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Changes in land use and management led to a
decline in Eastern Europe’s terrestrial carbon sink
Karina Winkler 1,2✉, Hui Yang3, Raphael Ganzenmüller 4, Richard Fuchs 1, Guido Ceccherini 5,

Grégory Duveiller 3, Giacomo Grassi 5, Julia Pongratz4,6, Ana Bastos 3, Anatoly Shvidenko 7,

Arnan Araza2, Martin Herold2,8, Jean-Pierre Wigneron 9 & Philippe Ciais 10

Land-based mitigation is essential in reducing net carbon emissions. Yet, the attribution of

carbon fluxes remains highly uncertain, in particular for the forest-rich region of Eastern

Europe (incl. Western Russia). Here we integrate various data sources to show that Eastern

Europe accounted for an above-ground biomass carbon sink of ~0.41 gigatons of carbon per

year over the period 2010–2019, that is 78% of the entire European carbon sink. We find that

this carbon sink is declining, mainly driven by changes in land use and land management, but

also by increasing natural disturbances. Based on a random forest model, we show that land

use and management changes are main drivers of the declining carbon sink in Eastern

Europe, although soil moisture variability is also important. Specifically, the saturation

effect of tree regrowth in abandoned agricultural areas, combined with increasing wood

harvest removals, particularly in European Russia, contributed to the decrease in the Eastern

European carbon sink.
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Carbon sequestration from the terrestrial biosphere con-
tributes to climate change mitigation. Globally, the ter-
restrial biosphere absorbs almost one-third of the total

anthropogenic CO2 emissions1,2. After the Paris Agreement,
many countries proclaimed ambitious plans to achieve neutral net
greenhouse gas emissions3—a target that can only be reached by
reducing emissions in combination with increasing “negative”
emissions from land-based carbon uptake4. However, despite the
societal relevance of land-based mitigation, there are still large
uncertainties when measuring both the amount of carbon that is
currently released and sequestered by the land surface as well as
estimating the additional carbon that the land could potentially
further take up1,5. These uncertainties stem from the use of
diverse methodologies, differences in underlying land use/cover
datasets, and divergent representations of processes within
models1.

Methods for estimating land carbon fluxes are divided into top-
down and bottom-up (see Fig. 1). Top-down atmospheric
inversions rely on the analysis of atmospheric CO2 concentrations
gradients to infer the accumulated effect of all CO2 sources and
sinks after removing the signal of fossil CO2 emissions5. Bottom-
up approaches cover ground-based inventories, satellite-based
estimates of biomass carbon changes, and models. Inventories are
performed in regular multi-year periods by national agencies and
form the base of UNFCCC reporting6. However, they differ by
the density of samples, by the component measured (e.g., soil
carbon or biomass change), and by accounting choices such as
how natural disturbances are considered3. Satellite-based mea-
surements recently made it possible to infer biomass changes, but
only few global products are available7–9. On the other hand,
there are many models ranging from simple data-driven models10

to process-based models such as Dynamic Global Vegetation
Models (DGVMs)1,11. Some models are specialized in certain
components of the terrestrial carbon balance such as semi-
empirical bookkeeping models1 which are used to assess emis-
sions and removals from land-use change and land management
in global assessments of the carbon budget.

At the global scale, atmospheric inversions quantify the net
CO2 flux exchanged between terrestrial ecosystems and the
atmosphere but do not separate them into components or drivers.
They give a global sink of ~1.3 Gt C a−13 over managed lands for
2007–2017, while all national inventories provided a sink of
~0.5 Gt C a−1 for 2000–202012. Recent satellite-based biomass
estimates account for a net carbon sink of 0.2 to 0.9 Gt C a−1 for
2000–201913.

The basis for accurate estimates of carbon fluxes is knowledge
and attribution of the underlying man-made and environmental
drivers. One major anthropogenic driver of land carbon change
(from land use and management) is agricultural land use change,
with agricultural expansion leading to a carbon source (loss of
biomass)1,14 and agricultural abandonment leading to a carbon
sink (enhanced woody biomass and soil carbon due to
regrowth)1,15,16. Forestry is another essential land management
driver with wood harvest (removal of biomass) leading to
enhanced carbon emissions and thus weaker forest sinks14. Fur-
ther, fires as mostly natural disturbance to forests in Europe,
reduce the carbon sink17. Environmental factors such as atmo-
spheric CO2 and nitrogen deposition have been found to enhance
the land-based carbon sink18,19, whereas the influence of tem-
perature, precipitation, or soil moisture on the land-based carbon
sink can be positive or negative, and involve complex land-
atmosphere feedbacks20.

Although the Northern Hemisphere is a large terrestrial carbon
sink according to observational and modeling approaches21, at
continental and sub-continental scale, there is no consensus about
the magnitude of the carbon uptake or release between inven-
tories and research-based methods including atmospheric inver-
sions, ecosystem models, and satellite-based biomass carbon
storage5,22. Even in Europe, where the density of observational
data is comparatively high from a global perspective, deviation
between estimates are large and remain poorly understood23.
Studies focussing on the European carbon balance indicated a
large spread in the continental carbon sink with values of
~0.20 Gt C a−1 for 2006–2015 (based on inversions)24,
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Fig. 1 Carbon flux components from different datasets and models. Overview of carbon flux components (ΔAGB: Above-ground biomass, ΔBGB: Below-
ground biomass, ΔSOC: Soil organic carbon) as addressed by different datasets and models with examples used in this study.
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~0.30 Gt C a−1 for 2010–2015 (based on in-situ CO2 and passive
microwave measurements)25 or ~0.95 Gt C a−1 for 2003–2010
(based on inversions)22.

When examining Europe’s land-based carbon sink, Eastern
Europe is of particular interest. Many studies suggest that densely
forested Eastern Europe (see Supplementary Fig. 1) has enormous
potential for climate mitigation22,23,26. However, there are large
uncertainties in its carbon balance and only very few in-situ
observational data23. This lack of reliable inventory and flux data
has motivated the application of satellite-driven methods for
quantifying the carbon uptake in this region. Eastern Europe is
not only an extensively forested area that should foster a poten-
tially large carbon uptake, it also has been affected by major land
use and management changes through the recent history of
political and institutional upheaval, distinctly from Western
Europe. The collapse of the Soviet Union generated land tenure
changes, a transition to open-market economies, and several
economic crises, all of which have triggered dramatic changes in
forest disturbances and recovery rates27 but also in agricultural
land management28. Furthermore, Eastern European forests are
prone to natural disturbance and weather extremes, which lead to
frequent fires, storms, and insect outbreaks29,30. Yet, forests
across Russia appear to have continued to act as a larger carbon
sink than previously reported31. The carbon sink of Siberian
forests, however, was found to be extremely vulnerable to climate-
induced disturbances such as fire and drought, which caused
losses of above-ground carbon during the last decade32. Due to its
high relevance for European climate mitigation, the lack of con-
clusive estimates on the mean and trend of the carbon sink as well
as the unique interplay of socio-economic and climatic drivers,
the carbon balance of Eastern Europe is the focus of this study.
Here, Eastern Europe consists of 13 countries: Belarus, Bulgaria,
Czech Republic, Estonia, Hungary, Latvia, Lithuania, Moldova,
Poland, Romania, Slovakia, Ukraine, and western Russia (up to
the Ural Mountains; in accordance to commonly used geo-
graphical classifications of the United Nations Statistical Com-
mission, CIA World Factbook or EuroVoc thesaurus by the
Publications Office of the European Union). For context, we also
compare our new results over Eastern Europe with published
estimates of other regions of Europe.

In this paper, we take stock of new observation-based
approaches (satellite-derived biomass change, atmospheric
inversions assimilating satellite CO2 data over regions where
there are no surface stations) and improved models for land use
change fluxes driven by updated input data. The objectives of this
study are (1) to quantify the land carbon uptake in Eastern
Europe in the last decade, (2) to identify spatial and temporal
patterns, and (3) to attribute possible underlying drivers to
changes in land use, management, and in environmental
variables.

Results and discussion
The role of the Eastern European carbon sink. By comparing
estimations of the land carbon uptake from different data sources
—CO2 inversions, satellite-based biomass change, land use
change models, and inventories (see Table 1)—we found that
Eastern Europe holds the largest share (on average ~65 ± 15%) of
the total European carbon sink, in all the data streams (see Fig. 2
and Table 2).

According to the satellite-based above-ground biomass (AGB)
change estimates from L-VOD, the annual biomass carbon
uptake of the Eastern European region is ~0.45 ± 0.10 Gt C a−1

during 2010–2019—around three times as much as taken up by
Northern, Western and Southern Europe together. Satellite-based
AGB estimates from WRI indicate a gross biomass carbon sink of

~0.38 Gt C a−1 ± 0.10 Gt C a−1. Considering the areas of annual
carbon increase from the third satellite-based approach by JPL,
we obtain gross carbon sink estimates of ~0.32 ± 0.08 Gt C a−1

(see Table 2). These satellite-derived estimates of the AGB carbon
sink are in line with the net CO2 sink estimated from top-down
inversions (SURF, GOSAT, OCO2), ranging from ~0.32 ± 0.04 to
~0.52 ± 0.10 Gt C a−1. Because inversions’ net fluxes also include
CO2 fluxes from non-forest ecosystems and soil carbon changes
in forests, this suggests that most of the net CO2 sink from
inversion lies in an increasing forest AGB.

Based on UNFCCC national inventories, we note a smaller
mean carbon sink in the land use, land use change and forestry
(LULUCF) sector (~0.20 ± 0.13 Gt C a−1) compared to inversion-
net land CO2 flux and L-VOD-based biomass carbon increase. In
addition, the LULUCF sink of Eastern Europe is ten times larger
than the overall net sink caused by land use change alone as
simulated by the land use emission model BLUE
(~0.02 ± 0.01 Gt C a−1). The gross carbon increase caused by
land use change (agricultural abandonment) in BLUE, however,
adds up to ~0.11 ± 0.01 Gt C a−1, around half of the reported
carbon sink from LULUCF in Eastern Europe (see Fig. 2).
Greenhouse gas emissions from wood harvesting and agricultural
land use change, which act as sources, partially offset this gross
carbon sink from agricultural abandonment.

Overall, the persistent deviations between the carbon sink
estimates from different data streams can be explained by four
reasons. First, the datasets differ in terms of methodology and
incorporate different definitions (e.g., regarding land cover),
comprise different carbon components (soil organic carbon,
above-ground or total vegetation biomass) and include very
different approaches (top-down vs. bottom-up)5,33. Second,
distinct time periods lead to discrepancies due to high inter-
annual variability of net carbon fluxes. Third, the models are
tailored to different drivers of carbon change such as altering
climate and environmental factors, land use, or land manage-
ment. Fourth, whether the focus is on calculating gross or net
carbon fluxes, may cause major divergence, as shown for the land
use emission estimates from the BLUE model (compare BLUE-
gross and BLUEnet in Fig. 2).

Overall, the Eastern European AGB carbon sink, as derived
from both top-down and bottom-up approaches (here: SURF,
GOSAT, OCO2, L-VOD, JPL, WRI) is on average
~0.41 Gt C a−1 ± 0.09 Gt C a−1, that is 78% of the entire carbon
sink of the European continent. Considering only bottom-up,
observation-based AGB change datasets with matching reference
period (2010–2019), JPL and WRI gross and L-VOD-based
estimates, we find that the AGB carbon sink of Eastern Europe is
~0.38 Gt C a−1 ( ± 0.07 Gt C a−1). From this, LULUCF contri-
butes with ~53% according to UNFCCC and land use change
with ~29% according to the BLUE model (when gross carbon
sink estimates are considered).

Decline of the Eastern European carbon sink. We find that the
land carbon sink in Eastern Europe declined over the period
2010–2019. Mean annual carbon uptake from L-VOD is almost
20% lower in 2015–2019 (~0.37 ± 0.04 Gt C a−1), compared to
2010–2019 (~0.45 ± 0.10 Gt C a−1). This decline is also indicated
from satellite inversions. The OCO-2 inversion, which covers
the period 2015–2019, shows a lower carbon sink
(~0.32 ± 0.04 Gt C a−1) than the SURF and GOSAT inversions
(~0.51 ± 0.10 Gt C a−1), which cover the periods 2010–2018 and
2010–2015, respectively. This difference, however, may also be an
effect of the different atmospheric observations used.

According to UNFCCC annual reports of Eastern Europe (see
Fig. 3), Russia, Belarus, and Poland are the biggest contributors to
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Fig. 2 Carbon flux estimates for European regions. Average land carbon flux (in Gt C a−1) from inversions (SURF, GOSAT, OCO2), AGB sink estimates (L-
VOD, JPL**, WRI**), forest ecosystem models and inventories (EFISCEN, CBM, UNFCCC) and land use bookkeeping model BLUE between 2010 and 2019
a for different regions in Europe (see Supplementary Table 1) and b for Eastern Europe compared to entire Europe (aggregated). Negative values represent
a land carbon sink, positive values a land carbon source. Eastern Europe comprises EUR-East and European Russia. Error bars display the standard
deviations of the estimates as a measure of the variability across time (see Supplementary Table 2). ** refers to gross carbon sink estimates.

Table 2 Carbon flux estimates for European regions.

Data SURF GOSAT OCO2 L-VOD JPLa WRIa UNFCCC BLUE°a

Period 2010–18 2010–15 2015–18 2010–19 2010–2019 2010–19 2010–19 2010–19
North −0.08 −0.07 0.02 0.02 −0.06 −0.08 −0.07 −0.01
West −0.20 −0.17 0.04 −0.08 −0.04 −0.13 −0.06 −0.06
South −0.09 0.01 0.04 −0.07 −0.05 −0.11 −0.10 −0.07
East −0.09 −0.17 −0.09 −0.04 −0.09 −0.15 −0.16 −0.08
Russia −0.44 −0.33 −0.22 −0.41 −0.24 −0.22 −0.04 −0.04
EE −0.53 −0.50 −0.32 −0.45 −0.32 −0.38 −0.20 −0.11
EE share 59% 68% 143% 77% 68% 54% 47% 46%
Europe −0.89 −0.73 −0.22 −0.59 −0.47 −0.69 −0.44 −0.25

Average land carbon flux (in Gt C a−1) from different datasets (see Table 1 and Fig. 2) for European regions (see Supplementary Table 1). Negative values indicate an atmospheric CO2 sink or an increase
in land C stock. Uncertainties in form of standard deviations are given in Supplementary Table 2. Net AGB carbon fluxes (if available) are given in Supplementary Table 3. Values for the study region
Eastern Europe (EE: East + Russia) are displayed in bold. EE share shows the share of the Eastern European (EE) in the total European (Europe) carbon fluxes.
°Includes not only AGB, but also below-ground biomass (BGB) and soil organic carbon (SOC).
aRefers to gross carbon sink estimates.
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the land carbon sink. Overall, the annual net land carbon sink
from the LULUCF sector has decreased during the last decade
(−52% decrease relative to 2010). The highest rates of decrease
can be found in Czechia, which even turned from a net carbon
sink to a net carbon source (decrease of >100%), Ukraine
(decrease of 100%), and Poland (decrease of 65%). A declining
trend can also be found in the net carbon sink from land use
change, as derived from the BLUE model (see Supplementary
Fig. 2). The Eastern European net carbon sink from land use
change alone decreased by ~92% (~0.03 Gt C a−1 ± 0.01 Gt C a−1)
during 2010–2019. This is due to increasing emissions from wood
harvest (+47%) and agricultural expansion (+12%) as well as
decreasing carbon sequestration from agricultural land abandon-
ment (−11%). This suggests that changes in land use and
management have substantially contributed to the decreasing
AGB carbon sink in Eastern Europe during the last decade.

Our observations are consistent with other studies. Deng et al.3

compared global inversion models with UNFCCC inventories
and found a decreasing land carbon sink, however only covering
the EU-27 and U.K. Early signs of a carbon sink saturations in
European forests have been observed from a previous study34,
which found that the declining trend of the Eastern European
carbon sink became evident after the early 2000s. Further, a
significant negative anomaly of net primary productivity of
forests in European Russia was observed due to the effects of a
strong heatwave in 201035. The drought of 2010 also caused an

enormous rise of forest fires in European Russia, a substantial
source of carbon emissions36. In addition, an increasing rate of
wood harvest and disturbances by forest fires have been found to
cause a decrease of the forest carbon sink in Russia since 200837

and in the Siberian forests32. More frequent temperature
extremes and days without precipitation have been linked to
lower growing stock in forests of southern European Russia31. In
summary, there are first indications that the declining trend of the
Eastern European carbon sink during 2010–2019 was caused by a
combined effect of increasing wood harvest and climate-driven
natural disturbances.

Spatial patterns of the Eastern European carbon sink. The
spatial pattern of the Eastern European carbon sink was derived
by comparing only changes of the satellite-derived biomass esti-
mates JPL13, L-VOD38, and WRI7 because of their similarity in
methodology (bottom-up, satellite-based), spatial resolution,
temporal coverage and the target component from the carbon
cycle, above-ground biomass (AGB). We find high agreement on
a carbon sink along the Ural Mountains, in the border between
Belarus, Ukraine and Russia as well as on the Kola peninsula in
north-western Russia (see Fig. 4).

Considering both the level of agreement and the strength of the
carbon sink from the three estimates where they agree on the sign
of AGB change (see Fig. 4b, c), we find that the southern Ural
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Mountains, and the border region of Russia, Belarus, and Ukraine
were hot spots of the Eastern European carbon uptake during
2010–2019. At the same time, scattered hot spots of carbon
sources are located in central to northern European Russia, north
of 55°N.

Reuter et al. (2017) suggested the largest carbon sink area to be
further north in European Russia, where we locate scattered
carbon sources. However, their findings referred to a previous
period and are therefore not directly comparable23 and were
based on X-band VOD which is prone to saturation effects and
shows implausible carbon change in some regions. A recent
satellite-based study on the carbon budget of the top five CO2

emitters shows that European Russia comprises a large carbon
sink, whose location corresponds to the hot spot regions
presented in this study39. Watts et al.40 analyzed the carbon
uptake in the arctic-boreal region and found a large carbon sink
in the Eurasian boreal zone, which notably overlaps with our
results at the Ural Mountains in European Russia.

Underlying drivers of the Eastern European carbon uptake.
The net CO2 sink and AGB changes are influenced on the one
hand by land use change (the conversion of one land use class to
another), by management changes (within one land use class),
and by changes in environmental drivers on the other. To find
out where exactly which factors have caused land carbon changes
in Eastern Europe during recent years, we analyzed the trends of
these individual possible drivers and compared them with a
harmonized map of AGB change based on JPL, L-VOD, and
WRI. For land use and management drivers of AGB changes we

consider the land use-based carbon fluxes from the BLUE model
(including agricultural expansion, wood harvest, and agricultural
land abandonment), forest harvest change, and the fraction of
cropland abandonment. Environmental and climate factors
include changes in land surface temperature, precipitation, soil
moisture, fires, atmospheric CO2 concentration, and nitrogen
deposition. The trends of all possible driving factors of AGB
change in Eastern Europe during 2010–2019 are displayed in
Supplementary Fig. 3.

By matching the trends of the driver indicators to AGB change
from all three satellite-based AGB estimates (JPL, L-VOD, and
WRI) using a random forest model, we find that land use change,
in particular cropland abandonment and subsequent regrowth
processes, coincide with the hot spot areas of the Eastern
European carbon sink (see Fig. 5a). The fraction of formerly
abandoned land is high in the carbon sink hot spot region of the
border between Russia, Belarus and Ukraine and in central
European Russia. As demonstrated by previous studies, cropland
abandonment has mainly occurred in the early 1990s after the fall
of the Soviet Union15,41. Thus, those abandoned lands have
already sequestered considerable quantities of carbon before 2010.
Nevertheless, carbon storage on formerly abandoned areas still
plays an important role for the Eastern European AGB change
and, in fact, an increase of AGB is yet to happen as large parts of
abandoned lands continue to evolve to closed forests26. Therefore,
land abandonment is still a major contributor to the Eastern
European carbon uptake during 2010–2019 (~0.11 Gt C a−1 from
BLUE), contributing about 1/3 to 1/5 to the net carbon exchange.

The decreasing trend of the carbon sink shown by the mean of
the three satellite AGB change records and land use inventories
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Fig. 4 Spatial patterns of AGB change in Eastern Europe during 2010–2019. a AGB change in Eastern Europe during 2010–2019 from individual datasets:
L-VOD, JPL, and WRI. b Data agreement on carbon gains (source) and losses (sink). Sources are defined by ΔAGB <−0.05 Mg C ha−1 a−1, sinks by
ΔAGB > 0.05 Mg C ha−1 a−1. Levels of agreement represent the number of agreeing datasets. c Harmonized mean AGB change from agreeing datasets.
The harmonized mean AGB change was derived for all dataset that agree on either a carbon source or sink in areas with an agreement level of at least 2.
Areas of disagreement are displayed in gray.
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are partly explicable by the decreasing trend in the abandonment
sink as given by the BLUE model (see Supplementary Fig. 2). This
may be attributable to a slow-down of the effects of the carbon
sequestration following land abandonment. A decrease of the
carbon sequestration in soils from around 15 years after
agricultural abandonment in Russia has been reported by several
studies42–44. Further, as re-growing trees on formerly abandoned
land turn to denser forests, first signs of a saturation effect of the
carbon accumulation—a decreased carbon absorption—are
occuring34,37,45. Under these circumstances, the carbon sink on
abandoned areas is expected to further decrease in the future.
Interestingly, abandoned lands, although encroached by woody
vegetation, often still have a legal designation for crop production
and could be recultivated any time in the near future. A partial
revival of agricultural production has occurred on abandoned
areas in Russia during 2006–2009. And even after that, the
Russian government adopted policies to support the recultivation
of abandoned lands (e.g., by banning agricultural imports from
the EU in 2014)46.

The current war between Russia and Ukraine, however, could
lead to a new wave of cropland abandonment, reduce the rate of
recultivation and thus increase the carbon sink in areas of the

conflict region. Such effects of conflicts on agricultural land use
could already be observed during the Chechen wars in Russian
north Caucasus47. In contrast, the current rise in food prices and
sanctions being placed on trade48 could press the Russian
government to increase domestic agricultural production and,
thus, lead to massive recultivation of abandoned areas in Russia.
This scenario would have a significant impact on the Eastern
European carbon budget and would lead to an amplification of
the declining trend of the land carbon sink in the near future.

The trend in the net carbon flux from land use change went
from a recognizable sink of 0.04 Gt C a−1 ± 0.01 Gt C a−1 towards
near neutral during 2010–2019 (see Supplementary Fig. 2). In
BLUE, besides the declining carbon uptake from agricultural
abandonment, an increase in emissions from forest harvest
contributes to the overall decreasing trend. This underlines the
importance of land management in addition to the often better
investigated land use-induced land cover changes and stresses the
need for monitoring of land management in addition to land
cover changes49. Based on a random forest regression model, we
find that wood harvest (the fraction of harvested forest area) is
the most important anthropogenic driver of the trend in the
carbon sink of European Russia during 2010–2019 (see Fig. 5b).
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The growing harvest rate in European Russia and Baltic countries
has also been noted by other studies27,50. Further, UNFCCC data
shows that carbon losses due to clear-cutting in forests of
European Russia have increased by around 34% (from 16.0 to
21.5 Mt C a−1 ± 2.8 Mt C a−1, see Fig. 6).

Not only increasing carbon losses due to felling and rising
logging volumes in European Russia in particular in Volga and
north-western districts, have led to a decreasing carbon sink. But
also, the changing age structure in the forest stands after 2008
(older stands) has decreased the carbon sink due to reduced
carbon absorption45.

Our findings suggest that the rising rates of wood harvest,
together with a progressive saturation of the sink from
agricultural abandonment, have been the main drivers for the
declining carbon sink in Eastern Europe during 2010–2019. The
biomass loss due to wood harvest, however, might be partially
compensated by the enhanced carbon absorption of young
deciduous (or mixed-species) forest after wood harvest compared
to former mature coniferous forest. If the fraction of wood
harvest remains low, stand replacement after wood harvest can
not only lead to an increased carbon sequestration rate
(compared to old stands), it goes along with a reduction of fire
risk and albedo and could have further consequences on the
energy balance51 and cloud cover52.

The relatively large fraction of the carbon sink explained by
management (wood harvest) and land use change (agricultural
abandonment) from our driver analysis (see Fig. 5) implies that
anthropogenic factors likely played a dominant role in influen-
cing AGB carbon changes in Eastern Europe. However,
environmental changes, particularly soil moisture, are found to
be the strongest drivers of the overall AGB carbon changes at
regional level. This is consistent with other large-scale studies on
attributing the carbon sink in Europe53. Environmental factors
such as soil moisture and precipitation influence the carbon sink,
especially in northern European Russia and along the Ural
Mountains. In accordance with this, it has been shown that soil
moisture variability and trends largely influences the global
terrestrial carbon sink20,54. At the same time, an increase in
agricultural inputs—cropland intensification in Ukraine, and
southern Russia—as well as nitrogen oxides (NOx) produced
during combustion have affected the land-based carbon balance
in terms of an increased nitrogen deposition, which in turn
stimulates vegetation productivity19. However, increased CO2

concentrations have explained the rising global terrestrial carbon
sink during the last three decades to a much higher extent than
increased nitrogen deposition55. The effect of CO2 fertilization—
enhanced vegetation productivity due to increased CO2 concen-
tration—is well described as an important negative feedback on
climate warming56. Recently, a global decline in the CO2

fertilization effect has been discovered, mainly affecting European
forests18. The currently ongoing decrease in nitrogen deposition
may still contribute to the saturation of the Eastern European
forest carbon sink34.

The overall climate effect on the Eastern European carbon
uptake is ambiguous. Warmer and wetter conditions in Russian
boreal forests favor forest growth in the North, whereas an
increasing influence of precipitation anomalies (especially
drought) in southern agricultural areas, fosters a carbon source,
contributes to the declining trend of the carbon sink. Future
climate change projections show an ongoing decrease of
precipitation in southern European Russia57.

In addition, climate change and accompanied extreme events
have led to a substantial increase in forest fires and other forest
disturbances. The frequency of extreme events and hydrological
hazards amplified nearly three-fold in Russian forests during
2000–201857. In this context, extensive drying out of forests as
well as insect outbreaks have been registered in the northeast of
European Russia and are likely to increase in the future58. Forest
fires have been listed as second largest contributor of the
declining carbon sink of Russian forests after wood harvest37.
Findings of our random forest-based driver analysis support the
strong importance of precipitation and temperature for Eastern
European carbon source areas. In recent years (2018–2020),
exceptionally high level of disturbances have been registered and
are expected to cause a significant decrease of the Russian forest
carbon sink57.

On the one hand, the analysis of indicator importance from
our driver analysis (based on Shapley values) supports major
hypotheses about the directed impacts of specific driver variables
on the land carbon sink in Eastern Europe (see Fig. 5b and
Supplementary Table 4). For instance, the lower the wood harvest
rate, the higher the carbon sink. The higher the fraction of
cropland abandonment, nitrogen depletion or CO2 concentration,
the higher the carbon sink. On the other hand, some previously
unclear relationships could be illuminated in our analysis. For
example, increased soil moisture shows a reinforcing influence on
the carbon sink in Eastern Europe. Interestingly, the opposite
appears to be true for precipitation. A strong increase in
temperature has a negative effect on the Eastern European
carbon sink. Fire, however, does not show a significant impact on
the carbon sink or even a counterintuitive one, as higher burned
area seems to enhance biomass. This may be either because forest
fires and their seasonal dynamics simply cannot be adequately
captured in an annually aggregated satellite product, or because
fires do not (yet) play a major role in the Eastern European
carbon sink.

Conclusion
By comparing satellite-derived biomass estimates, improved
carbon models and national inventory data, we estimate that
Eastern Europe accounted for an above-ground biomass (AGB)
carbon sink of ~0.41 Gt C a−1 in 2010–2019, which is about 78%
of the entire European carbon sink. Despite the important role for
the European land carbon sink due to its large and dense forest
areas as well as its distinct land use history induced by political
upheaval, the overall Eastern European carbon sink shows a
declining trend—with a ~52% decrease of net carbon uptake from
the LULUCF sector in 2010–2019. Although soil moisture
variability predominates as a driver of changes in AGB carbon, we
find indications that land use and management changes com-
bined with increasing natural disturbances led to the decline of
the carbon sink in Eastern Europe in the past decade. Our find-
ings suggest that a saturation effect of the regrowth in abandoned
former agricultural areas, combined with an increase in wood
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harvest, particularly in European Russia, as well as more frequent
climate-induced forest disturbances such as droughts caused the
Eastern European carbon sink to decline. Our results contribute
to better understand the role of land management for climate
mitigation. Since a stable and large carbon sink of Eastern Eur-
opean forests is essential for the European attempt to achieve net
zero emissions in the future, an adapted forest management with
a reliable monitoring system as well as more effective forest
protection under future disturbance regimes are highly needed. This
regional study shows—given the large share of Eastern Europe in
the total European land-bound carbon and the overall importance
of the Northern Hemisphere for the global land carbon sink—that a
holistic view of the influences of climate change and the land use/
management history on the carbon budget plays a central role in
achieving international climate goals.

Methods
In the following, the datasets and models used in this study are described.

Carbon flux datasets
CO2 inversions. We used the annual CO2 flux data at a spatial resolution of 1.875°
latitude × 3.75° longitude from the atmospheric inversion of the Copernicus
Atmosphere Monitoring Service inversion (CAMS). We compared the CO2 flux
data from CAMS constrained by surface air-sample measurement (referred to as
SURF) and by CO2 column retrievals from two satellites (referred to as OCO2 and
GOSAT).

SURF was released in 2019 and results from the assimilation of CO2 surface air-
sample measurements in a global atmospheric transport model over the period
from 1979–2018. We used version v18r3 of SURF inversion data59.

OCO-2 is a satellite from NASA that was launched in July 2014, providing
spatially dense and fine-resolution CO2 column retrievals. The OCO2 data
assimilates OCO-2 retrieval data into atmospheric inversion models. OCO-2 infers
atmospheric CO2 mixing ratios based on the absorption of CO2 and O2 in the
atmosphere from solar radiation in the near infrared. From these measurements,
the mixing ratio as a function of altitude (or pressure) is inferred using inverse
methods. We used OCO2 data version FT18r159.

GOSAT is a Japanese satellite that was launched in January 2009, and the
column retrievals from GOSAT have relatively coarse-resolution data and low
spatial density. The GOSAT data used in this study is a special product of the
RECCAP-2 project (ESA) with LMDZ6A, the Atmospheric Component of the IPSL
Climate Model.

In this study, the temporal coverage of SURF, OCO2, and GOSAT was
2010–2018, 2015–2018, and 2010–2016, respectively.

TRENDY global models. TRENDY is an ensemble of dynamic global vegetation
models (DGVMs) in support of the Global Carbon Budget (GCB) annual
assessment60,61. In this study, we used the following 15 DGVMs of the TRENDY
project: CABLE-POP, CLASSIC, CLM5.0, ISAM, ISBA-CTRIP, JSBACH, JULES-
ES-1p0, LPJ-GUESS, LPX-Bern, ORCHIDEE, ORCHIDEE-CNP, ORCHIDEEv3,
SDGVM, VISIT, YIBs. We use the “S3 simulation” with time-varying CO2, climate,
and land use forcing, as this is the simulation that captures both natural and
anthropogenic dynamics.

In order to extract the AGB carbon, we obtained the gridded variable of cVeg
(carbon in vegetation) from all 15 models. Additionally, the variable cRoot (carbon
in roots) was used, however, it was only available for ten DGVMs. For those
models without cRoot (JSBACH, JULES-ES-1p0, ORCHIDEEv3, VISIT, YIBs), we
generated cRoot with the help of gridded above-/below-ground biomass ratios
derived from Spawn et al.62. As a next step, we computed AGB carbon (CAGB) as

CAGB ¼ CVeg � CRoot

with CVeg as carbon in vegetation (above-ground) and CRoot as carbon in roots
(below-ground). In this way, we calculated the change between AGB carbon of
2010 and that of 2019 for each of the 15 models (see Supplementary Fig. 5). We
resampled the maps from 1° to 0.25° resolution using bilinear interpolation. In
order to synthesize the information, we calculated the average across all 15 models.

Satellite-based estimates of AGB carbon. L-VOD: Vegetation optical depth, which
represents vegetation attenuation properties, has been widely used to monitor the
dynamics of vegetation above-ground carbon and water content8,63. In this study,
we used the low frequency (1.4 GHz) passive microwave satellite data of L-band
vegetation optical depth (L-VOD) derived from the Soil Moisture and Ocean
Salinity (SMOS) with ascending (ASC) and descending (DESC) orbits, providing
global measurements at a spatial resolution of 25 × 25 km with re-visiting time of
1–3 days since 201064. The L-VOD product is available at https://ib.remote-
sensing.inrae.fr/. To avoid the effect of Radio Frequency Interference (RFI), we
filtered the L-VOD data based on the root mean square of the measured and

simulated brightness temperature (RMSE-TB). After that, the filtered “best quality”
data from ASC and DESC orbits were merged, and they were fitted and recon-
structed using a method from Thoning et al.65. The reconstructed de-seasonalized
long-term trend data were used to calculate the yearly value, which is the average of
May, June, July and Aug (i.e., July 1st—centered averages). Next, the yearly values
of above-ground biomass (AGB) were calculated using yearly L-VOD and the
regressed relationship between AGB and L-VOD. Such regressed relationship was
built using three existing reference maps, namely GlobBiomass product66, ESA CCI
Biomass product67 and AGB map by Avitabile et al.68. The uncertainty of the AGB
changes was estimated by the standard deviation (variability across time) of the
estimates using the different reference maps.

JPL: Xu et al. (2021) from the Jet Propulsion Laboratory (JPL) provided annual
estimates of the live biomass of the global terrestrial ecosystems between 2000 and
2019, which are based on a bottom-up framework using machine learning
techniques to synthesize ground-based forest inventories with airborne and satellite
data13. We refer to the dataset here as JPL. We used the maps referred of global live
woody vegetation carbon density, which are at ~10 km (0.1 degree) spatial
resolution, calculated the annual changes and derived the mean annual change for
the period of 2010–2019. We resampled the map of biomass carbon density change
to 0.25° resolution using bilinear interpolation. Since the carbon density refers to
both the above-ground and the below-ground biomass, we extracted the above-
ground biomass with the help of the gridded above-/below-ground biomass ratio
derived from Spawn et al.62.

WRI: The carbon flux model of Harris et al.7 developed at the World
Resources Institute (WRI) was modified to obtain the fluxes attributed to above-
ground biomass (AGB) and carbon from 2010 to 2019. We refer to the dataset
here as WRI. Net flux in this context is defined as the difference between the
carbon emitted and removed by woody vegetation, set as areas with over 30%
tree cover of the global forest change data by Hansen et al.69. Note that in
contrast to L-VOD and JPL, which consider AGB from all vegetation, WRI
refers to forests only. In particular, we modified the AGB map input, using the
2010 CCI Biomass map67 adjusted for potential systematic differences when
compared with plot-based reference data70. We also changed all inputs and
variables originally set for 2000 into our baseline year 2010 such as the primary
forest and tree cover datasets. We further modified the original model to exclude
fluxes from other gases aside from CO2 and remove carbon components from
below-ground and soil. The resulting carbon flux was divided by a factor of 0.49
to derive the AGB.

The tool Plot2Map (https://github.com/arnanaraza/PlotToMap) which
implements the AGB map assessment framework70 was used to adjust for the
systematic differences in the 2010 CCI Biomass map. The framework implements a
model-based approach that makes use of a worldwide database of reference AGB
with uncertainty estimates as basis for modeling spatial uncertainties of the AGB
map at aggregated levels, i.e., 1 km.

UNFCCC inventories. The United Nations Framework Convention on Climate
Change (UNFCCC) provides data from the national greenhouse gas (GHG)
inventories submitted by countries that are Parties to the Convention. For
comparing the land carbon uptake of the countries in Eastern Europe, we used
GHG inventories referring to net CO2 emissions/removals from land use, land
use change, and forestry (LULUCF). We collected the data from the national
inventories submitted to the UNFCCC. We acquired a complete time series from
1990 to 2019 (annual emissions) for Annex I countries Belarus, Bulgaria, Czech
Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, and
Ukraine from the UNFCCC website71. For Moldova (Annex II country),
inventory data was only available up to the year 2013. In order to obtain the
GHG inventory data for the region of European Russia, we acquired the national
inventory reports (NIR) of Russia for all years from 2010 to 201972, extracted
and summed up the AGB carbon balance of managed forests from UNFCCC
data for 54 Russian districts belonging to European Russia (Ural mountains as
the eastern border).

EFISCEN. The European Forest Information SCENario Model (EFISCEN) is a
large-scale model for estimating forest resource development in Europe. The model
uses National Forest Inventory data as a main input. By using biomass expansion
factors, stem wood volume is converted into biomass and subsequently to carbon
stocks of trees. It includes a detailed dynamic growth module, while natural
mortality and harvesting are included as regimes, depending on the region. For this
study, EFISCEN data for 2010–2018 was acquired and used in the same version as
from the European VERIFY project5.

CBM. The Carbon Budget Model developed by the Canadian Forest Service (CBM-
CFS3) simulates the forest carbon dynamics under different scenarios of harvest
and natural disturbances (fires, storms). The CBM has been validated by the Joint
Research Centre of the European Commission (JRC) and adapted to forests in
Europe. Forest stands are described by area, age and land use classes, and other
parameters. Yield tables specify the merchantable volume production for each
species, while allometric equations convert merchantable volume production into
above-ground biomass at the stand level. The model provides annual data on net
primary production (NPP), carbon stocks, and fluxes, as the annual C transfers
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between pools and to the forest product sector. For this study, CBM data for
2010–2015 was acquired from and used in the same version as in the European
VERIFY project5.

Estimating the land-based carbon sink. We estimated the average land carbon
flux (in Gt C a−1) from inversions (SURF, GOSAT, OCO2), AGB sink estimates (L-
VOD, JPL, WRI), forest ecosystem models and inventories (EFISCEN, CBM,
UNFCCC) and land use bookkeeping model BLUE for different regions in Europe
between 2010 and 2019. For this, we derived the annual land carbon flux estimates
and calculated a multi-year average. The standard deviation was used as a measure
of uncertainty and displayed as error bars in Fig. 2. For AGB biomass estimates
available as annual maps, we first computed the annual AGB changes between two
years. Then, the multi-year average AGB change was derived. Again, the standard
deviation was used as an uncertainty measure. This was performed for different
regions of Europe, defines as:

● EUR-North: Denmark, Finland, Iceland, Norway, Sweden
● EUR-West: Austria, Belgium, France, Germany, Ireland, Liechtenstein,

Switzerland, United Kingdom of Great Britain and Northern Ireland,
Luxembourg, Netherlands

● EUR-South: Croatia, Cyprus, Greece, Italy, Malta, Monaco, Portugal,
Slovenia, Spain

● EUR-East: Belarus, Bulgaria, Czechia, Estonia, Hungary, Latvia, Lithuania,
Moldova, Poland, Romania, Slovakia, Ukraine

● European Russia: Russia up to the Ural mountains as the eastern border

For the scope of this study, Eastern Europe consists of EUR-East and European
Russia.

Mapping AGB carbon change. We calculated the agreement between AGB carbon
changes in 2010–2019 between L-VOD, JPL, and WRI. TRENDY was excluded
from the analysis due to its coarser spatial resolution, large inter-model deviations
and relative distance to observational data streams (see Supplementary Fig. 4 for a
comparison of TRENDY with L-VOD, JPL and WRI). The level of agreement was
derived pixel-wise for either a carbon source or sink across Eastern Europe. We
analyzed the statistical distribution of the AGB carbon change maps for each of the
used datasets. Thresholding was applied by visual interpretation of the histograms.
Accordingly, sources were defined by AGB below a negative threshold in
Mg C ha−1 a−1, sinks by AGB above a positive threshold in Mg C ha−1 a−1. ΔAGB
values that are between the negative and the positive threshold were treated as no
change or only minor change. The number of agreeing datasets was derived for
each pixel as levels of agreement. Only including levels of agreement from 2 to 3 (at
least two datasets agree on either a carbon source, sink or no/minor change), the
average AGB carbon change was derived from the agreeing datasets. This leads to a
harmonized map of AGB change in 2010–2019 based on L-VOD, JPL, and WRI.

We tested the usage of different AGB carbon change thresholds in
Mg C ha−1 a−1 for defining carbon sinks and sources with a sensitivity analysis.
The used thresholds were: 0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5. Supplementary Fig. 6
shows both the maps with the dataset agreement and the maps with the derived
harmonized AGB carbon change for each of those thresholds.

Datasets used as driver indicators of AGB carbon change
Land use-based carbon fluxes (BLUE). The Bookkeeping of Land-Use Emissions
model (hereafter BLUE; see ref. 73, for documentation) is one of three bookkeeping
models used in the Global Carbon Budget1 for estimating the net CO2 flux from
land use/cover change. In BLUE, transformations of natural vegetation to agri-
culture (cropland, pasture) and back, including gross transitions at the sub-grid
scale, are considered as well as degradation from rangeland dynamics and wood
harvesting. The temporal evolution of carbon gains or losses after transformations
or harvesting events is based on response curves derived from literature. These
response curves describe the decay of vegetation and soil carbon, including the
transfer to product pools of different lifetimes, the carbon uptake due to regrowth
of vegetation, and the subsequent refilling of soil carbon pools. Response curves in
BLUE depend on literature-based carbon densities, which are implemented for 11
different plant functional types.

For this study, BLUE estimates based on the Historic Land Dynamics
Assessment+ (HILDA+) have been used as described by Ganzenmüller et al.74.
HILDA+ is a global dataset of annual land use/cover change between six land use
categories (urban, cropland, pasture/rangeland, forest, unmanaged grass/
shrubland, no/sparse vegetation). It is publicly available75, covers the period from
1960 to 2019 and has a spatial resolution of 1 km76.

We used the net carbon sink from BLUE (BLUE net) as the total of all emissions
from agricultural expansion (carbon source), wood harvest (carbon source), and
agricultural land abandonment (carbon sink). Additionally, we used the gross
carbon sink from BLUE (BLUE gross), which refers to the carbon uptake by
agricultural land abandonment only.

Forest harvest (JRC). The dataset represents a forest harvest annual time-series
from 2001 to 201950. Forest harvest is expressed as the percentage of forest area
affected by management practices per year in a 0.2° grid cell (~20 km), excluding

forest losses due to fires, major windstorms, and areas with sparse forest cover. The
dataset relies on the Global Forest Change (GFC)69 product (version 1.8), a time-
series analysis of the Landsat archive characterizing tree cover extent in the year
2000, and annual forest loss with a spatial resolution of about 30 m. Due to the
spatial scale of the GFC dataset, small-scale silvicultural practices such as thinning
or selective logging that may not be seen by the satellite could not be fully detected
as forest loss.

First, a tree cover threshold of 20% was used to define a ‘forest’ from the GFC
tree cover product. Then, a spatial aggregation to 0.2° was performed and the
annual forest harvest was computed as the ratio between the area of forest loss and
the area of forest cover, within each grid cell. Areas with sparse forest cover—that
is, where forest cover in a grid cell of 0.2° is less than 10%—were excluded. Regions
affected by forest fires, as detected by the ESA Fire Climate Change Initiative (Fire
CCI version 5.177) dataset collection, were masked out from the analysis. In the
same way, in regions where the annual percentage of forest loss is greater than a
given threshold, the forest loss was attributed to wind-throw and masked out. This
was done under the assumption that major windstorms generally cause larger
losses than those caused by forest management. The forest harvest dataset was
generated using Google Earth Engine.

To account for and harmonize different forest definitions in datasets used in
this study (e.g., 20% tree cover threshold here but 30% in WRI-based AGB), we
used the land use/cover map of 2010 from the HILDA+ dataset76, which is based
on the 30% tree cover definition. We set forest harvest to 0 outside the HILDA+
forest areas.

Cropland abandonment. The cropland abandonment dataset we used for this study
is a synthesis map from three different data sources:

1. Abandoned arable land by Lesiv et al.78: The dataset covers the former
Soviet Union, refers to the year ~2010, and has a spatial resolution of 10 arc-
seconds. Abandoned arable land is defined as land that was previously
cultivated (agricultural land) but has not been utilized for more than 5 years.

2. Farmland abandonment by Estel et al.28: Abandoned areas were classified
based on MODIS Normalized Difference Vegetation Index (NDVI) time
series in 2001–2012. The dataset has a spatial resolution of 232 m and covers
Europe, including European Russia. We utilized the map of abandonment
based on the following definition: At least three active cropland years during
2001–2006 were followed by five or six fallow years during 2007–2012.

3. HILDA+ cropland abandonment map: All areas where cropland has been
converted into unmanaged grass/shrubland or forests during 2010–2019
have been classified as abandoned cropland based on HILDA+ annual land
use/cover transitions maps76. The dataset has global coverage and a spatial
resolution of ~1 km.

All three maps were reclassified to binary mask format, with 1 representing
abandoned cropland and 0 representing all other areas. The binary masks were
resampled to 0.25° resolution using bilinear interpolation and converted to floating
point values. The resulting maps depict the fractions of abandoned cropland,
respectively. Finally, we derived the mean fraction of abandoned cropland per
pixel from all available datasets (for former Soviet Union: Lesiv et al., Estel et al.,
HILDA+; for non-former Soviet Union: Estel et al., HILDA+). The resulting map
of abandoned cropland represents the maximum fraction of a grid area affected by
cropland abandonment during 2010–2019. It should not be used to measure
abandonment in absolute terms.

Fire. FireCCI51 from the ESA CCI Fire project was used to derive the change in
burned area/fire between 2010 and 2019. This is based upon data from the MODIS
instrument on-board the TERRA satellite at 250 m resolution for the period
2001–202077. Burned area represents the sum of area (in m²) of all pixels detected
as burned within each grid cell and period. From this data, we cannot distinguish
whether fires are naturally induced or anthropogenic. As next step, we derived the
annual sums of the monthly gridded data and derived the mean annual change of
burned area during 2010–2019. Finally, we resampled the map to 0.25° resolution
using bilinear interpolation.

Soil moisture. Estimates of soil moisture from the Copernicus Climate Change
Service (C3S) v20201 are based on the ESA Climate Change Initiative soil moisture
version 03.3 and represents the current state-of-the-art for satellite-based soil
moisture climate data record production79. We extracted the monthly maps of
volumetric soil moisture in m3m−3, converted them to annual means, and derived
the annual change between 2010 and 2019. Subsequently, we resampled the map to
0.25° resolution using bilinear interpolation.

Precipitation. We used gridded monthly precipitation from the TerraClimate data
of monthly climate and climatic water balance for global terrestrial surfaces from
1958–2019 (~4-km spatial resolution)80. From this, we derived the difference
between the annual precipitation sums in 2010 and 2019 (in mm) and resampled
the map to 0.25° resolution using bilinear interpolation.

Temperature. We acquired the Berkeley Earth gridded monthly surface air tem-
perature at 1° spatial resolution81,82 to account for temperature as a potential driver
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of AGB carbon change. We derived the difference of the mean annual temperature
from 2019 and 2010 and resampled the map to a 0.25° resolution using bilinear
interpolation.

CO2 concentration. To address the potential effect of CO2 fertilization, we acquired
monthly gridded data of the atmospheric CO2 concentration as column-mean
molar fraction from CAMS global greenhouse gas reanalysis (EGG4)83, which
covers the period of 2003–2021. We first derived annual means from the monthly
column-mean molar fraction of CO2 (in ppm) for the period of 2010–2019. Sec-
ond, we calculate the mean annual change in CO2 flux for the entire period and
resampled the map from a 0.75° to a 0.25° resolution using bilinear interpolation.

Nitrogen deposition. We acquired global estimates of inorganic nitrogen deposition
for six individual years in the periods of 2004–2006 and 2014–2016 (2° × 2.5° grid
resolution) simulated with GEOS-Chem84. The spatially explicit information
provided in tables containing values of inorganic nitrogen deposition in kg km−2

was first converted to point shape files and subsequently transformed into geotiff
raster files. For each 3 year-period, the multi-year mean was derived. The difference
between the nitrogen deposition maps of ~2015 and ~2005 was calculated and
transformed into an annual rate of nitrogen deposition change in kg ha−2 year−1.
The map was resampled to a 0.25° resolution using bilinear interpolation. Note that
the map of nitrogen deposition change, as used for the driver analysis, does not
exactly cover the period from 2010 to 2019 and, thus, the effect of nitrogen
deposition on ABG carbon change cannot be analyzed in its full details.

Driver analysis. In order to identify the major drivers of AGB carbon change in
Eastern Europe, we carried out a driver analysis in two steps.

Trend pattern matching. In a first step, we used the standardized trends—the
change between 2010 and 2019—of each of the potential driver indicators (carbon
fluxes attributed to agriculture BLUE-agr, abandonment BLUE-aban and wood
harvest BLUE-harv; fraction of cropland abandonment; wood harvest; fire; soil
moisture; precipitation; temperature; CO2 concentration; nitrogen deposition).
Note that for cropland abandonment, not the change but the maximum fraction of
abandoned land during ~2000–2019 (see previous section on cropland abandon-
ment) was used to account for the effect of formerly abandoned cropland, since
carbon sequestration can persist for several years after abandonment85. In order to
assign a major driver indicator to each grid cell, hypotheses about the relationship
between the driver indicators and AGB carbon change were used (see Supple-
mentary Table 4).

A raster stack was built from the driver indicator layers, each for AGB carbon
sink and source. The values of each driver indicator were standardized to a range
between −1 and +1, with the exception of abandonment ranging from 0 to 1
(abandonment was not used as a change indicator). According to the hypothesized
relations (see Supplementary Table 4), the values of driver indicators with a
negative relationship were inverted (multiplied by −1). When the relationship was
unclear, as for temperature, precipitation, and soil moisture, the absolute value
from the values was taken for classification so that both negative and positive
changes were considered equally. In both the AGB carbon sink and the AGB source
stack, the driver indicator with the maximum value was identified for each grid cell.
This driver indicator was assigned to the respective grid cell. As a consequence, for
each AGB carbon sinks and sources (based on the average AGB carbon change
from L-VOD, JPL, and WRI), the driver indicators that showed the strongest trend
constrained by its relation could be identified and mapped across Eastern Europe.

Random forest model. In a second step, independently from the trend pattern
matching, we applied a random forest regression model in order to derive the
importance of the driver indicators in explaining the distribution of the AGB
carbon change in Eastern Europe. All the eleven driver indicators in their full range
were used as predictors, the average AGB carbon change from L-VOD, JPL, and
WRI agreement (see previous section on Mapping AGB carbon change) was used
as a target variable.

The random forest regression model was applied using scikit-learn, a machine
learning library in Python 3.10. The random forest regression was run for three
different subsets based on the target variable. Subset 1: AGB carbon source only,
Subset 2: AGB carbon sink only, Subset 3: all AGB change values (including grid
cells of the agreement but classified as “no change”).

For all runs, the dataset was split into test and train subset, where the test subset
was set as 25% of the dataset. The values of all predictors were standardized and
scaled between −1 and 1. To derive the optimal number of decision trees used by
the model, we iteratively trained the model by using 10 to 200 trees in a 10-tree
interval. The number of trees in the model yielding the best performance was taken
and implemented in the final model run (see Supplementary Fig. 7). Performance
of the model was measured with the R-Squared (R²) as the proportion of variance
in the target variable that can be explained by the predictors.

We used Shapley values—a method from coalitional game theory—to rank the
importance of the driver variables and to analyze their influence (including its
direction; see Fig. 5b) on the AGB carbon change. For this, we used the SHAP
(SHapley Additive exPlanations; https://shap.readthedocs.io/) library in Python

3.10. Shapley values are calculated by measuring the average mean of differences
observed from all feature combinations. The computed mean absolute Shapley
values describe how important the driver indicators are for the random forest
model by measuring their overall influence. To achieve this, the average marginal
contribution is determined. This approximates how important the driver indicators
are in the data. The Shapley value shows the average contribution of a feature value
to the prediction in different coalitions. With this, we could not only rank the
driver indicators by their importance but also analyze the type and direction of
impact (see Fig. 5b).

Since the harmonized AGB carbon change map builds on a threshold for
defining agreement and disagreement of the original datasets (L-VOD, JPL, and
WRI) and it was used as a target variable in the random forest-based driver
analysis, we tested the effect of different thresholds on the model performance
metrics and the resulting feature importance. We used the following thresholds: 0,
0.001, 0.005, 0.01, 0.05, 0.1, 0.5. Supplementary Table 5 displays the different
sample sizes and model performance as R² and RMSE (root mean-square error).
Supplementary Fig. 8 gives an overview of the Shapley value-based feature
importance.

Data availability
All input data used in this study are publicly available and their references are included in
this article. Datasets generated during and/or analyzed during the current study (maps,
codes, and tables) can be accessed through the corresponding author’s GitHub
repository: https://github.com/karina-wink/Eastern_Europe_AGB-carbon.

Code availability
Codes used for generating the results of this study, i.e. the random forest-based driver
analysis carried out in Python 3.10, can be accessed through the corresponding author’s
GitHub repository: https://github.com/karina-wink/Eastern_Europe_AGB-carbon. All
maps were generated using QGIS 3.28.3.
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