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Quantum dynamics with local interactions in lattice models display rich physics, but is notoriously
hard to study. Dual-unitary circuits allow for exact answers to interesting physical questions in
clean or disordered one- and higher-dimensional quantum systems. However, this family of models
shows some non-universal features, like vanishing correlations inside the light-cone and instantaneous
thermalization of local observables. In this work we propose a generalization of dual-unitary circuits
where the exactly calculable spatial-temporal correlation functions display richer behavior, and
have non-trivial thermalization of local observables. This is achieved by generalizing the single-gate
condition to a hierarchy of multi-gate conditions, where the first level recovers dual-unitary models,
and the second level exhibits these new interesting features. We also extend the discussion and
provide exact solutions to correlators with few-site observables and discuss higher-orders, including
the ones after a quantum quench. In addition, we provide exhaustive parametrizations for qubit
cases, and propose a new family of models for local dimensions larger than two, which also provides
a new family of dual-unitary models.

I. INTRODUCTION

One of the pivotal problems in quantum many-body
physics is understanding the dynamics of extended sys-
tems with local interactions. Although the local interac-
tions are simple, they generate complex dynamics, which
is in general too hard to describe. The dynamics can be
characterized with different probes such as local correla-
tion functions, entanglement spreading, and other quan-
tum information quantities. The understanding of this
type of dynamics is currently at the center of attention
in many fields spanning from nonequilibrium statistical
mechanics, quantum information, condensed matter to
high-energy physics and quantum gravity.

However, the complexity of quantum dynamics, both
analytically and numerically, presents a significant hur-
dle. For example, the bond dimension of Matrix Prod-
uct States (MPS) typically increases exponentially due
to the linear growth in entanglement entropy [1, 2]. This
necessitates the use of solvable models to unravel many-
body behavior. The most well-known examples are non-
interacting (Gaussian) systems such as free fermions or
bosons, Clifford circuits, and Bethe-ansatz interacting in-
tegrable models [3]. Unfortunately, all of these models
are not chaotic, in contrast to generic examples. If one is
prepared to average over an ensemble of systems, random
unitary circuits [4] provide examples of solvable chaotic
dynamics. However, the averaged results miss a lot of
relevant physics and are less relevant for translationally
invariant systems.

A recently discovered solvable family of models, known
as dual-unitary quantum circuits [5], has distinctly differ-
ent solvable structure which does not require averaging,
and moreover contains both integrable and chaotic exam-
ples. The basic property, which enables solvability is the
unitarity of the local gates in the space direction. In this
paper, we generalize this to a condition on a few gates
and unravel new families of solvable models.

Dual unitarity was shown to enable analytical com-

putations of correlation functions [5, 6], chaos indicator
spectral form factor [7, 8], operator and entanglement
spreading [6, 9–15], deep thermalization through emer-
gent state designs [16–18], study of eigenstate thermaliza-
tion [19] and temporal entanglement [20–22]. They also
proved useful in connections with measurement induced
phase transitions [23–25], had aspects of their computa-
tional power characterized [26], and have already been
realized in experimental setups [27, 28]. The exhaustive
parametrization is simple and is known for dual-unitary
gates of two qubits [5]. In general, however, only certain
non-exhaustive families of gates are known [29–36]. Some
extension of the dual-unitary condition were already pro-
posed. One can add arbitrary perturbations and perform
a perturbative analysis [37, 38], generalize to the case
of having three or more unitary directions [35, 39, 40],
study random and hologoraphic geometries [41, 42], and
lift the ideas to open systems [43] and classical symplectic
circuits [44].

Despite the success of the dual-unitary circuits (and
its extension) in describing physical properties of non-
equibrium dynamics, they exhibit some non-universal
features. Firstly, in dual-unitary circuits the non-
vanishing correlation functions exist only on light-cones
edges. Secondly, the thermalization of local observables
is instantaneous. The fundamental reason behind these
non-universal features is that their single gate’s condi-
tions are too restrictive. In fact, this family of models
doesn’t even include many gates that are solvable by
other methods, e.g. the Identity, Controlled-Not and
Controlled-Z. This raises the question: Can the dual-
unitary condition be relaxed to allow for richer physics
while still maintaining the solvability of the spatial-
temporary correlation function?

In this paper, we answer these questions in the affirma-
tive by relaxing the dual-unitary condition and extend-
ing it to a hierarchy of conditions that contains more and
more local gates. The dual-unitary condition on one gate
forms the the first level of the Hierarchy denoted by L1,
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whereas the circuit with two-gate condition at the second
level of the Hierarchy L2 allows for the exact calculation
of two-point correlation functions, which are richer than
for dual unitaries, i.e. non-vanishing at the same site
and different times. Moreover, when quenched from the
solvable initial states, the L2 circuit exhibits non-trivial
thermalization of local observables. We go beyond L2

and show that higher levels of hierarchical circuits limit
the maximum speed of information spreading.

We provide complete parameterization for the L2 and
L3 circuits in the qubit case. For the larger local Hilbert
space dimensions, we propose a new method to construct
a class of circuits using the Clifford group that is analyt-
ically trackable. This method can also be used to con-
struct new families of dual-unitary circuit.

The paper is structured as follows: In Sec. II, we intro-
duce the notation. Subsec. IIA reviews the dual-unitary
circuits and introduces our parametrization method us-
ing Clifford groups. The hierarchical generalization is
outlined in subsec. II B. After that, we dive into details
of the L2 and L3 circuits in subsecs. II C and IID, in-
cluding their parametrization. In Sec. III, we discuss
the physical applications of the different levels of Hier-
archical circuits. Subsec. III A considers the two-point
correlation functions for L1, L2 and L3 circuits. In sub-
sec. III B, we extend our discussion to the correlation
functions of multisite observables, and three-point cor-
relation functions. Subsec. III C discusses the evolution
of an initial state from a quantum quench. We gener-
alize the solvable initial states [6] for the L2 circuit and
explore the relationship between quench dynamics and
quantum thermalization. In Sec. IV, we summarize the
main results of the paper and discuss future directions.

II. HIERARCHICAL GENERALIZATION OF
DUAL UNITARITY

In this paper we consider a chain comprised of L cells,
with each cell containing 2 sites at integers and odd-half
integer sites. At each site there is a Hilbert space with
a local dimension D. Consequently, the corresponding
total Hilbert space is H = (CD)2L. The local basis is
denoted by |j⟩ with j = 0, 1, · · · , D − 1. The chain’s
dynamics is governed by a brickwall Floquet circuit

U = T2Lu
⊗LT†

2Lu
⊗L

=

0 1 21
2

3
2

5
2 L· · ·

0

1

1
2

,

where T2L is a periodic translation operator on 2L sites,
and u a local gate. Here, for simplicity, we assume trans-
lational invariance of the circuit and introduce periodic
boundary conditions. However, our result can be easily
generalized to non-uniform cases and open boundary con-
ditions. Above, we graphically represented local unitary

gates with dimension D2 × D2 by a box with incoming
and outgoing legs,

u = , u† = , (1)

satisfying unitarity conditions

uu† = = = ID2 ,

u†u = = = ID2 .

(2)

Our results can be more succinctly expressed in the
folded picture, where an operator over (CD)2L is vec-
torized to a vector in (CD)4L by the linear map on the
basis

|m⟩ ⟨n| → |m⟩ |n⟩ . (3)

The time evolution in Schrodinger picture can also be
vectorized to

u()u† → u⊗ u∗. (4)

Graphically, u† is folded back behind u, thereby forming a
joint operator w ≡ u⊗u∗. It is also convenient to denote
the vectorized identity operator in the folded picture as
an empty bullet |#⟩ = 1√

D
|ID⟩, which is shown below

w = = , =
1√
D

. (5)

With these notations, the unitarity condition (2) is
graphically expressed as = and = .

A. Dual Unitarity

Understanding the dynamics of extended locally in-
teracting systems is at the core of quantum many-body
physics. However, this problem is usually analytically in-
tractable and numerically exponentially hard. To make
progress, we need some additional structure. One pos-
sibility is to demand the so-called dual-unitarity condi-
tion [5] mentioned in the introduction, which enables var-
ious exact calculations even for chaotic dynamics.

Dual unitarity demands that the gate u is unitary even
if we exchange the roles of space and time. This switch-
ing corresponds to changing which are input and output
legs of the gate, resulting in the dual local gate ũ. It is
formally introduced by reshuffling the indices

ũ = , ⟨j| ⟨l| ũ |i⟩ |k⟩ = ⟨k| ⟨l|u |i⟩ |j⟩ . (6)

A gate is dual-unitary [5] if both u and ũ are unitary, so
in addition to (2) we also require

ũ†ũ = ũũ† = ID2 , (7)
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which in the folded graphical language yields

= , = . (8)

The family of models defined in this way encompasses
free, interacting integrable and chaotic models [5]. The
parametrization of dual-unitary gates for D = 2 has
been fully determined [5]. Despite a lack of the complete
parametrization of dual-unitary gates for D ≥ 3, several
families have been proposed [29–34]. We proceed to add
another family to the list, resulting in a novel extensive
family of dual-unitary gates in higher dimensions. This
parametrization also proves useful when addressing the
hierarchical generalization of dual-unitary circuits in the
following sections.

Consider the following parametrized family of two-
qudit unitary gates:

u = (v1 ⊗ v2) u0 (v3 ⊗ v4), (9)

where v1, v2, v3, v4 are single site unitary gates, and u0 is
defined as

u0 =
∑

0≤p,q≤D−1

θp,q |ψp,q⟩ ⟨ψp,q| . (10)

Here {θp,q}0≤p,q≤D−1 is a collection of U(1) phases, and
{|ψp,q⟩}0≤p,q≤D−1 is an orthonormal basis for the 2-qudit
Hilbert space (CD)2 defined as

|ψp,q⟩ ≡
1√
D

∑
1≤i,j≤D

(τpσq)∗ij |i⟩ ⊗ |j⟩ , (11)

where σ, τ are the D ×D dimensional generators of the
Clifford group satisfying the relations

σD = τD = 1, στ = ωτσ, (12)

with ω = e2πi/D a D-th root of unity. The matrices σ, τ
generate the full matrix algebra MD(C), and we can al-
ways choose σ to be diagonal and τ to be real. Explicitly,
they are defined as

σ =

D−1∑
j=0

ωj |j⟩ ⟨j| ,

τ =

D−1∑
j=0

|j + 1⟩ ⟨j| , (13)

where |D⟩ ≡ |0⟩. Related parametrization in terms of
Operator-Schmidt decomposition appeared in [45]. We
report a novel more general framework in Appendix A,
but we don’t include it here, since we don’t need it in the
following analysis.

We proceed to investigate conditions on the parameters
{θp,q}0≤p,q≤D−1 for u to be a dual-unitary gate. After
a space-time reshuffling of indices defined in Eq. (6), we
have ũ = (vT4 ⊗ v2)ũ0(v3 ⊗ vT1 ), where

ũ0 =
1

D

∑
0≤p,q≤D−1

θp,qτp,q ⊗ τ∗p,q, (14)

with τp,q ≡ τpσq. Then the unitarity condition (7) on ũ
is equivalent to∑

0≤p,q,r,s≤D−1

θ∗p,qθr,sτ
†
p,qτr,s ⊗ τTp,qτ

∗
r,s = D2τ0,0 ⊗ τ0,0.

(15)
Notice that the single site unitary gates v1, v2, v3, v4 do
not appear in the above expression. We simplify Eq. (15)
further with the following relations satisfied by τp,q

τp,qτr,s = ωqrτp+r,q+s,

τ∗p,q = τp,−q

τTp,q = ω−pqτ−p,q. (16)

They follow from Eqs. (12) and (13) by straightforward
computation. Simplifying Eq. (15) using Eq. (16), and
comparing the coefficients of both sides using the fact
that {τp,q}0≤p,q≤D−1 forms a basis of the matrix algebra
MD(C), we obtain∑

0≤p,q≤D−1

θ∗p,qθp+k,q+l = 0, for (k, l) ̸= (0, 0). (17)

In this way, the original dual unitarity condition, which
involves 2D4 equations and 2D4 − 1 real unknowns sim-
plifies to a set of D2 − 1 equations with D2 − 1 real
unknowns (notice that we can set θ0,0 = 1 without loss
of generality). A simple yet nontrivial ansatz for θp,q is 1

θp,q = ωλp2+µpq+νq2 , (18)

where µ ∈ Z, and λ, ν ∈ Z if D is odd while λ, ν ∈ Z/2
if D is even (which guarantees that θp,q is periodic both
in p and q with period D). This ansatz also results in
the perfect tensors in odd dimensions which are found in
[32]. Inserting the ansatz (18) into Eq. (17), we see that
dual-unitarity requires that k = l = 0 is the only solution
to the following system of equations 2

2λk + µl = 0 (mod D),

µk + 2νl = 0 (mod D). (19)

For example, when D = 3, λ = µ = 1, ν = −1 satisfies
this condition. In later sections we will use the ansatz
Eq. (10) and Eq. (18) to find examples of hierarchical
generalizations of dual-unitary gates.

In this subsection we recapped the basics of dual-
unitarity and introduced a novel family of dual-unitary
models for D > 2. A particular subset of solutions from
this family appeared before in [34]. This leaves us in a
good position to introduce the generalization in the next
subsection.

1 A particularly simple solution to Eq. (17) is θp,q = θp+qωp2+pq ,
where {θp}D−1

p=0 are arbitrary U(1) phases. However, this family
of dual-unitary gates are actually the same as those given in
Eq. (25) of Ref. [34].

2 A sufficient condition for this is that the determinant 4λν − µ2

is invertible modulo D.
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B. Hierarchical Generalization

As mentioned in the Introduction, dual unitarity im-
poses conditions on only a single gate, which restricts the
possible physical behaviours. It also excludes certain fun-
damental and well-known gates, such as the Identity and
the Controlled-Not gate which are solvable yet not dual-
unitary. To unveil more intricated quantum dynamics
and include these Clifford gates in a more general notion
of solvability, we define a hierarchy of conditions. This
gives us new families of models.

Since only one green box plays a part in the dual-
unitary condition (8), we will call dual-unitarity also the
first level of the Hierarchy and denote it as L1. In the
subsequent subsections II C and II D, we extend the con-
cept of dual unitarity (L1) to conditions involving two
and three gates, resulting in the second level L2 and the
third level L3 of the Hierarchy.

C. Second level of the Hierarchy

In this subsection, we introduce the gates from L2,
which are more general than dual-unitary gates. L2 con-
tains CNOT and identity, as well as a large family of
non-trivial gates whose dynamics cannot be solved by
any previous techniques and reveals richer physics. The
gates from this family fulfill a condition involving two
gates, which is weaker than dual-unitary condition:

= , = .

(20)
Algebraically, we can express the condition as

(ID ⊗ ũ†) · ũ†ũ⊗ ID · (ID ⊗ ũ) = ID ⊗ ũ†ũ,

(ID ⊗ ũ) · ũũ† ⊗ ID · (ID ⊗ ũ†) = ID ⊗ ũũ†.
(21)

A direct observation shows that if a circuit is L1, it must
be L2. This, together with the fact that the identity is
in L2 but not in L1, implies that L1 is a proper subset of
L2 : L1 ⫋ L2. Next we focus on the gates that are in L2

but not in L1, the set we denote as L2 = L2 − L1.
Similarly to the L1 case [5], we will derive the complete

parametrization of the L2 for the qubits. When D = 2,
an exhaustive parametrization of 2-qubit gates is

u = v1 ⊗ v2 e
i(Jxσxσx+Jyσyσy+Jzσzσz) v3 ⊗ v4. (22)

Here σi are Pauli matrices and v1, v2, v3, v4 are all single
site gates from SU(2). We may simplify the gate struc-
ture by setting v3 = v4 = ID without any loss of general-
ity 3. The trivial example from L2 is a tensor product of
two single-site operators. Apart from that, the L2 condi-
tion fixes Jz = π

4 , Jx = Jy = 0 4 and v1, v2 to be elements
of the set

{U(r, θ, ϕ)|
√
2 sin r sin θ = ±1}, (23)

where U(r, θ, ϕ) is defined as
eir(cos θ σz+sin θ cosϕ σx+sin θ sinϕ σy), representing a
SU(2) on the Bloch sphere. Geometrically, this specific
combination of r, θ, ϕ represents a rotation that maps σz
to the x− y plane.

The dimension of L2 can be counted as follows. Out
of 12 parameters determining the 4 local SU(2) gates,
e.g. the Euler angles, two are redundant because the
rotation around the z−axis commutes with the Ising in-
teraction resulting from Jz = π

4 , Jx = Jy = 0. Further,
Eq. (23) provides 2 constraints. After considering the
global phase, the total independent parameters to char-
acterize a qubit L2 circuit is 12 − 2 − 2 + 1. Therefore,
we have defined a new 9-dimensional family of solvable
models which are not part of 12-dimensional set of L1

gates [33].
Note that the control not gate (CNOT) can be decom-

posed into the form of Eq. (22) as

v1 = e−iπ
4 σz , v2 = Hσx · eiπ

4 σz ,

v3 = I2, v4 = σxH.
(24)

with Jx = 0, Jy = 0, Jz = π
4 and an addition global phase

e−iπ
4 . H= 1√

2

(
1 1
1 −1

)
is the Hadamard gate, and v4 can

be absorbed into v1. It is easy to check that the single
site operator gate v1 and v2 satisfy (23).

In higher dimensions, we do not yet possess a complete
parametrization for the L2 case. Nevertheless, we can
discern two distinct and rich families. The first family
is associated with generalized Controlled-NOT gate in
higher dimension surrounded by 4 single site operators

u = v1 ⊗ v2 Cτ v3 ⊗ v4, (25)

with Cτ =
∑

i |i⟩ ⟨i| ⊗ τ i. Following a similar argument
as below Eq. (22), we set v3 = v4 = ID. In this case, v1
and v2 must satisfy

∑
j

⟨j| v1 |i⟩ ⟨j + k′ − k| v∗1 |i⟩ = δk,k′ for ∀k, k′, i.

∑
j

⟨i| v2 |j⟩ ⟨i| v∗2 |j + k′ − k⟩ = δk,k′ for ∀k, k′, i.
(26)

These two equations share a symmetry of exchanging
columns and rows between themselves.

The second family is derived using the Clifford group
method from subsection IIA. Utilizing the proposed
ansatz from Eqs. (9) and (10), we set v3 = v4 = ID
and simplify Eq. (21) to:
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(
∑
b

θ∗pb,qb
θpb+k,qb+l)(

∑
d

θ∗pd,qd
θpd+s,qd+tτ

†
pd,qd

v∗1τk,−lv
T
1 τpd,qd) = 0,

(
∑
b

θ∗pb,qb
θpb+k,qb+l)(

∑
d

θ∗pd,qd
θpd+s,qd+tτ

†
−pd,qd

v∗2τ−k,−lv
T
2 τ−pd,qd) = 0.

(27)

Here
∑

b is a shorthand for
∑

0≤pb,qb≤D−1. The above
equation should hold for ∀(s, t) ̸= (0, 0) and (k, l) ̸=
(0, 0). If all terms in the first sum vanish separately,
we obtain the L1. From these nonlinear equations, we
can derive a family of L2, which is just one of the many
possible solutions. The family is defined for D = 4k + 2
as

k ∈ N+ and θp,q = ω
Dpq
2 . (28)

Another nontrivial example is given by

θp,q =

{
ω

p2

2 D = even

ωp2

D = odd
, (29)

In both of the two examples, the so far unspecified v1
and v2 belong a non-trivial subset of SU(D). These sub-
sets can be deduced from the second sums of Eq. (27).
Different choices lead to both ergodic and non-ergodic
dynamic.

Before concluding this subsection, we would like to
highlight that Eq. (20) additionally implies

= , = .

(30)
The proof is shown in Appendix C. Eq. (30) will play an
important role in computing the spatio-temporary corre-
lation functions.

D. Third level of the Hierarchy

Following the principles from subsection II C, we define
the third level hierarchical condition for L3 as

= . (31)

3 This is true because because v1 at this time step can be combined
with v4 from the next time step, allowing for the redefinition
v1 → v4 · v1. This reasoning also applies to v2 and v3.

4 The permutations among x, y, z also work.

An immediate observation reveals that a gate character-
ized as L2 is also the L3. Nonetheless, we are again inter-
ested in the special subset of L3 which does not belong
to L2, designated as L3 = L3 − L2. A notable example
within L3 is the controlled-Z gate.

We again use the complete parameterization of 2-qubit
gates (22) and wlog set v3 = v4 = I2. The condition
defining L3 is satisfied either for all diagonal gates or for
the case where Jx = Jy = 0 and any Jz with vi satisfying
vi = cosϕiσx + sinϕiσy, i ∈ 1, 2.

To get some examples for D > 2, we use our Clifford
gate parametrization method from Secion II A. The alge-
braic equation of θp,q can be found in the Appendix B.
To obtain some examples, we take the single-site opera-
tors vi to be the identity. Some classes of the solutions
obtained in this way are shown below.

θp,q =


ωp2+ 3

2 q
2

D = 12m+ 2;

ωp2+q2 D = 8m+ 4;

ωp2+ 3
2 q

2

D = 12m+ 6,m ̸= 1 mod 3;

ωp2+ 3
2 q

2

D = 12m+ 10.

(32)

In principle, nothing stops us from going beyond the
L3, by demanding even more general condition with even
more gates. We expect the examples to be constructed
in a similar way.

III. APPLICATIONS

A. Spatio-temporary correlator functions

In this subsection we focus on the spatio-temporal cor-
relation functions, which are the most common objects
to characterize the dynamics. In particular, they provide
information about the thermalization and ergodicity of
the system.

In most cases, the exact non-perturbative calculation
of the spatio-temporary correlators is only available in
free models and to some extent in interacting integrable
ones [46–48]. Important progress has been made in un-
derstanding the correlations also in chaotic models, in
particular dual-unitary (L1) circuits which we extend
here.

Due to the trivial propagation of an identity opera-
tor, we are only interested in the correlation function
between two traceless Hilbert-Schmidt normalized op-
erators ai, bj5. Working in the Heisenberg picture, the

5 Hilbert Schmidt normalized means that Tra†iai = 1
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spatio-temporal correlation function of normalized local
operators can be expressed as

Cij(t) = ⟨ai(t)bj⟩ = DTr

(
(Ut)†aiUtbj

1

D2L

)
, (33)

The factor 1
D2L comes from the normalized infinite tem-

perature state ρ∞ =
ID2L

D2L . We also include a prefactor D
in the definition to ensure that the autocorrelation func-
tion at time 0 is normalized to 1. Alternatively, this can
be viewed as a quench from the bj1 state, i.e. bj applied
to the maximally mixed state. The correlations in the
folded picture are graphically expressed as

Cij(t) =

b

a

.

(34)

Employing the time unitarity enables us to simplify the
circuit from the bottom and top, yielding

Cij(t) =

b

a

. (35)

1. Dual unitarity

For completeness, here we briefly summarize the re-
sult for dual-unitary circuit from [5]. Intuitively, the time
unitarity and space unitarity both determine a light cone
outside which the correlation function vanishes. There-
fore, correlators can solely manifest at the intersection
of these two cones, forming a 1-dimensional straight line

that precisely bisects the temporal and spatial directions

Cij(t) =

b

a

, (36)

with other correlators vanishing. That other correlations
vanish can be seen by repeatedly applying (8) to expres-
sion (35), which results in ⟨#| ⟩ = 0 since the operators
a and b are traceless. In Eq. (36) each time step is just a
quantum channel over D ×D Hilbert space. Therefore,
the correlators for the L1 circuits can always be calcu-
lated efficiently and propagates only along two directions
with maximal speed.

2. L2 circuits

Moving beyond the L1, we are interested in which new
features appear in the L2 circuits. Said differently, we are
interested in what happens if the weaker condition (20)
defining L2 is satisfied but dual unitarity condition (8) is
not.

We apply Eq. (20) to Eq. (35) and further simplify
the circuit to

Cij(t) =

b

a

. (37)

Lastly, Eq. (30) is utilised to address the corner of the
path, leading to

Cij(t) =

b

a

. (38)
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This correlator vanishes because the discontinuous path
will be simplified to TraiTrbj and both are traceless ac-
cording to our assumption.

Therefore, the existence of nonvanishing correlators is
limited to three possible directions, either at the light
cone or at velocity zero.

Cij(t) =

b

a

,

Cij(t) =

b

a

.

(39)

These expressions can be written using four single qudit
channels:

ϵL(b) =

b

, ϵR(b) =

b

,

ML(b) =

b

, MR(b) =

b

.

(40)

To simplify the analysis, we assume j to be an integer,
and the other case follows analogously. Thus

Cij(t) =


Tr

(
aM2t

L (b)
)

t = i− j

Tr
(
a(ϵR)

k(ϵLϵR)
⌊ t
2 ⌋(b)

)
i = j, t = Z+ k

2

0 otherwise

(41)
This Cij(t) behaves differently than that in the dual-
unitary case [5], as the circuits from L2 allow for an ad-
ditional non-vanishing direction along the time axis.

Let us mention here the connection with tri-unitaries
circuits proposed in [39], where the correlation function
also exclusively manifest in the same three directions. In
fact, we can group the legs of two 2-qubit gates into a
3-qubit gates as

⇒ . (42)

However, in the tri-unitary case, the condition is

= (43)

which is a much stronger condition than Eq. (20).
Interestingly, in the context of qubits (D = 2), it is

impossible to observe all in principle allowed physical
behaviors. The correlations along the light rays vanish
since channels ϵL and ϵR correspond to the total depolar-
izing channel. Nevertheless, when D > 2, there are ex-
amples manifesting all of the properties discussed above,
i.e. nonvanishing correlations in all three directions at all
times. In other words, both the correlations in Eq. (39)
are nontrivial. A such example is given in Eq. (28) which
is also shown in Fig. 1(a). In this figure, the operator
has support on two nearest neighbor sites, to eliminate
the odd/even effect (for details see subsec. III B).

3. L3 and higher levels

In the case where the gate is classified as L3, the cor-
relation function is reduced to

Cij(t) =

b

a

. (44)

Intriguingly, this correlator does not vanish within the
entire light cone, and no closed expression for it can be
derived with a scaling polynomial in system size. Never-
theless, the hierarchical conditions influences the velocity
of the light cone, slowing it down. As a general rule, for
a kth level of Hierarchical circuit Lk, the velocity of the
light cone will be suppressed to νk = k−2

k .

B. Bigger operators and higher orders

In contrast to previous research, which concentrated
primarily on correlators supported on a single site, ex-
ploring operators with multi-site support sheds light on
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more intricate underlying physical phenomena. Specif-
ically, for correlators supported on multiple sites, their
behavior resembles that described in Eq. (41), where
correlation functions manifest exclusively along three di-
rections. Remarkably, in the case of qubits, these cor-
relation functions persist over time unlike the single-site
supported ones.

Here we present examples of the correlators on nearest
neighbor sites. The derivation is essential the same as in
the previous section with some special attention to the
simplifications around the operators. The location of a
multi-site operator is indexed by its leftmost site. For
simplicity, we assume j is an even number and represent
the nearest neighbor two-site operator by a black square

= .

⟨aj+t−1(t)bj⟩ =

b

a

, (45)

⟨aj(t)bj⟩ =

b

a

. (46)

The correlation function in Eq. (45) along the light cone
is exactly the same as Eq. (41). By implementing the
quantum channel defined as

Q = , (47)

we can express Eq. (46) in a compact analytical form

Ci,i(t) =

{
Tr(aQtb), t = Z,
Tr(awQtb), t = Z+ 1

2 .

Let us have a look at the correlation function’s intrigu-
ing temporal decay. Generally speaking, the long-term
behavior of the correlation function will be dominated by
the largest eigenvalue λ of the quantum channel, evolv-
ing as ∼ λt 6. If |λ| = 1, the correlation function will

6 The identity operator is trivially an eigenvector of the quantum

FIG. 1. (a) The correlation function for D = 6 dimension,
supporting on 2 sites. The gate is a non-ergodic member of L2

with parametrization given by Eq. (28). (b) The correlation
function for the qubit case supported on 3 sites. The gate
is an ergodic element of L2, with parameters given in the
Appendix D. The asymmetry between the left and right sides
results from even/odd effects. In both figures, ai = bj = h,
with h a random normalized traceless Hermitian operator. j
is fixed at 20. The location of a multi-site operator is defined
as the location of its left end.

persist without decay. This behavior is referred to as
non-ergodic. A simple example of L2 circuit in higher
dimension, Eq. (28) with D = 6, v1 = v2 = ID, falls
into this class, as illustrated in Fig. 1(a). Conversely,
if |λ| < 1, the correlation function will be ergodic and
exhibit an exponential decay, a point we will come back
later in Sec. III C in the context of quantum quenches.
An ergodic example can also be constructed from Eq.
(28) by choosing D = 6, vi = σx ⊗ κi, i ∈ 1, 2 for almost
any κi ∈ SU(3).

The scenario with three sites operators follows the pre-
ceding discussions without any additional difficulty. The
correlators along the time axis can be expressed with the
quantum channel

R = . (48)

Its largest non-trivial eigenvalue is typically smaller than
1. Fig. 1(b) showcases this ergodic qubit circuit. We
further examine the correlators at i = j and i = j + t in
Fig. 2.

channel with eigenvalue 1, but it does not matter due to the
tracelessness of initial operators.
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FIG. 2. This figure demonstrates the exponential decay of the
correlation function along both the time axis (i.e., i = j) and
the light cone (i.e., i = t + j). The two-qubit gate from L2,
and the operators a and b are identical to the one used in Fig.
1(b). The solid line represents a linear fit of the exponential
decay.

Moving beyond the scope of 2−point correlation func-
tions, 3−point correlation functions provide more infor-
mation of the non-equilibrium dynamics. They are de-
fined as follows:

Ci,j,k(t1, t2) =⟨ai(t1)bj(t2)ck⟩

= DTr

(
(U†)t2 [(U†)t1−t2aiUt1−t2bj ]Ut2ck

1

D2L

)
.

(49)
If i and j are on the same side of k, the 3−point corre-
lation functions become trivial for L2 circuits, i.e., either
vanishes or reduces to 2−point correlations. Therefore,
without loss of generality, we can assume i < k < j such
that

Ci,j,k(t1, t2) =

c

b

a

t2

t1

t2 − (j − k)− 1
2

t
1 −

(k
−
i)−

12

l

.

(50)
Unlike the L1, there are non-trivial correlation even when
both a and b are strictly inside the light cone.

Nevertheless, despite the fact that the L2 condition

greatly simplifies the circuit complexity, it does not fully
resolve all computational challenges. Viewing from Eq.
(50) we obtain that the maximum number of qudits (legs)
we need to store when contracting the graph diagonally
is l+ 1

2 with l labeled in Eq. (50), thus the computational
complexity scales as eO(|(t1−k+i)−(t2−j+k)|).

C. Quantum Quench in L2 circuits

In this subsection, we examine the correlation func-
tions for L2 circuits following a quantum quench, i.e.
originating from an initial density matrix ρL(0). Here
ρL(0) can either be a pure state or a mixed state with
a local purification. Therefore we can write it with a lo-
cal purifying Matrix Product State (MPS) as ρAL(0) =
Trγ1,··· ,γL

|ΨL(A)⟩ ⟨ΨL(A)| [6, 43], where

|ΨL(A)⟩ =∑
{iLk ,i

R
k ,γk}

Tr
(
A(iL1 i

R
1 γ1) · · ·A(iLLiRLγL)

)
|iL1 iR1 γ1 · · · iLLiRLγL⟩.

(51)
Here γi is the purification index, which we sum over in
ρL(0). Without additional specifications, the gates in
this subsection are assumed to be from L2. Graphically,
the vectorized density matrix can be represented as

|ρAL(0)⟩ =
1

dL
= .

(52)
A physically density matrix is normalized in the thermo-
dynamic limit

lim
L→∞

⟨I|ρAL(0)⟩ = lim
L→∞

TrE(0)L = 1, (53)

where E(0) is the space transfer matrix

E(0) = . (54)

This implies that E(0) has a unique non-degenerate left
and right fixed point whose eigenvalue is one

lim
L→∞

E(0)L = |□⟩ ⟨△| (55)

with ⟨△ |□⟩ = 1.

1. 1−point correlation functions

The most basic information about the dynamic from a
quantum quench is contained in the 1−point correlation
function, which specifies the relaxation and thermaliza-
tion of local observables. It is defined as

lim
L→∞

⟨O1|ρL(t)⟩ = lim
k→∞

Tr(Ek(t)EO1
(t)Ek(t)). (56)
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Here, E(t) = E1(t) and EO1
(t) are appropriate space

transfer matrices

⟨O1|ρL(t)⟩ =

O1

EO1(t)

. . (57)

In this subsection we always assume periodic boundary
conditions with large enough L such that the transfer
matrix can be replaced by its fixed point.

If the initial state satisfies the following 1−point solv-
able condition for L2

= , (58)

we can find an eigenstate of the transfer matrix with
eigenvalue 1

E(t)

= . (59)

Since limL→∞ Tr(ρL(t)) = 1 due to the normalization,
the largest eigenvalue of the trasnfer matrix must be 1
and non-degenerate. Therefore, the 1−point correlation
function can be analytically calculated with this eigen-
vector.

It is worth to note that if the initial state satisfies the
condition = , Eq. (58) is automatically satis-
fied. This implies that we have identified a larger solvable
class than both the pure solvable initial states for dual-
unitary evolution [6] and in general mixed initial states
for open 3-way unital evolution [43].

The correlation function for 2−site observables after a
quench is very similar to Eq. (46). The only difference
is the substitution of at the base for .

⟨O1|ρL(t)⟩ =

O1

, (60)

0 5 10 15 20 25 30
Time t

15

10

5

0

lo
g 1

0|
|O

(t)
|

|

Random1
Random2
Non Ergodic

FIG. 3. The correlation function of a random two-site observ-
able following a quantum quench starting from the Bell state
|ΨL⟩ defined in Eq. (62). The dynamics is governed by a L2

circuit (symbols). We show its linear fit by solid lines. The
blue and green data points show an exponential decay of the
expectation value of observable, indicative of thermalization
dynamics. In contrast, the red points remains constant at
long times implying non-thermalization and non-ergodicity.
The parameters for these three circuits can be found in Ap-
pendix D.

where ⟨△| and |□⟩ are the left and right fixed points
from Eq. (55). Following the same argument as in Sec.
III B, the long time behavior is dictated by the largest
eigenvalue of the quantum channel, Q. The eigenspec-
trum of Q can be completely deduced for qubits. Using
the general parametrization of gates from L2 in accor-
dance with Eqs. (22) and (23), whereby v3 = v4 = I,
θi = arcsin 1√

2 sin ri
, i ∈ {1, 2}, only two non-zero eigen-

values, {1, λ}, exist. Eigenvalue 1 corresponds to the
trivial eigenvector, i.e. identity and λ is given by

λ = cos2 (ϕ2 − ϕ1)

− 2(
√
− cos 2r2 cos r1 +

√
− cos 2r1 cos r2)

2.
(61)

Here r1, r2 are real numbers from the interval [π4 ,
3π
4 ].

The dynamics is non-ergodic with λ = 1 if ϕ1 = ϕ2 +
0, π and either r1 = π − r2 or cos 2r1 = cos 2r2 = 0.
On the other hand, the circuit is non-ergodic also with
λ = −1 if cos(ϕ1 − ϕ2) = 0 and the last term in Eq. (61)
equals 1, for example, by r1 = π

2 , r2 = π
4 . This gives

all possible non-ergodic circuits for two-qubit gates from
L2, apart from a tensor product of single-site gates. All
other examples are ergodic and show exponential decay.

The most straightforward solution of initial states from
Eq. (58) is the pure state with a bond dimension 1. One
example is the qubit Bell state

|ΨL⟩ = ⊗L
k=1

|01⟩2k−1,2k + |10⟩2k−1,2k√
2

, (62)

which we use in Fig. 3, where we show both thermalizing
and non-thermalizing behaviors. In contrast to the situ-
ation here, for L1 (dual-unitarity) the expectation values
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of local observables trivially vanish at all times, even for
clearly non-ergodic circuits such as circuits made out of
SWAPs.

2. 2−point correlation functions

Finally, we are moving to the 2−point correlation func-
tions after a quench, which are non trivial even for the

L1 [6]. Diagrammatically they are represented as

Cij(t) = · · ·

· · ·

a b

. (63)

By leveraging time unitarity, we can deduce the emer-
gence of two backward propagating light cones origi-
nating from the operators, interconnected by the initial
state’s transfer matrix E(0)

Cij(t) =

a b

. (64)

The number of repetitions of the transfer matrices E(0)
in the central region depends on the separation, given by
j − i − (t1 + t2) +

1
2 . The suitable L2 2-point correlator

solvability condition for this correlation function is

= ; = , (65)

and similar expression from left

= ; = . (66)

Here |△⟩ and |□⟩ are the left and right unique fixed point
from Eq. (55). Note that this condition is stronger than
the solvability condition for the 1-point correlators. Fol-
lowing the same argument in [43], it can be shown that
any MPDO in the local purification form fulfilling solv-
ability condition can be cast in right canonical form,
which we use. Thus is replaced by (vectorized
identity).

Supposing that the length L is large enough, we can
replace the outer parts of Eq. (64) by Eq. (55). After
this simplification, we obtain

Cij(t) =

a b

. (67)

The leftmost and rightmost corners can be further re-
duced by the first equations from (65) and (66). Then
with the help of the second equations from (65), (66) and

the contraction properties of the L2, we arrive at

Cij(t) =

a b

.

(68)
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Applying the first equation from (65), we finally obtain
a considerably simplified expression

Cij(t) =

ba

.

(69)
Interestingly, if the separation j−i is shorter than t1+t2,
the correlation function will vanish for traceless opera-
tors, which is the same as for L1 [6].

Solvability condition from Eq. (65) can also be formu-
lated in an algebraic form. If we define an operator Kγ

as

K†
γ :=

∑
iLjR

A(iLjRγ) ⊗ |iL⟩⟨jR|, (70)

the solvability condition for an initial state in the right
canonical form can be written as∑

γ

K†
γKγ =

Idχ
d

;

∑
γ

Id ⊗K†
γ(Ũ

†Ũ ⊗ Iχ)Kγ ⊗ Id =
Id2χ

d
.

(71)

The same discussion holds from the left side, except that
we need to keep |△⟩ instead of |#⟩.

For example, where the initial state is pure, that is,
without summation over γ, the first equation implies that
K is proportional to a unitary operator. This leads to
the conclusion that U is a L1, as per the second equation.
Consequently, a solvable initial state for L2 can only be
a mixed state. As an example, if we choose U = CNOT
and the bond dimension for MPS to be 1, a nontrivial
solution is K0 = I

2
√
2
,K1 = σY

2
√
2
.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we have generalized dual-unitary circuits
to larger solvable classes referred to as levels of the Hier-
archy. These families of circuits with comparatively re-
laxed conditions exhibit richer physical properties than
the dual-unitary ones. Most intriguingly, their correla-
tion functions are non-zero at the initial site and later
times. Furthermore, these circuits show nontrivial ther-
malization of local operators, in contrast with the stan-
dard dual-unitary circuit.

In our work we provide the complete parametrization
of L1,L2,L3 for qubit circuits. For local dimensions big-
ger than two, we propose a systematic approach using
the Clifford group to construct novel examples, which
include both ergodic and nonergodic instances.

It is worth mentioning that even though we focus
on the translational invariant dynamics, the results and
methods presented do not depend crucially on this prop-
erty and can be extended to time and space inhomoge-
neous settings. This study, therefore, provides a strong
foundation for further explorations in the realm of solv-
able models and their real-world applications. They can
be directly implemented on current NISQ devices, and
used as benchmarks in the realms where ordinary classi-
cal simulations are no longer possible.

We mentioned that one interesting example is the
CNOT gate and its extensions. They are a particular
cases of Floquet East model, which shows interesting
physics, e.g. hydrophobicity and localization, both in
classical [49] and quantum realm [50]. Interestingly, for
a subset of the solvable L2 connected to CNOT, exact
solutions can also be obtained using the so called zipper
equations [51] by devising an exact eigenvectors of the
transfer matrix [52].

Of course, the ideas presented here can be extended to
conditions on bunch of gates in different configurations
from the ones presented here. One direct way is gener-
alizing the dual-unitarity round-a-face [33]. It is feasible
to define the L2 condition in this context as

= . (72)

We anticipate these circuits to exhibit similar features
as the L2 circuits discussed here. For examples, their
correlation functions might exclusively exist along three
directions. However, parametrization of these types of
circuits and their subsequent physical applications repre-
sent an intriguing path for future research.

One can also be more bold, and demand for instance
the following conditions:

= ,

= . (73)

It can be shown, using a simplification procedure sim-
ilar to that in Sec. III A, that this condition leads to the
exact solvability of two point spatial-temporal correlation
functions in the region −t/3 < x < 0. This is interest-
ing since it gives us a 2D space-time region where the
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spatial-temporal correlation functions are solvable and
non-vanishing, while all dual-unitary circuits and their
L2 generalization have vanishing spatial-temporal corre-
lations except on a few lines. Unfortunately, to date, we
have not yet been able to find a nontrivial unitary gate
satisfying this condition, due to the computational diffi-
culty of solving this equation. We leave this possibility
as an open direction for the future.
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Appendix A: A more general parametrization of
dual-unitarity and hierarchy gates based on finite

groups

In this appendix we give a further generalization of
the parametrization of dual-unitarity and hierarchy gates
presented in Sec. II A, based on projective representa-
tions of finite groups. Let G be a finite group and let
Γ be an irreducible, unitary finite dimensional (with di-
mension D) projective representation of G, i.e. Γ†

a =
Γa−1 ,∀a ∈ G and

ΓaΓb = ϕ(a, b)Γab, ∀a, b ∈ G, (A1)

where ϕ(a, b) is a 2-cocycle of G, i.e.

ϕ(a, b)ϕ(ab, c) = ϕ(b, c)ϕ(a, bc), ∀a, b, c ∈ G. (A2)

We further require that Γ satisfies a trace condition

Tr[Γa] = Dδa,e, ∀a ∈ G, (A3)

where e is the unit of G. The irreducibility of Γ implies
that {Γa}a∈G spans the matrix algebra MD(C), there-
fore, {Γa}a∈G is an orthonormal basis of MD(C) with
trace normalization Tr[Γ†

aΓb] = Dδab,∀a, b ∈ G.
We use Eq. (9) again for the parametrization of 2-qudit

unitary gate u, but now u0 is defined as

u0 =
∑
a∈G

θa |ψa⟩ ⟨ψa| , (A4)

where {θa}a∈G is a collection of U(1) phases, and
{|ψa⟩}a∈G is an orthonormal basis for the 2-qudit Hilbert
space (CD)2 defined as

|ψa⟩ ≡
1√
D

∑
1≤i,j≤D

(Γa)
∗
ij |i⟩ ⊗ |j⟩ , (A5)

We proceed to investigate conditions on the parameters
{θa}a∈G for u to be a dual-unitary gate. After a space-
time reshuffling of indices defined in Eq. (6), we have
ũ = (vT4 ⊗ v2)ũ0(v3 ⊗ vT1 ), where

ũ0 =
1

D

∑
a∈G

θaΓa ⊗ Γ∗
a. (A6)

Then the unitarity condition (7) on ũ is equivalent to∑
a,b∈G

θaθ
∗
bΓaΓ

†
b ⊗ Γ∗

aΓ
T
b = D2Γe ⊗ Γe. (A7)

We simplify Eq. (A7) further with Eq. (A1) and, using
the fact that {Γa}a∈G forms a basis of the matrix algebra
MD(C), we obtain∑

b∈G

θabθ
∗
b = D2δa,e, ∀a ∈ G. (A8)

Note that Eq. (A8) does not depend on the cocycle
ϕ(a, b), only on the structure of the group G. Neverthe-
less, not all projective representations satisfy the trace
condition (A3), and the 2-cocycle has to be chosen care-
fully to allow for such a projective representation.

As a specific example, consider the Abelian group
G = Z×2n

k , where group elements are denoted as a =
(a1, a2, . . . , a2n), 0 ≤ aj ≤ k− 1, with multiplication rule
(a1, . . . , a2n)(b1, . . . , b2n) = (a1+b1, . . . , a2n+b2n) (where
all additions are modulo k), and the 2-cocycle is given by

ϕ(a, b) = ω−
∑

1≤i<j≤2n biaj , (A9)

where ω is a k-th root of unity. The projective represen-
tation Γ is defined as

Γa = γa1
1 γa2

2 . . . γa2n
2n , (A10)

where γ1, γ2, . . . γ2n are D × D matrices with D = kn

satisfying

γkj = 1, 1 ≤ j ≤ 2n

γiγj = ωγjγj , 1 ≤ i < j ≤ 2n. (A11)

The parametrization presented in Sec. II A corresponds
to the special case n = 1.

Appendix B: The parametrization of the
Hierarchical gates in higher dimensions

In this appendix, we provide further details about de-
riving Eq. (27). In particular, inserting Eqs. (9) and
(10) into the first equation of (20) with v3 = v4 = ID, we
obtain
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∑
a,b,c,d

θ∗pb,qb
θpa,qaθ

∗
pd,qd

θpc,qcτ
†
pb,qb

τpa,qa ⊗ τ †pd,qd
v∗1τ

T
pb,qb

τ∗pa,qav
T
1 τpc,qc ⊗ τTpd,qd

τ∗pc,qc

= D2
∑
c,d

θ∗pd,qd
θpc,qcID ⊗ τ †pd,qd

τpc,qc ⊗ τTpd,qd
τ∗pc,qc . (B1)

With the help of Eq. (16), this can be simplified to∑
a,b,c,d

ωqdpcθ∗pb,qb
θpa,qaθ

∗
pd,qd

θpc,qcτpa−pb,qa−qb ⊗ τ−pd,−qdv
∗
1τpa−pb,qb−qav

T
1 τpc,qc ⊗ τpc−pd,qd−qc

=D2
∑
c,d

θ∗pd,qd
θpc,qcID ⊗ τpc−pd,qc−qd ⊗ τpc−pd,qd−qc .

(B2)

We can relabel the dummy variables pa = pb + k, qa = qb + l, pc = pd + s, qc = qd + t so that the independent Clifford
group matrix is separated as∑

k,l

(
∑
b

θ∗pb,qb
θpb+k,qb+l)τk,l ⊗

∑
s,t

(
∑
d

θ∗pd,qd
θpd+s,qd+tτ

†
pd,qd

v∗1τk,−lv
T
1 τpd,qd)τs,t ⊗ τs,−t

=D2
∑
s,t

∑
d

θ∗pd,qd
θpd+s,qd+tID ⊗ τs,t ⊗ τs,−t,

(B3)

where we have used the equality τpc,qc = τpd,qdτs,tω
−qds.

Note that Eq. (B3) is automatically satisfied for (k, l) = (0, 0). Therefore, for ∀(k, l) ̸= 0, the left hand side of Eq.
(B3) must vanish, namely, either

∑
b θ

∗
pb,qb

θpb+k,qb+l = 0 or
∑

d θ
∗
pd,qd

θpd+s,qd+tτ
†
pd,qd

v∗1τk,−lv
T
1 τpd,qd = 0, which gives

the first line of Eq. (27) in the main text. The second line of Eq. (27) containing v2 simplifies in a similar way using
the second equation of (20).

The derivation of the L3 condition follows exactly same procedure as above but may involve lots of tedious calcu-
lations. Here we just skip these details and give the result directly. With the parametrization method using Clifford
group, Eq. (31) is equivalent to

(
∑
pb,qb

θpb+sa,qb+taθ
∗
pb,qb

)(
∑
pd,qd

θpd+sc,qd+tcθ
∗
pd,qd

τ †pd,qd
v∗1τsa,−tav

T
1 τpd,qd)

×(
∑
pf ,qf

θpf+se,qf+teθ
∗
pf ,qf

τ †pf ,qf
v∗1τsc,−tcv

T
1 τpf ,qf ) = 0 for ∀(sa, ta) ̸= (0, 0) . (B4)
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Appendix C: Proof of Eq. (30)

To prove this implication, we introduce the definitions

A = − , B = − . (C1)

By proving TrA†A = TrB†B, we establish that if A
vanishes, then B also vanishes. This can be proved
graphically. To this end, we introduce a four-folded gate

given by = . The first term of TrA†A is

Tr( )†( ) = . (C2)

The contraction represents a contraction between the
same leg from the first and second layer as well as the
third and forth layer. Similarly, the contraction rep-
resents a contraction between the first and forth layer as
well as second and third layer. It is worth noting that
the result remains the same if we exchange the second
and forth layers while simultaneously exchange and

. Therefore, we arrive at

Tr( )†( ) = = . (C3)

The R.H.S. just corresponds to the first term in
TrB†B. By performing similar calculations, we can es-
tablish the agreement between each term of TrA†A and
TrB†B.

Appendix D: Numerical values of the parameters of
the gates

In Fig. 1(b) and Fig. 3, we choose single site operators
as v3 = v4 = I, v1 = v2 = v. The parameters for v =
eir(cos θσz+sin θ cosϕσx+sin θ sinϕσy) are listed in Table I.

r θ ϕ

1.24056 0.84429 −0.4764

r θ ϕ

1 0.99788 3

r θ ϕ

π
4

π
2

0

TABLE I. The left set of parameters is the one for Fig. 1(b)
and the blue line in Fig. 3. The middle set corresponds to
the green line in Fig. 3 and the right set corresponds to the
red line in Fig. 3.
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