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ABSTRACT
The nature of an atom in a bonded structure—such as in molecules, in nanoparticles, or in solids, at surfaces or interfaces—depends on its
local atomic environment. In atomic-scale modeling and simulation, identifying groups of atoms with equivalent environments is a frequent
task, to gain an understanding of the material function, to interpret experimental results, or to simply restrict demanding first-principles cal-
culations. However, while routine, this task can often be challenging for complex molecules or non-ideal materials with breaks in symmetries
or long-range order. To automatize this task, we here present a general machine-learning framework to identify groups of (nearly) equivalent
atoms. The initial classification rests on the representation of the local atomic environment through a high-dimensional smooth overlap of
atomic positions (SOAP) vector. Recognizing that not least thermal vibrations may lead to deviations from ideal positions, we then achieve
a fuzzy classification by mean-shift clustering within a low-dimensional embedded representation of the SOAP points as obtained through
multidimensional scaling. The performance of this classification framework is demonstrated for simple aromatic molecules and crystalline Pd
surface examples.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0160369

I. INTRODUCTION

When bound into molecules or materials, even atoms of the
same chemical species can still possess very different properties and
functions, e.g., different roles in a chemical reaction. A decisive
factor in this is the local atomic environment of the atom, i.e., the rel-
ative positions of all other atoms in its vicinity. A natural question is
then which of the atoms in one or several different bonded structures
are equivalent in terms of this local environment and would corre-
spondingly be attributed similar properties and functions. Indeed,
such a grouping of equivalent atoms is common in materials science
and chemistry. In atomic-scale modeling and simulation, it is, e.g.,
central to allocate computational effort to representative atoms of
each equivalence class, to structure the data analysis, and to select
building blocks in material design—to name but a few of the fre-
quent use cases. A specific application that served as the original
motivation for this work would, for instance, be adaptive kinetic
Monte Carlo (kMC) simulations,1,2 where the transition states of ele-

mentary processes need to be computed for every atom in a structure
in a potentially huge number of sequential kMC steps. Good start-
ing guesses for the transition states are based on recognizing that an
atom has a similar local environment to previously calculated cases
is there a pivotal efficiency driver.

Now, it is intuitively clear that a small perturbation of the local
environment will generally not dramatically change the nature of an
atom. Similarly, the nearsightedness of chemical interactions also
tells us that neighboring atoms further and further away will typ-
ically play an ever decreasing role. In practice, the classification of
equivalent atoms should, therefore, be fuzzy, up to such small per-
turbations and prioritizing nearby neighbors. In fact, the resolution,
i.e., with up to which differences in their local environment atoms
are still classified as equivalent, is a continuous function, and the
optimum resolution will depend on the bonded structure and the
task at hand. For instance, for organic molecules, the direct coor-
dination of an atom may already be enough to obtain a qualitative
understanding of its function. A carbon atom in an aromatic ring
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will have very different properties from a carbon atom in an alkyl
chain, and a coarse representation of the local environment account-
ing only for the directly coordinated neighbors, their distances, and
bond angles would suffice to distinguish the two cases. Similarly,
at crystalline metal surfaces, a first distinction is generally made
in terms of differently coordinated terrace atoms, step atoms, kink
atoms, or adatoms. However, depending on the application, it may
also be necessary to further branch these into sub-classes resolving
e.g., the surface orientation (facet), the step type, combinations of
multiple chemical species, nearby defects, or other increasingly more
subtle variations in the local atomic environments.

Traditionally, the grouping of equivalent atoms is performed
manually by the researcher and is often merely based on visual
inspection of the atomic structure. This approach is obviously labo-
rious and error-prone, and conflicts with increasing interest in high-
throughput workflows,3–6 e.g., for catalysis7 or battery interfaces,8,9

with interest in the generation of large and growing structural
databases,10,11 in global structure optimization problems,12–16 or
in the treatment of complex atomic arrangements, such as nano-
structures17 or amorphous materials.18 In these tasks, identifying
a complete set of equivalent local environments merely by visual
inspection would either become a severe limitation or be completely
intractable.

To address this issue, we here develop a general machine-
learning (ML) framework to automatically identify the groups
of (near-)equivalent atoms within any single or any set of
bonded structures. These bonded structures may thereby comprise
molecules, extended (crystalline or amorphous) materials, and their
surfaces or interfaces. Emphasis is made to have a simple and contin-
uous control of the resolution in the fuzzy classification. The starting
point is to utilize one of the local descriptors,19–23 which have been
developed during the last years, to map the local environment of
an atom onto a point in a high-dimensional space RS. After deter-
mining this vector for all atoms in the considered structure(s), we
employ clustering on the resulting set of data points to obtain dif-
ferent classes of equivalent environments. Fuzziness is introduced in
this approach by specifically employing the double smooth overlap
of atomic positions (SOAP) descriptor,19 which naturally empha-
sizes nearsightedness, and by employing multidimensional scaling
(MDS)24 to embed the SOAP-points in a lower-dimensional space
RS′ . This lower-dimensional space is then beneficial to obtain the
fuzzy classes of approximately equivalent atoms by mean shift clus-
tering (MSC).25 Besides, the parameters of the SOAP representation,
the framework, thus, has two key hyperparameters to control the res-
olution of the classification, i.e., the dimensionality of the MDS space
and the bandwidth of the MSC.

We would like to emphasize that algorithms to categorize atoms
on the basis of their local environments have been proposed for mul-
tiple application purposes before. A few prominent examples are
the work of the Hammer group in the context of global geometry
optimization12,14 or the work of the Ceriotti group in the context
of probabilistic analysis of molecular motifs (PAMM).26,27 While
following analog conceptual steps as e.g., the Hammer workflow,
our framework differs in its attempt to avoid any predefinition and
system specificity. Rather than a priori specifying the number of
different equivalence classes, this number and the corresponding
classes result automatically as a consequence of the chosen resolu-
tion as controlled by the MSC bandwidth. With a larger bandwidth,

fewer classes will be distinguished, and atoms with wider varia-
tions in their local environment will still be classified as equivalent.
Similarly, rather than imposing system-specific features of the local
environment as central to the classification, these features again
emerge naturally in the MDS dimensionality reduction step. With
lower MDS dimensionality, the clustering will only be based on
the most eminent components extracted from the SOAP descrip-
tor, which are typically connected to the immediate neighboring
shell. With this variability in the fuzziness, our generic algorithm
is also geared to a later inclusion into larger workflows, where the
resolution as defined by MDS dimensionality and MSC bandwith
could, for instance, be adjusted in active learning cycles evaluating
the suitability of the determined equivalence classes for the targeted
application.

The following Sec. II will discuss details of the technical imple-
mentation of our approach. In Sec. III, the performance of the algo-
rithm will be demonstrated by applying it to both finite molecules
(Sec. III A) and extended materials surfaces (Sec. III B). On the
basis of these results, we will then discuss limitations and possible
extensions in Sec. III C.

II. METHODS
A. Environment representation through SOAP

In particular, within the booming field of ML interatomic
potentials, much progress has recently been achieved in develop-
ing general representations of atomic environments that go beyond
the mere recognition of (generalized) coordination numbers.28,29 By
construction, these representations encode for instance fundamen-
tal symmetries such as translational and rotational symmetry, as well
as symmetry with respect to permutations of atoms of the same
species. Among these representations, we choose for this work the
vectorial SOAP descriptor, which for the present purposes offers a
good compromise between flexibility and ease of use. The developed
framework does not depend on this choice though, and any other
environment descriptor, e.g., a graph-based one, could equally be
employed.

Referring to the original literature for details,19 Fig. 1 shows an
illustration of the working principle of SOAP. In short, it places a
Gaussian density function with variance σ2

SOAP at the location of each
atom within a sphere with radius rSOAP,cut centered around the atom
i for which the local environment shall be mapped. The overlapped
local density of each chemical species is then expanded into a prod-
uct basis of spherical harmonics for the angular dependence, and a
set of orthogonal basis functions for the radial dependence. At this
point, one set of expansion coefficients is obtained for each chemical
species. To achieve rotational invariance, a normalized power spec-
trum is subsequently constructed between all combinatorial pairs of
coefficient sets of the involved chemical species. This power spec-
trum is an abstract vector χi ∈ R

S describing the local environment
like a fingerprint. The dimensionality S of the vector is thereby deter-
mined by the number of chemical species and the parameters for the
SOAP expansion, namely the maximums, nSOAP,max and lSOAP,max,
for the radial and angular basis functions, respectively.

Here, we specifically use the so-called double SOAP
approach,30,31 which distinguishes two spheres around the
central atom. Higher values for nshort

SOAP,max and lshort
SOAP,max are chosen
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FIG. 1. Illustration of the double SOAP representation of the local atomic envi-
ronment of a bonded structure consisting of two chemical species A (red) and B
(blue). The panel on the left shows the locations of the atoms in the vicinity of
the atom i (black central dot) for which the local environment is to be mapped.
The upper and lower rows illustrate the short- and long-range parts of the dou-
ble SOAP approach, respectively; see the text. For each part, a Gaussian density
of width σshort/long

SOAP is placed at the position of each atom. Summing the densities
of the same species gives the total overlapped atomic density for each species
separately. Within the corresponding cut-off radius rshort/long

SOAP, cut , these densities are

expanded into basis functions. The SOAP vector χshort/long
i is constructed from the

power spectra of the coefficients of these expansions. The double SOAP vector
χi of atom i is finally formed by concatenating the short- and long-range SOAP
vectors.

in a smaller sphere with a radius rshort
SOAP,cut, while neighboring atoms

lye beyond rshort
SOAP,cut but within a sphere of radius rlong

SOAP,cut are less
resolved with lower values nlong

SOAP,max and llong
SOAP,max. This way, the

principle of nearsightedness is naturally built into the environment
representation, placing less weight on more distant atoms in the
outer sphere, and completely neglecting any neighboring atoms
beyond rlong

SOAP,cut. The two SOAP vectors of the two spheres are then
concatenated to form the final SOAP vector χi. We will specify the
SOAP parameters used in the different examples in Sec. III below.
The package DScribe32 is used for the SOAP vector generation
throughout this work.

B. MDS dimensionality reduction for clustering
The dimensionality S of double SOAP vectors is very high and

easily exceeds several hundreds. This can be a hazard in the cluster-
ing process. In particular, to also achieve an easily tunable fuzziness,
we next map the χi first onto a low-dimensional space using MDS.24

While the multiple SOAP parameters would, therefore, in general be
chosen to achieve an accurate and non-system specific representa-
tion of the local environment, the truly distinctive features of this
environment would then emerge naturally through this embedding.
The dimensionality S′ of the corresponding MDS space is thereby
a tuning hyperparameter for the fuzziness, which, as will be seen
below, can be as low as two.

MDS is a general technique to map data onto an abstract space
while preserving the dissimilarity among data points.24 In MDS, dis-
similarity is interpreted directly as the distance between data points,

and in the context of this work, the Euclidean distance between the
double SOAP vectors of atoms i and j

Di j = D(χi, χ j) = ∥χi − χ j∥2 (1)

is an obvious choice for the dissimilarity of the two local environ-
ments. Other kernel forms23,33 are conveniently available thanks to
the vectorial nature of SOAP. For a total of N atoms in the bonded
structure(s) under consideration, this yields a (N ×N) matrix D,
for which classical MDS solves the eigenvalue problem of the Gram
matrix G,24

Gi j =
1

2N∑k
D2

ik +
1

2N∑k
D2

k j −
1

2N2∑
k,l

D2
kl −

1
2

D2
i j. (2)

The result is a set of eigenvalues λa with corresponding normal-
ized orthogonal eigenvectors va = (va,1, va,2, . . . , va,N)⊺, where a is
the index of descendingly ordered λa.

The eigenspace of G can now be used to create a mapping from
the SOAP space S to the abstract embedded space S ′. For a cho-
sen dimensionality S′ of this MDS space S ′, this starts by setting up
the (N × S′) matrix P from the first 1 ≤ a ≤ S′ eigenvalue-weighted
eigenvectors

Pak = va,k/
√

λa. (3)

Now consider any atom i. The ath component of the S′-dimensional
mapped SOAP vector χ′i is then34,35

χ′i,a =
N

∑
k=1

PakD2(χk, χi). (4)

In other words, Eq. (3) defines the embedding projector P from the
high-dimensional SOAP space S to the low-dimensional MDS space
S ′. With the choice of Euclidean distance as the dissimilarity mea-
sure, the MDS eigen problem is equivalent to that of a principal
component analysis (PCA). This allows us to use the set of eigenval-
ues λ as guidance in selecting a suitable dimension S′, e.g., through
the broken-stick method,36 which does not involve any extra hyper-
parameter. In particular, S′ is estimated such that for all a ≤ S′, the
normalized eigenvalues are larger than the broken-stick model series
la, λa/∑N

k λk ≥ la, where la36 is

la =
1
N

N

∑
k=a

1
k

. (5)

This approach is also illustrated in Sec. III. Alternatively, S′ may
be seen as a tunable hyperparameter that may, e.g., be optimized
within a larger workflow that assesses the performance of the clas-
sification for a targeted application. Note also that the embedding
operator P works equally for atoms of any additional structure not
contained in the original set. This allows us to conveniently analyze
new structures in terms of a once-achieved fuzzy classification, as
will be illustrated below. We would like to emphasize that besides
classical MDS, there are, of course, other options for dimensionality
reduction,37 such as, e.g., kernel principal component analysis38 or
Sketch Map.39,40 Each of them comes with pros and cons. With other
reduction options in general, the number of intrinsic dimensions can
also be estimated with other packages, e.g., DADApy.41 Here, MDS is
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our primary choice because of its minimum number of hyperparam-
eters, namely the embedding dimension. Other reduction methods
are demonstrated in the supplementary material.

C. Clustering of atomic environments
Having mapped the dataset to the low-dimensional MDS space

S ′, we finally cluster the atomic environments according to the
geometric similarity reflected in the spatial distribution of the cor-
responding N data points in S ′. This grouping is achieved by mean
shift clustering,25 where we employ the implementation of the Scikit-
learn package.42 We chose MSC as it does not require to predefine
the final number of groups of equivalent atoms. Instead, its only
input parameter is a characteristic distance, the MSC bandwidth
δMSC, which thus emerges as the second tunable hyperparameter
of our framework. As with the choice of the SOAP representation
before, we note that the developed framework is not restricted to
the choice of MSC. As with the choice of the SOAP representation
before, we note that the developed framework is not restricted to the
choice of MSC. One could well substitute MSC with other density-
based cluster algorithms with similar capabilities, e.g., DBSCAN,43

HDBSCAN,44,45 or spectral clustering.46 Our current choice of MSC
is motivated by its flexibility in handling both noisy and non-noisy
datasets and its convenience in out-of-sample classification. For
the case of very noisy datasets, HDBSCAN44,45 might indeed be a
more efficient choice. As shown in the supplementary material, its
performance seems not so good for non-noisy datasets though.

A simple illustration of MSC is shown in Fig. 2(a). We start
by considering the collection of N data points in S ′. A sphere with
radius δMSC is drawn around any one chosen data point, and the
mean position χ′mean,1 of all data points within the sphere is deter-
mined. Next, we calculate the mean position χmean,2 of all data points
within a new sphere around χ′mean,1 with the same radius δMSC, cf.
Fig. 2(a). The mean position is now shifted from χ′mean,1 to χ′mean,2.
This iteration goes on until the location of the mean converges,
which finally gives the center location of a cluster. Starting the algo-
rithm subsequently from all N data points, cf. Fig. 2(b), yields a
complete list of cluster centers. The number of these clusters is gen-
erally lower than N, as cluster centers will have coincided during the
iterative determination of their location. Each data point is finally
assigned to its nearest cluster center.

The bandwidth δMSC crucially determines the resolution of the
clustering algorithm. With a too large δMSC, the algorithm will fail
to differentiate non-equivalent groups. With a too small δMSC, it iso-
lates every atom (aka point in the MDS space) into its own group.
As with the MDS dimension S′, one may simply consider δMSC as a
tunable hyperparameter of our framework that could, e.g., be opti-
mized by a higher-level workflow into which the present framework
is integrated and which evaluates the performance of the achieved
fuzzy classification for the targeted application. Alternatively, a sim-
ple heuristic for the bandwidth may also be employed. Clusters in
the MDS space S ′ distinguish themselves by having closer distances
among their data points than distances to other data points. They,
thus, manifest themselves as agglomerations in the distribution of
pairwise distances D(χ′ i, χ′ j) = ∥χ

′

i − χ′ j∥2. For the finite number of
N data points, this distribution corresponds to a set of N(N − 1)/2
δ-peaks. For larger numbers N, identifying distance regions with
more or less δ-peaks may then become cumbersome. We, therefore,

FIG. 2. (a) Illustration of iterations in a typical MSC algorithm. The white stars are
the means in the first three iterations; see the text. (b) Examples of locating three
cluster centers by starting the MSC iteration at different data points. The white
stars are the starting points of three MSC runs.

conveniently smear every δ-peak into a Gaussian of width σsmear
and add all Gaussians to arrive at a smooth distribution D(χ′ i, χ′ j)
= ∥χ′ i − χ′ j∥2 that resembles a spectrum. In this spectrum, agglom-
erations of similar distances will simply show up as peaks. Choosing
δMSC accordingly somewhere in the minimum after any dominant
peak in the smoothed D(χ′ i, χ′ j) = ∥χ

′

i − χ′ j∥2 spectrum should cor-
respondingly yield a good heuristic to identify clusters. A δMSC
chosen in the first minimum of D(χ′ i, χ′ j) will thereby resolve a
maximum of clusters, while with a δMSC chosen at later minima, less
and less clusters will be resolved.

However, while convenient, the smoothing admittedly adds in
principle another empirical parameter σsmear to our scheme. In prac-
tice, a suitable value for it may readily be found from visual inspec-
tion of the smoothened distribution D(χ′ i, χ′ j). A more automatized
approach recognizes that at any finite temperature, the vibrations
of the atoms in the bonded structures will lead to small changes in
the local environment of every atom. Time-averaged, these changes
will broaden every point in MDS space and correspondingly every δ-
peak in D(χ′ i, χ′ j) = ∥χ

′

i − χ′ j∥2 into a finite Gaussian, too. A useful
value for σsmear may, therefore, naturally be determined by analyzing
data from molecular dynamics (MD) simulations or by estimating
the effect of harmonic displacements on the SOAP vectors. Using
a Nose–Hoover thermostat, NVT MD data generated for a large Pd
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fcc bulk cell at room temperature with 0.5 fs time steps, e.g., gives the
σsmear = 9.20 × 10−3 that we employ in the examples below. The same
MD setup was used to generate a 15 ps NVT trajectory for the island
on the Pd(100) surface structure described below. Equilibration was
reached after 2 ps, and 10 snapshots were extracted at random later
times to analyze the performance of the framework in the case of
finite temperature dynamics.

III. RESULTS
To demonstrate the versatility of the developed framework, we

consider two largely different classes of structures. The first, molecu-
lar class comprises polycyclic aromatic hydrocarbons (PAHs), while
the second class covers various crystalline Pd surfaces. All PAH
structures are ideal and generated with nearest-neighbor C–C and
C–H distances of 1.42 and 1.08Å, respectively. C 1s Kohn–Sham val-
ues for these ideal structures were calculated with density-functional
theory (DFT) using the FHI-aims package47 and PBE functional.48

The result is presented in the supplementary material. For the gen-
eration of the Pd surface, we employ an embedded atom potential,49

which yields a bulk Pd–Pd nearest-neighbor distance of 2.75 Å. All
surface structures are then relaxed until residual forces fall below
0.001 eV/Å, which already introduce some non-ideality requiring a
fuzzy classification. All these data and the entire code used to achieve
the fuzzy classifications of the examples discussed in this work can
be retrieved from the EDMOND repository. Please refer to the data
availability statement for the URL.

As already mentioned above, the purpose of the initial SOAP
representation is to provide an accurate and non-system specific
description of the local atomic environments, while the truly decisive
features governing the fuzzy classification emerge in the subse-
quent MDS embedding step. As such, we simply set all SOAP
specific parameters conservatively according to heuristics presently
used in the field of ML interatomic potentials (for which SOAP
was originally developed).37 Namely, this is nshort

SOAP,max = 8, lshort
SOAP,max

= 4, nlong
SOAP,max = 4, and llong

SOAP,max = 3. rshort
SOAP, cut is conveniently set to

a value that corresponds to the mean between the first and the sec-
ond coordination shell distance in a representative structure for the
considered class, whereas rlong

SOAP, cut is set at the middle of the third
and fourth coordination shells. Here, the representative structures
for the two classes are graphene and bulk fcc Pd, which then leads
to rshort

SOAP, cut = 1.940 Å and rlong
SOAP, cut = 3.550 Å for the PAHs, and

rshort
SOAP, cut = 3.320 Å and rlong

SOAP, cut = 5.132 Å for the Pd surfaces. The
Gaussian width σshort/long

SOAP = rshort/long
SOAP, cut/8 in the density representation

is chosen proportional to the corresponding cutoff.
For the present illustration purposes, these SOAP settings are

fully sufficient, and neither the SOAP determination step nor the
entire algorithm imposes any significant computational burden. The
latter could only start to change for excessively large structural
databases with a huge total number N of atoms or if the clas-
sification needs to be repeated at very high frequencies. In such
cases, optimizing the SOAP parameters would, of course, decrease
the computational effort—at the risk of eventually leading to a too
coarse initial representation of the environments. In principle, the

SOAP settings may also be optimized for the classification task,
e.g., following the ideas of Barnard et al.50 For the present case
studies, the successful classification achieved shows though that
the general and simple heuristic settings provide a sufficient initial
representation that is also not computationally demanding. The per-
formance with different SOAP settings is further illustrated in the
supplementary material.

A. Polycyclic aromatic hydrocarbons
Besides, the SOAP representation settings, there are only two

relevant hyperparameters left in the framework, both of which tune
the resolution of the final fuzzy classification, the MDS dimension S′

and the MSC bandwidth δMSC. As will be seen below, the application
to ideal PAH structures renders the determination of the MSC band-
width trivial and, thus, provides a good starting point to illustrate the
effect of the MDS dimensionality reduction step. The specific PAH
set considered is shown in Fig. 4(b) below. It comprises benzene,
naphthalene, anthracene, tetracene, phenanthren, and a graphene
sheet, with a total of N = 110 C and H atoms. The normalized eigen-
values of the Gram matrix for this set, cf. Eq. (2), are shown in Fig. 3.
Following Eq. (5), the estimated suitable MDS dimension S′ is 2.

Figure 4(a) shows the 110 environments embedded in this two-
dimensional space. Because of the ideal structures employed, they
collapse into 11 visually easily distinguishable classes. The same clas-
sification would also be obtained with a wide range of δsmear for
the smoothed pair distance distribution D(χ′i , χ′j) and the described
heuristics to choose the value 0.0241 for the MSC bandwidth some-
where in the first minimum. In the PAH structures shown in
Fig. 4(b), all atoms are colored according to the thus identified
11 equivalence classes. The automatized algorithm perfectly distin-
guishes the species and their direct coordinations, just as any human
researcher would have done.

Groups 1–4 are carbon atoms with two carbon neighbors, and
groups 5–7 are carbon atoms that have three carbon neighbors;
groups 8–11 correspond to hydrogen atoms that all have one neigh-
boring carbon atom. Obviously, any large enough choice of δMSC

FIG. 3. The black line shows the normalized eigenvalues λa/∑
N
k λk of the Gram

matrix in descending order, cf. Eq. (2), for the PAH structure set shown in
Fig. 4(b) below. The gray line shows the broken-stick series. Following Eq. (5),
the estimated suitable MDS dimension S′ is 2.
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FIG. 4. (a) Two-dimensional embedded MDS space, in which the N = 110 atomic
environments contained in the PAH structures collapse into 11 visually separa-
ble classes. (b) Structure models of the PAH set, with C atoms drawn as larger
spheres and H atoms as smaller spheres. Each atom is colored according to the
11 equivalence classes in (a). For clarity, the corresponding class index is shown
only once in each structure.

would have resulted in a clustering that only distinguishes these
dominant direct C coordination differences between the three super-
groups. However, in the finer resolution of eleven classes, differences
in the arrangement of more distant neighboring atoms are also
captured.

Which resolution in the classification is more suitable depends
on the intended application. We illustrate this in the supplementary
material with computed C1s Kohn–Sham levels for these molecules
as a simple approximation for core-level spectroscopies.51 Consis-
tent with the strong difference in C coordination, the levels of
each molecule are clustered into two main groups, with the (degen-
erate) individual peaks reflecting the subtle geometry variations
between the C atoms of groups 1–4 and 5–7. It is a question of the
experiment, if this substructure in the two main peaks is resolved
or not, and correspondingly, which clustering bandwidth is more
suitably utilized in an automatized computational spectroscopy
workflow.

Intriguingly, the differences in the finely resolved 11 classes go
beyond mere coordination. For instance, the H atoms in groups 9
and 10 are still resolved even though their local environments only
differ in the arrangement of the second neighbor shell. Because of
the subtlety of these differences, the corresponding clusters in the
MDS space are admittedly very close, cf. Fig. 4(a). Yet, they are still
automatically resolved by our framework— a task that would have
been difficult to achieve with predefined symmetry parameters or
other classification tools.

Figure 4(a) also nicely demonstrates the added benefit of an
increased MDS dimension. The much larger size of the first eigen-
value of the Gram matrix in Fig. 3 could also have motivated us
to just choose a one-dimensional MDS space (S′ = 1). Then, the
eleven points in Fig. 4(a) would have all collapsed onto the χ′i,1 axis in
Fig. 4(a). At minute distances from each other, the different classes
might in principle still have been distinguishable from each other.
However, the second embedding dimension separates them much
better. The latter would particularly become important if we con-
sider small deviations from the ideal structures, e.g., induced by
thermal vibrations. In that case, the 11 discrete points in Fig. 4(a)
would spread into 11 dense groups of points (or 11 smeared out
points if time-averaged MD data are used as discussed above). Then,
the MSC clustering would indeed be needed. This is also the case
for the Pd surface structure set, and we will conveniently discuss the
effect of the corresponding δMSC hyperparameter for that class in
Sec. III B.

B. Crystalline palladium surfaces
The crystalline Pd surface structure set comprises the low-index

Pd(100) and Pd(111) surfaces, and the Pd(211) vicinal surface. To
represent the extended surfaces, we employ periodic boundary con-
ditions, and for convenience we use in all cases slab geometries as
they would also occur in corresponding electronic structure super-
cell calculations. For the (100) and (111) surfaces, we, thus, use 4 slab
layers, and for the (211) surface, we use 5 slab layers. To demonstrate
the performance in differentiating surface environments also in
more complex cases, we, furthermore, include two extra structures,
namely a (13 × 13)-Pd(100) surface with a (7 × 7) square island
and an adatom in a fourfold hollow site; as well as a c(14 × 7

√
3)-

Pd(111) surface with a hexagonal island and two adatoms on fcc
and hcp hollow sites. Figure 5 shows the atomic arrangement of
these two nanostructures. In total, the Pd surface structure set then
contains N = 1576 atoms.

Figure 6(a) shows the ordered eigenvalues of the Gram matrix
for this set, cf. Eq. (2). Following Eq. (5), S′ is estimated as 3. The
representation of the N = 1576 atomic environments in this space is
shown in Figs. 6(b) and 6(c). Not least due to the small geometric dif-
ferences induced by the surface relaxation, these environments now
spread out more than in the ideal PAH example. Yet, they still exhibit
a substructure for which even visual inspection suggests some form
of clustering. The heuristics to choose the MSC bandwidth in the
first minimum of the smoothed distribution of pairwise distances in
the MDS space lead to a value δMSC = 0.0416. The resulting cluster-
ing then identifies 17 different classes that are colored and numbered
in Fig. 6(b). Analyzing these classes in more detail indicates that the
primary MDS dimension χ′1 predominantly distinguishes different
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FIG. 5. Top view of the atomic arrangement of the two nanostructured surfaces
contained in the crystalline Pd surface structure set: (a) a (13 × 13)-Pd(100)
surface with a (7 × 7) square island and an adatom on top; (b) a c(14 × 7

√

3)-
Pd(111) surface with a hexagonal island and two adatoms on fcc and hcp hollow
sites. In both cases, groups of atoms discussed in the main text are highlighted
with color according to the MSC classification of Fig. 6(b). For clarity, we restrict
this coloring to the island atoms and the adatoms, and the corresponding class
index is shown only once in each structure.

coordination numbers, while the other two MDS dimensions χ′2, χ′3
seem to more diffusively pick up longer-range arrangement.

The achieved fuzzy classification is demonstrated by color
labeling all island surface atoms and adatoms in the two surface
nanostructures in Fig. 5. Without relying on any human predefined
symmetry parameters, the automatized classification recovers intu-
itive differences. Adatoms (groups 1 and 2), island corner atoms
(groups 3 and 4), and island edge atoms (group 5) at the two sur-
face symmetries are correctly distinguished. This performance also
extends to the regular surface atoms of the Pd(100), Pd(111), and
Pd(211) surfaces, which are all categorized as would be expected
from visual inspection.

On the other hand, one also has to recognize that the resolution
achieved by the heuristics is not perfect. This is most straightfor-
wardly seen for the two adatoms on the Pd(111) surface shown
in Fig. 5. Both adatoms are classified into the same group 1, even
though one of them sits in a hcp hollow site and the other one sits in
an fcc hollow site. At the present MDS dimension and MSC band-
width, the framework is, thus, not able to distinguish the differences
in the positioning of the second layer Pd atoms between these two

FIG. 6. (a) The black line shows the normalized eigenvalues λa/∑
N
k λk of the

Gram matrix in descending order, cf. Eq. (2) for the crystalline Pd surface struc-
ture set shown in Fig. 5(b). The gray line shows the broken-stick series, following
Eq. (5), S′ is estimated as 3. (b) and (c) Three-dimensional embedded MDS space,
in which the N = 1576 atomic environments contained in the Pd surface struc-
tures are drawn as individual points. The coloring of the points corresponds to the
MSC clustering with a bandwidth of δMSC = 0.0416 as determined by the simple
heuristics; see the text. In total, 17 equivalent atom classes are identified.

sites. The same problem applies to group 5, which contains multi-
ple types of edge atoms. As a result, the color coding of the island
on the (111) surface suggests a sixfold symmetry, whereas in reality
the symmetry should only be threefold (compare the position of the
edge atoms to the underlying Pd terrace atoms).
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C. Discussion
On the positive side, the developed framework achieves an

automatized fuzzy classification even when resorting to simple
heuristics for the determination of its two central hyperparameters,
S′ and δMSC. The performance shown for two completely differ-
ent structural datasets attests to the versatility of the approach,
which neither requires any system-specific input nor predefinition
of the number of equivalence classes to be distinguished. On the
negative side, already the second, somewhat more involved Pd sur-
face case reveals that the resolution achieved with the heuristic
hyperparameters is not perfect.

Depending on the targeted application, a classification distin-
guishing even finer details in the local atomic environments might
be desirable. As stressed before, we see the main use of the presented
fuzzy classification approach as part of a larger workflow in which
active learning loops provide feedback on whether the achieved res-
olution is satisfactory or needs to be increased (or could even be
decreased). Take, e.g., the initially mentioned application where a
starting guess for a transition state search is deduced for an atom by
recognizing that it has a similar local environment to another atom
for which a transition state is already known. If the efficiency of such
guided transition state searches turns out to be low, this indicates
that atoms with too dissimilar environments are fuzzily categorized
into the same equivalence class. Provided such feedback, the resolu-
tion can then be increased, which, in principle, should be achievable
by increasing the MDS dimension S′ and/or decreasing the MSC
bandwidth δMSC.

Unfortunately, there are interdependencies between the two
hyperparameters that render systematic tuning to gradually increase
the resolution beyond the one achieved with the heuristic settings
difficult. We illustrate this in Table I with the number of identified
equivalence classes when further and further increasing the MDS
dimension S′ while maintaining the heuristics-based strategy to
determine the MSC bandwidth from the smoothed pairwise distance
distribution of the points in MDS space. As expected, the number of
resolved equivalence classes does initially increase with a larger S′.
However, it saturates quickly, and even in a six-dimensional space,
the problematic adatom and edge atom cases discussed above are
still not properly resolved. The reason for this is that the length
scale of the ath dimension of the MDS space S ′ correlates with the
corresponding eigenvalue

√
λa. Since the λa are ordered in descend-

ing order, the length scales of the higher MDS dimensions become
smaller and smaller. This is already shown in the striped structure

TABLE I. Number of identified equivalence classes for the Pd surface structure set,
when systematically increasing the dimension S′ of the MDS space, while maintaining
the heuristic determination of the MSC bandwidth δMSC described in Sec. II C. The
number of 17 classes resolved for S′ = 3 was the case discussed in Sec. III B.

S′ δMSC No. of identified classes

1 0.0828 9
2 0.0394 17
3 0.0416 17
4 0.0416 17
5 0.0421 17
6 0.0425 18

of the data points in the two-dimensional embeddings in Figs. 4(a)
and 6(b). The length scale in the dimension χ′1 is much larger than
in the dimension χ′2, and correspondingly, the data points are gen-
erally more distant from each other in the prior dimension than
in the latter dimension. Now, the MSC clustering algorithm deter-
mines the mean of the data points within an S′-dimensional sphere
of radius δMSC. If the distances between components of the higher
MDS dimension become smaller and smaller, adding these dimen-
sions will not help much to further distinguish clusters unless δMSC
is also reduced. However, as shown in Table I the simple heuristics
to determine δMSC from the smoothed pairwise distance distribu-
tion instead lead to a roughly constant value for this bandwidth in
higher MDS dimensions. Indeed, simply reducing δMSC from the
presently employed values to below 0.025 will immediately resolve
23 equivalence classes already in S′ = 2.

On the other hand, just reducing δMSC is not a general purpose
solution. A too small δMSC will start to distinguish atoms accord-
ing to their larger distances in the primary MDS dimensions and
maybe such distinction is not desired either. Take the example of
the two non-resolved adatoms on the Pd(111) nanostructured sur-
face, i.e., the two points in group 1 in Fig. 6(b). A sufficiently reduced
δMSC would allow to distinguish the two. However, at such a small
δMSC, the MSC algorithm will also start to differentiate the numer-
ous bulk-like Pd atoms that currently make up the red stripe at the
bottom right in Fig. 6(b)— and adding further MDS dimensions
will not mitigate this problem at all. Alternatively, one could imag-
ine re-scaling the MDS dimensions by their eigenvalue to achieve
more comparable length scales in all MDS dimensions. However, the
diminishing length scales of higher MDS dimensions have a mean-
ing. They reflect that differences in these dimensions correspond
to more and more subtle differences in the local atomic environ-
ments. Blowing up these differences by simply renormalizing the
MDS length scales might, therefore, neither be a generally applicable
remedy to increase the resolution in the desired way. In the end, the
careful tuning of both hyperparameters, S′ and δMSC, will be required
if the default heuristics do not achieve a satisfactory fuzzy classifica-
tion for a specific application. The classification performance with
the heuristics utilizing a different σsmear is further demonstrated in
the supplementary material.

A noteworthy positive feature of the developed framework is
that new structures may readily be evaluated within a once achieved
fuzzy classification. As long as exactly the same SOAP settings
to initially describe the atomic environments are employed, the
embedding operator P of this classification will project any envi-
ronment contained in the new structure to the low-dimensional
MDS space S ′. The corresponding new data point χ′new can then
straightforwardly be assigned to the nearest cluster center.

We explore this idea for a room-temperature MD trajec-
tory generated for the Pd(100) island structure. 10 snapshots are
extracted at random times, and the environments of all surface
atoms are categorized in terms of the 17 equivalence classes of the
Pd surface structure set discussed above. As summarized in the
supplementary material, adatoms, island edges, and surface atoms
are correctly identified with a 90% or higher probability despite
the thermal displacements. More problematic are only the island
corner atoms with their larger anisotropic vibrations, which are
miscategorized with a 50% probability. One option that we cur-
rently pursue to improve this could be to exploit correlations in the
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FIG. 7. Categorization performance for new structures within a once achieved
fuzzy classification. The 8523 atoms of the shown Pd nanoparticle are colored
according to the 17 equivalence classes of the Pd surface structure discussed
above, cf. Fig. 6(b). For comparison, the Pd(211) surface and the two surface
nanostructures of this original structure set are also shown in the same coloring,
readily allowing the framework to identify similar local environments. White atoms
close to facet edges of the Pd nanoparticle are classified as distinct from all classes
of the existing classification, see the text.

classification of the individual atoms in successive snapshots along
the trajectory.

An alternative ansatz, not only for the case of finite temperature
dynamics, is to iteratively expand a given fuzzy classification with
such new structures. In this case, an atomic environment would be
identified as distinctly different from all previously considered envi-
ronments if the corresponding new data point χ′ is located further
away from any existing cluster in MDS space than the MSC band-
width δMSC. In Fig. 7, this is illustrated for the 8523 atoms of a Pd
nanoparticle again within the 17 previously discussed equivalence
classes. In this case, all edge atoms between the nanoparticle facets
are categorized as a new environment. Once one or a sufficient num-
ber of such new environments are identified, a flag could be set in
an iterative framework that initiates a new fuzzy classification now
involving the entire, augmented structure set.

IV. CONCLUSIONS
We presented an automatized machine-learning framework to

identify atoms with (near-)equivalent local atomic environments in
any one or a set of given structures. The required fuzziness in the
classification is achieved by embedding an initial high-dimensional
representation of the local environment and a subsequent cluster-
ing in the resulting low-dimensional space. Emphasis was placed
on the high versatility of the framework with minimum system spe-
cific input. As such, the framework is readily applicable to molecular
structures, extended materials, or interfaces, to ideal or non-ideal,
as well as to crystalline or amorphous geometries. Simple heuristics
are provided for the two central hyperparameters, the dimension
S′ of the MDS embedding space and the bandwith δMSC of the
MSC clustering in this space. If the resolution achieved with the
heuristic settings is not optimum for a specific application, the two
hyperparameters are tunable with understandable effects on the
resulting classification. The framework could, therefore, readily be
integrated into larger workflows that achieve optimum tuning of
the hyperparameters, e.g., in active-learning iterations evaluating
the classification performance for the targeted application. A sam-
ple implementation of the framework as a standalone application is
provided in the repository stated below.

The versatility of the framework also extends to its capability
to assess new structures within an achieved fuzzy classification. In
addition to this end, one can, therefore, imagine an iterative usage in
which the atoms of new structures are first assessed and a new fuzzy
classification of the increased set of structures is initiated whenever
a critical number of new, distinctly different atom classes has been
identified. We also note that the initial high-dimensional fingerprint
for each atom is not necessarily restricted to the structure-sensitive
(double) SOAP vector employed in this work. This representa-
tion was chosen here within the focus on equivalence in the local
atomic environments. Other fingerprints, such as partial charges or
other electronic structure properties may, e.g., be added to further
improve the resolving capabilities of the framework, or directly be
used to base the fuzzy classification on aspects other than geometric
similarity.

SUPPLEMENTARY MATERIAL

Please see the supplementary material for demonstrations
of other dimensionality reduction methods (kPCA, Sketch Map);
another clustering method (HDBSCAN). In addition, classifica-
tion demonstration was applied to MD data of structured Pd(100)
surfaces.
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