp
catastrophe, a double fold bifurcation, showing bistability, hysteresis properties and transitions to a
qualitatively different state when a critical threshold is crossed [87]. In contrast to other possible
bifurcations such as the transcritical, pitchfork or Hopf bifurcations, the double fold bifurcation as a
‘dangerous’ bifurcation [46] captures the catastrophic nature of tipping which is of major interest here.
A tipping element Xi is then represented by

f0i (xi) ¼ aixi(t)� bix3i (t)þ ci with ai, bi, ci [ R, (2:1)

where ai, bi > 0 and f0i corresponds to the uncoupled case.
The parameter ai corresponds to the distance between the upper and lower layers of stable equilibria

of the cusp and the parameter bi controls the strength of the nonlinearity in the system. Both parameters
are fixed throughout the analysis and chosen to assure bistability of the subsystems for a certain range of
the parameter ci allowing for tipping behaviour. The control parameter ci is then associated with a tipping
parameter the size of which determines whether the system is in this bistable range or not. By leaving the
bistability range, a critical transition from one stable state to another may arise (figure 1):

For �cicrit , ci , cicrit, equation (2.1) has one negative stable equilibrium x�i� < 0 and a positive stable
equilibrium x�iþ . 0 as alternative stable states. We call x�i� , 0 and x�iþ . 0 the normal and the
alternative state, respectively. Increasing the control parameter ci such that the threshold cicrit is
crossed, the normal state x�i� disappears and only the alternative state x�iþ exists. If the system resided
in the normal state x�i� , it transitions to the alternative state x�iþ for ci . cicrit . Analogously, for ci , �cicrit,
only the normal state x�i� exists and for lowering the control parameter ci below �cicrit the system falls



Table 1. Overview of linearly coupled tipping elements studied in the literature.

reference coupling type parameter choices

n = 2

[52] master–slave system

with linear coupling

b1 = b2 = 1

a1 = a2 = 1

C1(x1, x2) = 0

C2(x1, x2) = dx1
[85] Kadyrov style a1 = a2 = 1

b1 = b2 = 1

c1 = c2 = 0

C1(x1, x2) = d21x2
C2(x1, x2) = d12x1
symmetric coupling: d21 = d12
asymmetric coupling: d21≠ d12

n = 3

[52] master–slave–slave system

with linear coupling

b1 = b2 = b3 = 1

a1 = a2 = a3 = 1

C1(x1, x2, x3) = 0

C2(x1, x2, x3) = dx1
C3(x1, x2, x3) = dx2

n > 2

[84] n equations

coupled in a graph

xi =−x3i + Aijxj
Aij: matrix of size N × N
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from the disappearing alternative state x�iþ to the normal state x�i� (figure 1). The transition of the
uncoupled tipping elements through a changing control parameter ci at the critical manifold [88]
given by the roots of the polynomial can be quantified: depending on the sign of the discriminant
D0

i ¼ (bici=2)
2 � bi(ai=3)

3 there are either one (D0
i . 0) or two (D0

i � 0) stable equilibria determined by
f0i (x

�
i ) ¼ 0.
For given ai and bi and setting D0

i ¼ 0, the critical value for the control parameter

cicrit (ai, bi) ¼ +2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
bi
( ai3 )

3
q

can be calculated, where the transition into a regime with only one

equilibrium takes place. We call cicrit (ai, bi) the intrinsic tipping points for an uncoupled tipping
element as given by equation (2.1).

In the following, we couple the subsystems with each other using a coupling function Ci [ R (figure 1).
Subsystem Xi then becomes

fi(x1, x2, . . . , xn) ¼ aixi(t)� bix3i (t)þ ci þ Ci(x1(t), x2(t), . . . , xn(t)), (2:2)

with ai, bi > 0.
For simplicity, we choose a linear coupling [52,85]. The linear coupling function for subsystem Xi then

reads as

Ci(x1(t), x2(t), . . . , xn(t)) ¼
Xn
j¼1

d jix j(t) with i = j, (2:3)

where a coupling dji≠ 0 indicates an influence of another subsystem Xj to subsystem Xi. Even though
equations (2.2) and (2.3) provide the simplest equations to describe the threshold behaviour of n
coupled tipping elements, they can be used for understanding the qualitative features of all systems
with the same critical behaviour. Using the concept of topological equivalence [88], the critical
behaviour of a class of more complicated real-world systems can be mapped to the system above.
Table 1 provides an overview of special cases of coupling between interacting cusp catastrophes
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investigated in the literature [52,84,85]. In addition, more theoretical analyses on bifurcations of coupled
cell systems (with symmetry properties) have been conducted (e.g. [89]).

For n = 2, the corresponding equations read

_x1(t) ¼ a1x1(t)� b1x31(t)þ c1 þ d21x2(t)

and _x2(t) ¼ a2x2(t)� b2x32(t)þ c2 þ d12x1(t): (2:4)

with ai, bi > 0. With d21 = 0 and d12≠ 0, we recover a generic master–slave configuration. The stable
equilibria can be determined analogously to the uncoupled case with fi(x�1, x

�
2, . . . , x

�
n) ¼ 0 8i. The

discriminant for the second tipping element X2 becomes D2 = (b2 (c2 + d12x1�)/2)
2− b2 (a2/3)

3.
Note that D2 is a function of the control parameter c2, the coupling strength d2 and the equilibrium

x1�. The number of stable equilibria of subsystem X2 depends on the sign of the discriminant. For D2≤ 0,
we find two stable equilibria and for D2 > 0, we find one stable equilibrium. The threshold of the control
parameter c2 at which the number of solutions changes is obtained by solving D2 = 0 and is given by

c2 ¼ �d12x�1 + c2crit (a2, b2), (2:5)

where

c2crit (a2, b2) ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
b2

a2
3

� �3
s

, (2:6)

as the effective tipping point of the coupled tipping element X2.
In the following section, we will elaborate on how one can infer the qualitative behaviour of the

coupled system using this expression.
3. Results
Different types of tipping behaviour of a coupled system can be derived for the governing system of
equations (2.4). For simplicity, let us consider the case ai = 1, bi = 1 (arbitrary bi can be achieved by
rescaling xi) for i = 1, 2 here and thereafter and d21 = 0, i.e. unidirectional coupling. Subsystem X2

leaves the bistable range for

c2 þ d12x�1 � c2crit (a2, b2), (3:1)

following expression (2.5) for the effective tipping point of the coupled tipping element X2 in the
previous §2, possibly giving rise to a critical transition to the alternative state x�2þ . 0.

Based on this simple system, rules on the spread of tipping processes in the considered system of
coupled tipping elements are formulated in the following. These tipping rules depend on the type of
coupling, i.e. whether the subsystems are positively or negatively coupled, as well as on the relation
between the control parameters c1 (determining the possible stable states of subsystem X1) and c2 and
the absolute value of the coupling strength d12.

Let d12 > 0, i.e. subsystem X2 is positively coupled to subsystem X1. Then:

— Facilitated tipping (figure 2, upper panel): Assume that subsystem X1 is in its alternative state x�1þ .
Note that this assumption can be fulfilled if either subsystem X1 transitions to the alternative state by
crossing its intrinsic tipping point c1crit with an increase of the control parameter c1 or if subsystem X1

simply occupies the alternative state (which is in general possible for c1 . �c1crit ). Then subsystem X2

is pushed towards its tipping point in our model and can undergo a critical transition to its
alternative state x�2þ for c2 � c2crit � d12x�1. The effective tipping point of subsystem X2 is lower than
its intrinsic tipping point c2crit . The higher the coupling strength, the lower the necessary critical
value of the control parameter c2 for which subsystem X2 can tip.

— Impeded tipping (figure 2, lower panel): If subsystem X1 is in its normal state x�1� , subsystem X2 is
pulled away from its tipping point in our model and can undergo a critical transition for
c2 � c2crit þ d12jx�1j. The effective tipping point of subsystem X2 is higher than its intrinsic tipping
point c2crit . The higher the coupling strength, the higher the necessary critical value of the control
parameter c2 for which subsystem X2 can tip.

— Back-tipping: Assume that subsystem X1 is in its normal state x�1� . If subsystem X2 occupies the
alternative state x�2þ , subsystem X2 can tip back to the normal state x�2� for c2 , �c2crit þ d12jx�1j
(figure 3, upper panel). This behaviour especially occurs for a high coupling strength d12 and
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via a linear coupling with a coupling strength d12 > 0 and results in the shift of the uncoupled slave system’s state (indicated by a
blue dot in the right bifurcation diagram) along the blue line.
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small values of the control parameter c2. However, subsystem X2 is staying in the alternative state x�2þ if
�c2crit þ d12jx�1j , c2. Here, subsystem X2 is pushed into the bistable range of the system (figure 3, lower
panel). This behaviour especially occurs for a high coupling strength d12 and high values of the control
parameter c2.

Let d12 < 0, i.e. subsystem X2 is negatively coupled to subsystem X1. Then:

— Impeded tipping: Assume that subsystem X1 is in its alternative state x�1þ . Note that this assumption
can be fulfilled if either subsystem X1 transitions to the alternative state by crossing its intrinsic
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tipping point c1crit with an increase of the control parameter c1 or if subsystem X1 simply occupies the
alternative state (which is in general possible for c1 . �c1crit ). Subsystem X2 is pulled away from its
tipping point in our model and can undergo a critical transition for c2 � c2crit þ jd12kx�1j. The effective
tipping point of subsystem X2 is higher than its intrinsic tipping point c2crit . The higher the coupling
strength, the higher the necessary critical value of the control parameter c2 for which subsystem X2

can tip.
— Facilitated tipping: If subsystem X1 is in its normal state x�1� , subsystem X2 is pushed towards its

tipping point in our model and can undergo a critical transition to its alternative state x�2þ for
c2 � c2crit � jd12kx�1j. The effective tipping point of subsystem X2 is lower than its intrinsic tipping
point c2crit . The higher the coupling strength, the lower the necessary critical value of the control
parameter c2 for which subsystem X2 can tip.
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— Back-tipping: Assume that subsystem X1 is in its normal state x�1� . If subsystem X2 occupies the
alternative state x�2þ , subsystem X2 can tip back to the normal state x�2� if c2 , �c2crit � jd12kx�1j. This
behaviour especially occurs for a high coupling strength d12 and a low value of the control
parameter c2. However, subsystem X2 stays in the alternative state if c2 � �c2crit � jd12kx�1j. Here,
subsystem X2 is pulled to the bistable area of the system. This behaviour especially occurs for a
high coupling strength |d12| and high values of the control parameter c2.

These tipping rules based on the analytic solution of two unidirectionally coupled tipping elements give
an impression of the interplay between certain system parameters and their influence on the tipping
process. Going beyond this, using numerical calculations of fixed points and their stability (via the
eigenvalues of the system’s Jacobian at the respective fixed point), the overall qualitative long-term
behaviour of up to three interacting tipping elements with uni- and bi-directional coupling of varying
sign has been assessed.

A stability map displays the number of stable equilibria of the system under consideration in the
control parameter space for fixed coupling strengths. Multiple stability maps have been calculated for
various combinations of the coupling strengths. The stability maps have been arranged in the form of
a matrix, where one matrix element corresponds to one stability map. For illustrative purposes, we
refer to the example given in figure 4 for two interacting tipping elements.

The system loses or gains stable fixed points through the variation of one or various control
parameters ci for fixed coupling strengths, which is associated with switches between the areas of
different number of stable equilibria in the control parameter space by crossing the boundaries
between the coloured areas. In addition, the phase space portrait may change.

Depending on the changes in the phase space (in terms of the stable fixed points and the flow) and
the occupied state of the system, different types of system behaviour emerge. Combining the stability
maps with phase space portraits (example given in figure 5 for illustrative purposes), the different
areas in the stability maps can be characterized in terms of the emerging system behaviour, and
possible critical transitions can be identified. Depending on which state the system was in, critical
transitions can occur or not. For example, if the system resided in an equilibrium which lost stability
and disappeared through the variation of one (or multiple) control parameters, the flow in the phase
space suggests the state to which the system may transition.

In the following, results for selected examples of coupled tipping elements are shown. First, a simple
master–slave system with a unidirectional coupling is presented in example 3.1. In example 3.2, the
previous system is extended by an additional negative coupling resulting in a bidirectionally coupled
system of two tipping elements. Finally, the propagation in a unidirectionally coupled system
consisting of three tipping elements is described in example 3.3. We only analyse the system
behaviour for ci≥ 0.

Example 3.1. Master–slave system for d12 > 0, e.g. a pair of lakes

The behaviour of a master–slave system (n = 2) given by equations (2.2) and (2.3) with i = 1, 2 and
positive coupling d12 > 0 and d21 = 0, which was used for the derivation of the tipping rules, is
described in more detail in the following. This type of coupling can be seen as an example for a
pair of interacting lakes. Each lake may undergo a transition from a clear to a turbid state when
some critical magnitude of the nutrient input as the tipping parameter is exceeded [6,8]. It is
assumed that the lakes are connected [57,58,67] through a unidirectional water stream. Critical
transitions can be derived using the numerically calculated phase portrait in combination with
the stability map for a fixed coupling strength d12 > 0 (figure 5). Note that figure 5 is a zoom into
figure 4 at the lower right. The system has four stable equilibria for small values of the control
parameters c1 and c2 which are separated by four saddles and an unstable node in the centre of the
phase space.

With increasing control parameter c1, a critical transition of subsystem X1 occurs in our model when
its intrinsic tipping point c1crit is crossed (figure 5, moving from lower left to lower right along the green
arrow), given that the system occupied one of the stable equilibria which lose stability for c1 . c1crit .

With increasing control parameter c2, a critical transition of subsystem X2 occurs in our model even if
c2 , c2crit , given that subsystem X1 is in the alternative state (figure 5, moving upwards from the lower left
along the yellow arrow). The coupled subsystem X2 tips at an effective tipping point lower than its
intrinsic tipping point c2crit .

For an increase of the control parameter c1 above the intrinsic tipping point c1crit and a slight increase
of the control parameter c2, a tipping cascade, starting from the normal states of X1 and X2, with a critical
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transition in subsystem X1 and a following transition in subsystem X2 arises in our model (figure 5,
moving from the lower left to the right column along the pink arrow). Note that the cascade occurs
before the intrinsic tipping point of subsystem X2 is crossed.

There is a change in the system behaviour for an increasing coupling strength (electronic
supplementary material, figure S1). The previously described area with only one stable fixed point of
the two subsystems in the alternative state for c1 . c1crit exists for extremely low values of c2 ,, c2crit .
Therefore, a tipping cascade can occur for even lower values of the control parameter c2 ,, c2crit than
for a system with lower coupling strength. For c1 , c1crit and low values of the control parameter c2,
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subsystem X2 either transitions to the alternative state for c2 , c2crit, given that subsystem X1 is in the
alternative state, or subsystem X2 tips back from the alternative state to the normal state, given that
subsystem X1 has not tipped. For c1 , c1crit and an increased control parameter c2, the critical
transition of subsystem X2 to the alternative state, given that subsystem X1 occupies the alternative
state, is the only transition that can be observed.
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Example 3.2. Bidirectional interaction of two tipping elements, e.g. Greenland ice sheet and Atlantic
meridional overturning circulation

Consider a system consisting of two (n = 2) tipping elements given by equations (2.2) and (2.3) with i =
1, 2 and a bidirectional couplingwhere d21 < 0 and d12 > 0. This type of coupling can for instance be found in
the interaction of the Greenland ice sheet (GIS) and the Atlantic meridional overturning circulation
(AMOC), whose long-term behaviour may be represented by a double fold as suggested by (simple)
models [14,17,90]: increased meltwater influx into the North Atlantic due to tipping of the GIS could
lead to a weakening or even shutdown (tipping) of the AMOC [55], i.e. introducing a positive coupling.
At the same time, a slowdown of the AMOC leads to a relative cooling around Greenland and hence
corresponds to a negative coupling [54]. The system is analysed for a low and a high coupling strength
(where d21 and d12 have opposite signs but the same magnitude) due to a substantial change of the
qualitative behaviour towards higher coupling strength. There currently is not sufficient knowledge on
the strength of the interaction between the GIS and the AMOC so that neither a low nor a high coupling
strength can be excluded for certain. The number of stable equilibria and possible critical transitions for
different parameter settings are given in figure 6 as zoom into figure 4 for low coupling strengths (lower
right). A starting point of the analysis of the system behaviour for the low coupling strength is the area
of four stable equilibria for low values of the control parameters c1 and c2 in figure 6.

With increasing control parameter c1, a critical transition of the GIS as subsystem X1 is possible for
c1 , c1crit in our model, given that the AMOC as subsystem X2 is in the normal state (figure 6, moving
from lower left to the right along the yellow arrow). The GIS might tip at an effective tipping point
which is lower than the intrinsic tipping point of the isolated subsystem. A critical transition of the
GIS for the AMOC being in the alternative state is possible with a further increase of the control
parameter c1 for c1 � c1crit (figure 6, moving from lower left to the right along the second yellow arrow).

With increasing control parameter c2, a critical transition of the AMOC as subsystem X2 to a state with
weakened strength (i.e. the alternative state) is possible in our model for c2 , c2crit, given that the GIS as
subsystem X1 has already tipped (figure 6, moving from lower left upwards along the yellow arrow).
The AMOC might tip at an effective tipping point which is lower than the intrinsic tipping point of the
isolated subsystem. Given that the GIS is in its normal state, a critical transition of the AMOC is possible
with a further increase of the control parameter c2 for c2 � c2crit at an effective tipping point higher than
its intrinsic tipping point (figure 6, moving from lower left upwards along the second yellow arrow). As
a result of the model formulation, the GIS would still pull the thermohaline circulation (THC) away from
its tipping point even though it has already started to melt but has not tipped to x�1þ (i.e. 0 > x�1 . �1). It
would be possible to adjust the coupling function or the dynamics of each tipping element (e.g. [76]) so
that already a slight change of the GIS state towards the alternative state without a complete critical
transition to full loss of the ice sheet would push the AMOC towards its own tipping point.

Fora slight increaseofboth controlparameters c1 and c2, acritical transitionof theGISaswell as theAMOC
to the alternative state is possible in our model for c1 , c1crit and c2 , c2crit before their respective intrinsic
tipping points are crossed (figure 6, moving from lower left along the pink arrow). In contrast to the
previous example 3.1, the additional negative coupling results in the tipping of both interacting subsystems
at an effective tipping point below their intrinsic tipping points. In a master–slave system (example 3.1), the
master system X1 needs to tip through an increase of its control parameter above its intrinsic tipping point
c1 . c1crit to trigger a critical transition in the slave system X2 at an effective tipping point c2 , c2crit .

With increasing coupling strengths d21 and d12 the system behaviour changes. The system has one
unstable fixed point and Kadyrov oscillations [85] occur for a wide range of the control parameters in
the considered part of the (c1, c2)–parameter space (upper left of figure 4).

Example 3.3. Master–slave–slave system, e.g. propagation of critical transitions in lake chains

Consider a system consisting of three (n = 3) unidirectionally coupled tipping elements given by
equations (2.2) and (2.3) with i = 1, 2, 3; d12, d23 > 0 and d21, d32, d31, d13 = 0. This type of coupling
corresponds to the behaviour of a lake chain subject to an external input of nutrients as a control
parameter (as e.g. in [57]). As in example 3.1, it is assumed that the lakes are connected through a
unidirectional water stream [57,58,67,91]. The behaviour of subsystem X1 corresponds to the
behaviour of an uncoupled tipping element. Therefore, the eutrophication of the first lake in the lake
chain, i.e. the tipping of subsystem X1, is possible with an increase of its control parameter c1 . c1crit .
For c1 . c1crit only stable fixed points with subsystem X1 in the alternative state exist. Additionally
increasing the control parameters c2, c3 or both results in the loss of further stable fixed points and
allows for critical transitions in the slave systems X2 and X3 (figure 7). In the following, the system
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behaviour with c1 . c1crit for low coupling strengths d12, d23 > 0 is analysed (see figure 7, lower left and
electronic supplementary material, figure S3 for a zoom-in).

With an increasing control parameter c2 or c3, a critical transition in the corresponding subsystems is
possible in our model for c2 , c2crit (electronic supplementary material, figure S4) or c3 , c3crit (electronic
supplementary material, figure S5), given that the preceding subsystem occupies the alternative state or
undergoes a transition into the alternative state through a continuously changing control parameter. Lake
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stability map in the matrix is determined by the coupling strength.
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X2 and X3 in the lake chain can, therefore, become eutrophic before the intrinsic critical level of nutrient
input of an isolated lake is crossed, given that the preceding lake has already become eutrophic.

For a simultaneous, slight increase of the control parameters c2 and c3 of both subsystems X2 and X3, a
critical transition in both subsystems X2 and X3 is possible in our model for c2 , c2crit and c3 , c3crit . As a
result, a tipping cascade can be observed, given subsystem X1 has already tipped or tips with c1 . c1crit
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(pink trajectory in figure 8). Consequently, after the eutrophication of the first lake, a critical transition to
the turbid state of a lake can spread in the lake chain even if the intrinsic critical value of nutrient input
known from an isolated lake is not crossed.
4. Discussions and conclusion
The qualitative long-term behaviour of interacting, cusp-like tipping elements has been assessed in a
simple analytic and an extensive numerical analysis of a conceptual model. Depending on the type of
coupling and the coupling strength, qualitatively different behaviours of the systems of interacting
tipping elements were observed. In particular, tipping cascades where a critical transition in one
subsystem triggers the tipping of a coupled subsystem may occur under certain conditions.
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Simple analytic calculations resulted in the formulation of tipping rules for the spread of tipping
processes in systems of interacting tipping elements: a shift in the threshold value of the control
parameter, at which an interacting tipping element undergoes a transition into a qualitatively different
state, can occur. We call the threshold value of the isolated subsystem the intrinsic tipping point of
the tipping element. If an interaction with another tipping element exists, the tipping process takes
place when the so-called effective tipping point is crossed. Depending on the coupling direction, the
effective tipping point can occur at either lower (facilitated tipping) or higher (impeded tipping)
values of the control parameter than the intrinsic tipping point.

We have generalized and extended existing studies of special cases of coupled cusp-like tipping
elements [52,85] through an extensive numerical analysis of two and three interacting tipping
elements with one- or bidirectional coupling of varying direction. The behaviour of the special cases
including a window with both subsystems of a simple master–slave system [52] in the alternative
state, a tipping cascade in a positively coupled master–slave–slave system [52] and the Kadyrov
oscillator [85] for two bidirectionally coupled tipping elements for a high coupling strength of same
magnitude but with opposite signs is consistent with the system behaviour observed in our analysis.

In addition, our extensive analysis allowed to identify types of coupling that favour critical tipping
scenarios. Conditions in terms of coupling strength and control parameters of the subsystem under
which the tipping scenarios occur have been determined. Cascades of tipping processes that occur
before the crossing of intrinsic tipping points, i.e. where the effective tipping point lies at lower values
than the intrinsic tipping point of the uncoupled tipping element, are of special interest. In a simple
master–slave system with positive coupling, a critical transition in the master system due to a crossing
of its intrinsic tipping point triggers a critical transition of the slave system at an effective tipping
point lower than its intrinsic tipping point. By contrast, a negative coupling would prevent a
facilitated tipping of the slave system in the case of a master system being in the alternative state. In a
system of two tipping elements with bidirectional coupling, a tipping cascade is favoured if one of the
coupling terms is negative. In a master–slave–slave system with d12 > 0 and d23 > 0, the initial tipping
of the master system can trigger cascading tipping processes in the following subsystems before the
intrinsic threshold of the corresponding control parameter is crossed. Such a tipping cascade before
the crossing of the corresponding intrinsic thresholds cannot be observed after the introduction of a
negative coupling (results not shown here). Tipping processes are suppressed instead in this case and
do not spread into all subsystems.

Applying the qualitative system behaviour to selected interacting real-world tipping elements
revealed possible tipping scenarios, which are relevant for the future development of the Earth
system, and in addition, due to the consequences of tipping, such as sea-level rise [92,93], for the
economy, infrastructure and society more broadly. In particular, the analysis of the qualitative long-
term system behaviour of two bidirectionally coupled tipping elements with opposite sign but same
magnitude suggests that the Greenland ice sheet and the AMOC might tip before their intrinsic
tipping points are reached. In other words, the meltdown of the Greenland ice sheet and the
slowdown of the AMOC might begin before the intrinsic threshold ranges identified for isolated
tipping elements [94] is crossed. The possible existence of such tipping cascades increases the risks
that anthropogenic climate change poses to human societies, since the intrinsic threshold ranges of
some climatic tipping elements including the Greenland ice sheet are assumed to lie even within the
1.5–2°C target range of the Paris agreement [94].

When it comes to the application of tipping behaviour to real-world systems, it should be noted that
tipping elements were described in an idealized way using the normal form of the cusp catastrophe onto
which, by the concept of topological equivalence [88], the critical behaviour of a class of real-world
systems can be mapped. The proposed model of interacting tipping elements, therefore, shows a
hypothetical, but mathematically possible system behaviour. It was motivated by its catastrophic
features [46,87] in contrast to other bifurcational systems allowing the transition into a qualitatively
different state by the variation of a bifurcation parameter and the appearance of the double fold
bifurcation in many real world systems [6,8,12,15,17–19,95]. However, processes which are not taken
into account in the conceptual representation of tipping elements, but are present in the real world,
might influence the system and its tipping behaviour. In addition to a direct coupling of tipping
elements in the climate system [54], an indirect, ‘diffusive’ interaction through e.g. the global mean
temperature [1] could be considered as a potential coupling mechanism. Furthermore, chains and
pairs of tipping elements have been analysed isolated from the larger network of interacting climatic
tipping elements [54], i.e. possible interactions with other climatic tipping elements have been
neglected. Here, we focused on bifurcation-induced tipping assuming that the control parameter
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varies sufficiently slowly for the system to keep track with the stable states. It should be noted that a
change of the control parameter with a high rate is likely, given the increasing influence of humans on
the Earth system, possibly giving rise to rate-induced tipping [45,50].

The qualitative and theoretically possible system behaviours studied here and their application to
real-world systems, therefore, introduces further research questions regarding tipping elements and
their interactions in ecology, climate science and other fields. The conceptual approach should be
extended to networks of tipping elements as already suggested in [84] and motivated in [54].
Networks of interacting tipping elements can be analysed using methods of statistical mechanics [96].
Critical transitions may spread across a whole network of tipping elements depending on the
clustering and the spatial organization of the network [76–78]. Taking the important interactions of
climatic tipping elements into account in a network approach, realistic complex models must be used
for quantitatively approximating the effective tipping point. In addition, interacting tipping elements
with heterogeneous intrinsic threshold and varying internal time scales should be considered [65] as,
for example, the critical nutrient input of lakes varies with their depth [7]. Finally, generic early
warning signals for tipping cascades comparable to already existing indicators for critical transitions
of isolated tipping elements [97,98] are desirable to forecast cascading tipping events and counteract
undesired consequences of tipping (cascades). A first step towards early warning indicators of tipping
cascades has been presented only recently [86]. However, up to now, it remains an open question
whether early warning signals for tipping cascades based on critical slowing down [97,98] exist.
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