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Summary

� Plants interact with arbuscular mycorrhizal fungi (AMF) and in doing so, change transcript

levels of many miRNAs and their targets. However, the identity of an Argonaute (AGO) that

modulates this interaction remains unknown, including in Nicotiana attenuata.
� We examined how the silencing of NaAGO1/2/4/7/and 10 by RNAi influenced plant-

competitive ability under low-P conditions when they interact with AMF. Furthermore, the

roles of seven miRNAs, predicted to regulate signaling and phosphate homeostasis, were eval-

uated by transient overexpression.
� Only NaAGO7 silencing by RNAi (irAGO7) significantly reduced the competitive ability under

P-limited conditions, without changes in leaf or root development, or juvenile-to-adult phase

transitions. In plants growing competitively in the glasshouse, irAGO7 roots were over-

colonized with AMF, but they accumulated significantly less phosphate and the expression of

their AMF-specific transporters was deregulated. Furthermore, the AMF-induced miRNA levels

were inversely regulated with the abundance of their target transcripts. miRNA overexpression

consistently decreased plant fitness, with four of seven-tested miRNAs reducing mycorrhization

rates, and two increasing mycorrhization rates. Overexpression of Na-miR473 and Na-miRNA-

PN59 downregulated targets in GA, ethylene, and fatty acid metabolism pathways.
� We infer that AGO7 optimizes competitive ability and colonization by regulating miRNA

levels and signaling pathways during a plant’s interaction with AMF.

Introduction

Small RNAs (smRNAs) regulate many aspects of a plant’s phenoty-
pic plasticity while they respond to changes in their abiotic and bio-
tic environments (Axtell, 2013; Borges & Martienssen, 2015; Brant
& Budak, 2018; Manavella et al., 2019; Song et al., 2019). All char-
acterized smRNA processes engage an Argonaute (AGO), which
functions as a direct binding partner of the smRNAs during the for-
mation of the RNA-induced silencing complex (RISC). AGOs
facilitate endonucleolytic cleavage of transcripts, translational
repression, RNA-directed DNA methylation, synthesis of secondary
small interfering RNAs (siRNAs), Dicer (DCL)-independent pre-
microRNA (miRNA) synthesis, and co-transcriptional regulation of
miRNA gene expression (Meister, 2013; Fang & Qi, 2016;
Carbonell, 2017). As a consequence, AGOs are regarded as the
‘effectors’ of the smRNA machinery.

The size of the AGO families in flowering plants varies by taxa:
10 in Arabidopsis and 19 in rice, whereas the genomes of Chla-
mydomonas (algae) and Physcomitrella (moss) contain three and
six AGOs, respectively. Plant AGOs are classified into four major
classes (Singh et al., 2015): AGO1/10 (class I), AGO5 (class II),
AGO2/3/7 (class III), and AGO4/6/8/9 (class IV). The

expansion of the AGO family suggests functional diversification
during the evolution of specialized smRNA pathways (Carbonell,
2017; Pradhan et al., 2017); however, biological roles for all
AGOs remain to be fully elucidated. While members of class I
and class IV AGOs are comparatively well characterized, the
functions of class III AGOs (AGO2/3/7) have only been studied
in a limited set of species. In Arabidopsis, AGO2 is primarily
involved in viral resistance; AtAGO3, while closely related to
AtAGO2, remains functionally uncharacterized. AtAGO7 med-
iates juvenile-to-adult phase transitions and leaf morphogenesis
(Hunter et al., 2003; Xu et al., 2006; Fang & Qi, 2016; Carbo-
nell, 2017). AtAGO7 preferentially associates with miR390 and
is involved in the processing of 21 nt smRNAs (Cuperus
et al., 2009). AtAGO7 binds to miR390 and is required for the
biogenesis of ta-siRNAs (Montgomery et al., 2008; Jouannet
et al., 2012). The functions of AGO7 in leaf development and
ta-siRNA biogenesis are also reported from maize and rice (Naga-
saki et al., 2007; Douglas et al., 2010). In the ecological model
species, Nicotiana attenuata, in which several components of
smRNA machinery are well established (Pandey & Baldwin,
2007, 2008; Pandey et al., 2008; Bozorov et al., 2012b; Pradhan
et al., 2017, 2020; Navarro-Quezada et al., 2020), the biological
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function of NaAGO7 remains unknown. The aim of this study
was to address this knowledge gap.

Nicotiana attenuata (coyote tobacco) is an annual tobacco,
native to southwestern North America that germinates from long-
lived seed banks in post-fire environments to form monocultures
(Baldwin & Morse, 1994). The N. attenuata genome encodes
AGOs homologous to AGO1 (NaAGO1a, b, c; class I), AGO2
(class III), AGO4 (NaAGO4a, b; class IV), AGO5 (class II), AGO7
(class III), AGO8 (class IV), AGO9 (class I), and AGO10 (class I)
(Singh et al., 2015; Pradhan et al., 2017). Loss-of-function studies
have helped to define the biological functions of AGOs of classes I
(NaAGO1) and IV (NaAGO4 and NaAGO8). Specifically, the
function of AGO1 in development, as reported from many species,
is conserved in N. attenuata (Pradhan et al., 2017); NaAGO8
modulates N. attenuata’s direct defenses induced in response to
attack from herbivores (Pradhan et al., 2017) and NaAGO4 (Prad-
han et al., 2020) mediates resistance to wilt-like fungal diseases
(Schuck et al., 2014; Santhanam et al., 2015).

Nicotiana attenuata also interacts with arbuscular mycorrhizal
fungi (AMF), which under glasshouse conditions can produce
variable fitness outcomes under P-limited growing conditions
(Wang et al., 2018a), but in natural habitats, plants impaired in
their ability to associate with AMF (Groten et al., 2015) are com-
monly outcompeted by isogenic plants that can associate with
AMF (Wang et al., 2018a). Marked by distinct stages, root colo-
nization by AMF starts with a pre-symbiotic phase during the
first 1–3 d (Gutjahr et al., 2009; Pimprikar & Gutjahr, 2018).
During the later stages of colonization, roots are populated with
hyphae, vesicles, and arbuscules of different stages of develop-
ment. The AMF symbiosis is based on the exchange of inorganic
phosphorous (Pi), other nutrients and water supplied by the fun-
gus, in exchange for 4–20% of the plant’s net photosynthetic car-
bon fixation (Johnson et al., 1997). This process reprograms the
accumulation of transporters (like PT4), whose expressions are
tightly and temporally regulated by transcription factors like
RAM1 (Pimprikar & Gutjahr, 2018). Phytohormones, in parti-
cular auxin, GA, ethylene (ET) signaling, and fatty acid metabo-
lism play important roles in AMF colonization (Choi
et al., 2018; M€uller & Harrison, 2019).

Phytohormones interact with other factors such as peptides,
phosphate signaling pathways, and miRNAs to form a complex
signal transduction network, which integrates AMF symbiosis and
the P-status of the plant (M€uller & Harrison, 2019). miRNAs reg-
ulate their targets in a highly sequence-specific manner, which
involves an AGO effector (Meister, 2013; Fang & Qi, 2016; Car-
bonell, 2017). Furthermore, AGOs can influence miRNA accu-
mulations, regulate phytohormone signaling pathways, and
modulate the expression of specific target genes by miRNAs in a
highly stimulus-dependent manner (Pradhan et al., 2017, 2020).

Whether AGOs are involved in a plant’s interactions with AMF
has not been directly studied, but smRNAs clearly are repro-
grammed during AMF colonization (Wu et al., 2016; Pandey
et al., 2018; Song et al., 2018; Silvestri et al., 2019). The roles
of miR171a, b and h, miR396, and miR393 (Couzigou & Comb-
ier, 2016) have been associated with AMF colonization. In addi-
tion, several families of miRNAs, such as miR399, are known to

regulate phosphate homeostasis/phosphorous deficiency signaling
(Kuo & Chiou, 2011; Wang et al., 2018a); these are likely engaged
during AMF colonization, but this functional inference remains
untested. Although N. attenuata–AMF interactions entail large
changes in the root miRNome (Pandey et al., 2018), the specific
AGO effectors that mediate this process remain unknown.

We hypothesize that plant–AMF interactions could recruit a
specific AGO effector that helps N. attenuata maximize its Dar-
winian fitness in nature. Here, we examined the biological func-
tion of N. attenuata’s AGO7, evaluated AGO7-dependent
changes in miRNA abundances, and analyzed the role of AGO7-
regulated miRNAs in AMF root colonization, plant fitness, and
signaling processes.

Materials and Methods

Plant material and glasshouse growth conditions

Two independent transgenic irAGO7 lines (inverted-repeat
silenced AGO7; A-13-018-8-4 and A-13-017-2-2) did not show
any significant differences among each other (Pradhan et al.,
2017). Therefore, we randomly selected line A-13-018-8-4 for the
experiments presented here. Seeds of the 31st generation wild-type
plant (WT) N. attenuata Torr. Ex Watts, and all the transgenic
plants (irAGO1 (A-12–866-1-5), irAGO2 (A-12–845-2-8),
irAGO4 (A-13-021-2-6), irAGO7 (A-13-018-8-4), and irAGO10
(A-13-025-6-7)) were grown and maintained as described pre-
viously (Kr€ugel et al., 2002; Halitschke et al., 2003; Onkokesung
et al., 2012) and in Supporting Information Methods S1.

For the glasshouse experiments with AMF, living inoculum
(R. irregularis, Biomyc Vital, www.biomyc.de, inoculated plants)
was used (details in Methods S1). Plants were fertilized every sec-
ond day with a low phosphate (P) hydroponic solution (Groten
et al., 2015; Wang et al., 2018a) as detailed in Methods S1. A
WT plant was paired with a size-matched irAGO7 plant in the
same pot to force the two genotypes to compete for resources
(Pandey et al., 2008). Plant performance was evaluated, samples
were harvested and processed, as detailed in Methods S1.

Blumenol analysis and microscopic observations for
estimating host–AMF interaction

11-Carboxyblumenol-C-glucoside (blumenol-C) is a reliable
quantitative marker for root colonization of AMF and was quan-
tified as previously described (Wang et al., 2018a). Samples were
extracted with 80% MeOH and analyzed with a ultra-high-
performance liquid chromatography (Methods S1). To deter-
mine the fungal colonization rates and mycorrhizal structures,
root samples were stained, analyzed, and quantified by micro-
scopy using with Trypan blue and WGA-fluorescein staining
(Methods S1; Brundrett et al., 1984; McGonigle et al., 1990).

RNA extraction and quantitative real-time PCR

For miRNA- and mRNA quantifications, qPCR assays were per-
formed (Methods S1; primer sequences are provided in Table S1).
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Total RNA was extracted from roots using the lithium chloride
method (Kistner & Matamoros, 2005; Pradhan et al., 2017). Spe-
cific miRNA sequences were from Pandey et al. (2018); miScript
SYBR Green PCR kit was used for miRNA-qPCRs. For mRNA
quantification, qPCR assays were performed with gene-specific pri-
mers on cDNA templates (Methods S1). The 5S rRNA and the
sulfite reductase (NaECI) genes were used as endogenous references
for miRNAs and mRNAs, respectively. The 2�ΔΔCT method was
used for data analysis (Bubner et al., 2004; Bubner & Bald-
win, 2004; Pandey & Baldwin, 2007; Bozorov et al., 2012a).

Field experiments

All the field experiments were conducted at the Lytle Ranch Pre-
serve (the Great Basin Desert of Southwestern Utah, USA; lati-
tude 37.146, longitude 114.020) in two consecutive years: 2018
and 2019. Transgenic plants were released under APHIS impor-
tation and release permits (18-054-101r and 18-282-103r).
Planting and data recording are detailed in Methods S1. Experi-
ments were terminated after 8 wk by uprooting the plants as
plants started to produce seed capsules, which were removed by
hand before maturation, to meet the regulatory requirements of
the field releases.

Statistical analysis

Data were analyzed using ORIGINLAB 2016 software. Paired t-
tests were used for field experiments and ANOVA (one-way and
repeated measures) were used in glasshouse studies (Methods S1).

Transient overexpression of Na-miRNAs

Na-miRNAs were transiently overexpressed. Steps of vector con-
struction are detailed in Methods S1; information on relevant
sequences are provided in Table S2. Empty vector (EV) con-
structs were used as controls, and 10–12 biological replicates
(plants) were independently inoculated with each construct.
Plants overexpressing individual miRNAs and EV controls were
grown in 1 l pots in a growth chamber under P-limited condi-
tions with AMF (Methods S1). Growth and fitness parameters
were recorded weekly until harvest. AMF colonization was moni-
tored at 6 and 8 wk by analyzing leaf blumenol-C contents. Over-
expression was quantified in individual plants with the help of
the miRNA-qPCR assays (Methods S1).

Results

NaAGO7-silenced plants are strongly impaired in
competitive growth but not in their resistance to pathogens
or herbivores in nature

Nicotiana attenuata genome contains an AGO7 homolog, whose
expression was silenced (4- to 10-fold) by generating inverted-
repeat stable transformants (irAGO7), as previously described in
Pradhan et al. (2017). Our overarching objective was to deter-
mine NaAGO7’s biological function. To robustly evaluate this,

we planted irAGO7 plants into the natural habitat of N. attenuata
in field plots in the Great Basin Desert. We grew irAGO7 and
WT pairs in close proximity (20–30 cm; Fig. 1) and assessed their
susceptibility to attack from the natural herbivore community
as well as their growth and reproductive performance (Pandey
et al., 2008). To evaluate AGO7’s possible role in resistance
against natural pathogens, irAGO7-WT pairs were also planted
in an Alternaria–Fusarium-infected field plot (Pradhan et al.,
2020): irAGO7 and WT plants suffered similar mortality rates
that could be attributed to fungal infection (Fig. S1a). irAGO7
plants were also indistinguishable from the WT neighbors in
their ability to defend themselves against natural herbivores
(similar total canopy areas damaged; Fig. S1a). From these
results, we infer that the loss of NaAGO7 function does not affect
disease resistance or herbivore resistance in nature.

However, irAGO7 plants were consistently outcompeted by their
WT neighbors as revealed by measures of their growth and repro-
ductive performance, despite being planted as size-matched seed-
ling pairs (Fig. 1). WT plants started to elongate around the 4th wk
and stalk lengths of irAGO7 plants were significantly shorter than
those of WT plants at the end of 4 wk (Fig. 1). Overall, irAGO7
plants continued to lag behind their WT counterparts even at the
end of 8 wk (Fig. 1). Although we could not estimate lifetime fit-
ness as mature seed capsule production (to prevent release of trans-
genic seeds in nature), irAGO7 plants were clearly impaired in their
reproductive output: WT plants started to flower 1 wk earlier than
did their irAGO7 competitors, and produced significantly more
flowers (Fig. 1). After 8 wk, WT plants had produced, on an aver-
age, 4–5 seed capsules per plant, while irAGO7 plants had not pro-
duced any. The biomass of irAGO7 plants was significantly lower
than that of WT plants at the end of 8 wk (Fig. 1).

Furthermore, we estimated the AMF colonization of the WT
and irAGO7 plant pairs by measuring blumenol-C levels in the
leaves of reproductively mature plants (Wang et al., 2018a).
The overall average blumenol-C contents of WT and irAGO7
plants were similar (Fig. S1b). At the same time, we noticed that the
blumenol-C content of the field-grown plants was strikingly lower
than those previously observed for the glasshouse-grown plants
(Wang et al., 2018a; Pradhan et al., 2021). WT plants displayed a
strong positive correlation between their blumenol-C contents and
their reproductive output (flower numbers; Fig. S1b). This correla-
tion between the blumenol-C content and plant reproductive out-
put was not observed in irAGO7 plants (Fig. S1b). When we
normalized the reproductive output as a function of blumenol-C
content, we found that WT plants produced nearly 1.8 times more
flowers per unit of blumenol-C than irAGO7 plants (Fig. S1b).

From the field observations, we infer that AGO7 silencing
reduces the ability of N. attenuata plants to compete with conspe-
cifics in natural environments.

Silencing AGO7 does not affect plant development,
juvenile-to-adult transitions, or fitness under resource-rich
conditions

Studies in Arabidopsis identified a function for AGO7 in juvenile-
to-adult phase changes and in leaf morphogenesis (Hunter
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et al., 2003; Xu et al., 2006; Fang & Qi, 2016; Carbonell, 2017).
Such functions were also reported from maize and rice (Nagasaki
et al., 2007; Douglas et al., 2010). However, N. attenuata irAGO7
plants did not exhibit any noticeable change in development under
standard growth conditions when resources were not limiting
(Fig. 2a; plants were grown singly, in 1 l pot, in soil with a full fer-
tilizer regime; Methods S1). The rosettes of irAGO7 and WT
plants grew similarly and transitioned to the elongation stage
together (Fig. 2a). No significant differences in plant height/stalk
length were found between WT and irAGO7 plants (Fig. 2a).
Furthermore, irAGO7 and WT plants produced similar numbers
of leaves with similar chlorophyll contents (Fig. S2). Furthermore,
we did not find any significant differences in root phenotypes, such
as in root length or lateral root numbers, in the two genotypes
(Fig. S2). Moreover, no difference in reproductive performance
between irAGO7 and WT plants was found as both genotypes pro-
duced similar numbers of seed capsules and biomass (Fig. 2a).
From these data, we infer that silencing NaAGO7 does not affect
N. attenuata’s development.

AGO7-silenced plants show reduced growth and fitness
under P-limited competitive conditions with AMF
inoculation

When initially size-matched irAGO7 and WT plants were grown
together in the same pot under resource-rich conditions (full

fertilizer regimes; without AMF inoculum), no differences in
growth or fitness were observed between the two genotypes
(Fig. 2b). When grown in the same competitive setup but under
phosphate- (P-) limited conditions (10% and 25% of the regular
P-levels at rosette and elongation stages, respectively) with AMF
inoculum, as previously described (Pandey et al., 2018; Wang
et al., 2018a), the rosettes of WT and irAGO7 plants expanded at
similar rates; however, during stalk elongation (Fig. 2c), WT
plants out-competed their irAGO7 pairs, attaining significantly
longer stalks (Fig. 2c, repeated measures ANOVA, n = 10 pairs,
P < 0.01), greater shoot fresh and dry masses (paired t-test,
n = 10 pairs, P < 0.01 for fresh mass and P < 0.05 for dry mass),
and produced significantly more seed capsules (Fig. 2c, 42%;
paired t-test, n = 10 pairs, P < 0.01).

As controls, WT and irAGO7 plants were also grown in non-
competitive setups (1 plant/pot) under P-limited conditions with
AMF, as well as in the above-competitive setup (2 plants/pot)
under P-limited conditions but without AMF inoculation. No
differences were found between the two genotypes under any of
these conditions (Fig. S3).

We evaluated whether the reduced competitive ability of
irAGO7 is a trait specific for AGO7, or if plants silenced in other
AGOs (specifically, AGO1 (a, b, c), AGO2, AGO4, and AGO10)
were also impaired. Plants were grown in competitive setups
under low-P conditions as described earlier and in Fig. 2(c).
None of the measured growth and fitness traits differed

(a)

(c) (d)

(b)

**
**

*

*

**
**

***

****

** **

Time (wk after transfer to field)

Time after transfer to field (wk)

N
o.

Fig. 1 When planted as competing pairs into a field plots in the plant’s native habitat, AGO7-silenced Nicotiana attenuata plants grow more slowly and pro-
duce fewer fitness correlates than initially size-matched wild type (WT) plants. (a) Planting was done in a paired design depicted by the cartoon, where plants
were 20–30 cm apart (pin in the middle indicates an irrigation dripper). The two genotypes did not differ in the damage received from the native herbivore
community or their mortality due to a fungal wilt disease (Supporting Information Fig. S1). (b) Their rosette diameters and stalk heights were significantly smal-
ler (paired t-test, t-value = 0.013 and 0.0021 for 3wk and four rosette diameters; t-value = 0.004, 0.01, 0.052 and 0.048 for stalk heights at 3, 4, 7, and 8wk).
Values presented are means� SD, number of biological replicates (n) = 25 per genotype, * and ** significant differences fromWT at P ≤ 0.05 and P ≤ 0.01,
respectively. (c) irAGO7 plants produced significantly fewer flowers than WT (n = 27, error bars correspond to SD; **** and *** signify significant differences
fromWT at P ≤ 0.001 and 0.005, respectively). (d) Fresh shoot and root biomass of irAGO7 plants at the end of the experiment (8wk post transfer to field plot)
were significantly lower than those of WT (paired t-test, t-value = 0.012 for shoot biomass and 0.013 for root biomass, n = 23; errors bars refer to SD).
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(a) (b) (c)

***

***

***

**

**

*

Fig. 2 Silencing AGO7 impairs Nicotiana attenuata’s growth and fitness under P-limited competitive growth with arbuscular mycorrhizal fungi (AMF).
(a) Silencing AGO7 does not affect plant growth and fitness under non-competitive, resource-rich conditions. Rosette diameter, rosette leaf number, chlor-
ophyll content, and total capsule number of irAGO7 and wild-type (WT) plants did not differ significantly (values are means� SD). (b) Similar results were
found when plants were grown with WT competitors under P-rich conditions without AMF (values are means� SD). (c) However, when grown under
competitive, P-limited conditions with AMF inoculum, irAGO7 plants were out-competed by WT. irAGO7 plants had shorter stalk length (*** significantly
different fromWT, paired t-test, t = 5.387E�07 for 3-wk comparison and t = 0.00029 for 4 wk comparison, values are means� SD, n = 10 WT-irAGO7
pairs, P < 0.001), significantly lower numbers of seed capsules (t = 4.048, P = 0.013), as well as less fresh (t = 4.429, P = 0.01; significant differences desig-
nated with **) and dry mass (t = 3.73, P = 0.0187; significant differences designated with *).
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significantly between the WT and the respective irAGO lines
(Fig. S4). From these results, we conclude that only irAGO7
plants, but not irAGO1/2/4/10, are impaired in their competitive
abilities.

AGO7 silencing increases AMF colonization in glasshouse-
grown plants

Plants impaired in AMF root colonization (silenced in CCaMK
expression) are out-competed by WT or EV competitors (Wang
et al., 2018a). Therefore, we evaluated how AGO7 silencing
influenced the AMF-N. attenuata interaction (Fig. 3). To access
root colonization, we quantified blumenol-C contents as an esti-
mate of arbuscule number (Wang et al., 2018a) of the two geno-
types over a period of 8 wk after AMF inoculation (Fig. 3).
irAGO7 plants had > 2 fold higher blumenol-C levels than those
of WT plants at 6 wk after inoculation (Fig. 3a); at 8 wk, the
values were still 50% higher in irAGO7 (Fig. 3a; repeated mea-
sures ANOVA, n = 10, P < 0.01). None of the other AGOs were
altered in their AMF colonization rates as inferred by their leaf
blumenol-C contents (Fig. S4). From these results, we infer that
silencing AGO7 increases AMF colonization.

To further evaluate this inference, we estimated root coloniza-
tion by Trypan Blue staining (Fig. 3b). Total root colonization
of irAGO7 was > 2 fold greater than that of WT (Fig. 3b; paired
t-test, P < 0.01), which could be clearly seen in the > 2-fold
greater number of arbuscules in irAGO7 roots (Fig. 3b). Also,
mycorrhizal roots and fungal structures were stained by using
WGA-fluorescein (WGA-FITC; Fig. S5; Rech et al., 2013) and
the data were analyzed according to Trouvelot et al. (1986). The
results (Fig. 3c) were consistent with the blumenol-C data and
Trypan Blue staining in that irAGO7 roots were more colonized
by AMF as compared to the WT counterparts. Furthermore, at
6 wk post-inoculation, we examined the transcript levels of
RiTEF1a, a housekeeping gene of R. irregularis that is often used
as a marker for fungal accumulations (Heck et al., 2016; Voß
et al., 2018): RiTEF1a transcripts accumulated > 4-fold higher in
irAGO7 compared to WT (Fig. 3d), again consistent with
enhanced colonization of irAGO7 roots by AMF.

Taken together, these results suggest that (only) AGO7 med-
iates optimal colonization of N. attenuata roots by AMF, and
silencing of AGO7 leads to hyper-colonization in glasshouse-
grown plants.

AGO7 silencing affects expression of AMF-specific
transporters and plant P contents

While irAGO7 plants were hyper-colonized by AMF, they still
had a reduced competitive ability and we wondered if the arbus-
cules were fully functional in irAGO7 plants. We examined the
time-dependent (3, 4 and 6 wk post-AMF inoculation) transcript
levels of the AMF-induced host P-transporter, NaPT4, in WT
and irAGO7 roots. As transcriptional activation of PT4 is regu-
lated by RAM1 (Pimprikar & Gutjahr, 2018), we also compared
transcript levels of NaRAM1 at the same time points in the two
genotypes. In addition, we examined the transcript levels of a

R. irregularis P-transporter (RiPT7) that mediates P-homeostasis
of AMF at the symbiotic interface (Xie et al., 2022), and the fun-
gal monosaccharide transporter (RiMST2) gene (Xie et al.,
2022). In irAGO7 plants, the expression of these genes is deregu-
lated during colonization (Fig. S6). Specifically, P-transporters
are strongly down-regulated in irAGO7 plants at 6 wk, a time
associated with flowering and seed set (Fig. S6).

Next, we evaluated the plant’s P-contents. P levels in roots and
leaves of irAGO7 plants were significantly lower than those in the
WT (Fig. 4), which is consistent with the inference that arbus-
cules might not be fully functional in irAGO7 plants.

AGO7 regulates the ‘reprogramming’ of miRNA
accumulation during AMF interactions

As AGOs are the effectors of miRNA-regulatory pathways and
impact miRNA accumulations, we next hypothesized that silen-
cing AGO7 might impact AMF-modulated miRNA accumula-
tions. Association of AMF with N. attenuata roots dynamically
reprograms the accumulation of miRNAs, with several miRNAs
accumulating distinct isomiRs depending on AMF colonization
status of the roots (Pandey et al., 2018). We selected 35 miRNAs,
including six novel miRNAs, from our previous analysis based on
their strong differential changes due to AMF and their putative
involvement in P-starvation/homeostasis, phytohormone signal-
ing, defense- and stress-response pathways (Pandey et al., 2018).
In time-course experiments, we profiled the changes in their
abundances in WT and irAGO7 roots during early and late stages
of colonization.

Complex time/stage- and genotype-dependent changes in
miRNA accumulation patterns were evident (Figs 5a, S7, S8).
Most (31 of 35) of the miRNAs showed no significant differences
in their accumulations between WT and irAGO7 roots before
AMF inoculation (Fig. S7). After inoculation, 25 were down-
regulated in irAGO7 roots, mostly during early stages of AMF
colonization (up to 3 wk), while the opposite pattern was
observed for several miRNAs (e.g. miR160, miR156, miR172,
miR482, miR5386) at 6 wk when roots were fully colonized with
large numbers of arbuscules of different ages and leaves accumu-
lated high blumenol-C levels (Figs 5a, S8).

Specificity in isomiR-accumulation was also evident (Figs 5a,
S8). For example, six sequence variants of miR156 were detected.
Most of these miRNAs showed the highest accumulations at
6 wk (Figs 5a, S8). Of these, two (miR156a-5p_2, miR156b-5p)
were specifically up-regulated in irAGO7 compared to WT only
during late root colonization (Figs 5a, S8). Levels of miR172a
(both sequence variants) increased after 2 wk of AMF coloniza-
tion in WT, whereas in irAGO7, their accumulation was signifi-
cantly enhanced at 6 wk (Figs 5a, S8). miR393a-3p’s levels
consistently increased in colonized WT, but decreased in irAGO7
in early stages; whereas miR393a-5p’s accumulation at 6 wk
was enhanced in irAGO7 (Figs 5a, S8). miR473 was > 2 fold up-
regulated in WT at very early stages of AMF root colonization
(within 4 d), but in irAGO7 plants, again a strong down-
regulation was observed (Figs 5a, S8). On the other hand,
miR398 was up-regulated in irAGO7 specifically during the late
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stage, whereas miR399’s accumulation was more complex, as it
was high in WT plants within 2 wk of AMF colonization but this
trend reversed at 6 wk, when transcript levels increased in
irAGO7 plants (Figs 5a, S8). An example of AMF-repressed

miRNAs in WT is the novel miRNA, Nat-R-PN59 (Pandey
et al., 2018), which was consistently down-regulated at all time
points in irAGO7 (Figs 5a, S8).

Such complex changes in the accumulation of miRNA tran-
scripts during AMF colonization and AGO7 silencing suggest
that AGO7 functions in their patterns of accumulation.

Silencing AGO7 deregulates gene expression patterns
during AMF colonization

The complex changes in miRNA accumulation after AMF inocu-
lation and their dependency on AGO7 motivated us to examine
changes in the accumulation of their putative targets. We revis-
ited our previous analysis (Pandey et al., 2018) and found 17
genes that corresponded to AMF-related hormone signaling
pathways (such as the SQUAMOSA PROMOTER BINDING
PROTEIN-LIKE (SPL) transcription factors, AP2-type transcrip-
tion factors, AFB2, GAI1-DELLA, EIN3), P-homeostasis/
transport (such as Laccase 4, PHT1-4) and fatty acid metabolism/
transport (such as PAP12, SEC13, ALKK) to be targets of miR-
NAs 156, 172, 393, 399, 473 and PN59 (Figs 5b–d, S9).

Overall, we observed (1) an inverse pattern of accumulation
between irAGO7 and WT roots for most of these genes: if a gene
was up-regulated after inoculation at a given time-point in WT,
it was down-regulated at that time point in irAGO7 and vice
versa (Figs 5b, S9). (2) Most of the proven/predicted targets show
the inverse pattern with their corresponding miRNA levels

Fig. 3 Silencing AGO7 increases arbuscular mycorrhizal fungi (AMF)
colonization as revealed by leaf blumenol-C levels, microscopic analyses,
and gene expression study. (a) When plants are grown under competitive
limited-P conditions with AMF (as described in Fig. 2(c)), 6–8wk
after inoculation, the levels of the AMF marker metabolite 11-
carboxyblumenol-C glucoside (blumenol-C) were significantly greater in
the leaves of irAGO7 than in those of wild-type (WT) plants. Values are
means� SD (repeated measures ANOVA, F6,30 = 18.50, P = 0.007;
* and ** represent significant differences fromWT at P ≤ 0.05 and
P ≤ 0.01; Fishers LSD). (b) Microscopic estimation of AMF colonization
structures in WT (black bars) and irAGO7 (grey bars) roots, 6-wk post-
inoculation, and after staining with Trypan blue. Arbuscules, vesicles, and
hyphae were counted. Values presented are means� SD. *** show signifi-
cant differences, Wilcoxon signed-rank test, n = 5 biological replicates per
genotype (50 observations were made on each replicate); P < 0.001.
(c) AMF colonization structures were also independently investigated with
the help of WGA-FITC staining of roots of WT and irAGO7 plants at 6-wk.
Quantification of various mycorrhizal structures was carried out using the
method of Trouvelot et al. (1986). Frequency of colonization in the root
system (F%), intensity of colonization (M%), arbuscule abundance (A%),
intraradical hyphae abundance (I%), vesicles abundance (VC%), and the
ratio of arbuscles to vesicles abundance (A/VC) in the root system were
estimated. ***, ** show significant differences between the two geno-
types at P < 0.01 and P < 0.05, respectively (Wilcoxon signed-rank test).
(d) Accumulation of Rhizophagus irregularis Translation Elongation Fac-

tor1a (RiTEF1a) transcripts in the roots of AMF colonized WT and irAGO7
plants (6 wk) was analyzed with the help of quantitative real-time PCR
assay. NaECI gene was used as an internal control; levels in WT were set to
1 and relative expression in irAGO7 was calculated. Error bars show SDs.
** shows significant differences between two genotypes, n = 3, t = 4.03,
P < 0.01, paired t-test.
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(Fig. 5c). (3) The commonly observed ‘one-many:: many-one’
relationship of targets and miRNAs was apparent, and these
could be distinguished as being operational at early and late
stages of AMF colonization (Fig. 5c). For example, miR156 is
known to target the SPLs that respond to auxin signaling (Sunkar
et al., 2012; Yu et al., 2015; Xu et al., 2016). Interestingly, the
miR156-SPL3 module regulates phosphate-deficiency response
(Lei et al., 2015; Xu et al., 2016), whereas the miR156-SPL9
module also regulates reactive oxygen species accumulation (Yin
et al., 2019). While the binding of SPL with other regulators,
such as DELLAs, interfere with their activity/expression (Zhang
et al., 2019), SPLs also positively regulate the accumulation of
miRNAs in a negative feedback loop (Yu et al., 2015). A strong
up-regulation of SPL3 was noticed in irAGO7 during the
early stages of colonization (3 wk), whereas SPL9 transcripts
accumulated significantly more at 6 wk in WT plants (Figs 5b,
S9). Furthermore, AFB2- an auxin signaling component (and
miR393-proven target) was strongly up-regulated at 3 wk in
irAGO7 (Figs 5b, S9).

miR172 acts sequentially with miR156, is positively regulated
by SPL9 (Wu et al., 2009), and targets a number of genes such as
RAP2-7, AP2, APL, and PEX14. All of these genes were strongly
up-regulated in WT plants at 6 wk, and the transcript levels of
these genes were low in irAGO7 plants (Figs 5b, S9). PUB45,
putative target of miR393 and Nat-R-PN59, was weakly
expressed in irAGO7 plants during the early stages of

colonization, while it was up-regulated in irAGO7 at late stages
compared to WT (Figs 5b, S9).

The transcript levels of DELLA-GAI1 and PAP12 (putative
targets of miR473), EIN3 (putative target of miR-PN59), and
the miR399-related genes PHT1-4 and IRX12 laccase4 were low
in irAGO7 across all time points after AMF root colonization.
miR399, along with PHO2, is reported to regulate the expression
of PHT1-4 phosphate transporter during salt stress response of
Arabidopsis (Pegler et al., 2020).

From the earlier mentioned data, we infer that miR156, 172,
393, 399, 473 and the novel miRNA-PN59 participate in regu-
lating hormone signaling, P-related pathways, vegetative-adult
phase transition, fatty acid metabolism, and oxidative stress
response (Fig. 5d). Although many of these pathways are impli-
cated in host–AMF interaction, the biological functions of these
miRNAs in the context of plant fitness during colonization by
AMF remain poorly explored.

AGO7-influenced miRNAs regulate AMF colonization and
plant fitness

To test the inference that the earlier mentioned miRNAs are
functionally relevant in host–AMF interactions and plant fit-
ness, we overexpressed five conserved miRNAs (miR156b-5p
(ov156), miR172-3p_1 (ov172), miR399a-3p_3 (ov399),
miR393a-5p (ov393), miR473-5p_2 (ov473) and the novel
miR-Nat-R-PN59 (ovPN59)) in WT N. attenuata plants (Figs 6,
S10; Table S3). In addition, we tested the role of Na-miR398
(ov398) in plant–AMF interactions as this miRNA was impli-
cated in nutrient homeostasis and oxidative stress/abiotic stress
responses (Zhu et al., 2011). Na-miR398 is strongly differen-
tially regulated during Nicotiana–AMF interactions, but
whether miR398 has a direct influence on AMF colonization is
unknown.

We evaluated how overexpression of these miRNAs affected
AMF colonization, plant growth, and reproductive performance
(Figs 6, S11). miR156 overexpression strongly reduced stalk
length and capsule production, whereas it significantly increased
AMF colonization by c. 50% (Fig. 6). By contrast, overexpression
of a Na-miR172 only marginally reduced stalk lengths but
strongly influenced seed capsule production (Fig. 6); however,
AMF colonization was not significantly affected. miR399 overex-
pression although did not influence stalk length, it reduced cap-
sule production and AMF colonization (Fig. 6). By contrast,
overexpression of miR393 did not influence plant height or over-
all capsule production (although a delay was recorded), whereas
it increased AMF colonization (Fig. 6). Interestingly, ov398
plants strongly reduced AMF colonization, and were initially
smaller than the EV, and produced fewer capsules 5–6 wk after
inoculation, but at the 8-wk time point, they produced the same
number of capsules as the EV plants (Fig. 6). Overexpression of
miR473 and Na-R-PN59 (ov473 and ovPN59) reduced AMF
colonization and strongly reduced plant fitness: ov473 as well as
ovPN59 plants showed no difference in rosette to elongation
transition, whereas both genotypes were shorter and produced
fewer capsules (Fig. 6). In summary, overexpression of miR156

**

**

Fig. 4 Silencing AGO7 impairs arbuscular mycorrhizal fungi (AMF)-
mediated phosphate accumulation in Nicotiana attenuata. Competitively
grown wild-type (WT) and irAGO7 pairs of plants were grown for 6 wk in
absence (AMF (�); left panel) and presence (AMF (+); right panel) of
Rhizophagus irregularis, similar to those described in Figs 2(c) and 3.
Roots (upper panel) and leaves (lower panel) of these plants were assayed
for their phosphate contents; all the values are means� SD. ** indicates
significant differences in between WT and irAGO7 genotypes, paired
t-test; n = 6, troot = 4.54, Proot < 0.01; tleaves = 4.29, Pleaves < 0.01; ns
indicates no significant differences between phosphate levels between the
tissues of the two genotypes.
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and miR393 promoted AMF colonization, whereas miR398,
miR399, miR473, and Na-R-PN59 reduced colonization, while
the sequence of miR172 used in overexpression appeared not to
be decisive for this symbiosis (Fig. 6).

To gain further insights, we investigated how the transcript
levels of target genes were altered by overexpression of miR473
and the novel Na-R-PN59 miRNA. miR473 targets three genes
of the fatty acid/lipid metabolism pathway (ALKK, PAP12, and

(a)
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SEC13), and a GAI-DELLA (GA signaling). ALKK and PAB12
transcripts were very strongly reduced, and GAI-DELLA’s tran-
script was also abolished in ov473 plants as compared to EV con-
trols (Fig. 7). miR-Nat-R-PN59 targets ET signaling pathways
by targeting EIN3 and PUB45: levels of both genes was strongly
attenuated by overexpression of this miRNA (Fig. 7). Further-
more, we tested whether reproductive performance (stalk length
and seed capsule production) was altered when plants overexpres-
sing miR473 or PN59 were grown in the absence of AMF: no
differences were observed (Fig. S12). These findings suggest that
these miRNAs play a role in modulating reproductive perfor-
mance and AMF root colonization probably by regulating fatty
acid metabolism, GA signaling, and ET signaling pathways.

Discussion

Here, we examined the biological function of N. attenuata’s
AGO7. We infer that NaAGO7 does not directly regulate develop-
mental traits. However, when grown in competition under low-P
conditions with AMF in the glasshouse, or under field
conditions, irAGO7 plants had severely reduced competitive repro-
ductive output (Figs 1, 2), while losses to pathogens and herbi-
vores were similar to those of WT plants. Reduced fitness under
competitive P-limited growth conditions was specific for irAGO7;
silencing other NaAGOs did not decrease plant performance under
these conditions (Fig. S4). Here, we propose that AGO7 affects
the plant’s competitive capacity under P-limited conditions due to
hyper-colonization by AMF. When colonized by AMF, plants
recruit an AGO7-related smRNA pathway that modulates gene-
expression networks of various signaling components so that sym-
biotic outcomes are optimized (Fig. 8). In the following sections,
we evaluate the literature regarding our inferences on the whole-
plant consequences of AGO7 silencing and follow these with eva-
luations of AGO7’s role in symbiotic signaling.

The function of several AGOs, in particular AGO7, remains
unknown or is only described for a few species. An Arabidopsis
AGO7 mutant (ZIPPY) was first characterized by its premature
change in leaf morphology (Hunter et al., 2003). Similarly, in
maize and rice, AGO7 mutations affected leaf development
(Nagasaki et al., 2007; Douglas et al., 2010). However, in
N. attenuata, we were surprised not to find similar phenotypes in -
AGO7-silenced plants. Two hypotheses could account for this
discrepancy. In irAGO7 lines, residual amounts of AGO7 activity
might be sufficient to execute these developmental processes.
Alternatively, AGO7 may have acquired a novel function in
N. attenuata as a consequence of the unique selection pressures

that this species encounters (Navarro-Quezada et al., 2020).
AGOs’ sequences, structures, and functions are constantly evol-
ving, likely a result of changing selection pressures (Singh
et al., 2015; Singh & Pandey, 2015; Pradhan et al., 2017, 2021).
Studies on AGO7 function in legume–rhizobia interactions pro-
vide hints that similar regulatory processes may operate between
these two types of symbiotic interactions.

Mutations in Medicago truncatula AGO7 enhanced nodulation
and rhizobial infection (Hobecker et al., 2017), a pattern which
was similar to our findings for AMF interactions. Legumes auto-
regulate nodulation to avoid hyper-nodulation (Penmetsa
et al., 2003; Schnabel et al., 2005). NaAGO7 may play a similar
role in the plant–AMF symbiosis – regulating the number of
arbuscules to temper symbiotic costs. Host plants provide
photo-assimilates in quantities that approach 20% of net primary
productivity to the fungus in exchange for P and other micronu-
trients (Smith & Smith, 2011). Hyper-colonization may increase
these already high investment costs. The large number of arbus-
cules in irAGO7 plants may not be fully functional, potentially
leading to a feedback loop that increases arbuscule production
further.

The auto-regulation of arbuscules is likely initiated early dur-
ing the host-AMF interaction, where the negative self-regulation
of colonization occurs independently of a plant’s P-status (M€uller
et al., 2019). Results from studies that manipulated CLE
(CLAVATE3/EST-related) peptide or CLAVATA (CLV) expres-
sions (M€uller et al., 2019) are consistent with the inference that
over-colonization by AMF does not always increase host fitness.
Rather, enhanced AMF colonization has severe consequences for
growth and reproduction (Morandi et al., 2000; Solaiman et al.,
2000; C. Wang et al., 2018; M€uller et al., 2019). These studies
are consistent with the observations that hypercolonization of
irAGO7 negatively affects fitness in N. attenuata. The overarching
scenario is consistent with the observations of reduced phosphate
levels (Fig. 4), and suppressed transporter gene expression in
reproductive-stage plants (Fig. S6), collectively suggesting that
lower resource mobilization in irAGO7 plants could explain their
reduced reproductive output.

The effects of AGO7 silencing on AMF-related signaling
appears to be far-reaching. During AMF colonization,
N. attenuata changes its miRNA profile (Pandey et al., 2018).
Kinetic analyses of AMF-changed miRNAs and their putative
targets in irAGO7 and WT roots clearly revealed the expected
negative relationships (Fig. 5), consistent with the inference that
the miRNAs may relate to their target genes with AGO7 as a cen-
tral regulator. In the following sections, we discuss the role of

Fig. 5 Temporal dynamics of arbuscular mycorrhizal fungi (AMF)-influenced miRNAs and their putative targets in wild-type (WT) and AGO7-silenced
(irAGO7) plants during the process of AMF colonization. Relative abundances during AMF colonization compared to uninoculated control (time 0) were
calculated (detailed in Supporting Information Figs S8, S9) and heat maps were generated with the help of ClustVis server (https://biit.cs.ut.ee/clustvis/)
after rows were centered and unit variance scaling was applied to rows. (a) Change in accumulation patterns of 35 miRNAs (n = 3–4; further detailed in
Fig. S8) in WT and irAGO7 roots during early stages of AMF colonization (3 d to 3 wk; left panel) and at 6 wk after colonization was determined. (b)
Changes in accumulation of transcripts of 17 miRNA target genes participating in phosphate-related processes, hormone signaling, phase transition, and
fatty acid metabolism were determined during the process of AMF colonization (2–3wk) and after 6 wk in WT and irAGO7 roots (n = 3–4; further detailed
in Fig. S9). microRNA–target relationships and directionality of their accumulation in irAGO7 are presented in (c). For most of the miRNA–target pairs, an
inverse relationship was noticed. Panel (d) represents the biological processes/pathways that might be modulated (shown with ‘x’) by seven miRNAs,
whose functional role in plant–AMF interaction is further tested in our study.
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these miRNAs in plant–AMF interaction in the context of nutri-
ent investment, root colonization, and phytohormone signaling.

In the context of nutrient investment, the accumulation
patterns of miR398 and the three miR399-sequence variants
are interesting. These miRNAs are likely involved in regulating

P-starvation responses and nutrient deficiencies (Hsieh et al.,
2009; Kuo & Chiou, 2011). The accumulation pattern of
miR399 inversely corresponds with that of its putative targets,
laccase 4 and phosphate transporter PHT1-4, at 6 wk. A down-
regulation of PHT1 was also observed in Arabidopsis plants
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overexpressing miR399 (Fujii et al., 2005). In Arabidopsis,
miR398 is down-regulated under P-starvation, while in tomato
it is increased (Pant et al., 2009; Gu et al., 2010; Zhu
et al., 2011). Also, miR398 may be involved in alleviating oxi-
dative stress (Sunkar et al., 2006; Zhu et al., 2011). Significant
reductions in AMF colonization and growth were observed
upon the overexpression of miR399 and miR398 (Fig. 6).

The role of miR399 in plant–AMF interactions appears to be
complex. In M. truncatula, miR399 levels are increased in AMF-
colonized roots under P-limited conditions (Branscheid
et al., 2010). This is similar to our results for irAGO7 and consis-
tent with the hypothesis that miR399 is locally induced to main-
tain continuous root colonization (Branscheid et al., 2010).
However, overexpression of an Arabidopsis miR399-homolog
(ath-miR399d) in tobacco did not influence mycorrhizal colo-
nization (Branscheid et al., 2010). But plants have several
miR399 sequence variants (e.g. 15 in M. truncatula; Branscheid
et al., 2010) and their interplay in AMF-symbiosis is unknown.
In N. attenuata, we had previously found a strong upregulation
of miR399 in AMF-colonized roots in plants impaired in AMF
colonization growing in competition with a fully functional
partner, while these plants had a lower total P content (Pandey
et al., 2018; Wang et al., 2018a). These results are consistent
with those obtained here when miR399 in N. attenuata was
overexpressed, leading to lower AMF colonization rates com-
pared to WT. It is well known that nutrient starvation
responses are a complex interplay of local and systemic
responses, in which particular systemic leaf signals are impor-
tant for nutrient acquisition (Carbonnel & Gutjahr, 2014;
Chien et al., 2018). Moreover, phytohormone signaling is yet
another layer of regulators of AMF symbiosis and AGO7-
modulated miRNAs could be a central player in these
phytohormone-mediated responses.

Plant–AMF interactions result in a complex modulation of
GA, ET, and auxin signaling, which interact synergistically as
well as antagonistically (Gutjahr, 2014; Fracetto et al., 2017; Liao
et al., 2018). We propose that this hormonal crosstalk is
mediated by miRNAs in an AGO7-dependent manner. For
instance, GA plays a complex role during various stages in the
symbiosis (Tominaga et al., 2019). GA inhibits, as well as pro-
motes, the infection and colonization of AMF in a host (Takeda
et al., 2015). GA influences several aspects of hyphal entry and
branching through its influence on the expression of several criti-
cal genes and transcription factors, including RAM1 and SbtM1
(Takeda et al., 2015). GA levels are finely regulated in roots for
optimal colonization (Mart�ın-Rodr�ıguez et al., 2015). Low GA

suppresses colonization, whereas high GA levels can inhibit AMF
entry (Takeda et al., 2015). DELLA proteins act as coordinators
of GA action during endosymbiosis (Fonouni-Farde et al.,
2016). Our results suggest that miRNAs play a central role in
regulating the GA pathway. For instance, NamiR473-mediated
DELLA-assisted regulation of GA could fine-tune its action and
facilitate optimal colonization.

The overexpression of Na-miR473 and Na-R-PN59 resulted
in reduced AMF colonization. miR473 targets genes related to
GA signaling and fatty acid metabolism. DELLAs are required
for arbuscule formation and nutrient transfer (Floss et al., 2013;
Foo et al., 2013; Yu et al., 2014; Park et al., 2015), as sugars and
fatty acids are traded between plants and fungi (Keymer et al.,
2017; Luginbuehl et al., 2017). It is plausible that overexpression
of miR473 reduced colonization by significantly reducing ALKK,
PAP12, and GAI1-DELLA transcript levels. Similarly, overex-
pression of Na-R-PN59 strongly attenuated the transcript levels
of PUB45 and EIN3 (ET signaling) targets, while AMF coloniza-
tion rates were significantly lower. The biological functions of
these two miRNAs were not previously known in plant–AMF
interaction, but EIN3 acts down-stream of EIN2 in ET signaling
(Dolgikh et al., 2019).

ET acts as a negative regulator of AMF entry and root colo-
nization and balances the beneficial and non-beneficial traits of
this endophytic interaction (Camehl et al., 2010; Mukherjee &
An�e, 2011). ET negatively regulates the Sym and non-Sym
pathways (Mukherjee & An�e, 2011), negatively modulates the
repressing effect of Pi on AMF symbiosis and regulates a host’s
Pi-starvation response pathway (Torres de los Santos et al.,
2016). ET interacts with other hormones (like GA) during sym-
biosis in complex ways (Mart�ın-Rodr�ıguez et al., 2011; Foo
et al., 2016). Unregulated ET production in a host may falsely
signal deficiencies of other hormones, such as ABA, with detri-
mental effects for the symbiosis (Fracetto et al., 2017). There-
fore, ET levels need to be fine-tuned for successful symbiosis,
and AGO7-related miRNAs, such as Na-miR473 and Na-R-
PN59, may provide the required regulatory network. Overall,
the role of ET signaling in the AMF symbiosis still has several
unsolved aspects (Foo et al., 2013), and our results add a piece
to this puzzle – here, abrogation of the ET signaling pathway
clearly correlates with significantly reduced AMF colonization.
Further studies including ET measurements are required to bet-
ter understand how ET affects the AMF symbiosis. As GA and
ET signaling pathways interact (Foo et al., 2016), perhaps these
miRNAs mediate their cross-talk during arbuscule formation.

Fig. 6 Evaluation of miRNA functions during host–arbuscular mycorrhizal fungi (AMF) interaction. Seven miRNAs were transiently overexpressed to
evaluate their influence on plant fitness and host–AMF interactions under low-P conditions. miRNAs were transiently overexpressed (ov) in wild-type (WT)
Nicotiana attenuata plants (vectors described in Supporting Information Fig. S10). (a) Overexpression was quantified with the help of miRNA-qPCR assays.
Level of a miRNA in empty vector (EV)-inoculatedWT plants was set to 1 and relative fold increase in miRNA abundance in plants overexpressing a particu-
lar miRNA construct was determined. Effect of miRNA-overexpression on plant fitness was determined by comparing increases in stalk length (b) and seed
capsule production (c), while effects on AMF colonization rates was determined by measuring blumenol-C contents in leaves at 6 wk (d). The plants were
grown individually in 1 l pots. Significant differences were measured with the help of two-way repeated measures ANOVA for (b, c) and one way ANOVA
for (a, d), values presented are means� SD, number of biological replicates (n) = 8–12. *, **, and *** show significant differences for a trait betweenWT
and irAGO7 at a given time point at P < 0.05, P < 0.01, and P < 0.005, respectively. Additional details on test statistics are provided in Table S3.
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During early time points of root colonization (3 d to 3 wk after
inoculation), when AMF starts to enter the plants and form the
first arbuscules (Pimprikar & Gutjahr, 2018), miRNAs were
mostly up-regulated in AMF-colonized WT roots compared with
irAGO7. However, at later stages, when arbuscules mature, the
miRNA levels were reversed (or equalized). This pattern is well
represented by miR393a. miR393 regulates TIR and several AFB
genes, encoding auxin receptors (Navarro et al., 2006; Vidal
et al., 2010), and in concert with miR390, regulates lateral root
development (Lu et al., 2018). The miR390/TAS3 module plays
a role in nodulation of M. truncatula (Hobecker et al., 2017).
Earlier, we found that AMF colonization increased miR390 accu-
mulation in N. attenuata (Pandey et al., 2018), but subsequent
research into miR390-function in this species by stable overex-
pression did not find a role in AMF symbiosis; instead miR390
modulates plant tolerance responses to herbivory (Pradhan
et al., 2021).

miR393 is considered a negative regulator of arbuscule forma-
tion because its overexpression in three plant species strongly
impairs arbuscule formation (Etemadi et al., 2014). While
this appears to contradict our findings, comparisons of AMF-
inoculated with non-inoculated N. attenuata plants clearly
showed a down-regulation of miR393a-3p (Pandey et al., 2018).
Here too, we see a negative correlation between transcript levels
of miR393a-5p with its AFB2 target. During early stages of colo-
nization (2–3 wk), miR393 levels are low in irAGO7 plants
(compared to WT), while AFB2 levels are high (Fig. 5c), which
might promote colonization (as seen in irAGO7). AFB2’s
decrease at 6 wk might be associated with a putative auto-
regulatory feedback loop controlling arbuscule numbers.
Increased miR393 levels in irAGO7 at 6 wk, corresponding with
decreased AFB2 levels, along with irAGO7’s increased coloniza-
tion and reduced fitness are consistent with the gain-of-function
analyses as plants overexpressing this miRNA have increased
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Fig. 7 Overexpression of miR473 and miR
Na-R-PN59 down-regulates their targets in
gibberellic acid (GA), fatty acid metabolism
and ethylene pathways during plant–
arbuscular mycorrhizal fungi (AMF)
interaction. (a) Depicts four predicted targets
of miR473 and the two targets of the novel
Nat-R-PN59 miRNA, respectively. (b)
Increased abundance of miR473 (red oval, a)
strongly down-regulates 3 of 4 target genes
(green rectangles, a). Similarly,
(c) overexpression of the novel Nat-R-PN59
down-regulates both of its targets. Target
accumulation was evaluated by qPCR assays.
Levels in empty vector (EV) plants were set
to 1 and relative expression in plants
overexpression (ov) a miRNA were
calculated. ND transcript not detectable;
one-way ANOVA, Fisher’s LSD, for PUB45,
F = 2.09, P = 0.052 and for ALKK, F = 15.79,
P = 0.007, values presented are means� SD,
number of biological replicates (n) = 4.
* significantly different from EV, P < 0.05.

Fig. 8 A model showing the role of AGO7 in
modulating several aspects of host–
arbuscular mycorrhizal fungi (AMF)
interaction.
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colonization but marginally reduced fitness. Moreover, auxin sig-
naling and its response factors also engage with other miRNAs,
such as miR172 and miR156.

The two sequence variants of miR172a showed accumulation
patterns similar to that of miR393a. miR172a plays a role in the
rhizobium–lotus interaction and strongly accumulates with
nodulation (Nod) factor and compatible rhizobia (Holt
et al., 2015). Overexpression of miR172 in N. attenuata interest-
ingly did not significantly affect AMF colonization but severely
impaired plant fitness. Taken together, results of overexpression
of miR393 and miR172 analyses indicates synergistic actions of
these two miRNAs, and plausibly a conserved function, as in
other species, in regulating auxin signaling.

The accumulation pattern of miR156a sequence variants was
even more complex and strongly variable. In Lotus japonicus,
ectopic expression of miR156a led to enhanced branching,
delayed flowering, underdeveloped roots, reduced nodulation,
and repression of several nodulation genes (Wang & Chua,
2014). Its function in AMF had not been described, although it
was speculated that it might act similarly to miR171b, having a
positive effect on symbiosis (Couzigou et al., 2017). Indeed, in
irAGO7, most isomiRs were highly up-regulated at 6 wk post-
inoculation when significantly higher AMF colonization rates
were also observed. Overexpression of the miR156b-5p variant
suggests that miR156 might have a positive effect on the AMF
symbiosis, but its overexpression might negatively impact a
plant’s reproductive performance. Moreover, we found a higher
transcript abundance of miR171b during early stages of root
colonization in AMF-colonized WT than in irAGO7 roots; dur-
ing the mature stage of AMF colonization, miR171a, which acts
as a repressor of AMF colonization in L. japonicus (Couzigou
et al., 2017), is enriched in irAGO7 compared with WT plants.
Further studies are needed to resolve this complexity.

In conclusion, we infer that a complex network of miRNAs is
deployed during plant–AMF interactions, which is modulated by
AGO7. AGO7 participates in the AMF-induced smRNA path-
way to control root colonization through the actions of various
phytohormone signaling and phosphate starvation/transport
responses (Fig. 8). Knockdown of AGO7 destabilizes/disrupts
regulatory networks and reverses the outcomes of several
miRNA–mRNA interactions. The mechanistic basis of recruit-
ment of miRNAs by AGO7 during host–AMF interaction needs
further study as AGO7 might be involved in the differential accu-
mulation and recruitment of AMF-associated miRNAs
and multiple checkpoints and sequence-dependent recruitment
mechanisms cannot be ruled out.
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Fig. S1 Evaluation of irAGO7 plants grown in the field.

Fig. S2 Glasshouse studies suggest that irAGO7 and WT plants
have similar rosette leaf numbers, chlorophyll contents, as well as
roots (root length or lateral root numbers).

Fig. S3 Silencing AGO7 does not affect plant growth and fitness
when grown under non-competitive, P-limited conditions with
AMF (n = 10), or competitive, P-limited conditions without
AMF (n = 6).

Fig. S4 Silencing AGO1, 2, 4, or 10 does not affect competitive
plant fitness or AMF colonization rates in Nicotiana attenuata in
competitive P-limited conditions identical to those in Figs 2(c)
and 3.

Fig. S5 Microscopic examination of AMF-colonized roots of
WT and irAGO7 plants with the help of WGA-fluorescein stain-
ing.

Fig. S6 Transcript abundances of transporter genes relevant for a
functional plant–AMF interaction.

Fig. S7 miRNA accumulation in WT and irAGO7 roots at the
time of AMF inoculation (t0) using quantitative real-time PCR
assays.

Fig. S8 Temporal dynamics of miRNA accumulation in WT and
irAGO7 roots during AMF colonization using quantitative real-
time PCR (qPCR) analysis.

Fig. S9 Elicitation dynamics of putative target genes in AMF
inoculated roots of WT and irAGO7. Transcripts of ECI gene
were used as internal control for normalization.

Fig. S10 Transformation vector maps for overexpression of 7
miRNAs for determining their function in plant–AMF interac-
tion.

Fig. S11 Evaluation of shoot and root biomass of Nicotiana
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Fig. S12 Phenotypic characterization of plants overexpressing
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