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Magnetically ordered materials tend to support bands of coherent propagating spin wave, or
magnon, excitations. Topologically protected surface states of magnons offer a new path towards
coherent spin transport for spintronics applications. In this work we explore the variety of topological
magnon band structures and provide insight into how to efficiently identify topological magnon
bands in materials. We do this by adapting the topological quantum chemistry approach that has
used constraints imposed by time reversal and crystalline symmetries to enumerate a large class of
topological electronic bands. We show how to identify physically relevant models of gapped magnon
band topology by using so-called decomposable elementary band representations, and in turn discuss
how to use symmetry data to infer the presence of exotic symmetry enforced nodal topology.

Introduction − There have been considerable efforts in
the last few years to provide a taxonomy of nontrivial
topological band structures enforced or allowed by time
reversal and crystalline symmetries [1–13]. This work
has brought powerful new concepts that tie crystal and
magnetic structures to band topology. At the same time
these ideas provide efficient methods to efficiently search
for topological materials resulting in a vast database of
ab initio driven predictions of new electronic topologi-
cal materials [14, 15]. Such materials include gapless and
gapped bulk topological matter with protected boundary
states and anomalous transport properties. The culmi-
nation of these efforts to classify band topology based on
symmetry and to use symmetry data to diagnose topo-
logical bands is called topological quantum chemistry
(TQC) [6, 12].

In a similar time frame, there has been increasing in-
terest in exploring the role of band topology in magnetic
excitations and how it affects the properties of magnetic
materials [16–18]. The pioneering work in this area has
mainly been in devising physically well-motivated models
of magnon band topology such as Chern insulators and
Weyl magnons [19–33]. This has inspired early experi-
mental efforts to characterize magnon topology in materi-
als [34–39]. All this work has gone hand-in-hand with the
exploration of unusual transport properties in insulating
magnets such as the thermal Hall effect [40–48] and the
exploration of signatures of bulk nodal magnon topology
in neutron scattering experiments [36, 37, 49]. On the
horizon, there are exciting potential spintronics develop-
ments to be made detecting and manipulating topological
magnon boundary states [50–53].

In this paper, we show that the TQC approach can be
adapted to magnon band topology, providing a classifi-
cation of symmetry-determined topological bands in spin
wave Hamiltonians. The ideas can be used to diagnose
magnon topology on one hand, and on the other to build
models and identify candidate topological magnon mate-
rials. The physical foundation for this work is that topo-
logical bands by definition cannot be built from a Wan-
nier basis while preserving all underlying symmetries.
Topological quantum chemistry rests on an enumeration

of all possible Wannierizable band structures through so-
called elementary band representations (EBRs), to be de-
scribed in more detail below so that, essentially by elim-
ination, one may establish whether some set of bands is
topologically nontrivial.

Ab initio methods are central to TQC. The closest ana-
logue in widespread use to study magnetic excitations is
linear spin wave theory which is based on an expansion,
to quadratic order, of the spins in fluctuations around
some magnetic structure. The goal of this paper is to
show how to pass from elementary symmetry informa-
tion − the crystal structure and the magnetic order − to
linear spin wave models with nontrivial topology.

Our starting point is to establish how crystal and time
reversal symmetries are implemented within linear spin
wave theory. In contrast to electronic systems, the band
structures of interest emerge from an effective exchange
Hamiltonian. We describe how this Hamiltonian, in con-
junction with the minimal energy magnetic structure,
fixes the symmetries of the problem. These are encoded
in some magnetic space group. We then outline how to
build band representations for magnons starting from the
local moments on each magnetic site giving a complete
table of all site symmetry groups compatible with mag-
netic order. Band representations minimally encode sym-
metry information in the magnon band structure. With
these ingredients, we are in a position to identify con-
straints that magnons place on the possible symmetry
data and hence on the possible topological bands. In
particular, it turns out that magnons in systems with
significant spin-orbit coupling form a subset of all elec-
tronic topological bands.

With these foundations, we then show, first in gen-
eral and then through a series of examples, how to use
symmetry information alone to build exchange models
whose elementary excitations have nontrivial gapped and
nodal magnon topology and to identify candidate mate-
rials. Examples include Chern bands, antiferromagnetic
topological insulators, and three-fold and six-fold nodal
points. Crucially, our workflow can be straightforwardly
reversed, to diagnose nontrivial topology from spin wave
fits to experimental data.
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EBRs and Topology − Before getting into the specifics
for magnons, we give a lightning introductory review of
TQC. We refer the reader to the supplementary section
[54] for more technical details that will not, however, be
necessary to appreciate the remainder of this paper.

The essential symmetry ingredients of TQC are noth-
ing more than the symmetry group GM of the magnetic
structure and the Wyckoff positions of the magnetic ions
that appear in any structural refinement of a magnetic
material. The group GM is generally one of the mag-
netic space groups that encodes combinations of crystal-
lographic point group symmetries, lattice translations,
time reversal symmetry and perhaps non-symmorphic el-
ements. To each Wyckoff position q, we may assign a
site symmetry group (SSG) Gq defined as the subgroup
of GM that leaves the site invariant. This is generally
isomorphic to a magnetic point group.

We then need to include some information about the
underlying lattice degrees of freedom − the nature of the
atomic orbitals. These necessarily transform under some
representation of Gq. Following Zak, from these repre-
sentations of the magnetic SSG we may arrive at a repre-
sentation of the full GM group by the standard process of
induction [55]. The result is a so-called band representa-
tion (BR). The BR is a momentum space representation
of all elements ofGM that contains information about the
connectivity of the bands and the topology. To connect
to topology we define elementary band representations
(EBRs) to be BRs that are not unitarily equivalent to
a direct sum of two or more BRs. These hold a distin-
guished place in relation to topology because they are
the elementary units from which all Wannierizable band
structures can be built for a given symmetry group. Any
set of bands that cannot be built from EBRs is necessar-
ily topological overall. All EBRs for all magnetic space
groups have been tabulated − each one characterized by
eigenvalues of all symmetry operations at high symme-
try momenta. For all 1, 651 magnetic space groups, there
are roughly 20, 000 EBRs. In order to diagnose topolog-
ical bands, one should in principle determine whether
each energetically isolated set of bands can be written
as a direct sum of EBRs with non-negative integer co-
efficients. If so, the bands are trivial. If not, they are
symmetry-determined topological bands. A more fine-
grained determination of the nature of the topology then
requires further analysis. Symmetry enforced nodal topo-
logical bands can be read off directly from the dimension
greater than one irreducible representations at high sym-
metry points, lines and planes.

Magnons and Symmetry − Building on the principles
behind TQC we now discuss the ideas in relation to
magnons. In this work we are mainly interested in crys-
talline solids with localized magnetic moments and non-
vanishing local dipolar order parameter 〈Sαi 〉 for site i
and component α. The magnon or spin wave excitations
are the transverse fluctuations of the local ordered mo-

ments. We restrict our attention to the typical case where
these form coherent propagating bands. This means we
neglect the role of multi-magnon states and possible in-
teresting questions of novel topology [56] and fragility
that arise from such states. We also neglect magnetic
excitations beyond the ground state multiplet that could
be handled within a multi-boson formalism (see e.g. [36])
to which TQC ideas may also be applied.

The symmetries of the magnon bands are descended
from those of the magnetic Hamiltonian HM considered
to be composed of exchange couplings, dipolar couplings,
single ion anisotropies and perhaps an external magnetic
field. The magnetic order breaks the symmetries of the
magnetic Hamiltonian down to a subgroup. It is im-
portant to note that the relevant symmetry groups for
magnons are single-valued because the bands are spin-
less or bosonic. These are the groups that are relevant
to weakly spin-orbit coupled electronic systems. How-
ever, in the context of magnons, these groups are rel-
evant to the case where the moments and the spatial
transformations are locked, which can only happen when
spin-orbit coupling at the microscopic level is signifi-
cant. The spin-orbit coupling is reflected in the appear-
ance of anisotropies in the magnetic Hamiltonian. As
is well-known, there are many cases where the magnetic
Hamiltonian has discrete or continuous rotation symme-
tries. In such cases, magnetic order may lead to residual
symmetries described by the spin-space groups [57–60].
Topological quantum chemistry applied to such groups
is beyond the scope of this work. We consider the case
where these residual symmetries are those of a magnetic
space group GM with nS sublattices in the magnetic
primitive cell leading to nS bands considered to be com-
puted from linear spin wave theory based on Hamiltonian
HLSW = S

2
∑

k Υ̂
†(k)M(k)Υ̂(k) where the transforma-

tion properties of 2nS component Υ̂(k) can be inferred
from the transformations of the S±i transverse spin com-
ponents in a frame where Sz is the direction of the or-
dered moment. For reference, explicit formulas are given
in the Supplementary Section [54].

To build band representations, we must first identify
the SSG from that of the Wyckoff position of the mag-
netic ions by requiring that the on-site Sz transforms as
the total symmetric irrep of the SSG. This constraint re-
duces the possible 122 magnetic point groups to a set
of 31 groups isomorphic to SSGs. The relevant orbital
content is given by the local frame transverse spin com-
ponents S±i . We give a complete list of the magnetic
SSGs in the Supplementary Section together with the ir-
reducible representations of the SSG for which S±i form
a basis [54].

Given this information, one may build a band repre-
sentation for magnons and, again, explicit formulas are
given in the Reference Material [54]. Given an energet-
ically isolated set of magnon bands one may then ask
whether this decomposes into EBRs. The EBRs relevant
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to magnons corresponding to all magnetic structures and
significant spin-orbit exchange are tabulated. In the re-
mainder of this paper we give concrete examples of how
to use the tabulated EBRs to build models of topologi-
cal magnons. We take two main routes. The first is to
focus on cases where the symmetry information about
band connectivity allows EBRs to split up into discon-
nected bands. By definition at least one of the resulting
bands must be topological. Our second focus will be on
nodal topology. Several models are known with Dirac
and Weyl magnon touching points [16]. But symmetry
can enforce higher order degeneracies 3, 4 and 6-fold de-
generacies, and we show how to build models with such
degeneracies.

Magnon topology from decomposable EBRs − To build
models of decomposable EBRs we focus on cases where
the magnetic ions live on maximal Wyckoff positions, i.e.
positions of maximal magnetic point group symmetry for
a givenGM . These are distinguished by the fact that BRs
induced from such sites are themselves EBRs and not
composites of EBRs (apart from some well-understood
exceptional cases). We give a complete table of decom-
posable EBRs that can be obtained from maximal Wyck-
off positions and the allowed SSGs organized by mag-
netic space group and Wyckoff position [54]. The utility
of this table is that one may couple moments living on
such Wyckoff positions and be sure that there will be
nontrivial topology in the resulting magnon bands pro-
vided free parameters are tuned to avoid accidental de-
generacies and provided the number of free parameters is
adequate to reduce the symmetries to the required GM .
This approach is a highly efficient means to build mod-
els of magnon topology and contrasts to generic cases of
nontrivial topology where, in practice, one should com-
pute so-called symmetry indicators as a function of free
couplings to diagnose the topology.

We take an example to illustrate the main ideas −
the well-established case of Chern magnon bands in the
Kitaev-Heisenberg honeycomb model with [111] polar-
ized moments [31, 61]. We reverse the usual logic to
show how the model might have been inferred from the
tabulated decomposable EBRs. Let us consider magnetic
space group F 3̄1m′ (#162.77 in the BNS convention) and
Wyckoff position 2c corresponding to honeycomb layers.
The magnetic site symmetry group is 32′ and the mo-
ments are perpendicular to the honeycomb planes. The
orbital basis on the 2c positions (J+

q , J
−
q ) transforms un-

der the 1E+2E irreps of the SSG. Consultation of tables
in the Supplementary Section [54] or on the Bilbao crys-
tallographic server [62, 63] reveals that induction to the
full space group yields a single EBR that is decomposable
into two bands. From symmetry alone we have therefore
inferred the presence of nontrivial magnon band topol-
ogy. A guide to using the Bilbao tables is given in the
Supplementary Section [54].

With this established, we may now build a model host-

ing the decomposable EBR and further characterize the
nature of the topology. To do this, one should write down
couplings between the magnetic moments that both sta-
bilize the required magnetic structure and respect the
resulting magnetic space group symmetries. Both condi-
tions are important. For example, it is straightforward
to stabilize the structure with ferromagnetic Heisenberg
exchange but the resulting model has higher symmetry
than F 3̄1m′ owing to a spin-space symmetry coming from
the spin rotation symmetry of the underlying Hamilto-
nian. One may systematically compute all exchange cou-
plings allowed by symmetry. To nearest neighbor these
are the Heisenberg, Kitaev, Γ and Γ′ terms [31, 64]. Ki-
taev and Heisenberg are sufficient to respect F 3̄1m′ and
a magnetic field may be applied along [111] to stabilize
the structure if necessary. A linear spin wave calcula-
tion then reveals two propagating magnon bands with a
gap between them. For decomposable EBRs the topol-
ogy is not necessarily symmetry indicated but it turns
out that the C3 symmetry indicator formula [1] for the
Chern number characterizes the topology in this case:

exp
(

2πi
3 C

)
=
∏

n

Θn(Γ)Θn(K)Θn(K ′) (1)

where the product is over n bands and Θn(k) is the eigen-
value of C3 at wavevector k in band n. This reveals that
the model has two magnon bands with Chern numbers
±1, the order depending on the sign of the Kitaev ex-
change.

We now sketch another example of gapped band topol-
ogy working from the table of decomposable EBRs but
this time without reference to an example already in the
literature. Consider space group P4 (#75.1, a type I
MSG) with Wyckoff position 2c and irreps 2B for the
transverse spin components. This again leads to a single
decomposable EBR, now with SSG C2 compatible with
ferromagnetic [001] magnetic order. The lattice is tetrag-
onal with a basis (0, 1/2, 0) and (1/2, 0, 0). We compute
all symmetry-allowed exchange couplings for first up to
fourth nearest neighbors and choose some set of couplings
that stabilizes the required magnetic structure. The lin-
ear spin wave spectrum has two dispersive gapped bands
and the Chern number can, once again, be computed
from a symmetry indicator formula

iC =
∏

n

ξn(Γ) ξn(M) ζn(X) (2)

where C is the Chern number of the n band(s), while ξ(k)
and ζ(k) are the eigenvalues respectively of C4 and C2.
Fig. 1 shows the lattice structure and the band structure
with the eigenvalues indicated. The computed Chern
numbers are ±1.

The method is not restricted to diagnosing Chern
bands as we show now with a third example. We take
space group Pc6/mcc (#192.252) and Wyckoff position
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J1
J3

J4

J2

FIG. 1. Figure showing the magnetic sublattices of space
group 75 Wyckoff position 2c and the accompanying Brillouin
zone. The lower panel shows magnon dispersion relations
along high symmetry directions with the C2 and C4 eigenval-
ues given according to the symmetry indicator formula Eq. 2.

4c which has SSG −6m′2′. This corresponds to an AA
stacked honeycomb lattice with moments perpendicular
to the plane that are ferromagnetically ordered in the
plane and antiferromagnetically aligned between planes.
Crucially this system is symmetric under time reversal
times a translation that maps one layer to the next. The
two magnon bands within each layer each carry a net
Chern number which reverses between layers. One may
show [54] that the coupled four magnon bands correspond
to a single EBR that is decomposable. The result is an
antiferromagnetic topological insulator that can be real-
ized with an anisotropic exchange model for the in-plane
moments with Heisenberg exchange between the layers.
An explicit calculation of the band structure is provided
for reference [54] (see also [65]).

Symmetry enforced nodal topology − In this part, we
turn our attention to nodal topology focussing on exotic
degeneracies that are enforced by symmetry: magnonic
analogues of multifold fermion degeneracies [66, 67]. In
the supplementary section we show how to use the Bilbao
tables [62, 63] to establish symmetry-enforced degenera-
cies and give extensive tables of such degeneracies for
magnons [54]. Here we show how to build models based
on the symmetry information.

The first example is for magnetic space group 227.131
− a type III group − and Wyckoff position 16d cor-
responding to all-in/all-out (AIAO) order on the A

site of pyrochlore materials as realized in Nd2M2O7
(M=Sn,Hf,Ir,Zr) [68–72], Sm2Ir2O7 [73], Eu2Ir2O7 [74],
Cd2Os2O7 [75] as well as FeF3 [76]. The magnetic struc-
ture has a magnetic 2−fold screw and a magnetic S4
symmetry. The single-valued symmetry group enforces a
3−fold degenerate point at Γ [62, 63]. We may establish
this fact directly from a simple model for the magnons
consisting of antiferromagnetic Heisenberg coupling with
a weak 〈111〉 Ising anisotropy in the exchange that lifts
the considerable degeneracy of the Heisenberg model [77]
in favor of the AIAO structure. A linear spin wave cal-
culation based on this model [54] reveals four dispersive
modes with a spectral gap and the three-fold degenerate
point at Γ. The existence of this quadratically dispersing
three-fold point has previously been noted in Ref. [78] as
a parent state for Weyl fermions upon symmetry break-
ing with strain or an applied magnetic field.

Our next example has both three-fold and six-fold de-
generate magnons. Inspection of the table of degenera-
cies [54] reveals six-fold degeneracies for magnetic space
group 230.148 and Wyckoff position 24c. The nearest
neighbor exchange leads to two decoupled magnetic sub-
lattices of corner-sharing triangles. This is the hyper-
kagome structure that arises on the R sites of garnets
with chemical formula R3M5O12. The magnetic struc-
ture compatible with 230.148 is shown in Fig. 2. The
moments are oriented along three cubic directions on
each triangular face. This structure is observed in the
material Dy3M5O12 (M=Al,Ga) [79–81]. The 24 Wyck-
off sites are composed of 12 magnetic sublattices plus a
translation through (1/2, /1/2, 1/2) as the lattice is bcc.
We therefore expect 12 magnon modes. We compute the
symmetry-allowed exchange couplings to nearest neigh-
bor. There are six such couplings and one of these is an
effective Ising exchange with easy axes along the cubic di-
rections on different sublattices in the pattern required to
stabilize the magnetic structure. With this as the dom-
inant coupling, we consider a model with all six near-
est neighbor couplings included and with antiferromag-
net Heisenberg exchange coupling the two hyperkagome
sublattices. A sample spin wave spectrum is shown in
Fig. 2. This has several multi-fold bosonic points includ-
ing four 3−fold points at Γ with quadratic dispersion and
one 6−fold point at H on the zone boundary with lin-
ear dispersion that is a doubled spin-1 Weyl point. All
the degeneracies in the spectrum are compatible with the
group theory analysis.

Discussion − The classification of topological materi-
als based on crystalline and time reversal symmetries is
at a mature stage. In the foregoing we have connected
the symmetry-based classification scheme based on el-
ementary band representations to topological magnons.
To do this, we showed how symmetries are inherited by
magnons from those of the underlying exchange Hamil-
tonian and indicated how to build band representations
for magnons. We have given conditions for the ex-
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FIG. 2. Magnetic structure on the garnet hyperkagome lat-
tice with 230.148 magnetic space group symmetry (top left)
and (right) the Brillouin zone with high symmetry points indi-
cated. Bottom: spin wave spectrum with multi-fold magnons
at Γ and H.

isting tables of EBRs to be applicable to topological
magnons. We have shown through several examples that
one can use the computed decomposable elementary band
representations for single-valued magnetic space groups
to build realistic, non-fine-tuned models of topological
magnon band structures. We have also used tabulated
symmetry-enforced degeneracies as a guide to building
exchange models of exotic nodal topology such as six-
fold degenerate touching points. Magnons provide an
excellent platform to explore the interplay of magnetic
symmetries and topology in conjunction with inelastic
neutron scattering. In addition to model-building and ex-
perimental discovery within the framework laid out here,
important open avenues are to explore magnon topol-
ogy beyond the decomposable EBR paradigm within the
TQC framework and to extend TQC to the spin-space
groups that are applicable to Heisenberg models among
other systems.
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in part supported by the Deutsche Forschungsgemein-
schaft under grants SFB 1143 (project-id 247310070) and
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B. Büchner, and C. Hess, Phys. Rev. B 99, 085136
(2019).

[49] S. Shivam, R. Coldea, R. Moessner, and
P. McClarty, arXiv e-prints , arXiv:1712.08535 (2017),
arXiv:1712.08535 [cond-mat.str-el].

[50] J. Feldmeier, W. Natori, M. Knap, and J. Knolle, Phys.

Rev. B 102, 134423 (2020).
[51] D. Malz, J. Knolle, and A. Nunnenkamp, Nature Com-

munications 10 (2019), 10.1038/s41467-019-11914-2.
[52] A. Rückriegel, A. Brataas, and R. A. Duine, Phys. Rev.

B 97, 081106 (2018).
[53] A. Mitra, A. Corticelli, P. Ribeiro, and P. A.

McClarty, arXiv e-prints , arXiv:2110.02662 (2021),
arXiv:2110.02662 [cond-mat.mes-hall].

[54] See Supplemental Material for further details and addi-
tional supporting data.

[55] J. Zak, Phys. Rev. B 23, 2824 (1981).
[56] P. A. McClarty and J. G. Rau, Physical Review B 100

(2019), 10.1103/physrevb.100.100405.
[57] W. F. Brinkman and R. J. Elliott, Proceedings of the

Royal Society of London Series A 294, 343 (1966).
[58] W. Brinkman and R. J. Elliott, Journal of Applied

Physics 37, 1457 (1966).
[59] W. Brinkman, Journal of Applied Physics 38, 939 (1967).
[60] A. Corticelli, R. Moessner, and P. A. McClarty, Physical

Review B 105 (2022), 10.1103/physrevb.105.064430.
[61] D. G. Joshi, Phys. Rev. B 98, 060405 (2018).
[62] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova,

S. Ivantchev, G. Madariaga, A. Kirov, and H. Won-
dratschek, Zeitschrift für Kristallographie - Crystalline
Materials 221, 15 (2006).

[63] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato,
and H. Wondratschek, Acta Crystallographica Section A
62, 115 (2006).

[64] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Phys. Rev. Lett.
112, 077204 (2014).

[65] H. Kondo and Y. Akagi, Phys. Rev. Lett. 127, 177201
(2021).

[66] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory,
C. Felser, R. J. Cava, and B. A. Bernevig, Science 353
(2016), 10.1126/science.aaf5037.

[67] J. Cano, B. Bradlyn, and M. G. Vergniory, APL Mate-
rials 7, 101125 (2019).

[68] A. Bertin, P. Dalmas de Réotier, B. F̊ak, C. Marin,
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Abstract
This section contains supporting information for the paper “Identifying, and constructing, com-

plex magnon band topology”. Section I briefly introduces magnetic space groups and their band

representations. EBRs are introduced and their role in accounting for topological bands. Sec-

tion II discusses band representations in relation to magnons, enumerates all relevant site symme-

try groups, reviews linear spin wave theory, the Berry phase for bosons and the implementation

of magnetic symmetries within this formalism. Subsection D also describes how to use the Bilbao

tables to extract information about EBRs and nodal topology. Section III describes, in detail,

several examples of decomposable EBRs for magnons. Finally, Section IV discusses nodal topology

originating from EBRs.

I. OVERVIEW OF ELEMENTARY BAND REPRESENTATIONS AND TOPOL-

OGY

We have described briefly the essential ideas behind the EBR approach to topological
band structures. We now make these ideas more precise by first reviewing aspects of the
theory of space groups and band representations of these groups.

A. Basic definitions and properties of space groups

A space group G is a group of crystal lattice symmetries. There are 230 such groups in
three dimensions that each have a coset decomposition

G =
⋃

α

{Rα| tα}T (1)

where T are the primitive lattice translations (forming a normal subgroup) and those of the
form {g| t} combining point group element g and non-Bravais translation t. The combination
rules are

{R1| t1} {R2| t2} = {R1R2| R1t2 + t1} (2)

{R| t}−1 =
{
R−1

∣∣∣ −R−1t
}
. (3)

A site symmetry group of real space point q, Gq is the finite subgroup of G that leaves
the point invariant. Gq is isomorphic to a point group. A Wyckoff position is the set of
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points inside the primitive cell whose site symmetry groups are the same (or, more precisely,
in the same conjugacy class). A random point will tend to have only the identity as its site
symmetry group and it is then labelled as a general position.

Each point q has an orbit which is the set of points reached from q through elements g of
the space group. Each Wyckoff position has a multiplicity that counts the number of points
in the orbit of the position that live in the same cell.

The above definitions refer to the crystal in real space. But for constructing representa-
tions of the space group it is better to move to reciprocal space where the translations are
diagonalized. The analogue of a site symmetry group in reciprocal space is the little group
which is the set of space group elements that leave momentum k invariant up to reciprocal
lattice vectors. This group contains all translations and it is often useful to mod them out
to obtain the so-called little co-group of k. The analogue of a Wyckoff position in reciprocal
space is the star of k, denoted k∗ which is the set of points in the Brillouin zone reachable
by acting with space group elements on k.

Including magnetic degrees of freedom and time reversal symmetry expands the number
of groups from 230 to 1651. The time reversal operator is denoted T or by apostrophe as
{E| 0}′ . Of the 1651 magnetic space groups, there are four types:

1. Type I: the ordinary nonmagnetic space groups G,

2. Type II: grey groups of the form G+ T G which are relevant to paramagnets,

3. Type III: groups of the form H + T (G−H) where G and H are non-magnetic,

4. Type IV: black and white groupsG+T {E| t}H composed of time-reversed sublattices.

Magnetically ordered crystals have symmetry groups belonging to classes I, III and IV .

B. Space group band representations

Following Zak, we construct band representations of a space group ρG(g) where g is an
arbitrary space group element. These are induced from a representation of a subgroup −
the site symmetry group for a given position. Physically, we are interested in the case
where a lattice is populated with ions carrying some localized orbital degrees of freedom
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and tight-binding models derived from these. To induce a representation we need a coset
decomposition of the space group

G =
⋃

α

gαH (4)

where H is a subgroup of G − in this case the site symmetry group at q. The elements gα
have the effect of mapping q to qα which are all sites in the Wyckoff position of q.

To see what the band representation looks like, suppose we are given a complete basis of
Wannier functionsWiα(r) where i = 1, . . . , d runs over onsite degrees of freedom− essentially
a set of orbitals, and α runs over different positions in the primitive for a given Wyckoff
position (α therefore runs over 1 to n, the multiplicity of that position). Translations map
the Wannier functions to different primitive cells (N in number) giving d× n×N distinct
Wannier functions.

Going to momentum space

viα(k, r) =
∑

t

eik·tWiα(r − t) (5)

provides a basis of states on which the band representation can act.

[ρG(g)] viα(k, r) = e−i(Rk)·tβα
d∑

i=1
[ρ(h)]ji vjβ(Rk, r). (6)

In this expression space group element g and site symmetry group element h are related by

g = g−1
α {E| tβα} gβh (7)

where tβα = gqα − qβ and R is the point group element in g. So the α and β coset
representatives are fixed given g and h.

Evidently the band representation links k and Rk. In the case where Rk is the same as
k up to a reciprocal lattice vector, the corresponding block in the band representation is a
representation of the little group at k. However, the band representation has off-diagonal
blocks that contain information about how different points in the zone are connected.

C. Elementary Band Representations

A band representation constructed via the method detailed in the previous section may be
decomposable into the direct sum of two or more band representations. If this is the case it
is called composite and otherwise elementary. More precisely, we first define an equivalence
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between two band representations ρ(1)
G (h,k), ρ(2)

G if it is possible to find unitary S(λ;h,k)
such that λ : [0, 1] tunes smoothly from one of the two band representations to the other:
S(0;h,k) = ρ

(1)
G (h,k) and S(2;h,k) = ρ

(2)
G (h,k). Such a function preserves the quantization

of any Wilson loops in momentum space. This notion of equivalence is explicitly realized
by inducing a BR from two distinct sites q1, q2 with respective site symmetry groups Gq1

and Gq2 . A line between the two points is associated with SSG Gq1 ∩ Gq2 and by moving
along this line the induced band representation defines S(λ;h,k). It follows that equivalence
of band representations amounts to being able to find a site that interpolates between the
SSGs of the endpoint BRs. With this notion of equivalence, we now define composite BRs
to be those that are equivalent to direct sums of BRs. An EBR can be characterized by the
multiplicity of irreps at all high symmetry momenta.

Elementary band representations (EBRs), thus defined, are the fundamental symmetry-
derived bands built from localized orbitals. In contrast, as we noted in the main text, the
key distinguishing feature of topological bands is that they are not Wannier localizable.

The foundation of TQC is a complete enumeration of the EBRs for all 1651 magnetic
space groups together with the compatibility relations that constrain how little groups at
particular momenta are connected. This task, while considerable, is possible at all because
the number of EBRs is finite, bounded by the number of irreps of SSGs at all Wyckoff
positions of all magnetic space groups. In addition, many BRs induced in this way are
actually composite. It turns out that to capture all EBRs it suffices (modulo some carefully
characterized exceptions) to consider only the irreps of so-called maximal SSGs. Maximal
SSGs are defined as SSGs Gq such that there is no finite group H for space group G for
which Gq ⊂ H ⊂ G. Given each EBR, one may further ask whether it is decomposable or
not by computing the compatibility relations for the constituent bands.

The result is that there are 20206 magnetic EBRs belonging to the 1651 (single-valued or
spinless) magnetic space groups of which 1907 are decomposable. For our purposes, these
are the relevant magnetic space groups. A similar enumeration has been carried out also
for the doubled (or spinful) magnetic space groups. A complete tabulation of these EBRs
organized by magnetic space group may be found on the Bilbao Crystallographic Server
[1, 2].

Given a set of bands that are energetically isolated, one may then assess whether they
can be decomposed, on their own, into a combination of EBRs (with non-negative integer
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coefficients). If so, the bands are topological trivial (or fragile). If not they are topologically
non-trivial. In this situation, should the coefficients be integer-valued including negative
integers the topology is fragile and otherwise it is stable.

In addition, single EBRs may be composed of multiple bands that are not forced to be
connected by compatibility relations. In the main text we assign particular importance to
such cases. These decomposable EBRs have the property that at least one of the disconnected
component set of bands must be topological. In cases where one component is trivial the
decomposable EBR is a self-contained case of fragile topology. In the examples we have
explored, the two disconnected components are both topological.

EBR are also useful for assessing the existence of topological semimetals. These arise from
connected EBRs where, in electronic systems, the bands are filled up to touching points or
lines within the EBR.

All these insights have been put to use diagnosing band topology in the electronic band
structures of materials. Given the symmetry group of a crystalline material and the Wyckoff
positions and orbitals of the constituent ions, symmetry places strong constraints on the
EBRs that may occur in the band structure. From the computed band structure (usually
performed along high symmetry directions in momentum space), one may compute the
multiplicities of the irreps at these momenta. From the identities of the tabulated EBRs one
may then make the assessment of whether some given set of bands is reducible into EBRs.

This approach massively generalizes the Fu-Kane criterion for two-dimensional topological
insulators that, in the original formulation, allows one to compute the Chern number purely
from discrete data at high symmetry momenta. By now, analogous formulas called symmetry
indicator formulas are known for all space groups and all (double-valued) magnetic space
groups each of which allows one to diagnose directly from irrep multiplicities whether the
band or group of bands is trivial or not.

II. MAGNETIC SYMMETRY AND MAGNONS

In this section, we briefly review the essential facts about magnons and their symmetries.
Magnons are to be understood as coherent magnetic excitations about some spontaneous or
field-induced magnetic structure. We focus our attention on commensurate magnetic order
characterized by some periodic arrangement of moments with nonzero vacuum expectation
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value 〈Jαi 〉 for sites i and components α.

To understand magnon symmetries it is helpful to begin with the magnetic Hamiltonian
describing coupled magnetic moments on a lattice. The lattice itself has symmetries specified
by one of the 230 space groups. The Hamiltonian may have higher symmetry however: spin
rotation symmetry for Heisenberg couplings or time reversal symmetry when the couplings
are of even degree in the moments. In the most general case, the magnetic Hamiltonian
has a spin-space symmetry composed of elements with somewhat decoupled spin rotation
symmetries. However, in this paper, we restrict our attention to the case of strong spin-orbit
coupled moments so that the moments are locked to spatial transformations. Under this
assumption, the magnetic space groups are adequate to describe all the relevant symmetries.
An important implication of this assumption is that we are explicitly or implicitly considering
the case where the magnetic interactions of all types allowed by spin-space-locked symmetry
are present and significant. In other words, the exchange is considered to be maximally
anisotropic.

From the point of view of materials, the restriction to magnetic space groups is strictly
speaking correct as spin-orbit coupling is always present even when the orbital moment is
quenched at the single ion level. Anisotropies in the exchange will be present even in such
instances. However, for practical purposes, this assumption is too severe as there are many
materials where the interactions are experimentally indistinguishable from the Heisenberg
limit or where the spin-orbit is weak enough that a residual spin-space symmetry remains.
Such cases are discussed in greater detail in Ref. 3.

For such cases, we stress that the techniques we employ can be used straightforwardly
to study spin-space groups also. But since they have not yet been tabulated we leave a
systematic study of their topological properties as a task for the future.

As discussed above, magnetic space groups can be classified into four different types.
The magnetic space group symmetries of the magnetic Hamiltonian fall into classes I or II.
Respectively these are the ordinary space groups (I) and groups of the form G+ T G where
T is the time reversal operation (II).

The interplay between spatial and time reversal symmetries can become more elaborate
in the presence of magnetic order. Magnetic order breaks the symmetry group of the Hamil-
tonian GH down to GM which is the set of symmetry elements − combinations of point
group elements (e.g. rotations, mirrors), translations and time reversal − that leave the
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magnetic structure, 〈Jzi 〉, invariant where the z component refers to a local frame aligned
with the ordered moment. Since the magnetic order breaks physical time reversal symmetry
spontaneously if it is not explicitly broken at the Hamiltonian level, GM cannot be a type
II magnetic space group. This leaves the 1421 type I, III and IV magnetic space groups as
possible magnon symmetry groups.

To build a band representation we require the magnetic site symmetry groups. These can
be viewed as the set of elements of GM that both leave the site invariant up to a primitive
translation and leave the magnetic order invariant. Thus, given q1 an orbit of the Wyckoff
position, applying the elements of magnetic site symmetry group Gq1 the condition that the
magnetic order by left invariant is:

gαJ
z
q1 = Jzq1 ∀gα ∈ Gq1 . (8)

Expressed another way, Jz must transform like the total symmetric irrep of Gq1 . Those
Wyckoff positions that do not satisfy this constraint are not compatible with order and
must reduce to Wyckoff positions of a less symmetric magnetic space group. Using this
constraint we recover the magnetic structures compatible with the magnetic space group by
listing the Wyckoff positions compatible with order and applying:

giJ
z
q1 : Rzα

i J
α
qi

∀gi : G =
⋃

i

gi(Gqi n T ) (9)

where qi is the orbit of the Wyckoff position relative to gi and Rzα
i is the rotation matrix

associated to gi.
The site symmetry group of the magnetic ions must be isomorphic to one of the 122

magnetic point groups. These are divided into the 32 crystallographic point groups, the 32
grey point groups with pure time-reversal operators and 58 black and white point groups
with mixed time-reversal elements. The constraint that the Jz component transform as the
totally symmetric representation of the site symmetry group restricts the possibilities to a
subset of the magnetic point groups. Of the 32 crystallographic point groups, 13 preserve
the moment, of the 58 black and white point groups there are 18 moment preserving groups.
None of the grey groups are possible since time-reversal does not preserve the magnetic order.
In total, 31 out of the 122 magnetic point groups are possible magnetic site symmetry groups.
These are listed in Table I.

We are now in a position to discuss magnons. These are transverse modes built from
the J±i components. In order to build up band representations for magnons, the starting
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Magnetic Site Symmetry Group (J+, J−) irreps

1, 2′, m′ 2A

−1, 2′/m′ 2Ag

2, 2′2′2, m′m′2 2B

m, m′m2′ 2A′′

2/m, m′m′m 2Bg

4, 42′2′, 4m′m′ 1E + 2E

−4, −42′m′ 1E + 2E

4/m, 4/mm′m′ 1Eg + 2Eg

3, 32′, 3m′ 1E + 2E

−3, −3m′ 1Eg + 2Eg

6, 62′2′, 6m′m′ 1E2 + 2E2

−6, −6m′2′ 1E′′ + 2E′′

6/m, 6/mm′m′ 1E2g + 2E2g

TABLE I. The 31 site symmetry groups compatible with magnetic ordered systems. The groups

with same unitary subgroup are list in the same line and the relative unitary irreps of the transverse

spin components for spin wave are listed in the right column. The notation of the irreps follows

Ref. [4].

point is the set of site symmetry groups for which Jz transforms as the totally symmetric
representation listed in Table I. Given these groups, we may establish how the transverse
spin components transform and this information completely fixes the allowed representations
of the SSG for the purposes of building the band representation. These SSG representations
are also given in Table I.

From the table we see that J±i will, in general, induce a pair of EBRs, which are the
same if real or complex conjugates of one other if complex. This fact reflects distinctive
paraunitarity of the bosonic Bogoliubov diagonalization that produces two set of bands
at positive and negative energies with complex conjugated eigenvector thus redundantly
encoding information about the band structure. It is important to note that the Herring
criterion forbids these complex conjugated EBRs from pairing within a single EBR when
the anti-unitary elements are considered. This is a result of the magnetic order constraint
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preserving Jz, which translate in the prohibition to mix of J+ and J−.
What distinguishes band representations induced from these SSG representations? We

have seen that the interesting band representations are the EBRs obtained from the maximal
Wyckoff positions since all the other BRs can be seen as composite of these. Therefore the
EBRs can be divided into two groups for magnons. One group is induced from maximal
Wyckoff positions compatible with magnetic order − they can be induced directly starting
from the orbitals J±q on the maximal Wyckoff positions q themselves. The second group
has maximal Wyckoff positions that are not compatible with magnetic order or comes from
representations describing different orbitals than J±q . These can only be induced as a part of
a composite representation from orbitals J±qL from a less symmetric Wyckoff position qL. In
practice, the first group allows one to construct magnon spectra composed of a single EBR,
with straightforward topological identification once a gap is present. All the decomposable
EBRs which can appear among this kind of single EBRs in magnon band structures are
listed in Tab. X.

A. Linear Spin Wave Theory

So far we have discussed the transformation properties of magnons at a relatively abstract
level. To connect to the magnon band structures of materials we use the standard Holstein-
Primakoff identity

Ĵz = S − â†â (10)

Ĵ+ =
√

2S
√

1− â†â

2S â =
√

2S
(

1− â†â

4S

)
â+ . . . (11)

Ĵ− =
√

2Sâ†
√

1− â†â

2S =
√

2Sâ†
(

1− â†â

4S

)
+ . . . (12)

where the spins are of length S and the bosons a, a† satisfy the usual commutation relations
[â, â†] = 1. Linearizing these gives

Ĵ+
ka →

√
2Sâka (13)

Ĵ−ka →
√

2Sâ†−ka. (14)

Using this bosonic representation for the spins and expanding the magnetic Hamiltonian
around the mean field ground state leads to the quadratic Hamiltonian
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HSW = S

2
∑

k

Υ̂†(k)




A(k) B(k)
B?(−k) A?(−k)


 Υ̂(k) ≡ S

2
∑

k

Υ̂†(k)M (k)Υ̂(k) (15)

where
Υ̂†(k) =

(
â†k1 . . . â

†
km â−k1 . . . â−km

)
(16)

and the Aab(k) and Bab(k) depend on the exchange couplings in the local quantization frame
as follows:

Aab(k) = J̃+−
ab (k)− δab

∑

c

J̃zzac(0) (17)

Bab(k) = 1
2
(
J̃xxab (k)− J̃yyab(k)− iJ̃xyab (k)− iJ̃yxab (k)

)

= J̃−−ab (k). (18)

Note that these expressions with the factor one-half define J̃αβab for α, β = ±.
The diagonalizing transformation

V †(k)M (k)V (k) = Λ(k) (19)

on Eq. 15 to find the spin wave spectrum must preserve the commutation relations
[
Υa,Υ†b

]
= ηab (20)

where ηab = 1 if a = b ≤ m and ηab = −1 if a = b ≥ m+ 1 and zero otherwise. Here

Λ(k) =
(
ε1(k) ε2(k) . . . ε1(−k) ε2(−k) . . .

)
(21)

In order for both conditions to be satisfied V is not unitary in general, as would be the case
for fermions, but paraunitary meaning that

V (k)ηV †(k) = η.

The transformation is unitary only in the case where the number non-conserving terms in
the Hamiltonian vanish.

B. Berry Phase and Berry Curvature

The Berry phase is of central importance to band topology. For bosonic systems the
Berry phase for band n is

A(n)
µ (k) = iTr

[
Γ(n)ηV †(k)η∂kµV (k)

]
. (22)
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where
Pµ = V (k)Γ(n)ηV †(k)η (23)

is the projector onto the nth band.
From this one may compute the Berry curvature for the nth band

F (n)
µ (k) = εµρσ∂kρA

(n)
σ (k). (24)

The integral of this curvature over a 2D slice through the Brillouin zone is quantized and
deformable only by closing a band gap.

C(n) = 1
2π

∫

2DBZ
d2kF (n)(k) (25)

C. Symmetries

In this section, we show how to build a representation of the group elements for magnons.
The relevant group is composed of those elements of the full magnetic Hamiltonian that
leave the magnetic structure invariant, GM . The spin wave Hamiltonian is expressed in the
basis of transverse spin components and is invariant under this group. Thus in the local
quantization frame,

Ĵ+
ka →

√
2Sâka (26)

Ĵ−ka →
√

2Sâ†−ka. (27)

Leaving time reversal aside for now, a group element takes the form S = {g| t} acting on a
lattice site Ri + ra as

Ri + ra → g(Ri + ra) + t = Rj + rb. (28)

Under this transformation, local moments are mapped from one lattice position to another
preserving the moment orientation and, in general, rotating the transverse components.
Under a Cn rotation of the transverse components about the moment orientation

CnĴ
±
iaC

−1
n = e−2πi/nĴ±ia. (29)

and we further note that inversion leaves moments invariant as they are pseudo-vectors and
that reflections are equivalent to an inversion times a C2 with axis perpendicular to the
mirror plane.
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The space group element S acting on Ĵ±ia gives

USĴ
±
iaU

−1
S =

[
U±g

]
ab
Ĵ±jb (30)

where
[
U±g

]
ab

permutes sublattices and carries out local rotations. We then Fourier transform
as

Jαia = 1√
N

∑

k

Jαkae
ik·(Ri+νra) (31)

where ν = 0, 1 keeps track of both standard conventions. A short calculation reveals that

USĴ
±
kaU

−1
S =

[
U±g

]
ab
Ĵ±gkb exp [−i(gk) · ((1− ν)(rb − gra)− t)] . (32)

On the basis of this transformation law and the invariance of HSW, one may show that

Mab(k) =
[
U±g

]†
am
Mmn(g−1k)

[
U±g

]
nb
. (33)

Including time reversal symmetries as follows

T̂ iT̂ −1 = −i (34)

T̂ Ĵ±iaT̂ −1 = −Ĵ∓ia (35)

T̂ Ĵ±kaT̂ −1 = −Ĵ∓−ka (36)

completes the set of transformations on transverse components of the magnetic moment
allowing one to construct a representation on the basis of aka and a†−ka.

D. Use of Bilbao Crystallographic Server MBANDREP tool for magnons

Here we explain briefly how to make practical use of the magnetic band representation
tool MBANDREP on the Bilbao Crystallographic Server for magnon systems [5, 6]. This
tool is very useful for topological magnons for two main purposes: identifying decomposable
(topological gapped) EBRs and finding compatibility relations constraining possible topo-
logical nodal features. Once interesting cases have been established on symmetry grounds
one may use the symmetry data to build models with nontrivial magnon band topology as
we show.

Given a magnetic space group in the BNS convention, this tool shows which band repre-
sentations can be induced from a particular Wyckoff position. Each Wyckoff position may
induce either an elementary or a composite band representation.
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FIG. 1. Screenshot from MBANDREP tool on Bilbao Crystallographic Server for the magnetic

space group P 3̄1m′ (#162.77) and maximal Wyckoff position 2c. In the red circle the relevant

band representations for magnons. The use of the table is discussed in the main text.

As an example, suppose we want to know if a topological gap is possible for the hon-
eycomb Heisenberg-Kitaev FM [111] without an explicit calculation (see also Sec. III A).
The essential ingredients to make this determination are the symmetries of the underlying
crystal lattice, which are conserved by the exchange coupling, and the magnetic order. In
this case, the honeycomb lattice can be seen as a 3D space group P6/mmm, with associated
point group D6h (6/mmm), and Wyckoff position 2c. The Kitaev coupling does not preserve
the C6 rotation, breaking the point group down to D3d (−3m). In addition, the FM [111]
ordering out of plane breaks the two-fold rotations in the plane and relative mirrors, which
can only be restored in combination with time-reversal symmetry thus forming the magnetic
point group −3m′. Therefore, the relevant magnetic space group is P 3̄1m′ (#162.77). In
listing the symmetries of the exchange Hamiltonian we should also consider possible spin-
rotation symmetries. For the case of the Heisenberg-Kitaev model there are extra spin
rotations symmetries that form a D2 group but these are killed off by the [111] magnetic
order as discussed in Ref. 3. Having established the magnetic space group and the Wyckoff
position, we can use the MBANDREP tool and analyze the relevant band representations.
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FIG. 2. Screenshot from MBANDREP tool on Bilbao Crystallographic Server for the magnetic

space group 227.131 Wyckoff position 16c and EBR induced from 1Eg. In the red circles the

representations showing the 3-fold nodal point at Γ and the two 2-fold nodal lines at ∆ and V .

In Fig. 1 we give an example of a MBANDREP table. In the first row the Wyckoff position
(2c) is indicated together with its magnetic site-symmetry group and unitary subgroup
(32′, 3). In the second row, the different band representations from unitary irreps of the site-
symmetry group are shown. In the third row, the band representation is labelled as either
decomposable (possible topological gap) or indecomposable (no gap possible) as determined
from the compatibility relations. In case it is decomposable, the tool further shows all the
possible split branches. Finally, the subsequent rows show the band representation subduced
to irreps of the maximal high symmetry points in reciprocal space.

Of the six possible band representations here we can immediately neglect the double
valued ones (last 3 columns with barred irreps) and focus on the single valued ones as
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is appropriate for spin waves. In particular, the orbitals J±q transform under the unitary
subgroup of the site-symmetry group 3 as irreps 1E, 2E as we can see in Tab. I. Therefore
we are interested in the EBR in the red circle 1E ↑ G(2) and 2E ↑ G(2), where the number
in parentheses indicates the number of bands given by this Wyckoff position (here Wyckoff
2c is a two sublattices basis producing two bands). One of the irreps 1E or 2E is associated
to the positive energies bands while the complex conjugated one to the negative bands
produced by Bogoliuobov diagonalization. We therefore see immediately that the orbital
J±q induces a decomposable EBR, meaning that a gap is topological. A list of all possible
single decomposable EBRs for magnons can be found in Tab. X. This table can be used
to straightforwardly identify a topological gap, without accessing the full server details or
computing explicitly the representations of the band structure. Indeed if the magnetic
material one is looking at (or the model intended to be constructed) is present in the table,
non-trivial magnon topology is guaranteed once a gap is present.

One may, with this information, build a model exhibiting this topological gap. To do
this, it is necessary to enforce the symmetries of the lattice at the level of the magnetic
Hamiltonian taking care not to allow spin-space symmetries. Physically this means that
the model should be spin-orbit coupled and include, in principle, all symmetry-allowed
exchange couplings. The Kitaev-Heisenberg model includes only a subset of the allowed
couplings to nearest neighbor but (i) the magnetic order is sufficient to break down the
residual symmetries and (ii) including further couplings such as Γ, Γ′ [7] preserves the band
topology.

Finally we detail how to identify topological nodal models using the magnetic band
representation. As an example we take the magnetic group 227.131 Wyckoff position 16c
relevant for pyrochlore AIAO order discussed in Sec. IV A. From the Bilbao server, we
extract the information in Fig. 2. Here we are interested in the EBR 1Eg ↑ G(4) having 4
bands (or alternatively the conjugated one, showing the same enforced degeneracies). To
identify possible symmetry enforced degeneracies we need to inspect the subduced irreps
at the high symmetry points/lines/surface in the first Brillouin zone. At the Γ point the
EBR will be composed of two irreps, Γ1

3(1) + Γ+
4 (3), where the number in parentheses is

the dimension of the irrep, indicating the presence of a 3-fold degenerate nodal point. In
addition we can identify one 2-fold nodal line at ∆ = (0, v, 0) = [Γ − X] and 2 others at
V = (u, 1, 0) = [X −W ] , marked with red circles (the coordinate are given in reciprocal
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lattice basis). These symmetry enforced degeneracies can then be checked by carrying out
a direct LSW calculation, as in Fig. IV.

III. DECOMPOSABLE EBR FOR MAGNONS: EXAMPLES

A. Honeycomb Heisenberg-Kitaev FM [111] model

For simplicity the first case considered is the two dimensional Honeycomb Heisenberg-
Kitaev ferromagnet. It has already been shown in Ref. [7, 8] that the model hosts a gap
with a non-trivial Chern invariant for the out of plane polarization, [111] direction in Kitaev
spin coordinate system. In fact the gap closes only for polarizations along [xy0], [x0z], [0yz]
(where an emergent spin-space symmetry enforces the gap closure [3]). In this section, we
focus on the case where the moment is along [111] and show that the nontrivial topology
can be understood from the perspective of a decomposable EBR.

1. Crystal structure

The crystal structure we consider is an honeycomb lattice with an edge-shared octahe-
dral environment around the sites so that Kitaev couplings are allowed by symmetry. The
magnetic moments are polarized perpendicular to the honeycomb plane. This magnetic
structure is described by the magnetic group F 3̄1m′ (#162.77 in BNS setting) with Wyckoff
position 2c that has site symmetry group 32′. The lattice primitive vectors are:

a1 = (
√

3/2, 3/2), a2 = (
√

3/2,−3/2) (37)

and basis coming from Wyckoff position 2c is (origin at the center of the hexagon):

δ1 = (
√

3/2,−1/2), δ2 = (
√

3/2, 1/2). (38)

Taking into account the octahedral environment the relevant point group under which
the exchange is left invariant is D3d with nontrivial symmetries including three-fold rotations
about the hexagonal centers, three two-fold rotational symmetries about axes through oppo-
site hexagonal vertices and inversion symmetry again about the hexagonal centers. Once the
out of plane [111] magnetization is taken into consideration, the two-fold rotations are sym-
metries only in combination with time-reversal to restore the spin direction. The generators
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FIG. 3. The honeycomb lattice and its first Brillouin zone. In the lattice the bond colors (purple,

orange, green) indicate the x, y, z pattern of the Kitaev couplings. In the Brillouin zone the high

symmetry points are: Γ = (0, 0, 0), M = ( π√
3 ,

π
3 ), K = ( 4π

3
√

3 , 0), K ′ = ( 2π
3
√

3 ,
2π
3 ).

of the group are:

G/T = {E| 0} ,
{

3+
001

∣∣∣ 0} , {21-10| 0}′ , {−1| 0} (39)

where z corresponds to [111].

Also we define for later use in the exchange coupling matrix the bonds joining nearest
neighbors:

δx = (0, 1) , (40)

δy =
(
−
√

3/2,−1/2
)
, (41)

δz =
(√

3/2,−1/2
)
. (42)

2. Exchange Hamiltonian

The nearest neighbor model on this lattice has, as symmetry allowed exchange terms, the
following on the x, y, z bonds in Eq. 42:
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M K M
wavevector

2
3
4
5
6
7
8
9

10

/JS

C = 1

C = 1

2 (ei2 /3)

+
2 (ei2 /3)

K1(1)

K3(e i2 /3)

FIG. 4. Dispersion relations of magnons in the honeycomb lattice FM [111] for J = 0, K = 1

and h = 5. At the Γ and K point band representations are indicated with their respective C3

eigenvalue. The band Chern number is indicated on the left, highlighting the topological gap.

Jx =




J + 2K Γ′ Γ′

Γ′ J Γ
Γ′ Γ J




Jy =




J Γ′ Γ
Γ′ J + 2K Γ′

Γ Γ′ J




Jz =




J Γ Γ′

Γ J Γ′

Γ′ Γ′ J + 2K



. (43)

In addition we allow for a magnetic field of magnitude h in the [111] direction. The linear
spin wave Hamiltonian approximation is:

A(k) =




−3J − 2K + h
(
J + 2K

3

) (
eik·δx + eik·δy + eik·δz

)

(
J + 2K

3

) (
e−ik·δx + e−ik·δy + e−ik·δz

)
−3J − 2K + h


 (44)

B(k) =




0 2K
3

(
eik·δx+ 2πi

3 + eik·δy−
2πi

3 + eik·δz
)

2K
3

(
e−ik·δx+ 2πi

3 + e−ik·δy−
2πi

3 + e−ik·δz
)

0


 .

(45)

This Hamiltonian contains only the J , K and h couplings. The Γ and Γ′ terms merely
renormalize the J , K, h model so we have omitted them for simplicity.
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3. Band topology

The orbital basis (J+
q , J

−
q ) lives on the Wyckoff position 2c with associated site symmetry

group generators (here we use the primitive lattice basis):

q2c
1 = g1 q

2c
1 = (1/3, 2/3) Gq2c

1
=
{

3+
001

∣∣∣ 0, 1, 0} , {21−10| 1, 1, 0}′

q2c
2 = g2 q

2c
1 = (2/3, 1/3) Gq2c

2
=
{

3+
001

∣∣∣ 1, 1, 0} , {21−10| 1, 1, 0}′ (46)

where we have indicated also the orbit transformations g1 = {E| 0} and g2 = {−1| 1, 1, 0}
forming the coset decomposition G = ⋃

α gα(Gq2c
1
n T ). The group Gq2c

1
is therefore isomor-

phic to 32′ and the orbitals transform under the representation:

ρ32′ [(J+
q , J

−
q )] = 1E + 2E (47)

which induces a two-band decomposable elementary band representation (see Table X). The
two bands, once split, produce a topological gap with chiral surface states. The system is a
Chern insulator with a bulk invariant associated with a non-trivial Wilson loop that can be
computed through the symmetry indicated formulas of the point group C3:

ei
2π
3 C =

∏

n

Θn(Γ) Θn(K) Θn(K ′) (48)

where C is the Chern number of the n band(s) and Θ(k) are the eigenvalues of C3. The
eigenvalues and irreps of the two bands are:

band 1 : Γ−2 (C+
3 ) = ei

2π
3 , K1(C+

3 ) = 1 , K ′1(C+
3 ) = 1 → C = 1

band 2 : Γ+
2 (C+

3 ) = ei
2π
3 , K3(C+

3 ) = e−i
2π
3 , K ′3(C+

3 ) = e−i
2π
3 → C = −1 (49)

which corresponds to the induced 2E ↑ G band representation (while 1E ↑ G can be found
for the negative eigenvalues).

B. Honeycomb XYZ-DM FM [001] model

The honeycomb lattice offers another famous topological gapped model, the Haldane
model, which we study here in the context of EBR. The honeycomb isotropic Heisenberg has
Dirac cones due to PT symmetry pinned at K by C3. To lift this degeneracy, the spin-space
time-reversal symmetry present in Heisenberg need to be broken. This can be achieved either
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by having anisotropic Heisenberg (XYZ model) or by introducing a next nearest neighbour
DM interaction with out of plane magnetic order (spin wave analog of Haldane model). In
both case a gap with non-trivial Chern number will arise. For completeness here we analyze
the full model XYZ-DM from an EBR perspective.

1. Crystal structure

The crystal structure we consider is an honeycomb lattice with magnetic moments polar-
ized perpendicular to the honeycomb plane [001]. Both the anisotropic XY Z model and the
next NN out of plane DM interaction preserve all the honeycomb symmetry, space group
P6/mmm. Nevertheless the [001] magnetic order will reduce the group to the type III
P6/mm′m′ (#191.240). The Wyckoff position is 2c with site-symmetry group −6m′2′. The
generators of the group are:

G/T = {E| 0} ,
{

3+
001

∣∣∣ 0} , {2001| 0} , {21-10| 0}′ , {−1| 0} (50)

The primitive lattice and basis are the same as III A. Here we define additionally for later
use the bonds joining the next nearest neighbors:

δ2x =
(√

3, 0
)
, (51)

δ2y =
(
−
√

3/2, 3/2
)
, (52)

δ2z =
(
−
√

3/2,−3/2
)
. (53)

2. Exchange Hamiltonian

The nearest neighbor anisotropic Heisenberg interaction respect the symmetry of the
honeybomb lattice and reads for the x, y, z bonds in Eq. 42:

Jx =




Jx 0 0
0 Jy 0
0 0 Jz




Jy =




Jx
4 + 3Jy

4

√
3Jx
4 −

√
3Jy
4 0

√
3Jx
4 −

√
3Jy
4

3Jx
4 + Jy

4 0
0 0 Jz




Jz =




Jx
4 + 3Jy

4 −
√

3Jx
4 +

√
3Jy
4 0

−
√

3Jx
4 +

√
3Jy
4

3Jx
4 + Jy

4 0
0 0 Jz



.

(54)
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The next nearest neighbor DM interaction has D = Dẑ and exchange hamiltonian for
bonds 2x, 2y, 2z bonds in Eq. 53:

J2x = J2y = J2z =




0 D 0
−D 0 0

0 0 0




(55)

The linear spin wave Hamiltonian approximation is:

A(k) =




−3Jz +Dγ(k)
(
Jx+Jy

2

) (
eik·δx + eik·δy + eik·δz

)

(
Jx+Jy

2

) (
e−ik·δx + e−ik·δy + e−ik·δz

)
−3Jz −Dγ(k)


 (56)

B(k) =




0
(
Jx−Jy

2

) (
eik·δx + eik·δy+ 2πi

3 + eik·δz−
2πi

3
)

(
Jx−Jy

2

) (
e−ik·δx + e−ik·δy+ 2πi

3 + e−ik·δz−
2πi

3
)

0


 .

(57)

where:
γ(k) = sin(k · δ2x) + sin(k · δ2y) + sin(k · δ2z) (58)

3. Band topology

The orbital basis (J+
q , J

−
q ) lives on the Wyckoff position 2c with associated site symmetry

group generators (here we use the primitive lattice basis):

q2c
1 = g1 q

2c
1 = (1/3, 2/3) Gq2c

1
=
{

3+
001

∣∣∣ 0, 1, 0} , {m001| 0} , {21-10| 1, 1, 0}′

q2c
2 = g2 q

2c
1 = (2/3, 1/3) Gq2c

2
=
{

3+
001

∣∣∣ 1, 1, 0} , {m001| 0} , {21-10| 1, 1, 0}′ (59)

where we have indicated also the orbit transformations g1 = {E| 0} and g2 = {−1| 1, 1, 0}
forming the coset decomposition G = ⋃

α gα(Gq2c
1
n T ). The group Gq2c

1
is therefore isomor-

phic to −6m′2′ and the orbitals transform under the representation:

ρ−6m′2′ [(J+
q , J

−
q )] = 1E ′′ + 2E ′′ (60)

which induces a two-band decomposable elementary band representation (see Table X). The
two bands, once split, produce a topological gap with chiral surface states. The system is a
Chern insulator with a bulk invariant associated with a non-trivial Wilson loop that can be
computed through the symmetry indicated formulas of the point group C6:

ei
2π
6 C =

∏

n

ηn(Γ) Θn(K) ζn(K ′) (61)
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+
4 (ei /3)
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C = 1
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FIG. 5. Dispersion relations of magnons in the honeycomb lattice FM [001] for Jx = −1,

Jy = −0.2, Jz = −1.5, D = 0.1. At the Γ, K, M points band representations are indicated with

their respective C6, C3, C2 eigenvalue respectively. The band Chern number is indicated on the

right, highlighting the topological gap.

where C is the Chern number of the n band(s) and η(k), Θ(k), ζ(k) are the eigenvalues of
C6, C3, C2. The eigenvalues and irreps of the two bands are:

band 1 : Γ+
4 (C+

6 ) = ei
π
3 , K2(C+

3 ) = 1 , M−
1 (C2) = 1 → C = 1

band 2 : Γ−3 (C+
6 ) = e−i

2π
3 , K6(C+

3 ) = e−i
2π
3 , M+

2 (C2) = −1 → C = −1 (62)

which corresponds to the induced 2E ′′ ↑ G band representation (while 1E ′′ ↑ G can be found
for the negative eigenvalues).

C. Stacked honeycomb AFM topological insulator

We now consider a system with AA stacked honeycomb planes with anisotropic couplings
within each layer and AFM Heisenberg exchange between layers. This results in a magnonic
topological crystalline insulator as noted in [9]. The in-plane model (with decoupled layers)
is, from a symmetry perspective, identical to that studied in Sec. III B, which has two split
bands with opposite Chern number. Adding a stacked layer with AFM order produces
two further bands, but with reversed Chern number. If the two layers are not coupled,
the surface state of opposite chiralities survive independently. If the layer are coupled,
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for example through AFM Heisenberg, then the respective bulk bands can mix, rendering
the Chern invariant ill-defined. Nevertheless the effective anti-unitary symmetry T Ta3/2

imposes a Kramers degeneracy in the plane kz = π, which protects the hybridized surface
states from gapping, leading to a topological insulator with a Z2 invariant [9].

1. Crystal structure

The crystal structure is a stacked honeycomb lattice with magnetic moments along [001]
anti-aligned between layers. In the previous section we have shown how the single layer
correspond to group P6/mm′m′, but here we have an additional black and white translation
between the two AFM layers with magnetic space group type IV Pc6/mcc (#192.252). The
Wyckoff position is 4c with site-symmetry group −6m′2′. The generators of the group are:

G/T = {E| 0} ,
{

3+
001

∣∣∣ 0} , {2001| 0} , {21-10| 0, 0, 1/2} , {−1| 0} , {1| 0, 0, 1/2}′ (63)

The lattice primitive vectors are:

a1 = (
√

3/2, 3/2, 0), a2 = (
√

3/2,−3/2, 0), a3 = (0, 0, 1) (64)

and basis coming from Wyckoff position 4c is (origin at the center of the hexagon):

δ1 = (
√

3/2,−1/2, 0), δ2 = (
√

3/2, 1/2, 0), δ3 = (
√

3/2,−1/2, 1/2), δ4 = (
√

3/2, 1/2, 1/2)
(65)

2. Exchange Hamiltonian

The model we consider has exchange

JxS
x
i S

x
i+ŷ + JyS

y
i S

y
i+ŷ + JzS

z
i S

z
i+ŷ (66)

on the honeycomb bond aligned with y and the components refer to the crystallographic
frame with ẑ perpendicular to the honeycomb layers. We then tile all bonds using C3 and
translations exactly as in Eq. 54. We coupled the AA layers with a simple AFM Heisenberg
Jc coupling. We also include a second-neighbor in-plane Dzyaloshinskii-Moriya coupling
considered in Sec. III B, even if not strictly necessary for the non-trivial topology here.
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The linear spin wave Hamiltonian is:

A(k) =




JH +Dγ1(k)
(
Jx+Jy

2

)
γ2(k) 0 0

(
Jx+Jy

2

)
γ∗2(k) JH −Dγ1(k) 0 0

0 0 JH −Dγ1(k)
(
Jx+Jy

2

)
γ2(k)

0 0
(
Jx+Jy

2

)
γ∗2(k) JH +Dγ1(k)




(67)

B(k) =




0
(
Jx−Jy

2

)
β1(k) −2Jc cos(k · a3/2) 0

(
Jx−Jy

2

)
β1(−k) 0 0 −2Jc cos(k · a3/2)

−2Jc cos(k · a3/2) 0 0
(
Jx−Jy

2

)
β1(−k)

0 −2Jc cos(k · a3/2)
(
Jx−Jy

2

)
β1(k) 0




.

(68)

where:

JH = −3Jz + 2Jc (69)

γ1(k) = sin(k · δ2x) + sin(k · δ2y) + sin(k · δ2z) (70)

γ2(k) = eik·δx + eik·δy + eik·δz (71)

β1(k) = eik·δx + eik·δy+ 2πi
3 + eik·δz−

2πi
3 (72)

where the x, y, z and 2x, 2y, 2z bonds are the same as Eq. 42 and Eq. 53 and on all
honeycomb layers.

3. Band topology

The orbital basis (J+
q , J

−
q ) lives on the Wyckoff position 4c with associated site symmetry

group generators (here we use the primitive lattice basis):

q4c
1 = g1 q

2c
1 = (1/3, 2/3, 0) Gq4c

1
=
{

3+
001

∣∣∣ 0, 1, 0} , {m001| 0} , {21-10| 1, 1, 0}′

q4c
2 = g2 q

2c
1 = (2/3, 1/3, 0) Gq4c

2
=
{

3+
001

∣∣∣ 1, 1, 0} , {m001| 0} , {21-10| 1, 1, 0}′ (73)

q4c
3 = g3 q

2c
1 = (1/3, 2/3, 1/2) Gq4c

3
=
{

3+
001

∣∣∣ 0, 1, 0} , {m001| 0, 0, 1} , {21-10| 1, 1, 1}′

q4c
4 = g4 q

2c
1 = (2/3, 1/3, 1/2) Gq4c

4
=
{

3+
001

∣∣∣ 1, 1, 0} , {m001| 0, 0, 1} , {21-10| 1, 1, 1}′ (74)

where we have indicated also the orbit transformations g1 = {E| 0}, g2 = {−1| 1, 1, 0}, g3 =
{1| 0, 0, 1/2}′, g4 = {−1| 1, 1, 1/2}′ forming the coset decomposition G = ⋃

α gα(Gq4c
1
n T ).
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FIG. 6. Dispersion relations of magnons for the AA stacked honeycomb lattice ferromagnet with

[001] moments for Jx = −1, Jy = −0.1, Jz = −1, D = 0.5, Jc = −1. At the Γ, K, M , A points

band representations are indicated with their respective dimension. The topological gap comes

from the splitting of a 4-band EBR. A nodal surface is present at [H − A − L] and a nodal line

along [Γ−A].

The group Gq4c
1

is therefore isomorphic to −6m′2′ and the orbitals transform under the
representation:

ρ−6m′2′ [(J+
q , J

−
q )] = 1E ′′ + 2E ′′ (75)

which induces a four-band decomposable elementary band representation (see Table II). The
subduced irreps in reciprocal space of the two branches (2 bands each) are:

branch 1 : Γ+
6 (2) , A3(2) , H3(2) , K3(1) +K2(1) , L1(2) , M−

2 (1) +M−
1 (1)

branch 2 : Γ−5 (2) , A1(2) , H2(2) , K6(2) , L2(2) , M+
4 (1) +M+

3 (1)

(76)

which corresponds to the induced 2E ′′ ↑ G(4) band representation (1E ′′ ↑ G(4) for negative
eigenvalues).

The model has a nontrivial Z2 invariant linked to the black and white translation
{1| 0, 0, 1/2}′ [9]. This is indeed reflected by the EBR picture. When the two layers are
decoupled, there are two decomposable EBRs 2E ′′ ↑ G(2) (layer spin up) and 1E ′′ ↑ G(2)
(layer spin down) of the kind in Eq. 62, which produce bands with opposite Chern num-
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ber for the opposite layers. When the two layers couple, the black and white translation
{1| 0, 0, 1/2}′ pairs the two EBRs into a new single EBR which is nevertheless decomposable
and therefore topological.

Finally the band representation, beside the topological gap, also predicts the nodal plane
E1E2(2) between each pair of bands.

We have established the topological character of the magnon bands based on symmetry.
A more refined analysis reveals that this model has a nontrivial Z2 invariant that can be
computed from the Berry phase A(n)

µ (k) in the pairs of bands joined by Kramers degeneracies.
Thus for bands n = 1, 2, 3, 4 where n = 1, 2 form the lower energy pair Ref. [9] show that the
relevant invariant is built from A(−)

µ (k) = A(1)
µ (k) +A(2)

µ (k) and A(+)
µ (k) = A(3)

µ (k) +A(4)
µ (k)

and z component of the Berry curvature F (±)
z (k)

ν± = 1
2π

(∮

∂HBZ
dkµA(±)

µ (k)−
∫

HBZ
d2kF (±)

z (k)
)

mod 2 (77)

where HBZ refers to half of the zone such that the remainder is covered by k→ −k.

EBR 1E′′ ↑ G(4) 2E′′ ↑ G(4)

Decomposable Decomposable

Γ : (0, 0, 0) Γ−5 (2) + Γ+
6 (2) Γ−5 (2) + Γ+

6 (2)

A : (0, 0, 1/2) A2(2) +A4(2) A1(2) +A3(2)

H : (1/3, 1/3, 1/2) H1(2) +H3(2) H2(2) +H3(2)

K : (1/3, 1/3, 0) K2(2) +K3(1) +K6(2) K2(2) +K3(1) +K6(2)

L : (1/2, 0, 1/2) L1(2) + L2(2) L1(2) + L2(2)

M : (1/2, 0, 0) M−1 (2) +M−2 (1) +M+
3 (1) +M+

4 (1) M−1 (2) +M−2 (1) +M+
3 (1) +M+

4 (1)

E : (u, v, 1/2) 2E1E2(2) 2E1E2(2)

TABLE II. Relevant magnon EBR for magnetic space group type IV Pc6/mcc (#192.252) Wyckoff

position 4c and site symmetry group −6m′2′. The table shows the representations subduced at

the reciprocal space high symmetry points, with the dimension in the parenthesis. Compatibility

relation allow decomposability and therefore a topological gap. In the last line the 2-fold degenerate

nodal plane representation.
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J1
J3

J4

J2

FIG. 7. The lattice of space group P4 (#75.1) and its simple tetragonal first Brillouin zone.

In the lattice the Ji couplings mentioned in the text are showed. In the Brillouin zone the high

symmetry points are: Γ = (0, 0, 0), X = (0, π, 0), Z = (0, 0, π), M = (π, π, 0), R = (0, π, π), A =

(π.π, π).

D. Space group P4; FM [001] model

1. Crystal structure

Here we consider the space group P4 (#75.1) with Wyckoff position 2c. The system is
described by a single decomposable EBR with a site-symmetry group C2 compatible with
FM [001] magnetic order and must host a topological gap once the EBR is split.

The lattice is a simple tetragonal with primitive vectors:

a1 = (a, 0, 0), a2 = (0, a, 0), a3 = (0, 0, c) (78)

The basis coming from Wyckoff position 2c is:

δ1 = (0, 1/2, z), δ2 = (1/2, 0, z) (79)

The lattice and the first Brillouin zone are shown in Fig. 7.
There are 4 symmetries in the group, all around the axial z direction:

G/T = {E| 0} , {2001| 0} ,
{

4+
001

∣∣∣ 0} ,
{

4−001

∣∣∣ 0} (80)
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Also we define for later use in the exchange coupling matrix the additional lattice points:

δ1x = δ1 + a1, δ1y = δ1 + a2, δ1z = δ1 + a3

δ2x = δ2 + a1, δ2y = δ2 + a2, δ2z = δ2 + a3 (81)

2. Exchange Hamiltonian

The model J1 + J2 + J3 + J4 on this lattice consists of 10 different bond types:

• Set J1 : (1, 2)a, (1, 2)b, (1, 2)c, (1, 2)d

• Set J2 : (1, 1)z, (2, 2)z

• Set J3 : (1, 1)x, (2, 2)y

• Set J4 : (1, 1)y, (2, 2)x.

Applying the symmetries in Eq. 80 the exchange terms are constrained to 26 possible
coupling parameters:

J(1,2)a =




Jxx1 Jxy1 Jxz1

Jyx1 Jyy1 Jyz1

Jzx1 Jzy1 Jzz1




J(1,2)b =




Jyy1 −Jxy1 Jzy1

−Jyx1 Jxx1 −Jzx1

Jyz1 −Jxz1 Jzz1




(82)

J(1,2)c =




Jxx1 Jxy1 −Jxz1

Jyx1 Jyy1 −Jyz1

−Jzx1 −Jzy1 Jzz1




J(1,2)d =




Jyy1 −Jxy1 −Jzy1

−Jyx1 Jxx1 Jzx1

−Jyz1 Jxz1 Jzz1




(83)

J(1,1)z =




Jxx2 Jxy2 0
Jyx2 Jyy2 0
0 0 Jzz2




J(2,2)z =




Jyy2 −Jyx2 0
−Jxy2 Jxx2 0

0 0 Jzz2




(84)

J(1,1)x =




Jxx3 Jxy3 Jxz3

Jxy3 Jyy3 Jyz3

−Jxz3 −Jyz3 Jzz3




J(2,2)y =




Jyy3 −Jxy3 −Jyz3

−Jxy3 Jxx3 Jxz3

Jyz3 −Jxz3 Jzz3




(85)

J(1,1)y =




Jxx4 Jxy4 Jxz4

Jxy4 Jyy4 Jyz4

−Jxz4 −Jyz4 Jzz4




J(2,2)x =




Jyy4 −Jxy4 Jyz4

−Jxy4 Jxx4 −Jxz4

−Jyz4 Jxz4 Jzz4




(86)
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We consider now a field h polarized state in the [001] direction and apply the LSW
approximation obtaining M (k) with:

J̃11 = J(1,1)ze
ik·(δ1−δ1z) + J(1,1)xe

ik·(δ1−δ1x) + J(1,1)ye
ik·(δ1−δ1y)

+ JT(1,1)ze
ik·(δ1z−δ1) + JT(1,1)xe

ik·(δ1x−δ1) + JT(1,1)ye
ik·(δ1y−δ1) (87)

J̃22 = J(2,2)ze
ik·(δ2−δ2z) + J(2,2)xe

ik·(δ2−δ2x) + J(2,2)ye
ik·(δ2−δ2y)

+ JT(2,2)ze
ik·(δ2z−δ2) + JT(2,2)xe

ik·(δ2x−δ2) + JT(2,2)ye
ik·(δ2y−δ2) (88)

J̃12 = J(1,2)ae
ik·(δ1−δ2) + J(1,2)be

ik·(δ1−δ2y) + J(1,2)ce
ik·(δ1x−δ2y) + J(1,2)de

ik·(δ1x−δ2) (89)

J̃21 = JT(1,2)ae
ik·(δ2−δ1) + JT(1,2)be

ik·(δ2y−δ1) + JT(1,2)ce
ik·(δ2y−δ1x) + JT(1,2)de

ik·(δ2−δ1x) (90)

in Eqs. 17 and 18.

3. Band topology

The orbital basis (J+
q , J

−
q ) sits here on the Wyckoff position 2c with associated site sym-

metry group:

q2c
1 = g1 q

2c
1 = (0, 1/2, z) Gq2c

1
= {2001| 0, 1, 0}

q2c
2 = g2 q

2c
1 = (1/2, 0, z) Gq2c

2
= {2001| 1, 0, 0} (91)

where we have indicated also the orbit transformations g1 = {E| 0} and g2 =
{

4−001

∣∣∣ 0} form-
ing the coset decomposition G = ⋃

α gα(Gq2c
1
n T ). The group Gq2c

1
is therefore isomorphic

to C2 and the orbital have representation:

ρC2 [(J+
q , J

−
q )] = 2B (92)

which induce a two-bands decomposable elementary band representation (see Table III).
The two bands once splitted produced a topological gap with chiral surface states. Indeed
the system is a Chern insulator with a bulk invariant associated with a non-trivial Wilson
loop that can be computed through the symmetry indicated formulas of the point group C4:

iC =
∏

n

ξn(Γ) ξn(M) ζn(X) (93)
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FIG. 8. Dispersion relations of magnons in the space group P4 (#75.1) FM [001] lattice for

random strong SO couplings J1 + J2 + J3 + J4 and h = 5. At the Γ, M and X point band

representations are indicated with their respective C4 or C2 eigenvalue. The band Chern number

is indicated on the left, highlighting the topological gap.

where C is the Chern number of the n band(s), while ξ(k) and ζ(k) are the eigenvalues
respectively of C4 and C2. The eigenvalues and irreps of the two bands are:

band 1 : Γ3(C+
4 ) = i , M1(C+

4 ) = 1 , X2(C2) = −1 → C = −1

band 2 : Γ4(C+
4 ) = −i , M2(C+

4 ) = −1 , X1(C2) = 1 → C = 1 (94)

which corresponds to the induced B ↑ G band representation.

IV. NODAL TOPOLOGY IN MAGNONS

EBRs are also useful in determining the nodal topology of a given magnetic space group.
While different EBRs can accidentally cross each other, degeneracies cannot be enforced
between them. The only symmetry enforced degeneracies are inside EBRs themselves. For
magnons, all the single-valued EBRs are relevant, although only a subset can be directly
induced as single EBR (due to compatibility with magnetic order). Those that cannot be
induced in this way must be induced from lower symmetric Wyckoff positions as components
of a composite of EBRs.

In Tab. IV the total number of single-valued EBRs with enforced degeneracy is given with
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EBR B ↑ G(2)

Decomposable

Γ : (0, 0, 0) Γ3(1) + Γ4(1)

A : (1/2, 1/2, 1/2) A1(1) +A2(1)

M : (1/2, 1/2, 0) M1(1) +M2(1)

R : (0, 1/2, 1/2) R1(1) +R2(1)

X : (0, 1/2, 0) X1(1) +X2(1)

Z : (0, 0, 1/2) Z3(1) + Z4(1)

TABLE III. Relevant magnon EBR for space group P4 (#75.1) Wyckoff position 2c and site

symmetry group 2. The table shows the representations subduced at the reciprocal space high

symmetry points, with the dimension in the parenthesis. Compatibility relation allow decompos-

ability and therefore a topological gap.

rows indicating the nature of the degeneracy (point, line or plane) and columns giving the
order of the degeneracy. Evidently, symmetry-enforced 2-fold degenerate points are rather
common among all EBRs. In addition, 3, 4 and 6-fold points can arise even among the
singled-valued groups. A greater diversity of nodal topology is possible in the double mag-
netic groups that are important in spin-orbit coupled electronic systems but not generically
for magnons. In addition to point-like degeneracies, we have listed the number of nodal lines
and surfaces appearing among the single-valued EBRs.

The complete set of symmetry data required to obtain the various types of nodal topology
can be found on the Bilbao Crystallographic Server [1, 2]. For convenience we provide
tabulation of the the magnetic space group and Wyckoff positions relevant to magnons that
enforce the more exotic nodal features:

• Nodal point 6-fold in Tab. V.

• Nodal point 4-fold in Tab. VIII.

• Nodal point 3-fold in Tab. VII.

• Nodal lines 4-fold in Tab. VI.

• Nodal plane 2-fold in Tab. IX.
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Here we mention that if we rel ax the locking between spin and space and we deal
with spin-space groups, generally the degeneracies present in the system are much higher,
producing more exotic nodal features which are not possible in magnetic space groups.

Nodal 2 3 4 5 6

Point 16414 1621 3444 / 289

Line 14151 / 462 / /

Plane 5442 / / / /

TABLE IV. Statistics of nodal features for single-valued EBRs. In total the single-valued EBRs

are 20, 206. The rows indicated the reciprocal space dimension: high symmetry points, lines and

planes. The columns are the order of degeneracy of the nodal feature and the valued listed are the

number of different single-valued EBRs. The high symmetric nodal points (lines) embedded in a

nodal line (surface) are included in the table.

A. Nodal Topology: Pyrochlore AIAO Order

FIG. 9. The pyrochlore lattice and its first Brillouin Zone (space group Fd3̄m #227). In the

Brillouin zone the position of the high symmetry points are: Γ = (0, 0, 0), X = (0, 2π, 0), L =

(π, π, π), W = (π, 2π, 0), K = (3π
2 ,

3π
2 , 0).

33



Γ X W L Γ K
0.0

0.5

1.0

1.5

Wavenumber

ϵ

FIG. 10. Dispersion relations of magnons in the pyrochlore lattice AIAO phase for J = 1 and

K = −1/6. There is a three-fold degenerate point in the upper three bands at Γ as well as two

two-fold degenerate lines along XW and one nodal line Γ−X.

As an example of a 3-fold degeneracy we consider the case of the pyrochlore antiferro-
magnet with all-in/all-out (AIAO) magnetic order. The pyrochlore lattice is a lattice of
corner-sharing tetrahedra and the AIAO order has propagation vector k = 0 with moments
pointing into or out from the tetrahedral centers. A simple model leading to this magnetic or-
der is the nearest neighbor antiferromagnetic Heisenberg coupling and the symmetry-allowed
nearest neighbor Ising exchange

H =
∑

〈ia,jb〉
JSia · Sjb +K (Sia · ẑa) (Sjb · ẑb) (95)

where i, j are primitive fcc sites and a, b are tetrahedral sublattice indices, ẑa is the local
〈111〉 direction on sublattice a and J > 0, K < 0.

The magnetic order breaks down the paramagnetic symmetries to a type III magnetic
space group, 227.131 (BNS) that retains the C3 and C2 symmetries of the original lattice
but the 2-fold screw about [110] chains and S4 about [001] survive only in combination with
a time reversal operation. These symmetries enforce a 3-fold degenerate point at Γ that is
shown in Fig. 10 [10].
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B. Nodal Topology: Garnet Structure

The table of six-fold degenerate points reveals such a symmetry-enforce point for magnetic
space group 230.148 with magnetic structure on the 24c Wyckoff positions. The lattice is a
BCC Bravais lattice with a 12 site basis. (0,0,0) + (1/2,1/2,1/2) +

(1/8, 0, 1/4) (3/8, 0, 3/4) (1/4, 1/8, 0) (3/4, 3/8, 0)

(0, 1/4, 1/8) (0, 3/4, 3/8) (7/8, 0, 3/4) (5/8, 0, 1/4)

(3/4, 7/8, 0) (1/4, 5/8, 0) (0, 3/4, 7/8) (0, 1/4, 5/8).

This structure arises in the garnets with formula R3M5O12 on the R sites. The site symmetry
of the 230 space group at 24c consists of three C2 rotations at each site. The magnetic
structure compatible with 230.148 is shown in Fig. 2 in the main text. This structure arises
in Dy3Al5O12.

To compute spin waves for this structure with the requisite symmetries, we should include
all symmetry-allowed exchange couplings. To nearest neighbor the 24 sites split into two
independent sublattices of corner sharing triangles − the garnet hyperkagome. The fact
that some C2 rotations leave bonds invariant constrains the type of exchange couplings. In
the absence of symmetry, there are nine possible couplings per bond. The C2 rotations mix
the bonds within each sublattice. This means that the bonds are equivalent and by fixing
the interactions on a single bond we may generate the interactions on an entire sublattice.
One may show that there are six allowed couplings to nearest neighbor. These are:

(1) Syi S
y
j

(2) Sxi S
x
j + Szi S

z
j

(3) Sxi S
z
j

(4) Szi S
x
j

(5) Szi S
y
j + Syi S

x
j

(6) Sxi S
y
j + Syi S

z
j

on the bond joining sites (1/8, 0, 1/4) and (0, 1/4, 1/8). The third of these couplings is an
effective Ising coupling that fixes the required magnetic structure up to time reversal on the
decoupled sublattice. The structure is stable to small additional couplings and we further
include a Heisenberg exchange between the two sublattices.
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For a model with the J3 nearest neighbor coupling, antiferromagnetic Heisenberg ex-
change between nearest neighbors and small additional nearest neighbor couplings, we com-
pute the linear spin wave spectrum. The spectrum along various high symmetry paths is
shown in Fig. 2 in the main text. Symmetry predicts the following pattern of degeneracies

Γ = 3, 3, 3, 3

H(1, 1, 1) = 2, 2, 2, 6

N(1/2, 1/2, 0) = 2, 2, 2, 2, 2, 2

P (1/2, 1/2, 1/2) = 2, 2, 2, 2, 2, 2

∆(0, v, 0) = 1, 1, 1, 1, 2, 2, 2, 2

G(1 + u, 1− u, 1) = 2, 2, 2, 2, 2, 2

and these are confirmed by direct calculation for the aforementioned couplings. Note the
presence of a six-fold degenerate point at H on the zone boundary which is protected by
non-symmorphic symmetries and which is clearly visible in the figure. This point is linearly
dispersing and can be thought of as a doubled spin-one Weyl point. The 3−fold degenerate
points at Γ by contrast are forced to have quadratic dispersion by the inversion symmetry
of the lattice.
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MSGs MWP MSGs MWP MSGs MWP MSGs MWP MSGs MWP
195.3 218.82 II 221.97 223.104 224.115
200.17 218.83 222.98 12d, 8c 223.105 II 230.145 24d, 16a
201.21 8c 218.84 12d 222.99 II 223.107 8e 230.146 II
207.43 12d, 8c 220.90 II 222.101 8c 223.108 230.148 24c, 16b, 16a
208.47 220.91 16c 222.102 223.109 230.149
215.73 222.103 12d, 8c

TABLE V. List of all single-valued magnetic space group (type I,II,III,IV) with 6-fold high sym-

metry points, therefore all possible cases in magnons. The first column (MSGs) uses the BNS

convention for the magnetic space group. The second (MWP) indicates the maximal Wyckoff po-

sition, if the magnon degenerate EBR is directly deducible from it (compatibility with magnetic

order). If blank space then the degenerate EBR can only be induced in a composite magnon BR

from a lower symmetric Wyckoff position. The type II group with pure time-reversal are also

listed for completeness, signed with II, but they are not relevant for ordered magnonic systems

with strong spin-orbit as considered in this paper.

MSGs MWP MSGs MWP MSGs MWP MSGs MWP MSGs MWP
49.274 4c, 4d, 4g 53.331 4b, 4a, 8g 57.390 8c, 8e 60.429 8c, 8e 125.374 8e
49.276 4c, 4d 53.335 4b, 4a, 8e 58.401 4c, 4a 61.434 II 128.408 4d, 4a
50.286 8d, 8h 53.336 4b, 4a, 4e 58.402 4c, 4b, 4a 61.435 129.420 8d
50.288 8e 54.349 8c, 8e 59.413 8c 61.438 8c, 8d, 8b 132.458
51.300 4b, 4a 54.352 8c, 8d, 8a, 8e 59.414 8d 62.442 II 133.470 8e
51.301 4b, 4a 57.378 II 60.418 II 62.445 4c 136.504
52.316 8c, 8d, 8a, 8e 57.379 4c, 4d 60.420 4c 62.452 8c, 8d, 8b 137.516 8d
52.318 4c, 8d 57.386 8c, 8d, 8a 60.427 8c, 8d, 8a 124.362 4c, 4d 205.34 II
53.330 4c, 4a, 4f, 4e

TABLE VI. List of all single-valued magnetic space group (type I,II,III,IV) with 4-fold high

symmetry lines, therefore all possible cases in magnons. The first column (MSGs) uses the BNS

convention for the magnetic space group. The second (MWP) indicates the maximal Wyckoff

position, if the magnon degenerate EBR is directly deducible from it (compatibility with magnetic

order). If blank space then the degenerate EBR can only be induced in a composite magnon BR

from a lower symmetric Wyckoff position. The type II group with pure time-reversal are also

listed for completeness, signed with II, but they are not relevant for ordered magnonic systems

with strong spin-orbit as considered in this paper.
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MSGs MWP MSGs MWP MSGs MWP MSGs MWP
195.1 206.39 24d 216.76 224.113 4c, 4b, 12f
195.2 II 207.40 216.77 224.114
195.3 207.41 II 217.78 12d 224.115
196.4 207.42 217.79 II 225.116
196.5 II 207.43 8c, 12d 217.80 225.117 II
196.6 24c, 24d 208.44 218.81 6c, 6d 225.118
197.7 208.45 II 218.82 II 225.119 24d
197.8 II 208.46 4c, 4b, 6e, 6f 218.83 225.120
198.9 4a 208.47 218.84 12d 225.121
198.10 II 209.48 219.85 24c, 24d 226.122 24d
198.11 12b, 8a 209.49 II 219.86 II 226.123 II
199.12 12b, 8a 209.50 24d 219.87 226.124 24c
199.13 II 209.51 24d 219.88 24c, 24d 226.125
200.14 210.52 220.89 12a, 12b, 16c 226.126
200.15 II 210.53 II 220.90 II 226.127 24c
200.16 210.54 16d, 16c 220.91 16c 227.128
200.17 210.55 48d, 32c, 48f, 48e 221.92 227.129 II
201.18 4c, 4b 211.56 221.93 II 227.130
201.19 II 211.57 II 221.94 227.131 16d, 16c
201.20 211.58 8c, 12d 221.95 227.132
201.21 8c 212.59 221.96 227.133 96f
202.22 24d 212.60 II 221.97 228.134 48d, 32c
202.23 II 212.61 4b, 4a 222.98 8c, 12d 228.135 II
202.24 212.62 8b, 12d, 12c 222.99 II 228.136 32b, 48d
202.25 24c 213.63 222.100 12d 228.137 32b, 32c
203.26 16d, 16c 213.64 II 222.101 8c 228.138
203.27 II 213.65 4b, 4a 222.102 228.139 32b, 48d, 96f
203.28 213.66 12d, 12c, 8a 222.103 8c, 12d 229.140
203.29 32b, 48d 214.67 223.104 229.141 II
204.30 8c 214.68 II 223.105 II 229.142 12d
204.31 II 214.69 12d, 8b, 12c, 8a 223.106 8e, 6c, 6d 229.143 8c
204.32 215.70 223.107 8e 229.144
205.33 4b, 4a 215.71 II 223.108 230.145 24d, 16a
205.34 II 215.72 223.109 230.146 II
205.35 215.73 224.110 230.147 24c, 24d, 16b
205.36 24d, 8b 216.74 224.111 II 230.148 24c, 16b, 16a
206.37 24d, 8b, 8a 216.75 II 224.112 12f 230.149
206.38 II

TABLE VII. List of all single-valued magnetic space group (type I,II,III,IV) with 3-fold high

symmetry points, therefore all possible cases in magnons. The first column (MSGs) uses the BNS

convention for the magnetic space group. The second (MWP) indicates the maximal Wyckoff

position, if the magnon degenerate EBR is directly deducible from it (compatibility with magnetic

order). If blank space then the degenerate EBR can only be induced in a composite magnon BR

from a lower symmetric Wyckoff position. The type II group with pure time-reversal are also

listed for completeness, signed with II, but they are not relevant for ordered magnonic systems

with strong spin-orbit as considered in this paper.
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TABLE VIII: List of all single-valued magnetic space group

(type I,II,III,IV) with 4-fold high symmetry points, there-

fore all possible cases in strong SO magnons. The first col-

umn (MSGs) uses the BNS convention for the magnetic space

group. The second (MWP) indicates the maximal Wyckoff

position, if the magnon degenerate EBR is directly deducible

from it (compatibility with magnetic order). If blank space

then the degenerate EBR can only be induced in a compos-

ite magnon BR from a lower symmetric Wyckoff position.

The type II group with pure time-reversal are also listed for

completeness, signed with II, but they are not relevant for

ordered magnonic systems with strong spin-orbit as consid-

ered in this paper.

MSGs MWP MSGs MWP MSGs MWP MSGs MWP
11.55 4c, 4a, 4e 56.374 4b, 4a, 8e 110.246 II 141.560 16d, 16e, 16c
13.71 4d, 4a, 4f, 4e 57.378 II 110.247 8a 142.562 II
13.74 4b, 4a, 4e 57.379 4c, 4d 111.256 4f 142.564 16e, 16c
14.80 4c, 4a 57.382 4c, 4b, 4a, 4d 111.258 142.566 8b, 16e, 8a
17.11 4c, 4b, 4a, 4d 57.383 4c, 4b, 4a, 4d 112.265 8i 142.569 16e
17.14 4b, 4a 57.386 8c, 8d, 8a 112.266 156.52
17.15 4c, 4b, 4a 57.387 4c, 4d, 4f, 4e 113.272 4a 157.56 4b
18.21 4b, 4a 57.390 8c, 8e 113.274 4c, 4d 158.58 II
18.22 4b, 4a 57.391 4c, 8d 114.276 II 159.62 II
19.26 II 57.392 4b, 4a, 8e 114.280 4c, 4b 160.68
19.28 4b, 4a 58.400 4c, 4d, 8g 115.288 161.70 II
28.93 4c, 4b, 4a 58.401 4c, 4a 115.290 162.78 4d, 6f
28.94 4c, 4b, 4a 58.402 4c, 4b, 4a 116.298 4d 163.80 II
28.95 4b, 4a 58.403 4c, 4b, 4a, 4d 117.304 4d, 4a 163.82
28.96 4c, 4b, 4a 59.412 4d, 4b, 4f 117.306 4b, 4a 164.90 6e
28.98 4b, 4a 59.413 8c 118.312 4d, 4b 165.92 II
29.100 II 59.414 8d 118.313 4c, 4b, 4d, 4f 165.94 4d
29.104 4b, 4a 60.418 II 123.348 166.102 18e
29.105 8a 60.420 4c 123.350 167.104 II
29.107 4a 60.422 4c, 4b, 4a 124.352 II 167.106
29.109 4a 60.423 4c, 4b, 4a 124.354 4f, 4e 176.144 II
29.110 4b, 4a 60.424 4c, 4b, 4a 124.355 4e 176.148 4c, 6g
30.116 4b, 4a 60.425 4c 124.359 183.190
30.117 4c, 4b, 4a, 4d 60.426 8c, 8d, 8b, 8e 124.361 4b, 8f 184.192 II
30.118 4c, 4b, 4a 60.427 8c, 8d, 8a 124.362 4c, 4d 184.193 4b, 6c
30.120 4a 60.428 4c, 4d, 8g 125.372 4b, 8e 184.194 4b, 6c
30.121 4c, 4b, 4a 60.429 8c, 8e 125.374 8e 185.198 II
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TABLE VIII – Continued from previous page
MSGs MWP MSGs MWP MSGs MWP MSGs MWP
30.122 4b, 4a 60.430 4b, 4a, 8h, 8c 126.376 II 185.199 4b
31.128 4b, 4a 60.431 4c, 4b, 4a 126.378 4c, 8f 185.202 4b, 6c
31.129 4a 60.432 4c, 4b, 4a, 4d 126.379 8f 186.204 II
31.130 4c, 4b, 4a 61.434 II 126.383 186.206
31.131 4b, 4a 61.435 126.384 4c, 8e, 4a 186.208 6c
31.133 4a 61.436 4b, 4a 126.385 8e, 8f 187.214
32.139 4b, 4a 61.437 126.386 8f 188.216 II
32.142 4a 61.438 8c, 8d, 8b 127.396 4a 188.217
32.143 4b, 4a 61.439 4b, 4a, 8e 127.398 4c, 4a 189.226 4c
33.145 II 61.440 8c, 8d, 8b, 8e 128.400 II 190.228 II
33.149 4a 62.442 II 128.402 4c 190.230
33.150 8a 62.445 4c 128.403 4c, 4d 191.242
33.151 4b, 4a 62.446 4c, 4b, 4a 128.406 192.244 II
33.153 4a 62.447 4c, 4b, 4a 128.407 192.246 4c, 4d, 6f
33.154 4a 62.448 4c, 4b, 4a 128.408 4d, 4a 192.247 4d, 6f
34.160 4b, 4a 62.450 4b, 4a, 8d 128.409 4c, 4d, 8f 192.248 6g, 6f
34.161 4b, 4a 62.451 4d, 4b 129.420 8d 192.249 4c, 6g, 6f
34.162 4b, 4a 62.452 8c, 8d, 8b 129.422 8f 192.251
34.163 4c, 4b, 4a 62.454 4c, 4b, 4a 130.424 II 193.253 4c, 6f
48.262 4b, 4a, 8e 62.455 8c, 8e 130.426 8d 193.254 II
48.263 4f, 4e 63.467 8d, 8a, 8f 130.427 4a, 8d 193.256 4c, 4d
49.272 4c, 4a, 4f, 4h 67.508 8c, 8e, 8b 130.428 4b, 4a 193.258 6f
49.274 4c, 4d, 4g 68.518 8c, 8e, 8g, 8a 130.429 4c, 4b, 4a, 8d 193.261
49.275 4c, 4d 73.549 II 130.430 193.262 4c, 6g
49.276 4c, 4d 73.552 8c, 8d, 8e 130.431 4c 194.263 6g
50.284 4d, 4b, 4f, 4h 74.561 8e, 8d, 8b, 8a 130.432 4c, 4a, 8d 194.264 II
50.285 4c, 8e, 4d 84.56 4e 130.433 8e, 4a, 8f 194.267
50.286 8d, 8h 84.58 4c, 4d 130.434 8e, 4a 194.269 6g
50.288 8e 85.64 4c, 4a, 8d 131.444 194.271
51.299 4c, 4a, 4f 85.66 8f 131.445 8e 194.272 6g
51.300 4b, 4a 86.72 4b, 8d 131.446 198.10 II
51.301 4b, 4a 86.74 8f 132.456 4f 198.11 12b, 8a
51.303 4b, 4a, 4f, 4e 89.94 132.457 4b 205.34 II
51.304 4b, 4a 90.100 4c, 4b 132.458 205.35
52.306 II 91.109 8c, 8b, 8a 133.460 II 205.36 24d, 8b
52.310 4c, 4b, 4a, 4d 91.110 4b, 4a, 8f 133.462 4b, 8e 206.38 II
52.311 4c, 4b, 4a, 4d 92.112 II 133.463 8e 206.39 24d
52.313 4c, 4d 92.115 4a 133.467 212.59
52.314 4b, 4a, 8g 92.116 4b, 4a, 8d 133.468 4d, 8e 212.60 II
52.315 4c, 4d, 8f, 4b, 4a 93.126 133.469 8e, 8f 212.62 8b, 12d, 12c
52.316 8c, 8d, 8a, 8e 94.132 4b 133.470 8e 213.63
52.317 4c, 4b, 4a, 4d 95.141 8c, 8b, 8a 134.480 8e 213.64 II
52.318 4c, 8d 95.142 4b, 4a, 8f 134.481 4c, 4d 213.66 12d, 12c, 8a
52.319 4b, 4a, 8d, 8h 96.144 II 134.482 8f 215.73
52.320 4b, 4a, 4e 96.147 4a 135.484 II 216.77
53.330 4c, 4a, 4f, 4e 96.148 4b, 4a, 8d 135.486 4c, 4a 218.82 II
53.331 4b, 4a, 8g 99.168 135.489 4c, 4b, 4a, 4d 219.86 II
53.332 4c, 4f, 4g, 4h, 4a, 4e 99.170 135.490 220.89 12a, 12b, 16c

41



TABLE VIII – Continued from previous page
MSGs MWP MSGs MWP MSGs MWP MSGs MWP
53.333 4b, 4a, 4f, 4e 100.176 4a 135.491 220.90 II
53.335 4b, 4a, 8e 100.178 4a 135.492 4d 221.97
53.336 4b, 4a, 4e 101.184 4c 135.494 4d, 4b 222.99 II
54.338 II 101.186 136.504 222.101 8c
54.342 4c, 4d, 4b, 4a, 4e 102.192 136.505 4a, 4e 222.102
54.344 4c, 4d, 4b, 4a, 4e 102.193 4c, 4b 136.506 4c, 4d 223.105 II
54.345 4c, 4d, 4e 102.194 4b 137.508 II 223.108
54.347 8c, 8d, 8a, 8e 103.196 II 137.510 8e 223.109
54.348 4b, 4a, 4f, 4e 103.201 8c, 4a 137.511 8e 224.115
54.349 8c, 8e 103.202 4a 137.514 225.121
54.351 4b, 4a, 8h, 8c 104.204 II 137.516 8d 226.123 II
54.352 8c, 8d, 8a, 8e 104.208 4b, 4a 137.517 8e, 8f 226.126
55.361 4c, 4a 104.209 4b, 8c 137.518 8f 227.133 96f
55.362 4b, 4a, 8e 105.216 138.520 II 228.135 II
55.364 4c, 4b, 4a, 4d 105.217 8c 138.522 4c, 4d 228.137 32b, 32c
56.366 II 105.218 138.524 4b, 4a 228.138
56.369 4c, 4b, 4a, 4d 106.220 II 138.525 4c, 4d, 4b, 4a, 4e 230.145 24d, 16a
56.370 4c, 4b, 4a, 4d 106.224 4b 138.527 4e 230.146 II
56.371 4c, 4d 106.226 4b 138.528 4b, 8d 230.147 24c, 24d, 16b
56.372 8c, 8d, 8b, 8e 109.244 16b 138.530 8e 230.149
56.373 4b, 4a, 8c
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TABLE IX: List of all single-valued magnetic space group

(type I,II,III,IV) with 2-fold high symmetry planes, therefore

all possible cases in magnons. The first column (MSGs) uses

the BNS convention for the magnetic space group. The sec-

ond (MWP) indicates the maximal Wyckoff position, if the

magnon degenerate EBR is directly deducible from it (com-

patibility with magnetic order). If blank space then the de-

generate EBR can only be induced in a composite magnon

BR from a lower symmetric Wyckoff position. The type II

group with pure time-reversal are also listed for complete-

ness, signed with II, but they are not relevant for ordered

magnonic systems with strong spin-orbit as considered in this

paper.

MSGs MWP MSGs MWP MSGs MWP MSGs MWP
3.5 2c, 2a, 2d, 2b 51.304 4b, 4a 64.471 8e 128.400 II
3.6 2a, 2b 52.306 II 64.472 8e 128.401 4d
4.8 II 52.307 4c, 4d 64.475 4b, 4a, 8e, 8c 128.402 4c
4.9 2a 52.309 4c, 4d 64.476 4b, 4a, 8e, 8c 128.405 4c, 4d, 2a, 2b
4.10 4a 52.310 4c, 4b, 4a, 4d 64.479 8c, 8e, 8b, 8f 128.406
10.48 2c, 2g, 2a, 2d 52.311 4c, 4b, 4a, 4d 65.488 8e 128.408 4d, 4a
10.49 2c, 2a, 2d, 2b 52.314 4b, 4a, 8g 65.490 8e, 8f 128.410 4c, 2a, 2b
11.51 II 52.316 8c, 8d, 8a, 8e 66.498 4b, 4a, 8e 129.412 II
11.52 2e 52.317 4c, 4b, 4a, 4d 66.500 4b, 4a, 8e 129.413
11.54 2d, 2a, 2b, 2c, 2e 52.318 4c, 8d 67.508 8c, 8e, 8b 129.414 4d, 4e
11.55 4c, 4a, 4e 52.319 4b, 4a, 8d, 8h 67.510 8c, 8d 129.417 4d, 2a, 2b, 2c, 4e
13.71 4d, 4a, 4f, 4e 52.320 4b, 4a, 4e 68.518 8c, 8e, 8g, 8a 129.418
13.73 4f, 4e 53.322 II 68.520 8c, 8d, 8f 129.420 8d
13.74 4b, 4a, 4e 53.323 4g 75.4 4c, 2a, 2b 129.422 8f
14.76 II 53.324 4g 75.6 4b, 2a 130.424 II
14.77 53.327 2d, 4g, 2a, 2b, 2c 76.8 II 130.425 4c, 4a
14.79 2c, 2a, 2d, 2b 53.328 2d, 4g, 2a, 2b, 2c 76.11 8a 130.426 8d
14.80 4c, 4a 53.330 4c, 4a, 4f, 4e 77.16 4c 130.429 4c, 4b, 4a, 8d
14.82 4c, 4d, 4e 53.331 4b, 4a, 8g 77.18 4b 130.430 4b
16.4 2f, 2e, 2h, 2b 53.333 4b, 4a, 4f, 4e 78.20 II 130.432 4c, 4a, 8d
16.5 4k 53.334 2c, 2a, 2d, 2b 78.23 8a 130.434 4b, 4a, 8e
16.6 53.335 4b, 4a, 8e 81.36 2c, 4g, 2a 131.444
17.8 II 53.336 4b, 4a, 4e 81.38 2a, 2b 131.445 8e
17.10 2c, 2a, 2d, 2b 54.338 II 83.48 2c, 2a, 4e 131.446
17.11 4c, 4b, 4a, 4d 54.340 4c, 4d, 4e 83.50 4c, 2a, 2b 132.456 4f
17.13 2d, 4k, 2a, 2b, 2c 54.341 4c, 4d, 4e 84.56 4e 132.457 4b
17.14 4b, 4a 54.342 4c, 4d, 4b, 4a, 4e 84.58 4c, 4d 132.458
17.15 4c, 4b, 4a 54.344 4c, 4d, 4b, 4a, 4e 85.64 4c, 4a, 8d 133.468 4d, 8e
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TABLE IX – Continued from previous page
MSGs MWP MSGs MWP MSGs MWP MSGs MWP
18.17 II 54.347 8c, 8d, 8a, 8e 85.66 4d, 8f 133.469 4b, 8e, 8f
18.18 2a, 2b 54.348 4b, 4a, 4f, 4e 86.72 4b, 8d 133.470 8e
18.19 2a, 2b 54.349 8c, 8e 86.74 8f 134.480 8e
18.20 4c, 4b, 4a, 4d 54.350 4g, 4f, 4b, 4a, 4e 89.92 2d, 4f, 2b 134.481 4c, 4d
18.21 4b, 4a 54.351 4b, 4a, 8h, 8c 89.93 4f, 4e 134.482 8f
18.22 4b, 4a 54.352 8c, 8d, 8a, 8e 89.94 4d 135.484 II
18.24 2c, 2a, 2d, 2b 55.354 II 90.96 II 135.485 4d
19.26 II 55.355 90.98 2c, 2a, 2b 135.486 4c, 4a
19.27 4a 55.356 90.99 135.489 4c, 4b, 4a, 4d
19.28 4b, 4a 55.357 2c, 2a, 2d, 2b 90.100 4c, 4b 135.490 4b
19.29 4b, 4a 55.358 2c, 2a, 2d, 2b 90.102 4c, 2a, 2b 135.492 4d
20.32 II 55.360 4c, 4d, 4f, 4e 91.104 II 135.494 4d, 4b
20.34 4b, 4a 55.361 4c, 4a 91.109 8c, 8b, 8a 136.496 II
20.36 8c, 8d, 8b, 8a 55.362 4b, 4a, 8e 91.110 4b, 4a, 8f 136.497
21.42 4c, 4d, 8k 55.364 4c, 4b, 4a, 4d 92.112 II 136.498 4c
21.44 4c, 4d 56.366 II 92.114 4a 136.501 4c, 4d, 2a, 2b
25.61 56.367 4c, 4d 92.115 4a 136.502 4d
25.64 56.368 4c, 4d 92.116 4b, 4a, 8d 136.504
25.65 56.369 4c, 4b, 4a, 4d 92.117 8c, 8b, 8a 136.506 4c, 4d
26.67 II 56.370 4c, 4b, 4a, 4d 93.124 4f 137.508 II
26.68 2a, 2b 56.372 8c, 8d, 8b, 8e 93.125 4c, 4b, 4d 137.509
26.69 2a, 2b 56.373 4b, 4a, 8c 93.126 137.510 4d, 8e
26.71 4b, 4a 56.374 4b, 4a, 8e 94.128 II 137.513 4d, 8e, 2a, 2b
26.72 4b, 4a 56.376 4b, 4a, 8e 94.130 4d, 2a, 2b 137.514
26.76 4a 57.378 II 94.131 4d 137.516 8d
27.82 2c, 2a, 2d, 2b 57.379 4c, 4d 94.132 4b 137.518 8f
27.85 4c, 4b, 4a 57.380 4c, 4d 94.134 4c, 4d 138.520 II
27.86 4b, 4a 57.381 4c, 4d 95.136 II 138.521 4a
28.94 4c, 4b, 4a 57.382 4c, 4b, 4a, 4d 95.141 8c, 8b, 8a 138.522 4c, 4d
28.95 4b, 4a 57.383 4c, 4b, 4a, 4d 95.142 4b, 4a, 8f 138.525 4c, 4d, 4b, 4a, 4e
28.96 4c, 4b, 4a 57.384 4c, 4b, 4a, 4d 96.144 II 138.526 4b, 4e
28.98 4b, 4a 57.386 8c, 8d, 8a 96.146 4a 138.528 4b, 8d
29.100 II 57.387 4c, 4d, 4f, 4e 96.147 4a 138.530 8e
29.101 4a 57.388 4d, 4b, 4f, 4e 96.148 4b, 4a, 8d 168.112 4b, 2a, 6c
29.102 4a 57.390 8c, 8e 96.149 8c, 8b, 8a 169.114 II
29.104 4b, 4a 57.391 4c, 8d 99.168 169.115 6a
29.105 8a 57.392 4b, 4a, 8e 99.170 170.118 II
29.109 4a 58.394 II 100.176 4a 170.119 6a
30.118 4c, 4b, 4a 58.395 100.178 4a 171.124 6b, 6a
30.119 2a, 2b 58.396 101.184 4c 172.128 6b, 6a
30.120 4a 58.397 2c, 2a, 2d, 2b 101.186 173.130 II
30.122 4b, 4a 58.398 2c, 2a, 2d, 2b 102.192 173.131 2a, 2b
31.124 II 58.400 4c, 4d, 8g 102.194 4b 175.142 4c, 2a, 6f
31.125 2a 58.401 4c, 4a 103.200 4c, 2a, 2b 176.144 II
31.126 2a 58.402 4c, 4b, 4a 103.202 4b, 4a 176.145 2c, 2a, 2d
31.128 4b, 4a 58.404 2c, 2a, 2d, 2b 104.208 4b, 4a 176.147 6g, 2b
31.129 4a 59.406 II 104.210 4b, 2a 177.154 4d, 6g, 2b
31.133 4a 59.407 2a, 2b 105.216 178.156 II
32.139 4b, 4a 59.408 105.218 178.157 6b, 6a
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32.142 4a 59.409 4c, 4d, 2a, 2b 106.224 4b 178.158 6b, 6a
32.143 4b, 4a 59.410 4c, 4d, 2a, 2b 106.226 4b 179.162 II
33.145 II 59.412 4d, 4b, 4f 111.256 4f 179.163 6b, 6a
33.146 4a 59.413 8c 111.257 4g 179.164 6b, 6a
33.147 4a 59.414 8d 111.258 180.172 6b, 6d
33.149 4a 59.416 8k 112.264 2d, 2a, 4e 181.178 6b, 6d
33.150 8a 60.418 II 112.265 4c, 8i 182.180 II
33.154 4a 60.419 4c 112.266 4d 182.181 2a
34.161 4b, 4a 60.420 4c 113.268 II 182.182 2c, 2d, 2b
34.162 4b, 4a 60.421 4c 113.269 183.190
34.164 2a, 2b 60.422 4c, 4b, 4a 113.271 2c, 2a, 2b 184.196 4b, 2a, 6c
35.169 8c 60.423 4c, 4b, 4a 113.272 4a 185.198 II
35.171 8b 60.424 4c, 4b, 4a 113.274 4c, 4d 185.199 4b
36.173 II 60.426 8c, 8d, 8b, 8e 114.276 II 185.200 4b, 2a
36.174 4a 60.427 8c, 8d, 8a 114.277 4d 186.204 II
36.175 4a 60.428 4c, 4d, 8g 114.279 4d, 2a, 2b 186.205 2a, 2b
36.178 8b, 8a 60.429 8c, 8e 114.280 4c, 4b 186.206
37.184 4b, 4a, 8c 60.431 4c, 4b, 4a 114.282 4c, 2a, 2b 191.242
37.186 4a, 8b 60.432 4c, 4b, 4a, 4d 115.288 192.252 4c, 2a, 6f
47.254 61.434 II 115.290 193.254 II
47.255 61.435 116.296 2c, 4g, 2d 193.256 4c, 4d
47.256 61.436 4b, 4a 116.298 4d, 4b 193.257 4c, 2a
48.262 4b, 4a, 8e 61.438 8c, 8d, 8b 117.304 4d, 4a 193.258 6f
48.263 4f, 4e 61.439 4b, 4a, 8e 117.306 4b, 4a 193.259 4d, 6f, 2b
48.264 8k 62.442 II 118.312 4d, 4b 194.264 II
49.272 4c, 4a, 4f, 4h 62.443 4c 118.314 2c, 2d 194.266 2c, 2d, 2b
49.273 2f, 2e, 2a, 2b 62.444 4c 123.348 194.267
49.274 4c, 4d, 4g 62.445 4c 123.349 194.268 6g, 2a
49.275 4c, 4d 62.446 4c, 4b, 4a 123.350 194.269 6g
49.276 4c, 4d 62.447 4c, 4b, 4a 124.360 2c, 4f, 2a 195.3
50.284 4d, 4b, 4f, 4h 62.448 4c, 4b, 4a 124.361 4b, 8f 198.10 II
50.285 4c, 8e, 4d 62.450 4b, 4a, 8d 124.362 4c, 4d 200.17
50.286 8d, 8h 62.451 4d, 4b 125.372 4b, 8e 201.21 8c
50.287 4f, 4e 62.452 8c, 8d, 8b 125.373 4f, 4e 205.34 II
50.288 8e 62.453 4c, 8d 125.374 8e 207.43 8c, 12d
51.290 II 62.454 4c, 4b, 4a 126.384 4c, 8e, 4a 208.47
51.292 2f, 2e 62.455 8c, 8e 126.385 8e, 8f 212.60 II
51.293 63.458 II 126.386 4d, 8f 213.64 II
51.294 2d, 2a, 2b, 2f, 2c, 2e 63.459 4c 127.388 II 215.73
51.296 2d, 2a, 2b, 2f, 2c, 2e 63.460 127.389 218.84 12d
51.299 4c, 4a, 4f 63.463 4c, 4b, 4a, 8d 127.390 221.97
51.300 4b, 4a 63.464 4c, 4b, 4a, 8d 127.393 2c, 2a, 2d, 2b 222.103 8c, 12d
51.301 4b, 4a 63.467 8d, 8a, 8f 127.394 223.109
51.302 4f, 4e 64.470 II 127.396 4a 224.115
51.303 4b, 4a, 4f, 4e 127.398 4c, 4a
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TABLE X: List of magnetic space groups and relative Wyck-

off positions which host a single decomposable EBR for spin

waves. The column ”MSGs” indicate the number of the space

group in BNS setting, ”MWP” the maximal Wyckoff position,

”MPG” the magnetic point group isomorphic to the site sym-

metry group and finally ”Bands” the number of bands com-

posing the EBR. Total of 445 EBRs out of the 1907 single-

valued ones.

MSGs MWP MPG Bands MSGs MWP MPG Bands MSGs MWP MPG Bands
9.41 8a 1 4 89.92 4f 2′2′2 4 147.16 6e −1 6
12.62 4e −1 2 90.101 4e 2′2′2 4 148.17 9d −1 3
12.62 4f −1 2 90.101 4f 2′2′2 4 148.17 9e −1 3
15.90 8f −1 4 90.102 4c 2′2′2 4 148.20 18e −1 6
15.91 8a −1 4 91.109 8a 2 8 150.27 2d 3 2
15.91 8b −1 4 91.109 8b 2′ 8 150.28 4d 3 4
15.91 8e 2 4 92.116 8d 2′ 8 157.55 2b 3 2
15.91 8f 2′ 4 92.117 8a 2 8 159.64 4b 3 4
18.23 4k 2′ 4 92.117 8b 2′ 8 162.73 3f 2/m 3
20.35 8k 2′ 4 92.117 8c 2′ 8 162.73 3g 2/m 3
21.40 4k 2 2 92.118 8f 2′ 8 162.77 2c 32′ 2
21.41 4k 2′ 2 94.129 4d 2 4 162.77 2d 32′ 2
21.42 8k 2 4 94.130 4d 2 4 162.77 3f 2′/m′ 3
23.52 8k 2′ 4 94.133 4c 2′2′2 4 162.77 3g 2′/m′ 3
24.56 8k 2 4 94.133 4d 2′2′2 4 162.78 6f 2/m 6
29.105 8a 1 8 94.133 4e 2′2′2 4 163.79 6g −1 6
32.141 4c 2′ 4 95.141 8a 2 8 163.83 6g −1 6
35.167 4c 2′ 2 95.141 8b 2′ 8 163.84 4c 32′ 4
35.168 4c 2 2 96.148 8d 2′ 8 163.84 6f 2′/m′ 6
36.177 8c 2′ 4 96.149 8a 2 8 164.85 3e 2/m 3
36.179 8b 2′ 4 96.149 8b 2′ 8 164.85 3f 2/m 3
37.184 8c 2 4 96.149 8c 2′ 8 164.89 2d 3m′ 2
37.185 8a 2 4 96.150 8f 2′ 8 164.89 3e 2′/m′ 3
37.185 8b 2′ 4 97.154 4c 2′2′2 2 164.89 3f 2′/m′ 3
37.185 8c 2′ 4 97.154 4d 2′2′2 2 164.90 6e 2/m 6
37.185 8d 2 4 97.156 8e 2′2′2 4 165.91 4d 3 4
37.186 8b 2 4 97.156 8f 2′2′2 4 165.91 6e −1 6
41.217 8a 2 4 98.160 8f 2′ 4 165.93 4d 3 4
41.217 8b 2′ 4 98.162 8a 2′2′2 4 165.95 4d 3 4
41.217 8c m′ 4 98.162 8b 2′2′2 4 165.95 6e −1 6
41.218 8b 2′ 4 98.162 8c 2′2′2 4 165.96 4d 3m′ 4
42.221 8b 2′ 2 99.167 2c m′m′2 2 165.96 6e 2′/m′ 6
42.222 8b 2 2 100.177 4c m′m2′ 4 166.97 9d 2/m 3
43.228 16a 2 4 101.182 4c 2 4 166.97 9e 2/m 3
43.228 16b 2′ 4 101.183 4c 2 4 166.101 9d 2′/m′ 3
45.239 8c 2′ 4 102.190 4b 2 4 166.101 9e 2′/m′ 3
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TABLE X – Continued from previous page
MSGs MWP MPG Bands MSGs MWP MPG Bands MSGs MWP MPG Bands
45.240 8a 2 4 102.191 4b 2 4 166.102 18e 2/m 6
45.240 8b 2′ 4 103.195 4c 2 4 167.103 18d −1 6
45.240 8c m′ 4 103.199 4c 2 4 167.107 18d −1 6
48.262 8e −1 8 103.200 4c m′m′2 4 167.108 18e 2′/m′ 6
48.264 8k −1 8 103.201 8c 2′ 8 168.109 2b 3 2
50.281 4e −1 4 104.203 4b 2 4 168.109 3c 2 3
50.281 4f −1 4 104.207 4b 2 4 168.111 3c 2′ 3
50.286 8h 2′ 8 104.209 8c 2′ 8 168.112 4b 3 4
52.314 8g 2 8 104.210 4b m′m′2 4 168.112 6c 2 6
52.315 8f −1 8 105.217 8c 2′ 8 173.132 6c 2′ 6
52.318 8d −1 8 106.219 4b 2 4 175.137 2c −6 2
52.319 8d −1 8 106.222 4a 2 4 175.137 2d −6 2
52.319 8h 2 8 106.225 4a m′m′2 4 175.137 3f 2/m 3
53.323 4g 2′ 4 106.225 8c 2′ 8 175.137 3g 2/m 3
53.325 4g 2′ 4 107.231 4b m′m′2 2 175.141 3f 2′/m′ 3
53.326 4g 2′ 4 108.238 8c m′m2′ 4 175.141 3g 2′/m′ 3
53.328 4g 2 4 109.244 16b 2′ 8 175.142 4c −6 4
54.347 8c 2 8 110.245 8a 2 4 175.142 6f 2/m 6
54.347 8e 2′ 8 110.248 8a 2 4 176.143 6g −1 6
56.373 8c −1 8 110.250 8a m′m′2 4 176.147 6g −1 6
56.374 8e 2 8 110.250 16b 2′ 8 176.148 6g 2′/m′ 6
56.376 8e −1 8 111.255 2e 2′2′2 2 177.151 3f 2′2′2 3
58.400 8g 2′ 8 111.255 2f 2′2′2 2 177.151 3g 2′2′2 3
59.409 4c −1 4 112.264 4e 2′2′2 4 177.152 3f 2′2′2 3
59.409 4d −1 4 112.265 8i 2′ 8 177.152 3g 2′2′2 3
60.426 8b −1 8 113.273 4g m′m2′ 4 177.153 2c 32′ 2
60.426 8c 2′ 8 114.275 4d 2 4 177.153 2d 32′ 2
60.426 8d 2′ 8 114.277 4d 2 4 177.153 3f 2′2′2 3
60.426 8e 2 8 114.279 4d 2 4 177.153 3g 2′2′2 3
60.428 8g 2′ 8 114.281 8i 2′ 8 177.154 4d 32′ 4
60.429 8c −1 8 114.282 4c 2′2′2 4 177.154 6g 2′2′2 6
60.429 8e 2′ 8 115.287 2g m′m′2 2 182.184 6f 2′2′2 6
60.430 8c −1 8 116.291 4i 2 4 182.184 6g 2′2′2 6
60.430 8h 2′ 8 116.294 4i 2 4 183.187 3c m′m2′ 3
61.438 8b −1 8 116.295 4i 2 4 183.188 3c m′m2′ 3
61.438 8c 2′ 8 116.296 4g m′m′2 4 183.189 2b 3m′ 2
61.438 8d m′ 8 117.305 4e 2′2′2 4 183.189 3c m′m′2 3
61.439 8e 2′ 8 117.305 4f 2′2′2 4 184.191 4b 3 4
61.440 8b −1 8 120.326 8e 2′2′2 4 184.191 6c 2 6
61.440 8c 2′ 8 120.326 8f 2′2′2 4 184.193 6c 2′ 6
61.440 8d 2′ 8 121.331 4c 2′2′2 2 184.194 6c 2′ 6
61.440 8e 2′ 8 121.331 4d −4 2 184.195 4b 3 4
62.455 8e 2′ 8 121.332 8g m′m2′ 4 184.195 6c 2 6
63.462 8d −1 4 122.335 8d 2′ 4 184.196 4b 3m′ 4
63.464 8d −1 4 122.337 8d 2′ 4 184.196 6c m′m′2 6
64.471 8e 2′ 4 123.345 2e m′m′m 2 185.200 4b 3 4
64.473 8e 2′ 4 123.345 2f m′m′m 2 185.201 4b 3 4
64.474 8c −1 4 124.351 4e 2/m 4 185.202 6c m′m2′ 6
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TABLE X – Continued from previous page
MSGs MWP MPG Bands MSGs MWP MPG Bands MSGs MWP MPG Bands
64.474 8e 2′ 4 124.353 4f 2′2′2 4 186.208 6c m′m2′ 6
64.475 8e 2′ 4 124.357 4e 2/m 4 189.225 2c −6 2
64.476 8c −1 4 124.357 4f 2′2′2 4 189.225 2d −6 2
64.476 8e 2 4 124.360 4f m′m′m 4 190.232 4d −6 4
64.477 8e 2 4 125.369 4e 2′/m′ 4 191.238 3f m′m′m 3
65.485 4e 2/m 2 125.369 4f 2′/m′ 4 191.238 3g m′m′m 3
65.485 4f 2/m 2 126.375 8f −1 8 191.239 3f m′m′m 3
66.498 8e 2/m 4 126.377 4c 2′2′2 4 191.239 3g m′m′m 3
66.500 8e 2/m 4 126.381 4c 2′2′2 4 191.240 2c −6m′2′ 2
68.513 8h 2′ 4 126.381 8f −1 8 191.240 2d −6m′2′ 2
68.514 8h 2 4 126.384 8e 2′/m′ 8 191.240 3f m′m′m 3
68.515 8h 2 4 126.385 8f 2′2′2 8 191.240 3g m′m′m 3
68.516 8c −1 4 126.386 8f 2′/m′ 8 192.243 4d −6 4
68.516 8d −1 4 128.399 4c 2/m 4 192.243 6g 2/m 6
68.516 8h 2′ 4 128.401 4d 2′2′2 4 192.245 4c 32′ 4
68.517 8h 2 4 128.405 4c 2/m 4 192.245 6f 2′2′2 6
68.519 8f 2′2′2 4 128.409 8f 2′2′2 8 192.246 6f 2′2′2 6
68.519 8g 2′2′2 4 128.410 4c m′m′m 4 192.247 6f 2′2′2 6
69.524 8e 2/m 2 129.417 4d 2′/m′ 4 192.248 6f 2′2′2 6
69.524 8f 2′2′2 2 129.417 4e 2′/m′ 4 192.248 6g 2′/m′ 6
70.532 16b 2′2′2 4 130.423 8d −1 8 192.249 6f 2′2′2 6
70.532 16c 2′2′2 4 130.429 8d −1 8 192.249 6g 2′/m′ 6
70.532 16d 2′2′2 4 130.432 8d 2′/m′ 8 192.250 4c 32′ 4
70.532 32e −1 8 130.433 8f 2′2′2 8 192.250 4d −6 4
71.536 8k −1 4 130.434 8e 2′/m′ 8 192.250 6f 2′2′2 6
72.543 8e −1 4 132.451 4f 2/m 4 192.250 6g 2/m 6
72.544 8e −1 4 132.453 4e 2′2′2 4 192.252 4c −6m′2′ 4
73.550 8c 2 4 132.453 4f 2/m 4 192.252 6f m′m′m 6
73.550 8d 2′ 4 132.454 4e 2′2′2 4 193.253 6f 2/m 6
73.550 8e 2′ 4 133.461 4b 2′2′2 4 193.257 4c −6 4
75.1 2c 2 2 133.462 8e −1 8 193.258 6f 2/m 6
75.4 4c 2 4 133.465 8e −1 8 193.259 4d 32′ 4
75.5 4c 2′ 4 133.466 4a 2′2′2 4 193.259 6f 2′/m′ 6
75.6 4b 2 4 133.469 8e 2′2′2 8 193.260 4c −6 4
76.11 8a 1 8 134.477 4c 2′2′2 4 193.260 4d 32′ 4
77.17 4a 2 4 134.477 4d 2′2′2 4 193.260 6f 2′/m′ 6
77.17 4b 2 4 134.478 4c 2′2′2 4 193.262 6g m′m′m 6
77.17 4c 2′ 4 135.485 4d 2′2′2 4 194.263 6g 2/m 6
78.23 8a 1 8 135.493 8e 2′2′2 8 194.268 6g 2′/m′ 6
79.25 4b 2 2 136.499 4c 2/m 4 194.269 6g 2/m 6
79.28 8c 2′ 4 136.501 4c 2/m 4 194.270 6g 2′/m′ 6
80.32 8a 2′ 4 137.510 8e −1 8 194.272 6g m′m′m 6
80.32 8b 2′ 4 137.512 4d m′m′2 4 198.11 12b 2′ 12
80.32 8c 2 4 137.513 4d m′m′2 4 203.29 48d 2′2′2 12
81.33 2g 2 2 137.513 8e −1 8 205.36 24d 2′ 24
81.36 4g 2 4 137.517 8e 2′2′2 8 206.37 24d 2 12
81.37 4g 2′ 4 139.537 4c m′m′m 2 207.43 12d 2′2′2 12
82.42 8g 2′ 4 139.537 8f 2′/m′ 4 210.55 32c 32′ 8
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TABLE X – Continued from previous page
MSGs MWP MPG Bands MSGs MWP MPG Bands MSGs MWP MPG Bands
83.43 2e 2/m 2 140.547 8e 2′/m′ 4 210.55 48d 2′2′2 12
83.43 2f 2/m 2 141.560 16c 2′2′2 8 210.55 48e 2′2′2 12
83.48 4e 2/m 4 142.563 8b 2′2′2 4 210.55 48f 2′2′2 12
83.50 4c 2/m 4 142.563 16e 2′ 8 211.58 8c 32′ 4
85.59 4d −1 4 142.564 16c −1 8 211.58 12d 2′2′2 6
85.59 4e −1 4 142.564 16e 2′ 8 212.62 12c 2′2′2 12
85.64 8d −1 8 142.566 16e 2 8 212.62 12d 2′2′2 12
85.66 8f −1 8 142.567 16c −1 8 213.66 12c 2′2′2 12
86.67 4e 2 4 142.567 16e 2′ 8 213.66 12d 2′2′2 12
86.70 4e 2 4 142.568 16e 2′ 8 218.84 12d −4 12
86.71 4e 2 4 142.569 16e 2 8 222.98 12d −4 12
87.75 4c 2/m 2 142.570 16c 2′2′2 8 222.103 12d −42′m′ 12
87.75 8f −1 4 147.13 2d 3 2 223.106 8e 32′ 8
88.86 16c −1 8 147.13 3e −1 3 224.113 12f 2′2′2 12
88.86 16e 2′ 8 147.13 3f −1 3 227.133 96f 2′2′2 24
89.90 2e 2′2′2 2 147.16 4d 3 4 228.139 96f 2′2′2 24
89.90 2f 2′2′2 2

49


