
Hierarchical generalization of dual unitarity
Xie-Hang Yu, Zhiyuan Wang, and Pavel Kos

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

Quantum dynamics with local interac-
tions in lattice models display rich physics,
but is notoriously hard to study. Dual-
unitary circuits allow for exact answers
to interesting physical questions in clean
or disordered one- and higher-dimensional
quantum systems. However, this fam-
ily of models shows some non-universal
features, like vanishing correlations in-
side the light-cone and instantaneous ther-
malization of local observables. In this
work we propose a generalization of dual-
unitary circuits where the exactly calcula-
ble spatial-temporal correlation functions
display richer behavior, and have non-
trivial thermalization of local observables.
This is achieved by generalizing the single-
gate condition to a hierarchy of multi-
gate conditions, where the first level recov-
ers dual-unitary models, and the second
level exhibits these new interesting fea-
tures. We also extend the discussion and
provide exact solutions to correlators with
few-site observables and discuss higher-
orders, including the ones after a quantum
quench. In addition, we provide exhaus-
tive parametrizations for qubit cases, and
propose a new family of models for local di-
mensions larger than two, which also pro-
vides a new family of dual-unitary mod-
els.

1 Introduction
One of the pivotal problems in quantum many-
body physics is understanding the dynamics of
extended systems with local interactions. Al-
though the local interactions are simple, they gen-
erate complex dynamics, which is in general too
hard to describe. The dynamics can be charac-
terized with different probes such as local cor-
relation functions, entanglement spreading, and
other quantum information quantities. The un-

derstanding of this type of dynamics is currently
at the center of attention in many fields span-
ning from nonequilibrium statistical mechanics,
quantum information, condensed matter to high-
energy physics and quantum gravity.

However, the complexity of quantum dynam-
ics, both analytically and numerically, presents a
significant hurdle. For example, the bond dimen-
sion of Matrix Product States (MPS) typically
increases exponentially due to the linear growth
in entanglement entropy [1, 2]. This necessitates
the use of solvable models to unravel many-body
behavior. The most well-known examples are
noninteracting (Gaussian) systems such as free
fermions or bosons, Clifford circuits, and Bethe-
ansatz interacting integrable models [3]. Unfor-
tunately, all of these models are not chaotic, in
contrast to generic examples. If one is prepared
to average over an ensemble of systems, random
unitary circuits [4] provide examples of solvable
chaotic dynamics. However, the averaged results
miss a lot of relevant physics and are less relevant
for translationally invariant systems.

A recently discovered solvable family of mod-
els, known as dual-unitary quantum circuits [5],
has distinctly different solvable structure which
does not require averaging, and moreover con-
tains both integrable and chaotic examples. The
basic property, which enables solvability is the
unitarity of the local gates in the space direction.
In this paper, we generalize this to a condition on
a few gates and unravel new families of solvable
models.

Dual unitarity was shown to enable analytical
computations of correlation functions [5, 6], chaos
indicator spectral form factor [7, 8], operator and
entanglement spreading [6, 9, 10, 11, 12, 13, 14,
15], deep thermalization through emergent state
designs [16, 17, 18], study of eigenstate thermal-
ization [19] and temporal entanglement [20, 21,
22]. They also proved useful in connections with
measurement induced phase transitions [23, 24,
25], had aspects of their computational power
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characterized [26], and have already been realized
in experimental setups [27, 28]. The exhaustive
parametrization is simple and is known for dual-
unitary gates of two qubits [5]. In general, how-
ever, only certain non-exhaustive families of gates
are known [29, 30, 31, 32, 33, 34, 35, 36]. Some
extension of the dual-unitary condition were al-
ready proposed. One can add arbitrary perturba-
tions and perform a perturbative analysis [37, 38],
generalize to the case of having three or more uni-
tary directions [39, 40, 35], study random and hol-
ogoraphic geometries [41, 42], and lift the ideas
to open systems [43] and classical symplectic cir-
cuits [44].

Despite the success of the dual-unitary cir-
cuits (and its extension) in describing physical
properties of non-equibrium dynamics, they ex-
hibit some non-universal features. Firstly, in
dual-unitary circuits the non-vanishing correla-
tion functions exist only on light-cones edges.
Secondly, the thermalization of local observables
is instantaneous. The fundamental reason behind
these non-universal features is that their single
gate’s conditions are too restrictive. In fact, this
family of models doesn’t even include many gates
that are solvable by other methods, e.g. the Iden-
tity, Controlled-Not and Controlled-Z. This raises
the question: Can the dual-unitary condition be
relaxed to allow for richer physics while still main-
taining the solvability of the spatial-temporary
correlation function?

In this paper, we answer these questions in the
affirmative by relaxing the dual-unitary condition
and extending it to a hierarchy of conditions that
contains more and more local gates. The dual-
unitary condition on one gate forms the the first
level of the Hierarchy denoted by L1, whereas the
circuit with two-gate condition at the second level
of the Hierarchy L2 allows for the exact calcula-
tion of two-point correlation functions, which are
richer than for dual unitaries, i.e. non-vanishing
at the same site and different times. Moreover,
when quenched from the solvable initial states,
the L2 circuit exhibits non-trivial thermalization
of local observables. We go beyond L2 and show
that higher levels of hierarchical circuits limit the
maximum speed of information spreading.

We provide complete parameterization for the
L2 and L3 circuits in the qubit case. For the
larger local Hilbert space dimensions, we propose
a new method to construct a class of circuits using

the Clifford group that is analytically trackable.
This method can also be used to construct new
families of dual-unitary circuit.

The paper is structured as follows: In Sec.
2, we introduce the notation. Subsec. 2.1 re-
views the dual-unitary circuits and introduces our
parametrization method using Clifford groups.
The hierarchical generalization is outlined in sub-
sec. 2.3. After that, we dive into details of the
L2 and L3 circuits in subsecs. 2.4 and 2.5, includ-
ing their parametrization. In Sec. 3, we discuss
the physical applications of the different levels of
Hierarchical circuits. Subsec. 3.1 considers the
two-point correlation functions for L1, L2 and L3
circuits. In subsec. 3.2, we extend our discus-
sion to the correlation functions of multisite ob-
servables, and three-point correlation functions.
Subsec. 3.3 discusses the evolution of an initial
state from a quantum quench. We generalize the
solvable initial states [6] for the L2 circuit and ex-
plore the relationship between quench dynamics
and quantum thermalization. In Sec. 4, we sum-
marize the main results of the paper and discuss
future directions.

2 Hierarchical generalization of dual
unitarity
In this paper we consider a chain comprised of L
cells, with each cell containing 2 sites at integers
and odd-half integer sites. At each site there is a
Hilbert space with a local dimension D. Conse-
quently, the corresponding total Hilbert space is
H = (CD)2L. The local basis is denoted by |j⟩
with j = 0, 1, · · · , D − 1. The chain’s dynamics
is governed by a brickwall Floquet circuit

U = T2Lu
⊗LT†

2Lu
⊗L

=

0 1 2 31
2

3
2

5
2 L· · ·

0

1
1
2· · ·

· · · , (1)

where T2L is a periodic translation operator on
2L sites, and u a local gate. Here, for simplic-
ity, we assume translational invariance of the cir-
cuit and introduce periodic boundary conditions.
However, our result can be easily generalized to
non-uniform cases and open boundary conditions.
Above, we graphically represented local unitary
gates with dimension D2 ×D2 by a box with in-
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coming and outgoing legs,

u = , u† = , (2)

satisfying unitarity conditions

uu† = = = ID2 ,

u†u = = = ID2 .

(3)

Our results can be more succinctly expressed
in the folded picture, where an operator over
(CD)2L is vectorized to a vector in (CD)4L by
the linear map on the basis

|m⟩ ⟨n| → |m⟩ |n⟩ . (4)

The time evolution in Schrodinger picture can
also be vectorized to

u()u† → u⊗ u∗. (5)

Graphically, u† is folded back behind u, thereby
forming a joint operator w ≡ u ⊗ u∗. It is also
convenient to denote the vectorized identity op-
erator in the folded picture as an empty bullet
|#⟩ = 1√

D
|ID⟩, which is shown below

w = = , = 1√
D

. (6)

With these notations, the unitarity condition (3)
is graphically expressed as = and

= .

2.1 Dual Unitarity

Understanding the dynamics of extended locally
interacting systems is at the core of quantum
many-body physics. However, this problem is
usually analytically intractable and numerically
exponentially hard. To make progress, we need
some additional structure. One possibility is to
demand the so-called dual-unitarity condition [5]
mentioned in the introduction, which enables var-
ious exact calculations even for chaotic dynamics.

Dual unitarity demands that the gate u is uni-
tary even if we exchange the roles of space and
time. This switching corresponds to changing

which are input and output legs of the gate, re-
sulting in the dual local gate ũ. It is formally
introduced by reshuffling the indices

ũ = , ⟨j| ⟨l| ũ |i⟩ |k⟩ = ⟨k| ⟨l|u |i⟩ |j⟩ . (7)

A gate is dual-unitary [5] if both u and ũ are
unitary, so in addition to (3) we also require

ũ†ũ = ũũ† = ID2 , (8)

which in the folded graphical language yields

= , = . (9)

The family of models defined in this way en-
compasses free, interacting integrable and chaotic
models [5]. The parametrization of dual-unitary
gates for D = 2 has been fully determined [5].
Despite a lack of the complete parametrization
of dual-unitary gates for D ≥ 3, several families
have been proposed [29, 30, 31, 32, 33, 34]. We
proceed to add another family to the list, result-
ing in a novel extensive family of dual-unitary
gates in higher dimensions.

2.2 New Parametrization of Qudit Gates

In the following we provide a non-exhuasive pa-
rameterization of qudit gates, which will prove
useful for constructing examples at D > 2, both
for dual-unitary gates and their generalizations.
This parametrization first appeared in Ref. [45]
in the study of Operator-Schmidt decomposition,
and is a special case of a novel, more general
framework we report in App. A; however, since
we do not need this more general framework in
the following analysis, we restrict ourselves to the
special case in the main text.

Consider the following family of two-qudit uni-
tary gates:

u = (v1 ⊗ v2) u0 (v3 ⊗ v4), (10)

where v1, v2, v3, v4 are single site unitary gates,
and u0 is defined as

u0 =
∑

0≤p,q≤D−1
θp,q |ψp,q⟩ ⟨ψp,q| . (11)

Here {θp,q}0≤p,q≤D−1 is a collection of U(1)
phases, and {|ψp,q⟩}0≤p,q≤D−1 is an orthonormal
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basis for the 2-qudit Hilbert space (CD)2 defined
as

|ψp,q⟩ ≡ 1√
D

∑
0≤i,j≤D−1

(τpσq)∗
ij |i⟩ ⊗ |j⟩ , (12)

where σ, τ are the D×D dimensional generators
of the Clifford group satisfying the relations

σD = τD = 1, στ = ωτσ, (13)

with ω = e2πi/D a D-th root of unity. The matri-
ces σ, τ generate the full matrix algebra MD(C),
and we can always choose σ to be diagonal and τ
to be real. Explicitly, they are defined as

σ =
D−1∑
j=0

ωj |j⟩ ⟨j| ,

τ =
D−1∑
j=0

|j + 1⟩ ⟨j| , (14)

where |D⟩ ≡ |0⟩.
We now investigate the conditions on the pa-

rameters {θp,q}0≤p,q≤D−1 for u to be a dual-
unitary gate. After a space-time reshuffling of
the indices defined in Eq. (7), we have ũ =
(vT

4 ⊗ v2)ũ0(v3 ⊗ vT
1 ), where

ũ0 = 1
D

∑
0≤p,q≤D−1

θp,qτp,q ⊗ τ∗
p,q, (15)

with τp,q ≡ τpσq. Then the unitarity condi-
tion (8) on ũ is equivalent to∑
0≤p,q,r,s≤D−1

θ∗
p,qθr,sτ

†
p,qτr,s⊗τT

p,qτ
∗
r,s = D2τ0,0⊗τ0,0.

(16)
Notice that the single site unitary gates
v1, v2, v3, v4 do not appear in the above expres-
sion. We simplify Eq. (16) further with the fol-
lowing relations satisfied by τp,q

τp,qτr,s = ωqrτp+r,q+s,

τ∗
p,q = τp,−q,

τT
p,q = ω−pqτ−p,q. (17)

They follow from Eqs. (13) and (14) by straight-
forward computation. Simplifying Eq. (16) using
Eq. (17), and comparing the coefficients of both
sides using the fact that {τp,q}0≤p,q≤D−1 forms a
basis of the matrix algebra MD(C), we obtain∑

0≤p,q≤D−1
θ∗

p,qθp+k,q+l = 0, for (k, l) ̸= (0, 0).

(18)

In this way, the original dual unitarity condition,
which involves 2D4 equations and 2D4 − 1 real
unknowns simplifies to a set of D2 − 1 equations
with D2 − 1 real unknowns (notice that we can
set θ0,0 = 1 without loss of generality). A simple
yet nontrivial ansatz for θp,q is 1

θp,q = ωλp2+µpq+νq2
, (19)

where µ ∈ Z, and λ, ν ∈ Z if D is odd while
λ, ν ∈ Z/2 if D is even (which guarantees that
θp,q is periodic both in p and q with period D).
This ansatz also results in the perfect tensors in
odd dimensions which are found in [32]. Insert-
ing the ansatz (19) into Eq. (18), we see that
dual-unitarity requires that k = l = 0 is the only
solution to the following system of equations 2

2λk + µl = 0 (mod D),
µk + 2νl = 0 (mod D). (20)

For example, when D = 3, λ = µ = 1, ν = −1
satisfies this condition. In later sections we will
use the ansatz Eq. (11) and Eq. (19) to find exam-
ples of hierarchical generalizations of dual-unitary
gates.

In this subsection we recapped the basics of
dual-unitarity and introduced a novel family of
dual-unitary models for D > 2. A particular sub-
set of solutions from this family appeared before
in [34]. This leaves us in a good position to intro-
duce the generalization in the next subsection.

2.3 Hierarchical Generalization

As mentioned in the Introduction, dual unitarity
imposes conditions on only a single gate, which
restricts the possible physical behaviours. It also
excludes certain fundamental and well-known
gates, such as the Identity and the Controlled-Not
gates, which are solvable yet not dual-unitary. To
unveil more intricate quantum dynamics and in-
clude these Clifford gates in a more general notion
of solvability, we define a hierarchy of conditions.
This gives us new families of models.

1A particularly simple solution to Eq. (18) is θp,q =
θp+qωp2+pq, where {θp}D−1

p=0 are arbitrary U(1) phases.
However, this family of dual-unitary gates are actually
the same as those given in Eq. (25) of Ref. [34].

2A sufficient condition for this is that the determinant
4λν − µ2 is invertible modulo D.
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Since only one green box plays a part in the
dual-unitary condition (9), we will call dual-
unitarity also the first level of the Hierarchy and
denote it as L1. In the subsequent subsections 2.4
and 2.5, we extend the concept of dual unitarity
(L1) to conditions involving two and three gates,
resulting in the second level L2 and the third level
L3 of the Hierarchy.

2.4 Second level of the Hierarchy
In this subsection, we introduce the gates from
L2, which are more general than dual-unitary
gates. L2 contains CNOT and identity, as well as
a large family of non-trivial gates whose dynamics
cannot be solved by any previous techniques and
reveals richer physics. The gates from this fam-
ily fulfill a condition involving two gates, which
is weaker than a dual-unitary condition. Here we
focus on the case when this condition holds both
from the left and the right, but we comment on
the non-symmetric case in Sec. 3.1.3. The two
conditions are:

= , = .

(21)
Algebraically, we can express the condition as

(ID ⊗ ũ†) · ũ†ũ⊗ ID · (ID ⊗ ũ) = ID ⊗ ũ†ũ,

(ID ⊗ ũ) · ũũ† ⊗ ID · (ID ⊗ ũ†) = ID ⊗ ũũ†.
(22)

A direct observation shows that if a circuit is L1,
it must be L2. This, together with the fact that
the identity is in L2 but not in L1, implies that
L1 is a proper subset of L2 : L1 ⫋ L2. In the
following we focus on the gates that are in L2
but not in L1, the set we denote as L2 = L2 −L1.
Note that a necessary condition for a gate u to be
in L2 is that ũ is not invertible, since otherwise
one can contract both sides of Eq. (21) with ũ−1

and recover the dual unitary condition.
Similarly to the L1 case [5], we can figure out

the complete parametrization of L2 for qubits.
As explained in App. C.1, we used analytical
analysis with the numerical help of Mathematica.
When D = 2, an exhaustive parametrization of
2-qubit gates is

u = v1⊗v2 e
i(Jxσxσx+Jyσyσy+Jzσzσz) v3⊗v4. (23)

Here σj are Pauli matrices and v1, v2, v3, v4 are all
single site gates from SU(2), and 0 ≤ Jj < π/2.

We may simplify the gate structure by setting
v3 = v4 = ID without any loss of generality 3.
The trivial example from L2 is a tensor product
of two single-site operators. Apart from that, the
L2 condition fixes Jz = π

4 , Jx = Jy = 0 4 and
v1, v2 to be elements of the set

{U(r, θ, ϕ)|
√

2 sin r sin θ = ±1}, (24)

where U(r, θ, ϕ) is defined as
eir(cos θ σz+sin θ cos ϕ σx+sin θ sin ϕ σy), representing
a SU(2) on the Bloch sphere. Geometrically,
this specific combination of r, θ, ϕ represents a
rotation that maps σz to the x− y plane.

The dimension of L2 can be counted as fol-
lows. Out of 12 parameters determining the 4
local SU(2) gates, e.g. the Euler angles, two
are redundant because the rotation around the
z−axis commutes with the Ising interaction re-
sulting from Jz = π

4 , Jx = Jy = 0. Further, Eq.
(24) provides 2 constraints. After considering the
global phase, the total independent parameters to
characterize a qubit L2 circuit is 12 − 2 − 2 + 1.
Therefore, we have defined a new 9-dimensional
family of solvable models which are not part of
12-dimensional set of L1 gates [33].

Note that the control not gate (CNOT) can be
decomposed into the form of Eq. (23) (with v4
different than identity) as:

v1 = e−i π
4 σz , v2 = Hσx · ei π

4 σz ,

v3 = I2, v4 = σxH,
(25)

with Jx = 0, Jy = 0, Jz = π
4 and an addition

global phase e−i π
4 . H = 1√

2

(
1 1
1 −1

)
is the

Hadamard gate. To check that this satisfy (24),
we include v4 back in the previous layer of the
gates therefore obtaining combined(c) (v4)c = I2,
(v1)c = v4v1.

In the case of bigger local dimensions D, we do
not yet possess a complete parametrization for
the L2 case. Nevertheless, we can discern two
distinct and rich families. The first family is as-
sociated with generalized Controlled-NOT gate
in higher dimension surrounded by 4 single site

3This is true because because v1 at this time step can
be combined with v4 from the next time step, allowing for
the redefinition v1 → v4 · v1. This reasoning also applies
to v2 and v3.

4The permutations among x, y, z also work.
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operators

u = v1 ⊗ v2 Cτ v3 ⊗ v4, (26)

with Cτ =
∑

i |i⟩ ⟨i| ⊗ τ i. Following a similar
argument as below Eq. (23), we set v3 = v4 = ID.
In this case, v1 and v2 must satisfy∑

j

⟨j| v1 |i⟩ ⟨j + k′ − k| v∗
1 |i⟩ = δk,k′ for ∀k, k′, i,

∑
j

⟨i| v2 |j⟩ ⟨i| v∗
2 |j + k′ − k⟩ = δk,k′ for ∀k, k′, i.

(27)

These two equations share a symmetry of ex-
changing columns and rows between themselves.

The second family is derived using the Clifford
group method from subsection 2.1. Utilizing the
proposed ansatz from Eqs. (10) and (11), we set
v3 = v4 = ID and simplify Eq. (22) to:

(∑
b

θ∗
pb,qb

θpb+k,qb+l

)(∑
d

θ∗
pd,qd

θpd+s,qd+tτ
†
pd,qd

v∗
1τk,−lv

T
1 τpd,qd

)
= 0,(∑

b

θ∗
pb,qb

θpb+k,qb+l

)(∑
d

θ∗
pd,qd

θpd+s,qd+tτ
†
−pd,qd

v∗
2τ−k,−lv

T
2 τ−pd,qd

)
= 0.

(28)

Here
∑

b is a shorthand for
∑

0≤pb,qb≤D−1.
The above equation should hold for ∀(s, t) ̸=
(0, 0) and (k, l) ̸= (0, 0). If all terms in the first
sum vanish separately, we obtain the L1. From
these nonlinear equations, we can derive a fam-
ily of L2, which is just one of the many possible
solutions. The family is defined for D = 4k + 2
as

k ∈ N+ and θp,q = ω
Dpq

2 . (29)

Another nontrivial example is given by

θp,q =

ω
p2
2 , D = even,

ωp2
, D = odd.

(30)

In both of the two examples, the so far unspec-
ified v1 and v2 belong to a non-trivial subset of
SU(D). Finding all possible v1 and v2 is, in gen-
eral, hard. One can try guessing good candidates
and check if the conditions in Eq. (28) are satis-
fied. There is a way of simplifying the conditions
using the structure of the Clifford ansatz, which
help in deducing v1 and v2, see App. C.2 for the
details. Different choices lead to both ergodic and
non-ergodic dynamics.

Before concluding this subsection, we would
like to highlight that the two equalities in Eq.

(21) and unitarity additionally imply

= , = ,

(31)
separately. i.e., a Hierarchical condition along
with unitarity implies its 180◦ rotation version.
The proof is shown in App. D. Eq. (31) will
play an important role in computing the spatio-
temporary correlation functions.

2.5 Third level of the Hierarchy

Following the principles from subsection 2.4, we
define the third level hierarchical condition for L3
as

= . (32)

An immediate observation reveals that a gate
characterized as L2 is also the L3. Nonetheless,
we are again interested in the special subset of
L3 which does not belong to L2, designated as
L3 = L3 − L2. A notable example within L3 is
the controlled-Z gate.

We again use the complete parameterization of
2-qubit gates (23) and wlog set v3 = v4 = I2.
The condition defining L3 is satisfied either for all
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diagonal gates or for the case where Jx = Jy = 0
and any Jz with vi satisfying vi = cosϕiσx +
sinϕiσy, i ∈ {1, 2}.

To get some examples for D > 2, we use our
Clifford gate parametrization method from Se-
cion 2.1. The algebraic equation of θp,q can be
found in the App. B. To obtain some examples,
we take the single-site operators vi to be the iden-
tity. Some classes of the solutions obtained in this
way are shown below.

θp,q =


ωp2+ 3

2 q2
, D = 12m+ 2,

ωp2+q2
, D = 8m+ 4,

ωp2+ 3
2 q2
, D = 12m+ 6,m ̸= 1 mod 3,

ωp2+ 3
2 q2
, D = 12m+ 10.

(33)
In principle, nothing stops us from going be-

yond the L3, by demanding even more general
condition with even more gates. We expect the
examples to be constructed in a similar way.

3 Applications
3.1 Spatio-temporary correlator functions
In this subsection we focus on the spatio-temporal
correlation functions, which are the most com-
mon objects to characterize the dynamics. In
particular, they provide information about the
thermalization and ergodicity of the system.

In most cases, the exact non-perturbative cal-
culation of the spatio-temporary correlators is
only available in free models and to some extent
in interacting integrable ones [46, 47, 48]. Impor-
tant progress has been made in understanding the
correlations also in chaotic models, in particular
dual-unitary (L1) circuits which we extend here.

Due to the trivial propagation of an identity
operator, we are only interested in the correlation
function between two traceless Hilbert-Schmidt
normalized operators ai, bj

5. Working in the
Heisenberg picture, the spatio-temporal correla-
tion function of normalized local operators can be
expressed as

Cij(t) = ⟨ai(t)bj⟩ = DTr
(

(Ut)†aiUtbj
1

D2L

)
.

(34)
The factor 1

D2L comes from the normalized infi-
nite temperature state ρ∞ = I

D2L

D2L . We also in-

5Hilbert Schmidt normalized means that Tra†
i ai = 1

clude a prefactor D in the definition to ensure
that the autocorrelation function at time 0 is nor-
malized to 1. Alternatively, this can be viewed as
a quench from the bj1 state, i.e. bj applied to the
maximally mixed state. The correlations in the
folded picture are graphically expressed as

Cij(t) =

b

a

.

(35)

Employing the time unitarity enables us to sim-
plify the circuit from the bottom and top, yielding

Cij(t) =

b

a

. (36)

3.1.1 Dual unitarity

For completeness, here we briefly summarize the
result for dual-unitary circuit from [5]. Intu-
itively, the time unitarity and space unitarity
both determine a light cone outside which the
correlation function vanishes. Therefore, corre-
lators can solely manifest at the intersection of
these two cones, forming a 1-dimensional straight
line that precisely bisects the temporal and spa-
tial directions

Cij(t) =

b

a

, (37)
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with other correlators vanishing. That other cor-
relations vanish can be seen by repeatedly ap-
plying (9) to expression (36), which results in
⟨#| ⟩ = 0 since the operators a and b are trace-
less. In Eq. (37) each time step is just a quantum
channel over D×D Hilbert space. Therefore, the
correlators for the L1 circuits can always be cal-
culated efficiently and propagates only along two
directions with maximal speed.

3.1.2 L2 circuits

Moving beyond the L1, we are interested in which
new features appear in the L2 circuits. Said dif-
ferently, we are interested in what happens if the
weaker condition (21) defining L2 is satisfied but
dual unitarity condition (9) is not.

We apply Eq. (21) to Eq. (36) and further
simplify the circuit to

Cij(t) =

b

a

. (38)

Lastly, Eq. (31) is utilised to address the corner
of the path, leading to

Cij(t) =

b

a

. (39)

This correlator vanishes because the discontinu-
ous path will be simplified to TraiTrbj and both
are traceless according to our assumption.

Therefore, the existence of nonvanishing corre-
lators is limited to three possible directions, ei-
ther at the light cone or at velocity zero.

Cij(t) =

b

a

,

Cij(t) =

b

a

.

(40)

These expressions can be written using four single
qudit channels:

ϵL(b) =
b
, ϵR(b) =

b
,

ML(b) =
b

, MR(b) =
b
.

(41)

To simplify the analysis, we assume j to be an
integer, and the other case follows analogously.
Thus

Cij(t)=


Tr
(
aM2t

L (b)
)
, t = i− j,

Tr
(
a(ϵR)k(ϵLϵR)⌊ t

2 ⌋(b)
)
, i=j, t=Z+ k

2 ,

0, otherwise.
(42)

This Cij(t) behaves differently than that in the
dual-unitary case [5], as the circuits from L2 allow
for an additional non-vanishing direction along
the time axis.

Let us mention here the connection with tri-
unitaries circuits proposed in [39], where the cor-
relation function also exclusively manifest in the
same three directions. In fact, we can group the
legs of two 2-qubit gates into a 3-qubit gates as

⇒ . (43)

However, in the tri-unitary case, the condition is

= , (44)
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which is a much stronger condition than Eq. (21).
Interestingly, in the context of qubits (D = 2),

it is impossible to observe all in principle allowed
physical behaviors. The correlations along the
light rays vanish since channels ϵL and ϵR corre-
spond to the total depolarizing channel. Never-
theless, when D > 2, there are examples mani-
festing all of the properties discussed above, i.e.
nonvanishing correlations in all three directions
at all times. In other words, both the correla-
tions in Eq. (40) are nontrivial. A such exam-
ple is given in Eq. (29) which is also shown in
Fig. 2(a). In this figure, the operator has sup-
port on two nearest neighbor sites, to eliminate
the odd/even effect (for details see subsec. 3.2).

3.1.3 L3 and higher levels

In the case where the gate is classified as L3, the
correlation function is reduced to

Cij(t) =

b

a

. (45)

Intriguingly, this correlator does not vanish
within the entire light cone, and no closed ex-
pression for it can be derived with a scaling poly-
nomial in system size. Nevertheless, the hierar-
chical conditions still imply that some of the cor-
relations are zero. As a general rule, for a kth
level of Hierarchical circuit Lk = Lk − Lk−1, the
correlations are nonzero along both the middle
part as shown in Eq. (45) and the maximal ve-
locity light rays. If we focus on the middle part
and consider it as the inner light cone, its inner
light cone velocity will be suppressed to νk = k−2

k
for k ≥ 2, see Fig. 1. Notice that a Hierarchi-
cal condition along with unitarity always imply
its 180◦ rotation, as explained in Eq. (21), Eq.

Figure 1: The different Hierarchical conditions lead to
different behaviors of 2-point correlation functions. a)
L2 Hierarchical circuits with non-vanishing correlators
along three directions. b) General Hierarchical circuits
that satisfy conditions for the kL/R level of Hierarchy
from the left and right, respectively. Their correlators
are non-vanishing in the middle part and on the light
rays. The middle part is restricted to the inner light cone
given by the velocity v satisfying −vL ≤ v ≤ vR, with
vL/R following from kL/R level Hierarchical conditions.
c) summary of the property of the two-point correlators.
For a circuit without any Hierarchical conditions, we may
equivalently consider it as k = ∞.

(31) and App. D. These pairs of conditions lead
to a backward-propagating inner light cone orig-
inated from a (the operator at the top) and a
forward-propagating inner light cone originated
from b (the operator at the bottom), both with
velocity νk. The 2-point correlator vanishes when
these two inner lightcones do not overlap, except
when a lies exactly on the light ray of b.

Finally, we also illustrate the possibility of
choosing different types of condition (or no con-
dition at all) from the left and right directions,
resulting in an asymmetric inner light cone. This
possibility is shown and discussed in Fig. 1.

3.2 Bigger operators and higher orders

In contrast to previous research, which concen-
trated primarily on correlators supported on a
single site, exploring operators with multi-site
support sheds light on more intricate underlying
physical phenomena. Specifically, for correlators
supported on multiple sites, their behavior resem-
bles that described in Eq. (42), where correlation
functions manifest exclusively along three direc-
tions. Remarkably, in the case of qubits, these
correlation functions persist over time unlike the
single-site supported ones.

Here we present examples of the correlators
on nearest neighbor sites. The derivation is es-
sentially the same as in the previous section
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with some special attention to the simplifications
around the operators. The location of a multi-
site operator is indexed by its leftmost site. For
simplicity, we assume j is an even number and
represent the nearest neighbor two-site operator
by a black square = .

⟨aj+t−1(t)bj⟩ =

b

a

, (46)

⟨aj(t)bj⟩ =

b

a

. (47)

The correlation function in Eq. (46) along the
light cone is exactly the same as Eq. (42). By
implementing the quantum channel defined as

Q = , (48)

we can express Eq. (47) in a compact analytical

form Ci,i(t) =
{

Tr(aQtb), t = Z,
Tr(awQtb), t = Z + 1

2 .
Let us have a look at the correlation function’s

intriguing temporal decay. Generally speaking,
the long-term behavior of the correlation func-
tion will be dominated by the largest eigenvalue
λ of the quantum channel, evolving as ∼ λt 6. If
|λ| = 1, the correlation function will persist with-
out decay. This behavior is referred to as non-
ergodic. A simple example of L2 circuit in higher
dimension, Eq. (29) with D = 6, v1 = v2 = ID,
falls into this class, as illustrated in Fig. 2(a).
Conversely, if |λ| < 1, the correlation function

6The identity operator is trivially an eigenvector of the
quantum channel with eigenvalue 1, but it does not matter
due to the tracelessness of initial operators.

Figure 2: (a) The correlation function for D = 6 dimen-
sion, supporting on 2 sites. The gate is a non-ergodic
member of L2 with parametrization given by Eq. (29).
(b) The correlation function for the qubit case supported
on 3 sites. The gate is an ergodic element of L2, with
parameters given in the App. E. The asymmetry between
the left and right sides results from even/odd effects. In
both figures, ai = bj = h, with h a random normalized
traceless Hermitian operator. j is fixed at 20. The lo-
cation of a multi-site operator is defined as the location
of its left end.

will be ergodic and exhibit an exponential decay,
a point we will come back later in Sec. 3.3 in
the context of quantum quenches. An ergodic
example can also be constructed from Eq. (29)
by choosing D = 6, vi = σx ⊗ κi, i ∈ {1, 2} for
almost any κi ∈ SU(3).

The scenario with three sites operators follows
the preceding discussions without any additional
difficulty. The correlators along the time axis can
be expressed with the quantum channel

R = . (49)

Its largest non-trivial eigenvalue is typically
smaller than 1. Fig. 2(b) showcases this ergodic
qubit circuit. We further examine the correlators
at i = j and i = j + t in Fig. 3.

Moving beyond the scope of 2−point correla-
tion functions, 3−point correlation functions pro-
vide more information of the non-equilibrium dy-

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 10



0 10 20 30
Time t

0

10

20

30

lo
g 1

0C
ij(

t)

i=j
i=j+t

Figure 3: This figure demonstrates the exponential de-
cay of the correlation function along both the time axis
(i.e., i = j) and the light cone (i.e., i = t + j). The
two-qubit gate from L2, and the operators a and b are
identical to the one used in Fig. 2(b). The solid line
represents a linear fit of the exponential decay.

namics. They are defined as follows:

Ci,j,k(t1, t2) = ⟨ai(t1)bj(t2)ck⟩ (50)

= DTr
(

(U†)t2 [(U†)t1−t2aiUt1−t2bj ]Ut2ck
1

D2L

)
.

If i and j are on the same side of k, the 3−point
correlation functions become trivial for L2 cir-
cuits, i.e., either vanishes or reduces to 2−point
correlations. Therefore, without loss of general-
ity, we can assume i < k < j such that

Ci,j,k(t1, t2) =

c

b

a

t2

t1

t2 − (j − k) − 1
2

t1 −
(k

−
i)−

12

l

.

(51)
Unlike the L1, there are non-trivial correlation
even when both a and b are strictly inside the
light cone.

Nevertheless, despite the fact that the L2 con-
dition greatly simplifies the circuit complexity,
it does not fully resolve all computational chal-
lenges. Viewing from Eq. (51) we obtain that

the maximum number of qudits (legs) we need
to store when contracting the graph diagonally is
l+ 1

2 with l labeled in Eq. (51), thus the computa-
tional complexity scales as eO(|(t1−k+i)−(t2−j+k)|).

3.3 Quantum Quench in L2 circuits
In this subsection, we examine the correlation
functions for L2 circuits following a quantum
quench, i.e. originating from an initial density
matrix ρL(0). Here ρL(0) can either be a pure
state or a mixed state with a local purification.
Therefore we can write it with a local purify-
ing Matrix Product State (MPS) as ρA

L(0) =
Trγ1,··· ,γL |ΨL(A)⟩ ⟨ΨL(A)| [43, 6], where

|ΨL(A)⟩ = (52)∑
{iL

k
,iR

k
,γk}

Tr
(
A(iL

1 iR
1 γ1) · · ·A(iL

LiR
LγL)

)
|iL1 iR1 γ1· · · iLLiRLγL⟩ .

Here γi is the purification index, which we sum
over in ρL(0). Without additional specifications,
the gates in this subsection are assumed to be
from L2. Graphically, the vectorized density ma-
trix can be represented as

|ρA
L(0)⟩= 1

dL
= .

(53)
A physical density matrix is normalized in the
thermodynamic limit

lim
L→∞

⟨I|ρA
L(0)⟩ = lim

L→∞
TrE(0)L = 1, (54)

where E(0) is the space transfer matrix

E(0) = . (55)

This implies that E(0) has a unique non-
degenerate left and right fixed point whose eigen-
value is one

lim
L→∞

E(0)L = |□⟩ ⟨△| = (56)

with ⟨△ |□⟩ = 1.

3.3.1 1−point correlation functions

The most basic information about the dynamic
from a quantum quench is contained in the
1−point correlation function, which specifies the
relaxation and thermalization of local observ-
ables. It is defined as

lim
L→∞

⟨O1|ρL(t)⟩ = lim
k→∞

Tr
(
Ek(t)EO1(t)Ek(t)

)
.

(57)
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Here, E(t) = E1(t) and EO1(t) are appropriate
space transfer matrices

⟨O1|ρL(t)⟩ =

O1

EO1(t)

. (58)

In this subsection we always assume periodic
boundary conditions with large enough L such
that the transfer matrix can be replaced by its
fixed point.

If the initial state satisfies the following
1−point solvable condition for L2

= , (59)

with being the right eigenvector of E(0), 7 we
can find an eigenstate of the transfer matrix with
eigenvalue 1

E(t)

= . (60)

Since limL→∞ Tr (ρL(t)) = 1 due to the normal-
ization, the largest eigenvalue of the transfer ma-
trix must be 1 and non-degenerate. Therefore,
the 1−point correlation function can be analyti-
cally calculated with this eigenvector.

It is worth to note that if the initial state sat-
isfies the condition = , Eq. (59) is au-
tomatically satisfied. This implies that we have
identified a larger solvable class than both the
pure solvable initial states for dual-unitary evo-
lution [6] and in general mixed initial states for
open 3-way unital evolution [43].

The correlation function for 2−site observables
after a quench is very similar to Eq. (47). The
only difference is the substitution of at the

7Note that by contracting the left top leg with an
empty bullet in both sides of Eq. (59), we can directly
show that Eq. (59) implies is the right eigenvector of
E(0).

base for .

⟨O1|ρL(t)⟩ =

O1

, (61)

where ⟨△| and |□⟩ are the left and right fixed
points from Eq. (56). Following the same argu-
ment as in Sec. 3.2, the long time behavior is
dictated by the largest eigenvalue of the quan-
tum channel, Q. The eigenspectrum of Q can be
completely deduced for qubits. Using the general
parametrization of gates from L2 in accordance
with Eqs. (23) and (24), whereby v3 = v4 = I,
θi = arcsin 1√

2 sin ri
, i ∈ {1, 2}, only two non-zero

eigenvalues, {1, λ}, exist. Eigenvalue 1 corre-
sponds to the trivial eigenvector, i.e. identity and
λ is given by

λ = cos2 (ϕ2 − ϕ1)
− 2(

√
− cos 2r2 cos r1 +

√
− cos 2r1 cos r2)2.

(62)
Here r1, r2 are real numbers from the interval
[π

4 ,
3π
4 ].

The dynamics is non-ergodic with λ = 1 if ϕ1 =
ϕ2 + 0, π and either r1 = π − r2 or cos 2r1 =
cos 2r2 = 0. On the other hand, the circuit is non-
ergodic also with λ = −1 if cos(ϕ1 − ϕ2) = 0 and
the last term in Eq. (62) equals 1, for example,
by r1 = π

2 , r2 = π
4 . This gives all possible non-

ergodic circuits for two-qubit gates from L2, apart
from a tensor product of single-site gates. All
other examples are ergodic and show exponential
decay.

The most straightforward solution of initial
states from Eq. (59) is the pure state with a
bond dimension 1. One example is the qubit Bell
state

|ΨL⟩ = ⊗L
k=1

|01⟩2k−1,2k + |10⟩2k−1,2k√
2

, (63)

which we use in Fig. 4, where we show both ther-
malizing and non-thermalizing behaviors. In con-
trast to the situation here, for L1 (dual-unitarity)
the expectation values of local observables triv-
ially vanish at all times, even for clearly non-
ergodic circuits such as circuits made out of
SWAPs.
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Figure 4: The correlation function of a random two-site
observable following a quantum quench starting from the
Bell state |ΨL⟩ defined in Eq. (63). The dynamics is
governed by a L2 circuit (symbols). We show its linear
fit by solid lines. The blue and green data points show an
exponential decay of the expectation value of observable,
indicative of thermalization dynamics. In contrast, the
red points remains constant at long times implying non-
thermalization and non-ergodicity. The parameters for
these three circuits can be found in App. E.

3.3.2 2−point correlation functions

Finally, we are moving to the 2−point correlation
functions after a quench, which are non trivial
even for the L1 [6]. Diagrammatically they are
represented as

Cij(t) = · · ·

· · ·

a b

.

(64)

By leveraging time unitarity, we can deduce
the emergence of two backward propagating light
cones originating from the operators, intercon-
nected by the initial state’s transfer matrix E(0)

Cij(t) =

a b

.

(65)

The number of repetitions of the transfer matrices
E(0) in the central region depends on the sepa-
ration, given by j− i− (t1 + t2)+ 1

2 . The suitable
L2 2-point correlator solvability condition for this
correlation function is

= ; = , (66)

and similar expression from left

= ; = . (67)

Here |△⟩ and |□⟩ are the left and right unique

fixed point from Eq. (56). Note that this condi-
tion is stronger than the solvability condition for
the 1-point correlators. Following the same ar-
gument in [43], it can be shown that any MPDO
in the local purification form fulfilling solvabil-
ity condition can be cast in right canonical form,
which we use. Thus is replaced by (vector-
ized identity).

Supposing that the length L is large enough,
we can replace the outer parts of Eq. (65) by Eq.
(56). After this simplification, we obtain

Accepted in Quantum 2024-02-08, click title to verify. Published under CC-BY 4.0. 13



Cij(t) =

a b

. (68)

The leftmost and rightmost corners can be fur-
ther reduced by the first equations from (66) and
(67). Then with the help of the second equations
from (66), (67) and the contraction properties of
the L2, we arrive at

Cij(t) =
a b

.

(69)

Applying the first equation from (66), we finally
obtain a considerably simplified expression

Cij(t) =
ba

.

(70)

Interestingly, if the separation j − i is shorter
than t1 + t2, the correlation function will van-
ish for traceless operators, which is the same as
for L1 [6].

Solvability condition from Eq. (66) can also be
formulated in an algebraic form. If we define an
operator Kγ as

K†
γ :=

∑
iLjR

A(iLjRγ) ⊗ |iL⟩⟨jR|, (71)

the solvability condition for an initial state in the

right canonical form can be written as

∑
γ

K†
γKγ = Idχ

d
;

∑
γ

Id ⊗K†
γ(Ũ †Ũ ⊗ Iχ)Kγ ⊗ Id =

Id2χ

d
.

(72)

The same discussion holds from the left side, ex-
cept that we need to keep |△⟩ instead of |#⟩.

For example, where the initial state is pure,
that is, without summation over γ, the first equa-
tion implies that K is proportional to a unitary
operator. This leads to the conclusion that U is
a L1, as per the second equation. Consequently,
a solvable initial state for L2 can only be a mixed
state. As an example, if we choose U = CNOT
and the bond dimension for MPS to be 1, a non-
trivial solution is K0 = I

2
√

2 ,K1 = σY

2
√

2 .

4 Conclusions and perspectives
In this paper, we have generalized dual-unitary
circuits to larger solvable classes referred to as
levels of the Hierarchy. These families of cir-
cuits with comparatively relaxed conditions ex-
hibit richer physical properties than the dual-
unitary ones. Most intriguingly, their correlation
functions are non-zero at the initial site and later
times. Furthermore, these circuits show nontriv-
ial thermalization of local operators, in contrast
with the standard dual-unitary circuit.

In our work we provide the complete
parametrization of L1,L2,L3 for qubit circuits.
For local dimensions bigger than two, we propose
a systematic approach using the Clifford group
to construct novel examples, which include both
ergodic and nonergodic instances.

It is worth mentioning that even though we fo-
cus on the translational invariant dynamics, the
results and methods presented do not depend cru-
cially on this property and can be extended to
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time and space inhomogeneous settings. This
study, therefore, provides a strong foundation for
further explorations in the realm of solvable mod-
els and their real-world applications. They can
be directly implemented on current NISQ devices,
and used as benchmarks in the realms where ordi-
nary classical simulations are no longer possible.

We mentioned that one interesting example is
the CNOT gate and its extensions. They are a
particular cases of Floquet East model, which
shows interesting physics, e.g. hydrophobicity
and localization, both in classical [49] and quan-
tum realm [50]. Interestingly, for a subset of the
solvable L2 connected to CNOT, exact solutions
can also be obtained using the so called zipper
equations [51] by devising an exact eigenvectors
of the transfer matrix [52].

Of course, the ideas presented here can be ex-
tended to conditions on bunch of gates in differ-
ent configurations from the ones presented here.
One direct way is generalizing the dual-unitarity
round-a-face [33]. It is feasible to define the L2
condition in this context as

= . (73)

We anticipate these circuits to exhibit similar
features as the L2 circuits discussed here. For
examples, their correlation functions might ex-
clusively exist along three directions. However,
parametrization of these types of circuits and
their subsequent physical applications represent
an intriguing path for future research.

One can also be more bold, and demand for
instance the following conditions:

= ,

= . (74)

It can be shown, using a simplification proce-
dure similar to that in Sec. 3.1, that this condi-
tion leads to the exact solvability of two point

spatial-temporal correlation functions in the re-
gion −t/3 < x < 0. This is interesting since it
gives us a 2D space-time region where the spatial-
temporal correlation functions are solvable and
non-vanishing, while all dual-unitary circuits and
their L2 generalization have vanishing spatial-
temporal correlations except on a few lines. Un-
fortunately, to date, we have not yet been able
to find a nontrivial unitary gate satisfying this
condition, due to the computational difficulty of
solving this equation. We leave this possibility as
an open direction for the future.
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A A more general parametrization of
dual-unitarity and hierarchy gates based
on finite groups
In this appendix we give a further generalization
of the parametrization of dual-unitarity and hier-
archy gates presented in Sec. 2.1, based on pro-
jective representations of finite groups. Let G be
a finite group and let Γ be an irreducible, unitary
finite dimensional (with dimension D) projective
representation of G, i.e. Γ†

a = Γa−1 , ∀a ∈ G and

ΓaΓb = ϕ(a, b)Γab, ∀a, b ∈ G, (75)

where ϕ(a, b) is a 2-cocycle of G, i.e.

ϕ(a, b)ϕ(ab, c) = ϕ(b, c)ϕ(a, bc), ∀a, b, c ∈ G.
(76)

We further require that Γ satisfies a trace condi-
tion

Tr[Γa] = Dδa,e, ∀a ∈ G, (77)

where e is the unit of G. The irreducibility of
Γ implies that {Γa}a∈G spans the matrix alge-
bra MD(C), therefore, {Γa}a∈G is an orthonor-
mal basis of MD(C) with trace normalization
Tr[Γ†

aΓb] = Dδab,∀a, b ∈ G.
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We use Eq. (10) again for the parametrization
of 2-qudit unitary gate u, but now u0 is defined
as

u0 =
∑
a∈G

θa |ψa⟩ ⟨ψa| , (78)

where {θa}a∈G is a collection of U(1) phases, and
{|ψa⟩}a∈G is an orthonormal basis for the 2-qudit
Hilbert space (CD)2 defined as

|ψa⟩ ≡ 1√
D

∑
0≤i,j≤D−1

(Γa)∗
ij |i⟩ ⊗ |j⟩ . (79)

We proceed to investigate conditions on the pa-
rameters {θa}a∈G for u to be a dual-unitary gate.
After a space-time reshuffling of indices defined
in Eq. (7), we have ũ = (vT

4 ⊗ v2)ũ0(v3 ⊗ vT
1 ),

where
ũ0 = 1

D

∑
a∈G

θaΓa ⊗ Γ∗
a. (80)

Then the unitarity condition (8) on ũ is equiva-
lent to∑

a,b∈G

θaθ
∗
b ΓaΓ†

b ⊗ Γ∗
aΓT

b = D2Γe ⊗ Γe. (81)

We simplify Eq. (81) further with Eq. (75) and,
using the fact that {Γa}a∈G forms a basis of the
matrix algebra MD(C), we obtain∑

b∈G

θabθ
∗
b = D2δa,e, ∀a ∈ G. (82)

Note that Eq. (82) does not depend on the co-
cycle ϕ(a, b), only on the structure of the group

G. Nevertheless, not all projective representa-
tions satisfy the trace condition (77), and the 2-
cocycle has to be chosen carefully to allow for
such a projective representation.

As a specific example, consider the Abelian
group G = Z×2n

k , where group elements
are denoted as a = (a0, a1, . . . , a2n−1), 0 ≤
aj ≤ k − 1, with multiplication rule
(a0, . . . , a2n−1)(b0, . . . , b2n−1) = (a0 +
b0, . . . , a2n−1 + b2n−1) (where all additions
are modulo k), and the 2-cocycle is given by

ϕ(a, b) = ω
−
∑

0≤i<j≤2n−1 biaj , (83)

where ω is a k-th root of unity. The projective
representation Γ is defined as

Γa = γa0
0 γa1

1 . . . γ
a2n−1
2n−1 , (84)

where γ0, γ1, . . . γ2n−1 are D × D matrices with
D = kn satisfying

γk
j = 1, 0 ≤ j ≤ 2n− 1,

γiγj = ωγjγj , 0 ≤ i < j ≤ 2n− 1. (85)

The parametrization presented in Sec. 2.1 corre-
sponds to the special case n = 1.

B The parametrization of the Hierar-
chical gates in higher dimensions
In this appendix, we provide further details about
deriving Eq. (28). In particular, inserting Eqs.
(10) and (11) into the first equation of (21) with
v3 = v4 = ID, we obtain

∑
a,b,c,d

θ∗
pb,qb

θpa,qaθ
∗
pd,qd

θpc,qcτ
†
pb,qb

τpa,qa ⊗ τ †
pd,qd

v∗
1τ

T
pb,qb

τ∗
pa,qa

vT
1 τpc,qc ⊗ τT

pd,qd
τ∗

pc,qc

= D2∑
c,d

θ∗
pd,qd

θpc,qcID ⊗ τ †
pd,qd

τpc,qc ⊗ τT
pd,qd

τ∗
pc,qc

. (86)

With the help of Eq. (17), this can be simplified to

∑
a,b,c,d

ωqdpcθ∗
pb,qb

θpa,qaθ
∗
pd,qd

θpc,qcτpa−pb,qa−qb
⊗ τ−pd,−qd

v∗
1τpa−pb,qb−qav

T
1 τpc,qc ⊗ τpc−pd,qd−qc

=D2∑
c,d

θ∗
pd,qd

θpc,qcID ⊗ τpc−pd,qc−qd
⊗ τpc−pd,qd−qc .

(87)
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We can relabel the dummy variables pa = pb + k, qa = qb + l, pc = pd + s, qc = qd + t so that the
independent Clifford group matrix is separated as

∑
k,l

(∑
b

θ∗
pb,qb

θpb+k,qb+l

)
τk,l ⊗

∑
s,t

(∑
d

θ∗
pd,qd

θpd+s,qd+tτ
†
pd,qd

v∗
1τk,−lv

T
1 τpd,qd

)
τs,t ⊗ τs,−t

=D2∑
s,t

∑
d

θ∗
pd,qd

θpd+s,qd+tID ⊗ τs,t ⊗ τs,−t,

(88)

where we have used the equality τpc,qc = τpd,qd
τs,tω

−qds.
Note that Eq. (88) is automatically satisfied for (k, l) = (0, 0). Therefore, for ∀(k, l) ̸=

(0, 0), the left hand side of Eq. (88) must vanish, namely, either
∑

b θ
∗
pb,qb

θpb+k,qb+l = 0 or∑
d θ

∗
pd,qd

θpd+s,qd+tτ
†
pd,qd

v∗
1τk,−lv

T
1 τpd,qd

= 0, which gives the first line of Eq. (28) in the main text.
The second line of Eq. (28) containing v2 simplifies in a similar way using the second equation of (21).

The derivation of the L3 condition follows exactly same procedure as above but may involve lots of
tedious calculations. Here we just skip these details and give the result directly. With the parametriza-
tion method using Clifford group, Eq. (32) is equivalent to(∑

pb,qb

θpb+sa,qb+taθ
∗
pb,qb

)(∑
pd,qd

θpd+sc,qd+tcθ
∗
pd,qd

τ †
pd,qd

v∗
1τsa,−tav

T
1 τpd,qd

)

×

∑
pf ,qf

θpf +se,qf +teθ
∗
pf ,qf

τ †
pf ,qf

v∗
1τsc,−tcv

T
1 τpf ,qf

 = 0 for ∀(sa, ta) ̸= (0, 0) . (89)

C Examples of L2 Hierarchical circuits

C.1 Exhaustive parametrization for qubits

In the qubit case, the full parametrization of a
two-qubit gate Eq. (23) is used with v3 = v4 =
I. The Hierarchical condition Eq. (21) or Eq.
(22) can be transformed into a series of alge-
braic equations of Jx, Jy, Jz, ri, θi, ϕi with vi =
exp{iri(cos θiσz+sin θi cosϕiσx+sin θi sinϕiσy)},
i ∈ {1, 2}. However, these equations are very
complicated and virtually impossible to be ana-
lytically solved.

Our strategy is to combine the analytical anal-
ysis with the numerical help of Mathematica.
Those algebraic equations can be represented as
a cost function f ≥ 0, designed to be minimized.
The equations are solved for f = 0. The min-
imization is done by the Mathematica function
NMinimize and we apply different constraints to
it. For example, we require that all three Js are
nonvanishing, i.e. not equal to nπ/2, n ∈ Z, and
also avoid the dual unitary case. Extensive nu-
merical experiments very strongly suggest that it
is impossible to achieve a minimum value close
to 0 under these constraints, leading to the con-
clusion that a vanishing J is necessary to satisfy

the condition of L2. Consequently, we proceed
by setting Jx = 0 in the subsequent analysis.
This process of simplification and analysis con-
tinues until the resultant algebraic equations be-
come tractable for manual examination.

C.2 Non-exhaustive parametrization for qudits
with D > 2

Here we provide some more details regarding ex-
amples with D > 2 mentioned in the main text.
In particular, here we explain how to derive the
simplified conditions that v1 and v2 in Eq. (28)
need to satisfy. These simplified conditions help
obtain v1 and v2. In some cases, one can guess
good candidates, and in other cases, these simpli-
fied conditions help in finding examples numer-
ically. However, an explicit construction of all
possible v1 and v2 is still lacking.

Given that the Clifford group matrix τr,m is
complete, the expression v∗

1τk,−lv
T
1 from the first

line of Eq. (28) can be decomposed into

v∗
1τk,−lv

T
1 =

∑
0≤r,m≤D−1

αr,mτr,m, (90)

where αs are the coefficients. By substituting this
decomposition into the first line of Eq. (28), and
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following a direct calculation of the Clifford group matrix, we arrive at

(∑
b

θ∗
pb,qb

θpb+k,qb+l

)(∑
r,m

αr,mτr,m

∑
d

θ∗
pd,qd

θpd+s,qd+tω
pdm−qdr

)
= 0, ∀{k, l} ≠ {0, 0}, ∀{s, t} ≠ {0, 0}.

(91)

We can look into the two terms separately. If the
first term vanishes for all of {k, l} ̸= {0, 0}, we
just obtain the L1 condition Eq. (18). Thus, a
L2 circuit would necessarily require that for some
{k, l} ̸= {0, 0}, the first term is non-vanishing.
The set of these {k, l} can be directly determined
with the specific form of θp,q. The second term
must vanish for this set of {k, l}s to satisfy Eq.
(91).

Since τr,m is a complete basis in the matrix
space, the necessary and sufficient condition for
the vanishing of the second term can be expressed
as: for every {r,m}, either αr,m = 0 or∑

d

θ∗
pd,qd

θpd+s,qd+tω
pdm−qdr = 0, ∀{s, t} ≠ {0, 0}.

(92)
The latter one can also be directly calculated by
substituting with the specific form of θp,q. If it
does not vanish for some {r,m}s, we obtain the
condition that αr,m must vanish for those pairs.
Since αr,m is related to v1, this serves as a neces-
sary and sufficient condition v1 should satisfy.

In conclusion, v1 is implicitly defined by its
conjugation action on those τk,−l, with {k, l} de-
termined from the first term in Eq. (91), such
that v∗

1τk,−lv
T
1 has zero overlap with certain τr,m,

with {r,m} determined from Eq. (92).
We mention that this condition is more con-

venient than the original L2 condition since we
use the property of the Clifford group matrix. To
construct v1 satisfying the condition, one can ei-
ther guess directly or use some ansatz of v1 to
solve the condition. The same procedure works
for v2.

For the class given by the Eq. (29) of the main
text, the above procedure results in the implicit
equations for vi

Tr v∗
i τk,lv

T
i τr,v = 0, (93)

where i ∈ {1, 2} and the equation holds for
∀k, l = even, (k, l) ̸= (0, 0) and r, v ∈ {0, D/2}.
A naive example of vi is just the identity. In
D = 6 we can use the ansatz vi = σx ⊗ κi where
σx is the Pauli-x operator. We numerically find

that vi satisfies the above condition for almost
any κi ∈ SU(3).

For the class given by Eq. (30), the condition
can be expressed as Tr v∗

i τ0,lv
T
i τ0,v = 0 for ∀v, l ̸=

0 where i ∈ {1, 2}. A simple example that sat-
isfies the condition is the generalized Hamamard
gateH in higher dimension defined asHσH† = τ .

D Proof of Eq. (31)
In this subsection, we prove that the left equality
in Eq. (21) along with unitarity implies the left
equality in Eq. (31). The same argument holds
for the right one. To prove this implication, we
introduce the definitions

A = − , B = − . (94)

By proving TrA†A = TrB†B, we establish that
if A vanishes, then B also vanishes. This can be
proved graphically. To this end, we introduce a

four-folded gate given by = . The first

term of TrA†A is

Tr

 †  = . (95)

The contraction represents a contraction be-
tween the same leg from the first and second layer
as well as the third and fourth layer. Similarly,
the contraction represents a contraction be-
tween the first and fourth layer as well as second
and third layer. It is worth noting that the result
remains the same if we exchange the second and
fourth layers while simultaneously exchange
and . Therefore, we arrive at

Tr

 †  = = .

(96)
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The R.H.S. just corresponds to the first term
in TrB†B. By performing similar calculations, we
can establish the agreement between each term of
TrA†A and TrB†B.

The fact that a Hierarchical condition along
with unitarity implies that its 180◦ rotated ver-
sion of the condition can be straightforwardly ex-
tended to higher-level Hierarchical circuits. The
derivation presented here applies almost imedi-
ately.

E Numerical values of the parameters
of the gates
In Fig. 2(b) and Fig. 4, we choose single site
operators as v3 = v4 = I, v1 = v2 = v. The pa-
rameters for v = eir(cos θσz+sin θ cos ϕσx+sin θ sin ϕσy)

are listed in Table 1.

r θ ϕ

1.24056 0.84429 −0.4764
r θ ϕ

1 0.99788 3
r θ ϕ
π
4

π
2 0

Table 1: The left set of parameters is the one for Fig.
2(b) and the blue line in Fig. 4. The middle set cor-
responds to the green line in Fig. 4 and the right set
corresponds to the red line in Fig. 4.
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