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Angle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and band structure
contrast through the momentum distribution of photoelectrons. Its simplest interpretation is obtained in the
plane-wave approximation, according to which photoelectrons propagate freely to the detector. The photoelec-
tron momentum distribution is then essentially given by the Fourier transform of the real-space orbital. While
the plane-wave approximation is remarkably successful in describing the momentum distributions of aromatic
compounds, it generally fails to capture kinetic-energy-dependent final-state interference and dichroism effects.
Focusing our present study on quasi-freestanding monolayer graphene as the archetypical two-dimensional (2D)
material, we observe an exemplary Ekin-dependent modulation of, and a redistribution of spectral weight within,
its characteristic horseshoe signature around the K and K

′
points: both effects indeed cannot be rationalized

by the plane-wave final state. Our data are, however, in remarkable agreement with ab initio time-dependent
density functional simulations of a freestanding graphene layer and can be explained by a simple extension of
the plane-wave final state, permitting the two dipole-allowed partial waves emitted from the C 2pz orbitals to
scatter in the potential of their immediate surroundings. Exploiting the absolute photon flux calibration of the
Metrology Light Source, this scattered-wave approximation allows us to extract Ekin-dependent amplitudes and
phases of both partial waves directly from photoemission data. The scattered-wave approximation thus represents
a powerful yet intuitive refinement of the plane-wave final state in photoemission of 2D materials and beyond.

DOI: 10.1103/PhysRevResearch.5.033075

I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES) is a
standard probe of the surface electronic structure of crystalline
solids. Within the one-step model, the differential photoemis-
sion cross section dσ/d�(k f ,�k f ; hν, ε), i.e., the probability
density to observe after irradiation with photons of energy hν
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and polarization vector ε a photoelectron of kinetic energy
Ekin = h̄2k2

f /2m and wave vector k f at solid angle �k f =
(θ, φ), where θ is the inclination and φ the azimuth, can be de-
composed into a product of two terms [1,2]: the one-electron
removal spectral function and the photoemission matrix ele-
ment Mk f ,i. Usually, the spectral function is of primary interest
because it provides access to band dispersions as well as self-
energies and many-body interactions [2,3]. Often, however,
the photoemission cross section is strongly modulated by the
matrix element Mk f ,i, given in the dipole approximation and
velocity gauge by

Mk f ,i = 〈ψk f |ε · ∇|ψi〉, (1)

through the latter’s dependence on the single-particle initial
(ψi) and final state (ψk f ) wave functions, as well as on the
polarization ε of the incoming photon field. On the one hand,
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this makes the experimental determination of the spectral
function more difficult; on the other hand, the matrix element
itself is a rich source of additional experimental information—
especially regarding the initial-state wave function [4,5].

A particularly simple connection with the initial state fol-
lows when approximating the final state by a plane wave [6,7].
Then the matrix element becomes proportional to the Fourier
transform of the initial state times a momentum-dependent
prefactor: ε · k f × F[ψi](k f ). In the field of organic molecu-
lar films, this plane-wave approximation (PWA) turned out to
be particularly fruitful, and the ability to determine molecular
orbital densities in momentum and real space from ARPES
on such films—becoming known as photoemission or-
bital tomography [5,8,9]—has found widespread applications
[4,10–17]. Moreover, the PWA has also been applied to ex-
tended solid-state systems [5,18] and has provided insights
into orbital angular momentum [19–21] and its topological
manifestation in the Berry curvature [22–24].

Yet one can rightly argue that the relationship between
the initial state and the matrix element is in fact more
complex than the PWA suggests [25]. Examples where the
limitations of the PWA become evident are manifold and
include photoelectron diffraction [26,27], linear and circular
dichroism [5,21,28], and photon-energy-dependent photoe-
mission intensity modulations that have been tentatively
attributed to final-state scattering effects [29,30]. Theoreti-
cally, there is a long history of computational approaches
aiming at a more exact description of the photoemission
process. These include sophisticated quantum-coherent one-
step models such as implemented, e.g., in the spin-polarized
relativistic Korringa-Kohn-Rostoker technique [31–33] and
multiple-scattering approaches [27,30,34,35], but also real-
time simulations in the framework of time-dependent density
functional theory (TDDFT) [36,37]. While all these methods
adequately capture the photoemission process on a micro-
scopic level, they hide the underlying physical mechanisms
in the computational complexity, thus rendering it impractical
to establish any simple and intuitive connection between the
matrix element and the initial state. Still, such a connection
is vital for the physical understanding of photoemission, in
particular in the context of orbital tomography.

In this paper we present an economical extension of the
plane-wave final state in photoemission from two-dimensional
(2D) materials that takes into account all essential physical
effects while retaining an intuitive link to the initial state.
We used the photoemission intensity close to the K point of
quasi-freestanding monolayer graphene (QFMLG) [38–40],
prepared on Si-terminated 6H-SiC(0001), as a benchmark-
ing case (see Appendix A for details of sample preparation).
Varying the photon energy hν in small steps, we measured
the influence of the corresponding final state on the differ-
ential photoemission cross section of a constant initial state
within the Dirac bands. We found that real-time TDDFT
calculations employing the surface-flux method [37] cor-
roborate our benchmarking experiment. Crucially, we then
introduce an intuitive scattered-wave approximation (SWA)
of the photoemission final state that involves the interference
of two dipole-allowed partial waves emitted from each C
2pz orbital and optionally their nearest-neighbor scattering
at both sublattices of graphene as well (SWANN). This final-

state model describes the experimental results and the TDDFT
calculations very well. Because of its generic nature, it can be
readily used for a graphene-based determination of the abso-
lute photon flux for variable energies, arbitrary experimental
geometries, and light polarizations typical for synchrotron-
radiation experiments. Ultimately the model can be further
adapted to other (quasi-) 2D materials, such as films of
π -conjugated molecules or (topological) surface states, to
correct for deficiencies of the PWA in the description of their
circular dichroism and photon-energy dependence, properties
that in turn massively influence the extraction of the quantum
metric and the Berry curvature [22–24].

II. RESULTS

In our ARPES experiment, we employ a toroidal electron
analyzer to measure the photoelectron intensity distribution
I (k f ,�0, ϕ; hν, ε) at the detector, with �0 = (θ, φ = 0) and

k f =
√

2mEkin/h̄2 =
√

2m(hν + εi − �)/h̄2, where � is the
work function, and where ϕ is the azimuthal rotation of
the sample (see Appendix B for details). The index f de-
notes the final state, as defined by the fixed initial-state
energy εi 1.35 eV below the Dirac point, and by the vary-
ing photon energy hν. Apart from an efficiency factor of
the analyzer, I is proportional to the differential photoemis-
sion cross section dσ/d�(k f ,�0, ϕ; hν, ε) and the photon
intensity Iph(hν, ε) (see Appendix C for details). Recovering
dσ/d� from the photoelectron intensity distribution thus re-
quires a division by an absolutely calibrated Iph, which was
readily provided by the insertion device beam line at the
Metrology Light Source in Berlin [41] for photon energies
from 15 to 110 eV (see Appendix B for details). Converting
(θ, ϕ) to (kx, ky) and plotting the corresponding measured
momentum maps in Figs. 1(a) and 1(b), we identify graphene’s
characteristic horseshoe signatures around the K and K′ points
[42,43]. They arise from the structural interference of the two
sublattices in the initial-state Bloch wave function and are
thus characteristic for the honeycomb lattice. Specifically, the
lattice sites’ relative geometric phases ϑk = arg

∑2
j=0 ein j ·k

[Figs. 1(c) and 2(a)], where the n j connect neighboring carbon
atoms, produce a structure factor (1 + eiϑk ) that suppresses
valence band intensity along dark corridors [43] in momen-
tum space [Fig. 1(a) and Appendix D]. While in the PWA,
both horseshoe and dark corridor are not expected to change,
the experimental intensity around the horseshoes clearly re-
distributes as a function of final-state kinetic energy [43], as
illustrated in Fig. 1(e). Importantly, similar intensity redistri-
butions as in experiment are also observed in our TDDFT
simulations [Fig. 1(e); see Appendix E for details], suggesting
their source to be found in the final state.

To aid the quantitative analysis of the momentum maps, we
plotted the photoelectron intensity as a function of the angle
β around the green contour in Fig. 1(b) for Ekin between 15
and 80 eV [leftmost column of Figs. 2(c)–2(e)], in normal
light incidence [NI, Fig. 2(a)] and oblique light incidence [OI,
Fig. 2(b)] geometries, both with p polarization. In NI geom-
etry [Fig. 2(c)], the intensity appears predominantly below
Ekin � 50 eV, contracted along two streaks at β ∼ ±π/3 and
interrupted by homogeneous intensity distributions between
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dark corridor

(a)

(e)

(b) (c) (d)

FIG. 1. Angle-resolved photoemission spectroscopy of graphene. Overview (a) and close-up (b) of the typical horseshoe pattern arising in
momentum maps close to the K and K

′
points, recorded at initial-state energy 1.35 eV below the Dirac point at Ekin = 30 eV. Panel (b) also

displays the contour (green line) and angle β along which the experimental data are plotted in Figs. 2(c)–2(e). (c) Amplitude (bottom) and
phase (top) of the initial-state structure factor that gives rise to the horseshoe. (d) Nearest-neighbor scattering factor that gives rise to intensity
redistributions around the horseshoe. (e) Experimental horseshoe patterns around K for seven representative kinetic energies measured in
normal incidence geometry (top), compared to TDDFT calculations in precisely the same geometry (bottom).

these angles at ∼44 eV and below 20 eV. Further, between 30
and 40 eV we find the intensity to shift towards higher angles
β = ±2π/3, an effect that we attribute to nearest-neighbor
final-state scattering, as shall be seen in the following. In
contrast, the angular intensity distribution in the OI geometry
[Figs. 2(d) and 2(e)] is spread out more evenly between β =
±π/3, because in this geometry nearest-neighbor scattering
turns out to be less prevalent (see below). Moreover, the inten-
sity distribution reaches up to kinetic energies of about 60 eV,
with a suppression around 44 eV in the backward emission
direction [BWD, Fig. 2(d)] that is not observed in forward
emission [FWD, Fig. 2(e)].

As mentioned above, the PWA [second column in
Figs. 2(c)–2(e)] does not reproduce the rich structure ob-
served in experiment: it predicts a monotonous decay of
intensity with increasing kinetic energy, without any redis-
tribution around the horseshoe. Also, the polarization factor
|ε · k f |2 of the PWA incorrectly suppresses the overall inten-
sity in the OI BWD geometry, in which the photoemission
occurs (nearly) perpendicular to the polarization vector of
light [Figs. 2(b) and 2(d)]. In contrast, our TDDFT results
[third column in Figs. 2(c)–2(e)] are in remarkable agreement
with the experiment in all three geometries, apart from an

overall ∼3 eV kinetic energy shift with respect to the experi-
ment. Because the TDDFT simulations were performed for a
freestanding and perfectly flat graphene layer, the pronounced
structure must originate from graphene itself, and thus alterna-
tive explanations for the experimentally observed features in
the photoemission cross section, such as hybridization with
the substrate, photoelectron scattering from the underlying
substrate atoms, or buckling of the graphene layer, can be
ruled out. As TDDFT, however, accurately models graphene’s
surface potential, it also fully accounts for scattering of the
outgoing photoelectron in the graphene lattice itself, apart
from an overall offset of the surface potential because of
the missing SiC substrate, to which we attribute the above-
mentioned overall kinetic energy shift.

To clarify the physical origin of the kinetic energy and
wave vector dependence of the differential cross section, we
developed an improved model for the final state, the scattered-
wave approximation (SWA). In this model, scattering effects
are included via angular-momentum-dependent and kinetic-
energy-dependent amplitudes and phase shifts between partial
waves of the outgoing Coulomb wave (see Appendix F and
Ref. [21]). As a result, k f -dependent interference effects in
the final state between the two dipole-allowed l ± 1 partial
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(a)

(c)

(d)

(e)

(b)

FIG. 2. Kinetic-energy-dependent photoemission intensities
around the horseshoe. (a) Normal incidence (NI) geometry.
(b) Oblique incidence (OI) geometry. The incident light polarization
is shown by the yellow sine wave. Angle-resolved detection in d�

around inclination θ and azimuth φ is illustrated in green. The red
lobes visualize the angular distributions of the pure d channels,
d2

NI and d2
OI, respectively [cf. Eqs. (4) and (5)]. In our experiment

only photoelectrons emitted into the (x, z) plane, where φ = 0,
are detected. To obtain the momentum maps in Fig. 1, the sample
is rotated around the z axis by varying ϕ. (c)–(e) Experimental
photoemission intensities in three geometries as indicated, extracted
along the green contour in Fig. 1(b) and compiled for densely
sampled kinetic energies between 15 and 80 eV (first column),
compared to predictions of the PWA (second column), TDDFT
(third column, shifted by 3 eV), and SWA without nearest-neighbor
scattering (fourth column). Intensities in each column are plotted to
scale, with dark red corresponding to high intensity. Between the
columns the scaling is arbitrary. The blue arrows mark an intensity
minimum that arises from a node in the d channel.

waves become possible. While this description has in fact a
long history in the simulation of the photoemission process
of gas-phase molecules [44–47], we formally extended it to
a periodic system, including the Bloch nature of the initial
state as well as on-site, and, in a second step, nearest-neighbor
scattering of the outgoing photoelectron.

Without nearest-neighbor scattering, the photoemission in-
tensity from the C 2pz-derived valence band of graphene
becomes (see Appendix F)

I (k f ,�k f hν, ε) ∝ |Mk f ,k|2

= δk,k f ‖ |ε · M210(k f )(1 + eiϑk )|2, (2)

where the Kronecker δk,k f ‖ describes momentum conserva-
tion (modulo reciprocal lattice translations) and (1 + eiϑk )
is the initial-state structure factor. Remarkably, the term ε ·
Mnlm(k f ) now replaces ε · k f × F[φnlm](k f ) in the PWA that
we discussed in the introduction. For a 2pz orbital with quan-
tum numbers {nlm} = {210}, it is given by

M210(k f ) = g̃(k f )Y 1,0,0(θ, φ)︸ ︷︷ ︸
s channel

− f̃ (k f )Y 1,2,0(θ, φ)︸ ︷︷ ︸
d channel

(3)

and therefore embodies the dipole selection rule and the
corresponding angular distribution in the differential cross
section for photoemission from C 2pz orbitals. The complex-
valued quantities g̃(k f ) and f̃ (k f ) are determined by the
effective on-site scattering potential and contain the k f -
dependent amplitude and phase of the s and d photoemission
partial waves, respectively. The photoemission angular distri-
bution in these two channels is given by the vector spherical
harmonics Y l,l∓1,m [48], whose components can be individ-
ually addressed by the principal components of the light
polarization vector ε.

In our experimental geometry [Figs. 2(a) and 2(b)], the NI
and OI intensities simplify to (see Appendix F)

INI ∝ | f̃ (k f )|2dNI(θ, φ)2|1 + eiϑk f ‖ |2, (4)

IOI ∝ [| f̃ (k f )|2dOI(θ, φ)2 + 8|̃g(k f )|2

+ 4
√

2| f̃ (k f )||̃g(k f )|dOI(θ, φ) cos �σ ]|1 + eiϑk f ‖ |2,
(5)

where dNI(θ, φ) = sin 2θ cos φ and dOI(θ, φ) =
3 sin 2θ cos φ + 3 cos 2θ + 1 describe the angular intensity
distributions of the pure d channel in the respective
polarization geometries, and where �σ = arg( f̃ /̃g) describes
the relative phase between s and d partial waves. In the
symmetric NI geometry, the s channel is suppressed and
emission in the d channel is symmetric in θ . In contrast,
IOI is determined by the interference between the isotropic
s and the anisotropic d channels. We note that in our
experiments the plane of light incidence (spanned by the
wave vector and light polarization) and the plane of detected
photoemission coincide, i.e., φ = 0. Hence, for β = 0 the
above equations apply directly to our experiment, while
for β 
= 0 [equivalent to φ 
= 0 in Figs. 2(a) and 2(b) and
Eq. (4)] the sample and with it the initial state need to be
rotated by changing ϕ away from 0 while keeping φ = 0.
In contrast, both the TDDFT and the SWA calculations in
Figs. 2(c)–2(e) vary φ and keep ϕ = 0. Because the variations
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(a) (b)

FIG. 3. Photoemission into s and d channels as a function of
final-state kinetic energy. (a) Amplitudes |̃g| and | f̃ | of the s and
d channels, respectively; (b) their ratio in the OI geometry. The
curves were extracted from experimental data at β = 0 in NI and
OI geometries as indicated, using the SWA without nearest-neighbor
scattering. Positive real values were obtained only for in-phase pho-
toemission in the s and d channels, i.e., �σ = 0.

of ϕ (experiments) and φ (calculations) along the horseshoe
trajectory β are small, deviations between the two detection
geometries are negligible, as is also illustrated by the excellent
agreement between experiment and theory in Figs. 2(c)–2(e).

In analyzing the predictions of the SWA, we first focus
on the kinetic energy (k f ) dependence. Since dOI(φ = 0, θ )2

vanishes for backward emission at θ−
0 ≈ −29.3◦, we expect a

minimum in IOI at this angle. Close to the K point of graphene
we have k‖ ≈ 1.7 Å−1. Photoelectrons with this k f ‖ will be
emitted at the angle θ−

0 if k f = k f ‖/ sin θ−
0 , yielding a kinetic

energy Ekin ≈ 44 eV. This agrees with the observed intensity
minimum in backward emission displayed in Fig. 2(d) (blue
arrows), which can therefore be assigned to a node in the d
channel [red lobe in Fig. 2(b)]. Note that the second root of
dOI(φ = 0, θ )2 appears in forward direction at θ+

0 ≈ 74.3◦,
corresponding to a kinetic energy of only 11.4 eV for elec-
trons from the vicinity of the K point, which is outside our
measurement range.

With the help of Eqs. (4) and (5) it is in fact possible to
reconstruct the functions |̃g(k f )| and | f̃ (k f )|. To this end, we
divided the NI experimental data in Fig. 2(c) at fixed angle
β = 0 by sin2 2θ and thereby extracted the amplitude | f̃ (k f )|
of the d channel (at β = 0, we also have φ = 0). The green
curve in Fig. 3(a) displays the result. Similarly, the BWD and
FWD OI geometries [Figs. 2(d) and 2(e)] at β = 0 deliver two
linearly independent equations for IOI(k f ). Solving these for
| f̃ (k f )| [orange in Fig. 3(a)] and |̃g(k f )| [red in Fig. 3(a)], we
find positive real values only if �σ = 0, i.e., for an in-phase
emission in the s and d channels. Quite remarkably, | f̃ (k f )|
obtained from the OI geometry matches the curve obtained
from the NI geometry absolutely, i.e., without any scaling
correction, thereby underlining the excellent photon intensity
calibration provided by the Metrology Light Source. Plotting
the ratio | f̃ |/|̃g| in Fig. 3(b), we find the s channel to be
the predominant photoelectron source throughout the entire
energy regime, except for regions around 43 eV and 63 eV,
where the s and d channel contributions are of the same
order.

(a) (b) (c) (d)

FIG. 4. Influence of nearest-neighbor scattering. (a) Experimen-
tal photoemission intensity in the NI geometry reproduced from
Fig. 2(c) with a different contrast scaling. (b) Corresponding TDDFT
simulations from Fig. 2(c). (c) SWANN prediction including nearest-
neighbor final-state scattering. (d) k f -dependent scattering amplitude
and phase of u(k f ) that best fit the data in (a). For a compact display
we have plotted Abs ≡ |u| × sgn(arg u) and Arg ≡ mod (arg u, π ).

Inserting the so-obtained amplitudes | f̃ (k f )| and |̃g(k f )|
as well as the phase shift �σ = 0 back into the model of
Eq. (2), we can calculate the expected intensity distribution
in the horseshoe for our three experimental configurations
(varying θ and φ and keeping ϕ = 0). The results are shown
in the rightmost column of Figs. 2(c)–2(e). Regarding the
OI data [Figs. 2(d) and 2(e),] which exhibit relatively little
structure in β, the agreement between experiment and SWA
is very satisfactory and clearly much better than for the PWA.
For the NI data, however, the SWA model does not capture
the distinctive redistribution of the intensity in k-space that
is observed in experiment. Specifically, the kinetic-energy-
dependent modulation along β is not reproduced.

To amend this deficiency, we thus extended the model to
include, in addition to on-site scattering, also nearest-neighbor
(NN) scattering in the final state, i.e., scattering of photo-
electrons emitted from sublattice A into the Coulomb partial
waves centered at one of the neighboring B sites. Adapting
Eq. (2) accordingly, we find (see Appendix F)

I (k f ,�k f hν, ε) ∝ |ε · M210(k f ) × [1 + eiϑk

+ (e−iϑk f ‖ + eiϑk eiϑk f ‖ )u(k f )]|2δk,k f ‖ . (6)

NN final-state scattering thus leads to an additional term
(e−iϑk f ‖ + eiϑk eiϑk f ‖ )u(k f ), which collapses to (e−iϑk f ‖ +
ei2ϑk f ‖ )u(k f ) due to momentum conservation. Because u(k f )
varies only slowly on the photoemission hemisphere �k f , for a
given k f it can be approximated in Eq. (6) as a merely kinetic-
energy-dependent (but not momentum-vector-dependent) fit
parameter u(k f ) that is constant around the horseshoe, i.e.,
u(k f ) ≈ |u(k f )|ei arg u(k f ). Fitting Eq. (6) under this assumption
to the experimental data of Fig. 2(c), we obtained the intensity
distribution shown in Fig. 4(c), with the corresponding u(k f )
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displayed in Fig. 4(d). Given the simplicity of our scattering
model, the agreement with the experiment in Fig. 4(a) [and
with TDDFT in Fig. 4(b)] is very satisfactory: In particu-
lar, the shift of the intensity to β ≈ ±2π/3 in the kinetic
energy range between 30 and 40 eV and also below 20 eV,
as well as the concurrent depletion of the intensity in the
interval [−π/3,+π/3], are well reproduced. As Fig. 1(d)
reveals, these redistributions are a direct consequence of the
minima and maxima of |e−iϑk f ‖ + ei2ϑk f ‖ | at β = ±π/3 and
β = ±2π/3, respectively, and the maxima of |u(k f )| in the
respective kinetic energy ranges. This demonstrates that the
SWA in conjunction with nearest-neighbor final-state scatter-
ing (SWANN) captures the essence of the observed intensity
distribution, in both kinetic energy and k-space.

Looking back at the overall intensity distributions in β

of the three experimental geometries in Figs. 2(c)–2(e), we
note that nearest-neighbor final-state scattering is most preva-
lent in the NI geometry, to a much lesser extent also in the
OI-FWD, but essentially absent in OI-BWD, where the in-
tensity is essentially confined in the interval [−π/3,+π/3],
as predicted by the bare initial-state structure factor |1 + eiϑk |
[Fig. 1(c)]. In other words, experimental geometries that have
significant d channel contributions [NI, OI-FWD, cf. Eqs. (4)
and (5)] show NN scattering, while those with a dominant s
channel (OI-BWD) do not. We rationalize this observation
by the emission channels’ k f dependences. Estimating the
d and s wave resonances in Fig. 3(a) to exhibit widths of
�kd ≈ 0.3 Å−1 and �ks ≈ 1.5 Å−1, respectively, Heisen-
berg’s uncertainty principle �k�r � h̄/2 suggests real-space
distributions of the corresponding Coulomb partial waves of
the order �rd ≈ 1.7 Å and �rs ≈ 0.3 Å around the carbon
nucleus. Taking into account a carbon-carbon distance of
1.42 Å, a significant overlap between partial waves emanat-
ing from nearest neighbors is thus only expected for the d
channel.

III. CONCLUSION

In summary, we measured angle-resolved photoemission
intensities of the horseshoe of quasi-freestanding monolayer
graphene (QFMLG) for a wide range of photon energies us-
ing a calibrated photon flux. Varying the final-state kinetic
energy for a fixed initial state, we found a complex intensity
modulation that is well reproduced by simulations using the
surface-flux method within the framework of TDDFT, but
goes beyond the predictions of the plane-wave final state ap-
proximation. In order to understand these findings in terms of
an intuitive physical picture, we developed the scattered-wave
approximation for the photoemission final state, which allows
for the interference of the dipole-allowed s and d photoemis-
sion channels, where the latter experiences also significant
scattering from the neighboring carbon atoms. In this way, we
extracted the kinetic-energy-dependent amplitude and phase
of both s and d partial waves, which present a benchmark
for ab initio theories that focus on a more sophisticated de-
scription of the photoemission process and are pivotal for the
understanding of dichroism. Our wide-energy-range f̃ (k f ),
g̃(k f ) data provided in Fig. 3(a) (see Supplemental Material
Ref. [49]) along with Eqs. (2) and (3) also allow for an
easy calculation of the horseshoe intensities with arbitrary

polarized light. A prospective application thereof could be an
absolute calibration of photon flux in any photoemission mea-
surement with variable photon energy and geometry purely
based on the photoemission response of the robust 2D material
QFMLG. Going beyond graphene, our model further promises
an intuitive description of complex kinetic-energy-dependent
intensity modulations and dichroism in layers of π conjugated
organic molecules, or even in (quasi-) 2D quantum materials
with more complex orbital low-energy electronic structures,
including strong spin orbit coupling.
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APPENDIX A: SAMPLE PREPARATION

The preparation of quasi-freestanding monolayer graphene
(QFMLG) was performed in two steps [38,50–52]: First, a
Si-terminated 6H-SiC(0001) surface was thermally decom-
posed to create zero-layer graphene (ZLG). Subsequently, the
ZLG is decoupled from the substrate by annealing at 550 ◦C
in hydrogen atmosphere (880 mbar) to obtain QFMLG.
The quality of the QFMLG was controlled with low-energy
electron diffraction (LEED) and x-ray photoemission spec-
troscopy (XPS) with Al Kα radiation. After preparation,
the sample was transferred through air to the synchrotron
for ARPES experiments. Before the ARPES experiments,
the sample was cleaned by outgassing in ultrahigh vacuum
(<10−9 mbar) at 350 ◦C for 30 min. ARPES experiments
with 45 eV photon energy revealed band maps typical for
p-doped graphene with the Fermi level 0.1 eV below the Dirac
point [38].

APPENDIX B: PHOTOEMISSION EXPERIMENTS

Photon-energy-dependent ARPES experiments were con-
ducted at the calibrated insertion device beamline [41] of
the Metrology Light Source at the Physikalisch-Technische
Bundesanstalt (PTB), the German national metrology institute
in Berlin. Measurements in two experimental geometries were
carried out, labeled as normal incidence (NI) and oblique
incidence (OI), with incidence angles of, respectively, 0◦ and
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45◦ relative to the sample surface normal. In both geometries,
the incident light was p-polarized.

The photon energy was varied in small steps (1 eV for
hν < 50 eV, 2 eV for hν > 50 eV) from hν = 15 to 110 eV.
To this end, several different undulator/monochromator/filter
settings of the beamline were employed: (1) In the photon en-
ergy range from 15 to 31 eV, the third undulator harmonic with
normal incidence onto the grating monochromator was em-
ployed; (2) in the range from 25 to 45 eV, the third harmonic
with grazing incidence in combination with a Mg filter was
used; (3) from 45 to 60 eV, the sixth harmonic with grazing
incidence in combination with an Al filter was employed; (4)
for 60 to 71 eV, the tenth harmonic with grazing incidence in
combination with an Al filter was used; (5) for 71 to 87 eV, the
tenth harmonic with grazing incidence in combination with
a Be filter was employed; (6) and finally, for 87 to 110 eV
the same setting as in (5) but in wiggler operation mode was
used. The filters served to suppress both parasitic light from
higher grating orders and stray light from the monochroma-
tor, reducing the false-light contribution to below 1% of the
total [41].

Special care was taken regarding the calibration of the
photon intensity Iph. To this end, we employed the drain cur-
rent caused by photoemission at the beam-line mirror. This
current was referenced to an absolutely calibrated semicon-
ductor photodiode, yielding an hν-dependent photon intensity
curve measured in photons per second and nanoampere mir-
ror current [29]. During the photoemission experiments from
graphene, the mirror current was constantly monitored, yield-
ing the calibrated photon intensity Iph(hν, ε), which was
further used in Eq. (C8).

To detect the photoelectrons, a toroidal electron analyzer
[53] was used. The instrument simultaneously collects photo-
electrons emitted into a wide angular range of −85◦ � θ �
85◦ within the plane of incidence, i.e., the plane spanned by
the incident light beam and the sample normal [see Fig. 2(a)],
and an energy dispersion range of ≈1 eV. Additionally rotat-
ing the sample 360◦ around its azimuth ϕ in steps of 1◦, we
obtained I (k f ,�0, ϕ; hν, ε) with �0 ≡ (θ, φ = 0), and thus a
complete experimental data cube, which was transformed into
experimental momentum maps of the photoemission intensity
I (kx, ky). Note that unlike momentum maps that would be
obtained from the intensity I (k f ,�k f ; hν, ε) by converting
�k f = (θ, φ) into (kx, ky), the experimental momentum map
in this paper was measured with constant azimuth φ = 0.
To obtain photoemission intensities deriving from the fixed
initial-state energy of εi = −1.25 eV, i.e., 1.35 eV below
the Dirac point, the kinetic energy Ekin at which photoelec-
trons were detected was varied with photon energy hν such
that Ekin = hν − Ec. Ec was determined by comparing the
experimentally measured diameter of the horseshoe to the
TDDFT-calculated one. For Ec = 1.6 eV, the experimentally
measured horseshoes had the same diameter as the TDDFT-
calculated horseshoes 1.35 eV below the Dirac point. While
the absolute photoelectron-to-counts conversion rate of the
toroidal electron analyzer is unknown, we expect the response
χ (k f ) to be linear and independent of k f , i.e., of kinetic
energy. The cross sections reported in this work are thus given
apart from a constant factor χ , i.e., only in relative terms, and
were thus normalized arbitrarily in Fig. 3.

APPENDIX C: PHOTOEMISSION DIFFERENTIAL
CROSS SECTION

In the one-step model of photoemission, the probability per
unit time (or transition rate) Wi,k f that a photoelectron with
wave vector k f is emitted from the single-particle initial state
i is given by Fermi’s golden rule

Wi,k f = 2π

h̄

∣∣∣∣〈ψk f |
e

m
A · p̂|ψi〉

∣∣∣∣2δ(εi − εk f − � + hν)

= 2πe2h̄|A0|2
m2

|〈ψk f |ε · ∇|ψi〉|2δ(εi − εk f − � + hν),

(C1)

where |ψi〉 is the initial (bound) state vector with energy
εi < 0 and |ψk f 〉 is the final (unbound) state vector with ki-
netic energy Ekin = εk f , and � > 0 is the work function. A
is the vector potential of the photon field, ε its polarization
vector, p̂ the momentum operator of the (photo)electron, and
e and m are the electron’s charge and mass, respectively. The
perturbing operator A · p̂ arises from the minimal coupling
principle by taking into account that the momentum operator
commutes with the vector potential in the Coulomb gauge.

The probability per unit time Pi,k f that a photoelectron with
kinetic energy Ekin = h̄2k2

f /2m is emitted from initial state i
into any direction �k f = (θ, φ) can be calculated as

Pi,k f = 1

vk f

∫
|k′

f |=k f

d3k′
f Wi,k′

f
, (C2)

where vk f = (2π )3/V is the k f -space volume per k f vector.
V is the (illuminated) real-space volume of the sample, in
which

∫
V d3rψ∗

k f
ψk f = 1. Note that for a given initial state ψi

with energy εi and due to energy conservation enforced by the
delta function in Eq. (C1), the integration in Eq. (C2) projects
out the angular dependence at a fixed absolute value k f , i.e.,
kinetic energy as described earlier [4]. Using Eq. (C1), this
becomes

Pi,k f = V

(2π )2

e2h̄|A0|2
m2

∫
2π

d�k′
f

∫
k′

f
2dk′

f |〈ψk′
f
|ε · ∇|ψi〉|2

× δ(k′
f − k f )

1

|s′(k f )|

= V

(2π )2

e2|A0|2k f

h̄m

∫
2π

d�k f |〈ψk f |ε · ∇|ψi〉|2, (C3)

where s(k′
f ) ≡ εi − h̄k′

f
2
/2m − � + hν.

The total cross section σi,k f of the photoemission process
from initial state i is related to Pi,k f by

σi,k f

A�
≡ ni,k f = Pi,k f �t, (C4)

where A� is the illuminated area on the sample and ni,k f is
the fraction of emitted photoelectrons per photon hitting the
area A� in the time interval �t . Evidently, A� is given by
Vph/(c�t ), where Vph is the volume in which the energy of the
photon field amounts to hν and c the velocity of light. After
differentiation with respect to the solid angle � we thus find
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for the differential cross section

dσi,k f

d�
= Vph

c

dPi,k f

d�
. (C5)

Note that both
dσi,k f

d�
and

dPi,k f

d�
are functions not only of k f and

�k f = (θ, φ), but also of photon energy hν (which—because
of the delta function in Eq. (C1)—selects possible initial states
i according to their εi) and light polarization ε. Hence, we
write dσ

d�
(k f ,�k f ; hν, ε) from now on.

The normalization of the light field to the energy of one
photon in the volume Vph fixes the amplitude A0 of the vector
field to

|A0|2 = h̄

πVphε0ν
. (C6)

According to Eqs. (C3) and (C5), this finally yields the differ-
ential photoemission cross section

dσ

d�
(k f ,�k f ; hν, ε) = dσi,k f

d�
= V

4π3

e2k f

cmε0ν
|〈ψk f |ε · ∇|ψi〉|2.

(C7)

In experiment, we measure the photoelectron intensity
I (k f ,�k f ; hν, ε) at the detector in a finite solid angle ��,
originating from the area A� on the sample which contains
N photoemitters. The calibrated beamline produces a known
monochromatic photon flux Fph(hν, ε), yielding a photon
intensity Iph(hν, ε) = F (hν, ε)A� on the area A�. Photo-
electrons are detected with efficiency χ (k f ). Therefore, the
photoelectron intensity is given by

I
(
k f ,�k f ; hν, ε

)
=χ (k f ) Iph(hν, ε) N

dσ
d�

(k f ,�k f ; hν, ε)

A�
��. (C8)

Thus, the intensity ratio I (k f ,�k f ; hν, ε)/Iph(hν, ε), if ob-
tained at a carefully calibrated beamline with a carefully
characterized linear response χ (k f ) of the analyzer, is a direct
measure of the differential photoemission cross section. If
we assume that the volume density of the photoemitters in
the sample is �, we can replace the ratio N/A� in the above
equation by �d , where d is the effective sampling depth.

APPENDIX D: PHOTOEMISSION INITIAL STATE

The unit cell of graphene contains two carbon atoms, one in
each of the two sublattices A and B. The respective atoms are
located at RA = a

2
√

3
(0,−1)� and RB = a

2
√

3
(0, 1)� within the

unit cell (see Fig. 5). Each of these carbon atoms contributes
one 2pz orbital to the formation of aromatic π bonds. The
nearest neighbors of carbon atoms in sublattice A are atoms
in sublattice B; they are located at n0 = (0, a/

√
3)� within

the same unit cell and at n1 = C1
3 n0 = (−a/2,−a/2

√
3)� and

n2 = C2
3 n0 = (a/2,−a/2

√
3)� in adjacent unit cells, where

C3 is a threefold rotation around the sample normal. In the
orbital basis {|RA, 2pz〉, |RB, 2pz〉}, the tight-binding Hamilto-
nian with nearest-neighbor hopping reads

Ĥ = t

(
0 h(k)

h∗(k) 0

)
, (D1)

FIG. 5. Atomic structure of graphene. Carbon atoms of the two
sublattices A and B are displayed in red and orange, respectively.
The primitive unit cell containing one atom each of both sublattices
is shown in black. The three vectors n0, n1, and n2 from an atom in
sublattice A to its nearest neighbors in sublattice B are indicated in
green. Nonprimitive unit cells that contain all nearest neighbors of a
sublattice representative are shown in yellow. In the SWANN includ-
ing nearest-neighbor scattering, the total photoemission intensity is
given by the sum of identical contributions from the two yellow unit
cells.

where

h(k) =
2∑

j=0

ein j ·k ≡ |h(k)|eiϑk (D2)

describes the coupling between sublattices A and B, and
where t < 0 is the nearest-neighbor hopping energy [54].
Diagonalizing Ĥ , one finds eigenvalues

ε±
k = ±t |h(k)|

= ±t
√

3 + 2 cos(akx ) + 4 cos(akx/2) cos(a
√

3ky/2)

(D3)

with eigenvectors c± = (c±
A , c±

B )� = 1√
2
(1,±eiϑk )�, where

eiϑk = h(k)/|h(k)|, and where the superscripts + and − label
the negative and positive energy solutions, i.e., the valence and
the conduction band, respectively. The argument ϑk of h(k) is
plotted in Fig. 6. Hence, the initial state of the photoemission
process from the aromatic π bands of graphene is the Bloch
state

�±
k (r) = 1√

V

∑
R

eik·R 1√
2

(|RA, 2pz〉 ± eiϑk |RB, 2pz〉),

(D4)

where the sum runs over all graphene lattice sites R, and k is
defined within the first Brillouin zone of graphene. Because
in the experiment we measure only the horseshoe within the
valence band of graphene, we exclusively select the + and
drop the − solution.

APPENDIX E: TDDFT CALCULATIONS

For the ab initio simulations of photoemission from
graphene, we restricted ourselves to a single layer with a
carbon-carbon distance of n j = 1.421 Å, extended in the x, y
plane. The TDDFT simulations were carried out with the
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FIG. 6. Phase ϑk of graphene. The black hexagon indicates the
first Brillouin zone. �, K, and K

′
points are labeled.

real-space real-time code OCTOPUS [55–57], using in-plane
periodic boundary conditions and an out-of-plane simulation
box of Dz = 70 Å in both directions. To avoid spurious re-
flections of electron density in both nonperiodic directions
(±z directions), we inserted a complex absorbing poten-
tial [58] (CAP), starting at a distance of ±15 Å from the
graphene layer, with iξ sin2( zπ

2Dz
) behavior and ξ = −1 a.u.

We used a grid spacing in the simulation box of 0.18 Å and
approximated the influence of the core electrons by norm-
conserving Hartwigsen-Goedecker-Hutter pseudopotentials
[59]. Exchange-correlation effects were treated in the adia-
batic local density approximation (ALDA) [60,61].

After the electronic ground state had been calculated, the
system was subjected to an electromagnetic field for 30 fs.
It was coupled to the Hamiltonian in the velocity gauge. This
pulse was modeled by a cos(ωt ) function and shaped by a sin2

hull function, thus ensuring gradual on- and off-switching.
Over all times, we recorded the flux of electron density
through a surface located at the onset of the CAP, which
is a direct numerical simulation of the ARPES experiment
[37,62]. In order to guarantee a normalized photon flux, the
maximum amplitude of the pulse was varied for each photon
energy, corresponding to a laser with a constant intensity of
108 W/cm2.

APPENDIX F: PHOTOEMISSION FINAL STATE

1. General framework

Following Ref. [21], we write the photoelectron final state
in terms of unbound solutions of the Schrödinger equation in
a central Coulomb potential (Coulomb wave equation), i.e.,
in terms of unbound (positive energy) hydrogen-like atomic
orbitals |R j, ηlm〉 centered at site R j . These orbitals are the
partial waves in the expansion of the Coulomb wave |k f 〉 with
wave vector k f and as such are characterized by quantum
numbers l and m, as well as the dimensionless Sommerfeld
parameter η = Z/(a0k f ), which describes the distortion of the
outgoing photoelectron wave with spherical wave vector k f in
the Coulomb field of the ion that is left behind. a0 is the Bohr
radius. Note that the Sommerfeld parameter takes the role

of the principal quantum number n that characterizes bound
solutions.

The partial waves are given by [63–66]

χηlm(r) = 〈r|χηlm〉 = Rηl (r)〈r|lm〉 = Rηl (r)Y m
l (�r). (F1)

In the far field, the radial functions k f rRηl (r) normalize to a
sine wave of unit amplitude,

Rηl (r → ∞) → sin[k f r − η ln(2k f r) − lπ/2 + σl ]

k f r
, (F2)

where σl = arg �(l + 1 + iη) is the Coulomb phase. The sine
wave is phase shifted with respect to the free electron wave,
signifying the impact of the ionic Coulomb potential on the
partial electron wave with angular momentum l far away from
the atomic site.

The Coulomb wave |k f 〉 of the outgoing photoelectron
emitted with wave vector k f from an atomic site in a specific
direction, expanded in terms of partial waves for all l and m,
is given by [67,68]

|k f 〉 = 4π

∞∑
l=0

l∑
m=−l

il eiσl 〈lm|k f 〉|χηlm〉, (F3)

yielding

χk f (r) = 〈r|k f 〉

= 4π

∞∑
l=0

l∑
m=−l

il eiσl Rηl (r, k f )〈r|lm〉〈lm|k f 〉

= 4π

∞∑
l=0

l∑
m=−l

il eiσl Rηl (r, k f )Y m
l (�r)Y m∗

l (�k f ). (F4)

This expression should be compared to the partial-wave ex-
pansion of the plane-wave final state

eik f ·r = 4π

∞∑
l=0

l∑
m=−l

il jl (k f r)Y m∗
l (�r)Y m

l (�k f ), (F5)

where the jl are spherical Bessel functions.
The final-state wave function of a photoelectron with wave

vector k f from a lattice of atoms is given by a coherent
superposition of outgoing states |k f 〉 emanating from all sites,

�k f (r) = 1√
V

∑
R

eik f ·R
∑
R j

eik f ·R j χk f (r − R − R j ), (F6)

where the sums are carried out over all lattice vectors R and
basis sites R j within a unit cell of the lattice, respectively.
The prefactor involving the normalization volume (=sample
volume) V safeguards that 〈�k f |�k f 〉 = 1. In the case of
graphene, this becomes

�k f (r) = 1√
V

∑
R

eik f ·R
∑

j={A,B}
eik f ·R j χk f (r − R − R j ), (F7)

where all R, R j are 2D vectors in the plane of graphene.
Before turning to the special case of photoemission from

the C 2 pz orbitals of graphene, we derive a general expression
for the matrix element in Eq. (C7) between an initial Bloch
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state with band index κ ,∣∣�κ
k

〉 = 1√
V

∑
R

eik·R∑
R j

∑
nlm

cκ
jnlm(k)|R + R j, nlm〉, (F8)

and the final state as given in Eq. (F6). The initial-state Bloch
state can be expanded in terms of atomic states with quantum
numbers {nlm} centered at sites R + R j . The latter are given
by bound atomic orbitals (negative energy)

�nlm(r) = 〈r|0, nlm〉 = Rnl (r)Y m
l (�r). (F9)

Note that for graphene, the Bloch wave vectors in Eq. (F8)
are 2D and oriented in the surface plane, i.e., k = k‖. For the
photoemission matrix element Mκ

k f k between the initial-state
wave function �κ

k (r) and the final-state wave function �k f (r)
we obtain from Eq. (F6) and Eq. (F8)

Mκ
k f k =

∫
d3r �∗

k f
(r) ε · ∇�κ

k (r)

= 1

V

∑
R′

e−ik f ·R′ ∑
R′

j

e−ik f ·R′
j

∑
R

eik·R∑
R j

∑
nlm

cκ
jnlm(k)

×
∫

d3r χ∗
k f

(r − R′ − R′
j ) ε · ∇�nlm(r − R − R j )

= 1

V

∑
R′

e−ik f ·R′ ∑
R′

j

e−ik f ·R′
j

∑
R

eik·R∑
R j

∑
nlm

cκ
jnlm(k)

×
∫

d3r χ∗
k f

(r − R′ − R′
j + R + R j ) ε · ∇�nlm(r)

≈ 1

V

∑
R

ei(k−k f )·R∑
R j

∑
nlm

cκ
jnlm(k)e−ik f ·R j

×
∫

d3r χ∗
k f

(r) ε · ∇�nlm(r)

= N

V

∑
G

δ(k−k f )‖,G

∑
R j

∑
nlm

cκ
jnlm(k)e−ik f ·R j ε · Mnlm(k f )

= 1

V0

∑
G

δ(k−k f )‖,G ε · M · c

≈ δk,k f ‖

V0
ε · M · c, (F10)

where M is a 3 × dim(c) matrix that couples the polariza-
tion (row) vector ε of the incoming light to the initial state
(column) vector c(k) = (. . . , cκ

jnlm(k), . . .)�, and where the
indices {κ jnlm} run over all available coordinates and quan-
tum numbers. From the second to the third lines of Eq. (F10),
a coordinate transformation r − R − R j → r was carried out.
Also, from the third to the fourth lines we excluded transitions

between initial-state orbitals at one site �nlm(r − R − R j )
and final-state waves χk f (r − R′ − R′

j ) emerging from another
site, i.e., we assumed R = R′ and R j = R′

j . This amounts to
an explicit exclusion of inter-site final-state scattering (see
below) and is commonly referred to as the independent-center
approximation. From the fourth to the fifth lines, we further
identified the Fourier series in R as Dirac comb with 2D
reciprocal lattice periodicity G, and hence recover momentum
conservation. Here N is the number of unit cells in the sample
volume and V0 the unit cell volume.

The column 3-vectors Mnlm(k f ) in Eq. (F10) are defined as

Mnlm(k f ) ≡
∫

d3r χ∗
k f

(r) ∇�nlm(r), (F11)

where the gradient of atomic orbitals is given in Ref. [48] by

∇�nlm(r) = ∇[Rnl (r)Y m
l (�r)]

= −
√

l + 1

2l + 1

(
∂

∂r
− l

r

)
Rnl (r)Y l,l+1,m(�r)

+
√

l

2l + 1

(
∂

∂r
+ l + 1

r

)
Rnl (r)Y l,l−1,m(�r),

(F12)

and where Y J,L,M (�r ) are the vector spherical harmonics de-
fined as [48]

Y J,L,M (�r) =
L∑

m=−L

1∑
m′=−1

〈L, m; 1, m′|J, M〉Y m
L (�r) εm′ ,

(F13)
with Clebsch-Gordon coefficients 〈 j1, m1; j2, m2|J, M〉.
Y J,L,M thus emerges from the angular-momentum coupling
of the ordinary spherical harmonic Y m

L with angular
momentum quantum number L to the complex vector
u = xex + yey + zez, (x, y, z) ∈ C3, which has the angular
momentum quantum number 1. The eigenstates of the L̂z

operator in the three-dimensional complex space of u are the
εm′ , given by ε+1 = (−1/

√
2,−i/

√
2, 0)�, ε0 = (0, 0, 1)�,

and ε−1 = (1/
√

2,−i/
√

2, 0)� [48]. Defining

fnl (r) ≡
(

∂

∂r
− l

r

)
Rnl (r),

gnl (r) ≡
(

∂

∂r
+ l + 1

r

)
Rnl (r), (F14)

we obtain

∇�nlm(r) = −
√

l + 1

2l + 1
fnl (r)Y l,l+1,m(�r)

+
√

l

2l + 1
gnl (r)Y l,l−1,m(�r), (F15)

which, if inserted into Eq. (F11), yields

Mnlm(k f ) =
∫

d3r χ∗
k f

(r)

(
−
√

l + 1

2l + 1
fnl (r)Y l,l+1,m(�r) +

√
l

2l + 1
gnl (r)Y l,l−1,m(�r)

)

= −
√

l + 1

2l + 1
e−iσl+1 f̃n,l,l+1(k f )Y l,l+1,m(�k f ) +

√
l

2l + 1
e−iσl−1 g̃n,l,l−1(k f )Y l,l−1,m(�k f ), (F16)
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where we exploited the orthogonality of spherical harmonics to resolve the spatial integral and introduced

f̃n,l,l+1(k f ) ≡ 4π (−i)l+1
∫

dr r2R∗
ηl+1(r) fnl (r),

g̃n,l,l−1(k f ) ≡ 4π (−i)l−1
∫

dr r2R∗
ηl−1(r)gnl (r). (F17)

The two summands in Eq. (F16) correspond to the two dipole-allowed photoemission channels l → l ± 1. The f̃n,l,l+1(k f )
and g̃n,l,l−1(k f ) are the kinetic-energy-dependent (through k f ) amplitudes of the photoemission l + 1 and l − 1 channels,
respectively, for photoemission from an initial state with quantum numbers {nlm}. The σl+1 and σl−1 are their corresponding
Coulomb phases.

2. Photoemission from C 2pz orbitals without nearest-neighbor scattering

We now focus on photoemission from the π band of graphene and calculate M±
k f k for this explicit case. Then the matrix M is

a 3 × 2 matrix, and c is given by c± = 1√
2
(1,±eiϑk )�. Since the orbitals in the two sublattices are identical, the two columns of

M are also identical. Because a specific choice of the basis in C3 is implicit in the definition of the vector spherical harmonics,
and thus also in Mnlm, we also need to express both the polarization vector ε of the light and the initial state vector c in this
basis. Since the π bands of graphene involve only C 2pz states, this is trivial with regard to c; we consider only the M210 vector.
Regarding the polarization vector of the incoming light, we have to choose the basis of eigenstates of the complex vector u, i.e.,
ε+, ε0 and ε− as defined above. In fact, this basis coincides with circular polarized light of two opposite directions in the x, y
plane (ε+ ≡ ε� and ε− ≡ ε�) and linearly polarized light in the z direction (ε0).

Applying Eq. (F16) to the C 2pz orbital with quantum numbers {nlm} = {210}, we find

M210(k f ) = −
√

2

3
e−iσ2 f̃2,1,2(k f )Y 1,2,0

(
�k f

)+
√

1

3
e−iσ0 g̃2,1,0(k f )Y 1,0,0

(
�k f

)
≡ − f̃ (k f )Y 1,2,0

(
�k f

)+ g̃(k f )Y 1,0,0
(
�k f

)
, (F18)

where for clarity we absorbed the constants as well as the k f -dependent amplitudes (̃g2,1,0 and f̃2,1,2) and phases (e−iσ2 and e−iσ0 )
in the complex functions f̃ (k f ) and g̃(k f ), respectively. According to Eq. (F10), M±

k f k then becomes

M±
k f k = δk,k f ‖ ε · M(k f ) · c±

= δk,k f ‖ (ε+ ε0 ε−) · (M210(k f ) M210(k f )) · 1√
2

(
1

±eiϑk

)
= δk,k f ‖ (ε+ ε0 ε−) · M210(k f ) · (1 1) ·

(
1

±eiϑk

)

=

⎛⎜⎜⎜⎜⎝− f̃ (k f )

[√
3

10
ε−Y 1

2

(
�k f

)−
√

2

5
ε0Y

0
2

(
�k f

)+
√

3

10
ε+Y −1

2

(
�k f

)]
︸ ︷︷ ︸

d channel

+ g̃(k f ) ε0Y
0

0

(
�k f

)︸ ︷︷ ︸
s channel

⎞⎟⎟⎟⎟⎠× 1√
2

(1 ± eiϑk f ‖ ), (F19)

where we used the vector spherical harmonics Y 1,2,0(�k f ) = (
√

3
10Y −1

2 (�k f ),−
√

2
5Y 0

2 (�k f ),
√

3
10Y 1

2 (�k f ))� and Y 1,0,0(�k f ) =
(0,Y 0

0 (�k f ), 0)� according to Eq. (F13).
First, we note that circular dichroism in this approximation vanishes as |Y 1

2 (�k f )| = |Y −1
2 (�k f )|. Next, we consider the two

experimental geometries NI and OI that are employed in our work. For NI and a vector potential along εx, we have ε+ = − 1√
2
,

ε− = 1√
2
, and ε0 = 0. Using the explicit expressions for the spherical harmonics Y 0

0 (�k f ) = 1
2
√

π
, Y 0

2 (�k f ) =
√

5
4π

( 3
2 cos2 θ −

1
2 ), Y 1

2 (�k f ) = −
√

15
8π

sin θ cos θe+iφ , and Y −m
l = (−1)mY m∗

l , Eq. (F19) then becomes

M±
k f k, NI = δk,k f ‖

3

8
√

π
f̃ (k f ) sin 2θ cos φ(1 ± eiϑk ), (F20)
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and the corresponding photoemission intensity reads

I±(k f , θ, φ; hν, εNI) ∝ |M±
k f k, NI|2 = δk,k f ‖

9

64π
| f̃ (k f )|2 sin2 2θ cos2 φ|1 ± eiϑk |2. (F21)

This expression corresponds to Eq. (4). Thus, we find that in the NI geometry with the polarization vector in the surface plane,
the photoemission is strictly suppressed in the s channel. This geometry can therefore be used to determine the (square) modulus
of the complex, kinetic-energy-dependent photoemission amplitude in the d channel.

In the OI geometry, with 45◦ angle of light incidence in the −x, z half plane, we have (ε+, ε0, ε−) = (− 1
2 , 1√

2
, 1

2 ). Equa-
tion (F19) then yields

M±
k f k, OI = δk,k f ‖

1

8
√

2π
[ f̃ (k f ) (3 sin 2θ cos φ + 3 cos 2θ + 1) + 2

√
2̃g(k f )] × (1 ± eiϑk ) (F22)

and

I±(k f , θ, φ; hν, εOI) ∝ |M±
k f k, OI|2 = δk,k f ‖

1

128π
[| f̃ (k f )|2 (3 sin 2θ cos φ + 3 cos 2θ + 1)2 + 8|̃g(k f )|2

+ 4
√

2| f̃ (k f )||̃g(k f )|(3 sin 2θ cos φ + 3 cos 2θ + 1) cos �σ ] × |1 ± eiϑk |2, (F23)

which corresponds to Eq. (5), and where �σ (k f ) ≡ arg f̃ (k f )
g̃(k f ) is the kinetic-energy-dependent relative phase between the d and

s photoemission channels.

3. Photoemission from π bands of graphene including nearest-neighbor scattering

To account for nearest-neighbor (NN) scattering, we reconsider the matrix element between the full initial- and final-state
Bloch functions [Eq. (F10)]:

Mκ
k f k =

∫
d3r �∗

k f
(r) ε · ∇�κ

k (r)

= 1

V

∑
R′

e−ik f ·R′ ∑
R′

j

e−ik f ·R′
j

∑
R

eik·R∑
R j

∑
nlm

cκ
jnlm(k)

∫
d3r χ∗

k f
(r − R′ − R′

j + R + R j ) ε · ∇�nlm(r).

In the previous section, we assumed R′ = R and R′
j = R j before proceeding with this equation; the initial-state orbital and

final-state partial wave were required to be centered on the same carbon atom, i.e., we employed the independent-center
approximation. Now we will relax this condition and allow an electron originating from a certain basis atom to be emitted in a
partial wave centered on another basis atom (R′

j 
= R j) in the same unit cell (R′ = R). Clearly, this allows for nearest-neighbor
scattering within the unit cell during the photoemission process. Then the above equation becomes

Mκ
k f k ≈ 1

V

∑
R

ei(k−k f )·R∑
R′

j

e−ik f ·R′
j

∑
R j

∑
nlm

cκ
jnlm(k)

∫
d3r χ∗

k f
(r − R′

j + R j ) ε · ∇�nlm(r)

= 1

V0

∑
G

δ(k−k f )‖,G

∑
R′

j

e−ik f ·R′
j

∑
R j

∑
nlm

cκ
jnlm(k)

∫
d3r χ∗

k f
(r − R′

j + R j ) ε · ∇�nlm(r). (F24)

In the above equation the integral cannot any more be written as ε · Mnlm(k f ) for a single set of quantum numbers {nlm} as in
Eq. (F16). Rather, the shift � = R j − R′

j between the centers of the χk f and �nlm requires the expansion of the integral in terms
of angular momentum eigenfunctions for all quantum numbers {n′l ′m′}, with so-called Shibuya-Wulfmann integrals [69,70]

S
R′

j n
′l ′m′

R j nlm as expansion coefficients,∫
d3r χ∗

k f
(r − R′

j + R j ) ε · ∇�nlm(r) =
∑
n′l ′m′

S
R′

j n
′l ′m′

R j nlm ε · Mn′l ′m′ (k f ), (F25)

where Mn′l ′m′ is given by Eq. (F16). This expansion yields

Mκ
k f k ≈ 1

V0

∑
G

δ(k−k f )‖,G

∑
R′

j

e−ik f ·R′
j

∑
R j

∑
nlm

cκ
jnlm(k)

∑
n′l ′m′

S
R′

j n
′l ′m′

R j nlm ε · Mn′l ′m′ (k f )

= 1

V0

∑
G

δ(k−k f )‖,G

∑
j∈{A,B}

c±
j (k)

∑
j′∈{A,B}

2∑
∀ j′ 
= j:i′=0

e−ik f ·n ji′
∑
n′l ′m′

S j′n′l ′m′
j210 (n ji′ )ε · Mn′l ′m′ (k f ), (F26)
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where in the second line we have adjusted the nomenclature to the case of photoemission from the π bands with band index
κ = ± and quantum numbers {nlm} = {210} of graphene with its two sublattices A and B. Note that in the case of graphene
(Fig. 5) we have to consider a nonprimitive (larger) unit cell to include all nearest neighbors of the two sublattice atoms into
one unit cell. The n ji′ are the vectors pointing from an atom in sublattice j to nearest neighbors i′ in the other sublattice.

Generally, S jn′l ′m′
jnlm = δnn′δll ′δmm′ . Moreover, since both sublattices host the same C3-symmetric C pz orbitals, SBn′l ′m′

A210 = SAn′l ′m′
B210

for equivalent n ji′ . We therefore leave out the sublattice indices j, j′ in the Shibuya-Wulfmann integrals, which according to
Eq. (78) in Ref. [70] are proportional to

Sn′l ′m′
210 (ni′ ) ∝

∑
N,L

√
6n′N (2l ′ + 1)〈l ′,−m′; 1, 0|L,−m′〉 fNL(ni′ )Y

−m′
L (�ni′ ). (F27)

The Shibuya-Wulfmann integrals perform a basis change between C 2pz orbitals centered at sublattice B to a linear combination
of orbitals {n′l ′m′} centered at sublattice A and vice versa [69,70]. The radial contributions fNL decay exponentially with orbital

distance, i.e., fNL ∝ e
− 2Z

a0n′ |ni′ |/2 with effective nuclear charge Z and Bohr radius a0, where |ni′ | in our nearest-neighbor model is
equivalent to the sublattice distance ni′ = 1.421 Å, which justifies our nearest-neighbor scattering approximation.

Evaluating Eq. (F26) leads to

M±
k f k ≈ δk,k f ‖√

2V0

ε ·
[

(1 ± eiϑk )M210(k f ) +
2∑

i′=0

∑
n′l ′m′

Mn′l ′m′ (k f )
(
Sn′l ′m′

210 (ni′ )e
−ik f ·ni′ ± eiϑk Sn′l ′m′

210 (−ni′ )e
ik f ·ni′

)]

= δk,k f ‖√
2V0

ε ·
[

(1 ± eiϑk )M210(k f ) +
∑
n′l ′m′

Sn′l ′m′
210 (n0)Mn′l ′m′ (k f )

2∑
i′=0

e−iπ 2i′
3 m′

(e−ik f ·ni′ ± eiϑk e−iπm′
eik f ·ni′ )

]
, (F28)

where we have employed c±
A (k) = 1√

2
and c±

B (k) = ± 1√
2
eiϑk . In the second line we have used that the angular components

Y −m′
L in Eq. (F27) transform as Ci′

ν Y −m′
L = e−i2π/νi′m′

Y −m′
L under ν-fold rotation Cν , thus yielding Sn′l ′m′

210 (ni′ ) = Ci′
3 Sn′l ′m′

210 (n0) =
e−iπ 2i′

3 m′
Sn′l ′m′

210 (n0) and Sn′l ′m′
210 (−n0) = C2Sn′l ′m′

210 (n0) = e−iπm′
Sn′l ′m′

210 (n0). Further, since the 2 pz orbital possesses a node in the
graphene x, y plane and the vectors n′

i connecting the sublattices lie within this plane, the Sn′l ′m′
210 are necessarily zero for l ′ + m′ =

0 mod 2, i.e., for orbitals l ′, m′ that are nonzero within the x, y plane.
For electrons to effectively scatter into channels with angular momentum l ′, they further must overcome the centrifugal

barrier, i.e., k2
f � l ′(l ′ + 1)/a2, where a is the atomic radius. With acarbon ∼ 0.7 Å and kmax

f � 3 Å−1 in the energy region where
we observe scattering, we find only channels with l ′ < 1.67 to significantly contribute to this process. The lowest orbital order
contributions thus results from l ′ = 1 and m′ = 0, and we find

M±
k f k ≈ δk,k f ‖√

2V0

ε ·
[

(1 ± eiϑk )M210(k f ) +
∑

n′
Sn′10

210 (n0)Mn′10(k f )
2∑

i′=0

(e−ik f ·ni′ ± eiϑk eik f ·ni′ )

]

= δk,k f ‖√
2V0

ε ·
[

(1 ± eiϑk )M210(k f ) + (h∗(k f ‖) ± eiϑk h(k f ‖))
∑

n′
Sn′10

210 (n0)Mn′10(k f )

]

= δk,k f ‖√
2V0

ε ·
[

(1 ± eiϑk )M210(k f ) + (e−iϑk f ‖ ± eiϑk eiϑk f ‖ )|h∗(k f ‖)|
∑

n′
Sn′10

210 (n0)Mn′10(k f )

]

= δk,k f ‖√
2V0

ε · M210(k f )[(1 ± eiϑk ) + (e−iϑk f ‖ ± eiϑk eiϑk f ‖ )u(k f )]

= 1√
2V0

ε · M210(k f )︸ ︷︷ ︸
dipole selection

⎡⎢⎣(1 ± eiϑk f ‖ )︸ ︷︷ ︸
horseshoe

+ (e−iϑk f ‖ ± ei2ϑk f ‖ )u(k f )︸ ︷︷ ︸
NN scattering

⎤⎥⎦. (F29)

Here we absorbed the last sum into a complex function u(k f )
that essentially describes the overlap between initial-state 2pz

orbitals and scattered Coulomb waves on neighboring sites.
u(k f ) varies only slowly on the photoemission hemisphere
�k f if compared to h(k f ) and thus for a given photoelec-

tron momentum k f =
√

2mEkin/h̄2 can be approximated as a
merely kinetic-energy-dependent fit parameter that is constant
across the horseshoe: u(k f ) ∼ |u(k f )|ei arg u(k f ).

The first term in the square brackets of this expression
represents the structure factor producing a photoemission in-
tensity that is proportional to | 1√

2
(1 ± eiϑk )|2 = 1 ± cos ϑk

and gives rise to the ubiquitous horseshoe pattern, reflecting
the interference of the initial state Bloch wave residing at
the graphene sublattices A and B. The second term repre-
sents nearest-neighbor scattering in the final state, essentially
dictated by (e−iϑk f ‖ ± eiϑk eiϑk f ‖ ), that reflects the structural
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interference between initial and final state wave functions.
We note that nearest-neighbor final-state scattering now in-

troduces interference terms between M210(k f ) and Mn′10(k f ),
and circular dichroism hence does not vanish any longer.
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