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Modulatory dynamics of periodic and
aperiodic activity in respiration-brain
coupling

Daniel S. Kluger 1,2 , Carina Forster 3,4,5, Omid Abbasi1, Nikos Chalas1,2,
Arno Villringer 3,4,6 & Joachim Gross 1,2

Bodily rhythms such as respiration are increasingly acknowledged tomodulate
neural oscillations underlying human action, perception, and cognition. Con-
versely, the link between respiration and aperiodic brain activity – a non-
oscillatory reflection of excitation-inhibition (E:I) balance – has remained
unstudied. Aiming to disentangle potential respiration-related dynamics of
periodic and aperiodic activity, we applied recently developed algorithms of
time-resolved parameter estimation to resting-state MEG and EEG data from
two labs (total N = 78 participants). We provide evidence that fluctuations of
aperiodic brain activity (1/f slope) are phase-locked to the respiratory cycle,
which suggests that spontaneous state shifts of excitation-inhibition balance
are at least partly influenced by peripheral bodily signals. Moreover, differ-
ential temporal dynamics in their coupling to non-oscillatory and oscillatory
activity raise the possibility of a functional distinction in the way each com-
ponent is related to respiration.Ourfindingshighlight the role of respiration as
a physiological influence on brain signalling.

Recent years have seen a surge in reports of respiration as a modulator
of brain signalling - at least partly throughmodulation of rhythmic brain
activity1. These respiration-modulated brain oscillations (RMBOs) have
been localised within a wide-spread network across the cortex2 and
are increasingly being linked to changes in motor function3,4, cognitive
processing5–7, and fundamental aspects of perception8,9. One candidate
mechanism by which respiration (and other bodily signals such as
the cardiac rhythm; see e.g.10) is thought to coordinate brain signalling is
cortical excitability, a dynamic brain state indexing neural populations’
readiness to become activated. This proposal rests on findings from
intracranial animal studies demonstrating that respiration modulates
spike rates in a variety of brain regions11–13. Moreover, one recent study9

directly investigated respiratory modulation of excitability during low-
level visual perception. Critically, brain activity is not entirely oscillatory:

One can distinguish its genuinely periodic, oscillatory component from
an underlying stationary, aperiodic component typically showing a
characteristic 1/f dependence of power and frequency (meaning that
lower frequencies carry higher power14). In fact, dominance of low-
frequency power is by no means just an epi-phenomenon of neural
power spectra, but does reflect meaningful characteristics of brain
function. Most relevantly, the ‘steepness’ of the aperiodic component
has been shown to reflect the dynamics of excitation-inhibition (E:I)
balance15–17, with steeper 1/f slope indicating a stronger influence of
inhibitory activity. While sophisticated algorithms exist to disentangle
periodic and aperiodic components of neural power spectra18, time-
resolved estimations of 1/f slope in particular have proven computa-
tionally expensive and lacked empirical validation. Consequently, the
selective dynamics linking peripheral signals (such as respiration) to
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periodic andaperiodic neural activity are entirely unstudied.Meanwhile,
the recent introduction of the SPRiNT toolbox19 provides methodolo-
gical advances that allow us to parameterise stationary and oscillatory
brain activity dynamically over time. Here, we apply these algorithms in
the realmofhumanbody-brain interactions to test thehypothesis that 1/
f slope as a marker of E:I balance is modulated by respiration.

Specifically, we used concurrent resting-state M/EEG and respira-
tory recordings in populations from two labs (Münster, Leipzig) to
investigate distinct respiratory modulations of periodic and aperiodic
brain activity. Our rationale was twofold: First, we aimed to characterise
respiration phase-locked changes of aperiodic 1/f slope over parieto-
occipital cortices to corroborate previous findings of excitability
changes in visual perception9. Second, we extended the scope for a
general investigation of potentially independent modulations of aper-
iodic and oscillatory components within the cortical RMBO network2.
Here, we particularly aimed to assess whether both components of
neural signalling would be modulated by respiration and, if so, how
these modulatory dynamics would be related to one another. Our
results highlight respiration as a slow physiological modulator of both
periodic and aperiodic cortical signalling, strengthening its previous
implication in the regulation of excitability states. Furthermore, the
over all pattern of findings strongly suggests differential temporal
dynamics between the coupling of both components.

Results
We computed time-resolved fits of both aperiodic (1/f) and periodic
(oscillatory) components of resting-state brain activity to disentangle
their dynamics in respiration-brain coupling. A moving-window
application of the novel SPRiNT algorithm19 and the underlying spec-
param procedure18 to MEG and EEG data yielded individual time

courses of aperiodic slopes and periodic spectra for a total of N = 78
participants. Concurrent respiration recordings allowed us to extract
respiratory phase vectors that corresponded to each of the moving
windows. Next, we performed binning of respiratory phase and bin-
wise averaging of corresponding 1/f slope and periodic spectra on the
group level (see Fig. 1 and Methods for details). We then used these
phase-specific estimates of slope and periodic spectra to statistically
test if and how periodic and aperiodic brain activity is modulated by
respiration.

Respiration relates to aperiodic neural activity over posterior
cortices
The first analysis was closely connected to a recent study showing
respiration phase-dependent modulations of cortical excitability in a
visual detection task9. In line with a rich literature of visual perception
studies (see20), increased excitability was indexed by desynchronised
alpha oscillations (i.e., lower alpha power corresponding to higher
excitability). However, changes in alpha power can be confounded by
changes in the slope of aperiodic background activity18 - itself a widely-
used measure of cortical excitability and excitation/inhibition
balance17. Therefore, we aimed to disambiguate the effects of
respiration on periodic and aperiodic brain activity and started by first
testing the hypothesis that respiration-induced changes of excitability
are reflected in cyclic changes of the slope of aperiodic brain activity.
For both MEG (Münster) and EEG data (Leipzig), we set up a linear
mixed-effectsmodel (LMEM) to predict individual 1/f slopes ofparieto-
occipital average power spectra by respiration phase. A null distribu-
tion of the resulting betaweightswas constructedby re-computing the
LMEM based on individual surrogate respiration time series k = 5000
times. Subsequently, we pooled both data sets in order to capitalise on
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Fig. 1 | Synopsis of acquired data and applied methods. a In two labs, we
simultaneously acquired nasal respiration as well as eyes-open, resting-state MEG
(IBB, Münster) and EEG data (MPI, Leipzig) in continuous 5-min recordings. After
preprocessing, single-sensor/-channel M/EEG data (middle panel) were subjected
to the SPRiNT algorithm26 (top). Here, using a moving-window approach (window
length = 1 s, 75% overlap between neighbouring windows), spectral components of
neural time series are estimated using a Fast Fourier transform. These frequency-
domain data are then parameterised using the specparam algorithm18 which yields
both aperiodic and periodic components of neural activity in that time window.
Repeating this procedure along the entire recording thus yields time-resolved fits
of the aperiodic 1/f slope as well as time-resolved periodic spectra ranging from

1–40Hz (top right). Respiratory phase was computed using two-way interpolation
(int) of the normalised raw respiration signal (peak-to-trough, trough-to-peak;
bottom). b For each time point used as a moving-window centre in the SPRiNT
algorithm, we then extracted the corresponding respiratory phase. This allowed us
to sort all time-resolved slope fits and periodic spectra according to the respiratory
phase atwhich they had been computed. In keepingwith previouswork2,9 we finally
partitioned the respiration cycle into n = 60 equidistant, overlapping phase bins
and computed bin-wise averages of slope fits and periodic spectra. This approach
thus yielded quasi-continuous, respiration phase-resolved courses of both periodic
and aperiodic components of brain activity for each sensor/channel within each
participant (bottom right).
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higher statistical power and to illuminate phase-locked modulations
jointly found across modalities. For both MEG and EEG as well as for
the pooled data, the empirical group-level beta weight for respiratory
phase was significantly higher than the respective null beta weights (all
p < .001), strongly indicating a significant over all association between
respiratory phase and aperiodic neural signals over posterior cortices
(Fig. 2). In order to characterise the temporal dynamics of respiration
phase-locked changes in 1/f slope, we repeated the binwise slope
estimation as outlined above, but this time on surrogate respiration
time courses. For each participant, we thus generated k = 5000 ‘null
slope estimations’ within each phase bin which we used to extract
percentiles for the empirical group-level bin averages relative to these
binwise ‘null averages’ (Fig. 2a; seeMethods for details). For the pooled
data from both labs, we observed a steeper slope (indicating stronger
inhibitory activity) around the expiration-to-inspiration transition
(ranging from -156° to 143° and around 131°). Conversely, the slopewas
flatter (indicating stronger excitatory currents) during the inspiratory
phase (between -88° and -64°) and shortly after the inspiration-to-
expiration transition (9° to 46°, see Fig. 2). This general pattern was
consistent across both data sets, although the flattening of the slope
during the inspiratory phase did not reach significance in the EEG data
alone (presumably due to slightly lower statistical power). Consistency
across MEG and EEG data was supported by a non-parametric two-
sample test for circular data (akin to a Kruskal-Wallis test for linear
data), which showed that the circular means of MEG and EEG slo-
pe~respiration courses were not significantly different from one
another (P(77) = 0.21, p = .651).

Aperiodic modulations as a function of respiratory parameters
We conducted different control analyses to assess whether 1/f slope
and its modulation strength covaried with parameters like breathing
rate, depth, or route (i.e., nasal vs oral breathing). First, in the present
data, individual 1/f slopes (averaged across the respiratory cycle) were
not significantly correlated with breathing rates (MEG: r(40) = -.17,
p = .297; EEG: r(38) = .13,p = .418) or breathingdepths (MEG: r(40) = .19,
p = .230; EEG: r(38) = -.09, p = .591) in either data set (Fig. 2c). However,
the interpretability of these results is somewhat limited by the small
amount of intraindividual variation in the respiratory time series -
natural breathing is simply too consistent to conclusively investigate
whether different breathing ‘modes’ (e.g., deep vs normal breathing)
would influence respiration-locked modulations in 1/f slope. There-
fore, we next re-analysed a previously published data set3 in which we
had recorded 5min of whole-head resting-stateMEG during both deep
and normal nasal breathing (see Fig. 2d). In these data, a comparisonof
deep vs normal nasal breathing revealed that 1/f slope over the pos-
terior ROI was indeed more strongly modulated during deep (com-
pared to normal) breathing (z(27) = 3.02, p = .003, see Fig. 2e). Finally,
to investigate the role of breathing route, we compared respiration-
locked 1/f slope modulations at rest during nasal vs oral breathing in a
new sample of N = 25 MEG data sets (see Methods). Repeating the
posterior ROI analysis described above, respective LMEMs confirmed
significant coupling of respiratory phase to 1/f slope during both nasal
andoral breathing (bothp < .001; Fig. 2f). Themodulatory pattern over
phasewas again similar to the originalfindings (with certain limitations
due to reduced power): During nasal breathing, 1/f slope was flattened
during the inspiratory phase (-95° to -52°) as well as shortly after the
inspiration-to-expiration transition (around 36°) and steeper around
the expiration-to-inspiration transition (143° to -150°). During oral
breathing, 1/f slope was flattened around the inspiration-to-expiration
transition (-64° to 52°) and steeper around the expiration-to-
inspiration transition (131° to -125°). A comparison of individual ran-
ges of slope ~ respiration (i.e., maxslope - minslope over the respiratory
cycle) revealed that the strength of respiration-locked 1/f slope mod-
ulations did not significantly differ between nasal and oral breathing
(z(24) = 0.80, p = .426).

Respiration-locked slope modulations are wide-spread, but
strongest over posterior sites
Overall, the first analysis demonstrated a consistent pattern of
respiration-locked 1/f slope modulations over parieto-occipital sen-
sors: The slope of aperiodic neural activity was not uniform over the
respiratory cycle, but systematically modulated in such a way that 1/f
slopewas flattened around the inspiration-to-expiration transition and
steeper around the expiration-to-inspiration transition. In the next
step, we aimed to (i) broaden the scope to investigate respiration-
locked slope changes across all M/EEG sensors and (ii) characterise
both direction and strength of thesemodulations across the scalp. For
each participant, single-sensor/channel 1/f slope courses across 60
respiratory phase bins were extracted using the pipeline described
above on single-sensor time series. For each of the N = 275 MEG sen-
sors (Münster) andN = 62 EEGchannels (Leipzig), we then repeated the
combined LMEM and permutation approach (see above). Thus, for
each sensor, the percentile of the empirical beta weight (relative to its
null distribution constructed from LMEMs on surrogate respiration)
indicated significance of phase-locked 1/f slope changes. Group-level
average slope courses for n = 240 significant MEG sensors (top) and
n = 53 significant EEG channels (bottom) are shown in Fig. 3a. To
quantify whether there was a consistentmodulation of 1/f slope across
all sensors/channels, we computed the circular mean of single-sensor/
channel slope courses. The histograms in Fig. 3a illustrate a clear
clustering around the expiration-to-inspiration transition (i.e., phase
bins around ± π). Supporting our parieto-occipital findings from
above, Rayleigh tests on sensor-/channel-wise circular means corro-
borated that single-sensor/channel slope courses were not uniform
across respiratory phases, but instead showed a consistent mean
direction with the steepest slope around ± π for both data sets (MEG:
z = 126.86, p < .001; EEG: z = 14.38, p < .001). A topographic repre-
sentation of sensor-/channel-wise circular means is shown in Fig. 3b.

Finally, in line with previous approaches2,7, we quantified the
strength of single-sensor/channel phase-locked slope modulations
relative to their null distributions: For each sensor/channel, we com-
puted z-scored LMEMbeta weights by subtracting themean of its ‘null
beta’ distribution and dividing by the corresponding standard devia-
tion (see Methods). In both MEG and EEG topographies, the strongest
modulations of aperiodic neural activity were indeed observed over
parieto-occipital cortices (Fig. 3c).

Periodic and aperiodic components of the RMBO network are
distinctly coupled to respiration
In a final series of analyses, we aimed to disentangle the dynamics of
respiratory coupling to periodic (i.e., oscillatory) and aperiodic (i.e.,
non-oscillatory) components of neural activity. So far, no investigation
of respiration-brain coupling has directly considered either phase-
locked changes of E:I balance or its distinction from oscillatory mod-
ulations. To target this question, we computed source-localised time
series from theMEGdata (mappedonton = 230parcels taken from the
HCP atlas21) and defined regions of interest according to the original
RMBO network publication2. For a total of n = 10 ROIs (consisting of
n = 23 HCP parcels), we extracted respiration phase-locked 1/f slope as
well as periodic spectra with the 1/f characteristic removed. For the
computation of parcel-specific courses of aperiodic slope over
respiratory phase, we followed the sensor-level approach outlined
above. The periodic component was defined as the accumulated
power of oscillatory peaks (between 1 and40Hz) after the 1/f slopewas
removed from the respective periodic spectrum. In keeping with our
sensor-level analyses, we determined significanceof respiration phase-
locked changes in aperiodic slope and oscillatory power by means of
LMEMs within each parcel of interest. Again, each parcel’s empirical
vector normof LMEMbeta weights for respiratory sine and cosine was
assessed relative to k = 5000 null beta weights from LMEMs computed
on surrogate distributions of slope and power over respiratory phases.
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Of the 23parcels of interest, 18 parcels showeda significant association
between respiration and 1/f slope. Significant phase-locked modula-
tions of oscillatory power (within frequencies from 1–40Hz) were
found for 19 parcels (see Fig. 4a). Overall, all 23 parcels showed either
significant non-uniformity of slope or accumulated power. Next, we
investigated differences in temporal dynamics between respective
slope and power changes within each parcel. Specifically, we extracted

the circular means of each parcel’s slope and power courses (binned
inton = 60overlapping respiratory phasebins) to computeparcel-wise
phase differences between the two courses: In case slope and power
were similarly modulated by respiration, the mean phase difference
across parcels would be (close to) zero. As shown in the polar histo-
gram in Fig. 4b, this was not the case (U² = 1.26, p < .001, 5000 per-
mutations). Next, we tested whether slope and power courses of each
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parcel were drawn from the samedistribution. For all parcels,Watson’s
U² permutation tests confirmed significant differences between the
underlying distributions (all p < .001), providing further evidence for
differential modulatory dynamics of slope and power courses within
the RMBO network. For both slope and accumulated power, Fig. 4c
shows ROI-wise distributions of subject-level U² statistics for each
parcel as an estimate of respective non-uniformity (centre panel).
Exemplary comparisons between ROIs are shown for slope~respiration
(left panel) and power spectra ~ respiration (right panel).

Finally, single-band modulations of 1/f-removed theta (4–8Hz),
alpha (8–13 Hz), and beta power (13–30Hz) within the RMBO network
are shown in Fig. 5. Out of 23 parcels, band-specific LMEMs revealed
that theta power was significantly modulated in 17 parcels, alpha
power in 22 parcels, and beta power in 21 parcels (see Fig. 5a and

Methods for details).While band-specific oscillatorymodulations were
not the main focus of this paper, we provide this characterisation to
motivate hypothesis generation for future work.

Discussion
Our present findings highlight the role of respiration as a physiological
modulator of neural signalling. We provide evidence that fluctuations
of aperiodic brain activity are phase- locked to the respiratory cycle
which strongly suggests that spontaneous state shifts of excitation-
inhibition balance are at least partly influenced by peripheral bodily
signals. Moreover, differential temporal dynamics in their coupling to
non-oscillatory and oscillatory activity raise the question whether
there is a functional distinction in the way each component is related
to respiration.

Fig. 2 | Group-level respiration-locked modulation of parieto-occipital 1/f
slope. a Respiration phase was extracted for n = 60 overlapping phase bins. For
each data set, we show combined LMEM beta weights for the phase vector norm
(light blue) against k = 5000null betas (top right corners). Colouredbolddots show
respiration phase-dependent parieto-occipital 1/f slope. Radial scatter plots indi-
cate null distributions of k = 5000 bin-wise group-level mean exponent values.
Solid black lines indicate the 5th and 95th percentile of each bin’s null distribution.
In the MEG sample, 1/f slope was flattened during inspiration (around −70°) and
around the inspiration-to-expiration transition (−9° and 15° to 21°; blue markings).
1/f slope was steeper during expiration (82° to 88°) and around the expiration-to-
inspiration transition (−174° to 162°; red markings). The EEG sample showed flatter
slope after the inspiration-to-expiration transition (9° to 46° and around 58°) and
steeper slope around the expiration-to-inspiration transition (−162° to 131°). In =
inspiration, ex = expiration.bOverlayofROI-average 1/f slopeestimates (black) and
respiratory phase (green) for a single MEG participant. Grey lines show single-

sensor slope estimates. c Neither breathing rate (top) nor depth (bottom) were
significantly correlated with steepness of the aperiodic component in MEG (left) or
EEG (right; two-sided t-test against zero). d Respiratory trace of a single participant
(left) and median group-level breathing depths (right) during normal and deep
breathing (re-analysed from3). Participants were breathing deeper during the deep
(vs normal) breathing condition (z(27) = 6.19, p < .001, two-sidedWilcoxon test for
n = 28 participants). e Individual ranges of slope~respiration phase were con-
sistently greater for deep (compared to normal) breathing (z(27) = 3.02, p = .003,
two-sided Wilcoxon test). f Comparison of parieto-occipital 1/f slope~respiration
phase during nasal (left) and oral breathing (right) from a follow-up control study
(seeMethods). LMEMs confirmed a significant influence of respiratory phase on 1/f
slope for both breathing conditions (see histogram insets). g Individual ranges of
slope~respiration did not differ between conditions (z(25) = 0.80, p = .426, two-
sided Wilcoxon test for n = 26 participants).
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While the mechanisms underlying the 1/f characteristic of neural
power spectra have yet to be fully understood22, crossmodal evidence
has highlighted its functional significance in several domains. Most
prominently, the steepness of the aperiodic slope (i.e., its exponent)
has been shown to reflect the balance between excitatory (E) and
inhibitory (I) synaptic currents in computational16, pharmaceutical15, as
well as optogenetic work23: The larger the exponent (i.e., steeper
power spectral slope), the stronger the inhibitory influence and vice
versa24. In general, constant E:I balancing is essential tomaintain neural
homoeostasis25 so that the excitability within a particular neural array
remains at a critical state26. Facilitated by novel methodological
advances, our present findings of respiration-locked changes in E:I

balance thus illuminate a previously inaccessible aspect of what is
emerging as a recurrent motif in respiration-brain coupling across
species: Animal studies have shown excitability27 as well as spike
rates12,13 to covary with the respiratory cycle, prompting non-invasive
human work from our lab9 in which we linked respiratory phase to
excitability of visual cortices (measured as parieto-occipital alpha
power) during low-level perception. Given that breathing is under
volitional control, we adopted the theoretical perspective ofpredictive
processing28 to propose respiration as a means to actively align the
sampling of external sensory information with transient internal states
of increased excitability. This interpretation rests on the concept of
active sensing29 in rodents which recently gained further support from
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In = inspiration, ex = expiration. b Polar histogram shows phase differences
between the circular means of slope and power courses across parcels. The clear
majority of non-zero phase differences were corroboratedbyWatson’sU² statistics
indicating distinct temporal dynamics of slope and powermodulations within each

parcel (seemain text). c Centre: For each ROI, we show violin plots of n = 40 single-
participantU² statistics (slope/power vs uniformdistribution, respectively). Higher
U² statistics indicate stronger non-uniformity. Left: Exemplary slope modulations
of SMA and OFC (M± SEM) normalised across respiration phase for illustration
purposes. SMAwasmore strongly non-uniformover all (see centre),which is visible
from both stronger maxima (Δmax) and minima (Δmin) compared to OFC. Right:
Exemplary power modulations of OFC and l. INS. For both ROIs, we superimpose
power spectra (with 1/f removed) from all 60 phase bins. Overall, power varied
more strongly with respiratory phase within OFC compared to l.INS (see centre).
TPJ = temporo-parietal junction, ITG/STG = inferior/superior temporal gyrus,
ANG = angular gyrus, FEF = frontal eye-field, TP = temporal pole, SMA=
supplementary motor area, OFC = orbitofrontal cortex, CUN= cuneus, LS = lingual
sulcus, ACC/PCC = anterior/posterior cingulate cortex, INS = insular cortex.
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a comprehensive demonstration by Karalis and Sirota30: In a series of
elaborate experiments, they found neocortical up and down states
during sleep and quiet rest to be modulated by respiratory phase,
strongly suggesting thatbreathing influences (sub-)cortical excitability
in the sense of a pacemaker aligning neural network dynamics. While
the spontaneous aperiodic shifts of E:I balance in our paradigm are not
to be equated to the reported up anddown states in quiescent animals,
we propose that the shared observation of respiration phase-locked
state changes bears valuable insight into human respiration-brain
coupling.

Investigating the respiration phase-locked changes in aperiodic vs
periodic activity inevitably entails the more general distinction of 1/f
and genuine oscillations per se and how previous works have addres-
sed one or the other. To reiterate, neural oscillations are narrowband,
rhythmic components embedded within a background of broadband,
aperiodic activity which itself does not require any underlying
rhythmicity31,32. So far, studies of breath-brain interactions have
neglected aperiodic activity entirely, most likely due to the fact that
one proposedmechanismof respiration-brain coupling critically relies
on oscillatory entrainment to the breathing rhythm: Here, the nasal
airstream entrains neural activity within the olfactory tract via
mechanoreceptors, after which the phase of this infraslow rhythm is
coupled to the amplitude of faster oscillations12,33. This propagation
through phase-amplitude coupling34 has largely been quantified by
measures of coupling strength such as the modulation index (MI35), a
method that – despite its benefits - prohibits any conclusion regarding
non-oscillatory modulations. In the present study, we consistently
observed steepest 1/f slopes around ± π, with strongest effects loca-
lised over posterior sensors, complementing previous reports of a
spatial gradient of aperiodic dynamics18,36. Such a posterior-to-anterior
gradient conceivably increases parieto-occipital SNR, which could
facilitate the detection of respiration phase-locked changes. As for the
pattern of preferred respiratory phase around ±π, He and colleagues37

demonstrated a rich temporal organisation of aperiodic (or ‘scale-
free’) brain activity in ECoG recordings from epilepsy patients:
Extending the concept of hierarchically nested oscillations38, the

authors showed nested frequencies in aperiodic activity during quiet
wakefulness; in other words, coupling of low-frequency phase to high-
frequency amplitude of 1/f slope. Intriguingly, the preferred phase
clustered around phases 0 and ± π, i.e., peaks and troughs of low-
frequency fluctuations, closely resembling present findings of flatter
slopes (i.e., increased excitation) towards the end of inspiration aswell
as steeper slopes (i.e., more inhibition) towards the end of expiration
(see Figs. 2 and 3). These aperiodic shifts of E:I state further corrobo-
rate previous findings of increased excitability during inspiration9 and
improved cognitive performance for stimuli presented during the
inspiratory phase6,7. If the proposed functional mechanisms of
respiration-brain coupling were indeed to be extended to include
aperiodic brain activity, respiratorymodulations of 1/f slope should be
flexibly adapted during cognitive or perceptual tasks to facilitate
performance. A study by Waschke and colleagues15 recently provided
convincing evidence that the aperiodic component itself not only
captured task-relevant attentional changes in E:I balance, but also
covaried with individual behavioural performance. Critically, the
authors used anaesthetics to distinguish between oscillatory (i.e.,
increased band-specific power) and non-oscillatory, aperiodic changes
in EEG spectra. In a similar vein, Donoghue et al.18 stressed the
importance of disentangling periodic and aperiodic changes in neural
activity in order to recognise their potentially distinct contributions to
observed effects. We argue that the same is true in order to more
comprehensively describe the physiological underpinnings of
respiration-brain coupling.

In the present data, the preferred phase differences between
source-level periodic and aperiodic modulations within the RMBO
network show at least partly differential dynamics between both
components, suggesting amore complex coupling of neural signalling
to the respiratory rhythm than previously assumed. Conceivably,
changes in periodic and aperiodic activity could reflect respiration-
locked neural modulations arising from two (not necessarily) inde-
pendent mechanisms: While the respiratory rhythm itself is generated
in the brain stem39, oscillatory changes on the onehand are assumed to
be induced by mechanosensory feedback stimulation from the nasal
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Fig. 5 | Source-level ROI modulation of band-specific oscillatory power in the
MEG. a For each cortical node of the RMBO network, we show the group-level
average courses of band-specific spectral power after removal of the aperiodic
component over the respiratory cycle. For ROIs comprising more than one parcel
from the HCP atlas, power courses are shown for each individual parcel. In case the
band-specific LMEM did not indicate significant modulation of the periodic

componentwithin any given parcel, the corresponding power series are not shown.
b Exemplary ROI-average spectra of anterior cingulate (top) and left insula (bot-
tom), colour-coded according to respiratory phase. c Group-level median U² sta-
tistics of each parcel testing single-band power ~ respiration phase against a
uniform distribution. Higher values indicate stronger deviation from uniform
distribution.
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airstream during inspiration and expiration (see above). Convincing
evidence for this hypothesis comes from studies showing that both
neural and behavioural modulations dissipate when there is no nasal
airflow stimulating olfactory mechanoreceptors, i.e. during oral
breathing6,7 or in bulbectomised animals12. On the other hand, CO2

levels continuously regulate blood flow and respiration rate in a
feedforward fashion, which in turn determine changes in CO2 levels

40.
Moreover, CO2 is inversely related to tissue acidity (pH), which has
been linked to neural excitability41,42. Lowered pH (due to increased
CO2) causes an increase in extracellular adenosine43, a neuromodulator
gating synaptic transmission. Consequently, Dulla and colleagues27

concluded that CO2-induced changes in neural excitability are caused
by pH-dependentmodulation of adenosine and ATP levels (also see44).

Since CO2 levels do not differ between nasal and oral breathing,
the twomechanisms are clearly functionally distinct fromone another:
CO2 fluctuations alone cannot account for neural or behavioural dif-
ferences between nasal and oral breathing. Hence, there are (at least)
two different ways in which neural activity could be coupled to the act
of breathing. It may be the case that the differential coupling of
respiration to periodic and aperiodic activity reflects these distinct
mechanisms. However, the evidence so far (including present data
from the control study) neither precludes the possibility that both
types of modulation could be rooted in the same underlying
mechanism. Therefore, critical future work is needed to further elu-
cidate the functional and anatomical underpinnings of respiratory
modulations in brain dynamics.

Thepresentfindings openmultiple avenues for future research, of
which we want to briefly sketch three main directions. First, mechan-
istic advances could be made in a replicative study which includes a
contrast of nasal vs oral respiration. The absence of phase-amplitude
coupling driven by nasal airstreams during oral breathing could con-
ceivably reveal to what extent aperiodic changes rely on and/or
interact with oscillatory changes. While we speculate that respective
changes in 1/f slope and oscillatory power could point to distinct
modulatory pathways, targeted follow-up studies with sufficient sta-
tistical power are of critical importance to extend our initial results.
Second, as outlined above, it would further be highly instructive to
complement existing evidence of task-related 1/f slope changes23,45 by
investigating their link to respiration in behavioural cognitive or per-
ceptual paradigms. Timed breathing (in healthy participants or venti-
lated patients) or contexts involving different brain states, e.g. resting-
state vs task, during attentional or arousal manipulation (including
hyperventilation), or during sleep stages, could potentially unravel the
link between breathing and fluctuations of (non-)oscillatory brain
activity.

Finally, a third line of research should focus on potential transla-
tional applications of respiration-brain coupling. While others have
made a convincing case for studying respiratory involvement in clin-
ical contexts before (for a recent review, see46), the results presented
here demonstrate a link between bodily signals and aperiodic neural
activity. Importantly, changes in 1/f slope itself - an indicator of E:I
imbalance - have been implicated in neurological and psychiatric dis-
orders like Alzheimer’s disease47, schizophrenia48, autism spectrum
disorder49, and epilepsy50. Linking these known neural alterations to
peripheral signals could provide substantial insight into body-brain
interactions in health and disease.

Methods
Participants and data acquisition (Münster)
Forty right-handed volunteers (21 female, age 25.1 ± 2.7 y [M±SD])
participated in the study. All participants reported having no respira-
tory or neurological disease and gavewritten informed consent prior to
all experimental procedures. The studywas approvedby the local ethics
committee of the University of Münster (approval ID 2018-068-f-S). All
participants provided written informed consent and received financial

compensation for their participation in the study. Participants were
seated upright in amagnetically shielded roomwhilewe simultaneously
recorded 5min of MEG and respiratory data. MEG data was acquired
using a 275 channel whole-head system (OMEGA 275, VSM Medtech
Ltd., Vancouver, Canada) at a sampling frequency of 600Hz. During
recording, participants were to keep their eyes on a fixation cross
centredon aprojector screenplaced in front of them. Tominimise head
movement, participants’ heads were stabilised with cotton pads inside
the MEG helmet. Participants were instructed to breathe naturally
through their nose while the respiratory signal was measured as thor-
acic circumference by means of a respiration belt transducer (BIOPAC
Systems, Goleta, USA) placed around their chest. Continuous mon-
itoring via video ensured participants were breathing through their
nose instead of their mouth. Individual respiration time courses were
visually inspected for irregular breathing patterns such as breath holds
or unusual breathing frequencies, but no such artefacts were detected.

Participants and data acquisition (Leipzig)
Thirty-eight healthy volunteers (18 female, age 27.1 ± 4.0 y [M± SD])
were recruited from the database of the Max Planck Institute for
Human Cognitive and Brain Sciences, Leipzig, Germany. Participants
reported no history or current neurological or psychological condi-
tion. The study was approved by the Ethical Committee of the Uni-
versity of Leipzig’s Medical Faculty (No. 462-15-28082020). All
participants provided written informed consent and received financial
compensation for their participation in the study. Participants were
seated upright in an EEGboothwhile 5minof EEGand respirationwere
recorded. EEG was recorded from 62 scalp positions distributed over
both hemispheres according to the international 10–10 system, using a
commercial EEG acquisition system (ActiCap Snap, BrainAmp; Brain
Products). The mid-frontal electrode (FCz) was used as the reference
and a mid-frontal electrode placed on the middle part of the forehead
(between FP1 and FP2) as ground. Electrode TP9 was used to measure
ECG and electrode TP10 captured eye movements. Electrode impe-
dance was kept below 10 kΩ for all channels. EEG was sampled with a
rate of 2.5 kHz and online bandpass-filtered between 0.015 and
1000Hz. Participants were instructed to keep their eyes open and
fixate a cross on the screen in front of them to avoid excess eye
movements. Participants were instructed to breathe naturally while
respiration was measured with a respiration belt transducer (BIOPAC
Systems, Goleta, USA) placed around the chest.

Participants anddata acquisition (controlMEG study for deep vs
normal breathing)
The MEG sample for the comparison of deep vs normal breathing has
previously been published elsewhere3. Twenty-eight volunteers (14
female, age 24.8 ± 2.9 y [M± SD]) participated in the study conducted
at the Institute for BiomagnetismandBiosignal Analysis inMünster. All
participants reported having no respiratory or neurological disease
and gave written informed consent prior to all experimental proce-
dures. The study was approved by the local ethics committee of the
University of Münster (approval ID 2018-068-f-S). MEG recording
parameters and procedures were identical to the original recordings
described above. Data were acquired in two 5-min runs with a short
intermediate break (determined by the participants). Within each run,
participants were instructed to either breathe normally or voluntarily
deeply (with their mouth closed) while maintaining their normal
respiration frequency, i.e. not to breathe more slowly during blocks of
deep breathing (see3). Continuous monitoring via video ensured par-
ticipants did indeed keep their mouth closed throughout the record-
ing. The order of deep and normal breathing was counterbalanced
across participants. For both runs, we recorded the respiratory signal
as thoracic circumference by means of a respiration belt transducer
(BIOPAC Systems, Goleta, USA) placed around the participant’s chest.
Individual respiration time courses were visually inspected for
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irregular breathing patterns such as breath holds or unusual breathing
frequencies, but no such artefacts were detected.

Participants anddata acquisition (controlMEGstudy fornasal vs
oral breathing)
Twenty-five right-handed volunteers (10 female, age 26.3 ± 3.3 y [M±
SD]) participated in the control MEG study conducted at the Institute
for Biomagnetism and Biosignal Analysis in Münster. All participants
reported having no respiratory or neurological disease and gave
written informed consent prior to all experimental procedures. The
study was approved by the local ethics committee of the University of
Münster (approval ID 2021-785-f-S). MEG recording parameters and
procedures were identical to the original recordings described above.
For each participant, we recorded two 6-min runs of resting state
activity: In one run, participants were instructed to breathe naturally
through their nose. Continuous monitoring via video ensured partici-
pants did indeed keep theirmouth closed throughout the recording. In
the other run, participants were instructed to breathe through their
mouth while wearing a nose clip to prevent nasal breathing. The order
of nasal and oral breathing was counterbalanced across participants.
Again, we recorded the respiratory signal as thoracic circumference by
means of a respiration belt transducer (BIOPAC Systems, Goleta, USA)
placed around the participant’s chest. Individual respiration time
courses were visually inspected for irregular breathing patterns such
as breath holds or unusual breathing frequencies, but no such artefacts
were detected.

MRI acquisition and co-registration (Münster)
For MEG source localisation, we obtained high-resolution structural
magnetic resonance imaging (MRI) scans in a 3 T Magnetom Prisma
scanner (Siemens, Erlangen, Germany). Anatomical images were
acquired using a standard Siemens 3D T1-weighted whole-brain
MPRAGE imaging sequence (1 × 1 × 1mm voxel size, TR = 2130ms,
TE = 3.51ms, 256 × 256mm field of view, 192 sagittal slices). MRI mea-
surement was conducted in supine position to reduce head move-
ments, andgadoliniummarkerswereplaced at thenasionaswell as left
and right distal outer ear canal positions for landmark-based co-
registration of MEG and MRI coordinate systems. Data preprocessing
was performed using Fieldtrip51 running in MATLAB R2021a (The
Mathworks, Natick, USA). Individual raw MEG data were visually
inspected for jump artefacts and bad channels, but neither were
detected. Both MEG and respiration data were resampled to 300Hz
prior to further analyses.

Co-registration of structural T1 MRIs to the MEG coordinate sys-
tem was done for each participant by initial identification of three
anatomical landmarks (nasion, left and right pre-auricular points) in
their individual MRI. Using the implemented segmentation algorithms
in Fieldtrip and SPM12, individual headmodels were constructed from
anatomicalMRIs. A solution of the forwardmodelwas computed using
the realistically-shaped single-shell volume conductor model52 with a
5mm grid defined in the Human Connectome Project (HCP) template
brain21 after linear transformation to the individual MRI.

Respiratory preprocessing (both labs)
To obtain continuous respiration phase angles, we used Matlab’s
findpeaks function (withminimal peak prominence set to 1) to identify
time points of peak inspiration (peaks) and peak expiration (troughs)
in the normalised respiration time course. Phase angles were linearly
interpolated from trough to peak (−π to 0) and peak-to trough (0 toπ)
in order to yield respiration cycles centred around peak inspiration
(i.e., phase 0).

In order to assess the potential influence of individual breathing
parameters on aperiodic fluctuations, we computed breathing rates
and depths for each participant. Breathing rates were extracted as the
mean distance between inspiratory peaks as defined by the peak

detection algorithm described above. Breathing depths were com-
puted as the integral of the individual respiration time series, nor-
malised by the number of breathing cycles during the recording.

Head movement correction (Münster)
In order to rule out head movement as a potential confound in our
analyses, we used a correction method established by Stolk and
colleagues53. This method uses the accurate online head movement
tracking that is performed by our acquisition system during MEG
recordings (as previously used in2,3). This leads to six continuous sig-
nals (temporally aligned with the MEG signal) that represent the x, y,
and z coordinates of the head centre (Hx, Hy, Hz) and the three rotation
angles (Hψ, Hθ, Hφ) that together fully describe head movement. We
constructed a regression model comprising these six ‘raw’ signals as
well as their derivatives and, from these 12 signals, the first-, second-,
and third-order non-linear regressors to compute a total of 36 head
movement-related regression weights (using a third-order polynomial
fit to remove slow drifts). This regression analysis was performed on
the power spectra of single-sensor and single-voxel time courses,
respectively, removing signal components that can be explained by
translation or rotation of the head with respect to the MEG sensors.

Respiration-locked computations of 1/f slope and oscilla-
tory power
Our first aim was to further investigate excitability changes over pos-
terior cortices we previously reported9. To this end, we defined
parieto-occipital regions of interest for movement-corrected MEG
(k = 41 sensors) as well as EEG data (k = 17 channels). Single-sensor/
channel time series within these ROIs were entered into the SPRiNT
algorithm19 with default parameter settings and subsequently aver-
aged. In short, SPRiNT is based on the specparam algorithm18 and uses
a short-time Fourier transform (frequency range 1–40Hz) to compute
aperiodic and periodic components of neural time series within a
moving window (width of 1 s, 75% overlap between two neighbouring
windows). Due to the slow nature of the respiratory signal, we did not
average between neighbouring windows at this point (see below for
details). SPRiNT thus yielded time series of both aperiodic (i.e., 1/f
exponent) and periodic signals (i.e., oscillatory power) with a temporal
resolution of 250ms and a frequency resolution of 1 Hz. In order to
relate these time series to the respiratory signal, we extracted
respiratory phase at all time points for which slope and power were
fitted (i.e., the centres of each moving window). Following previous
work2,9, we then partitioned the entire respiratory cycle (-π to π) into
n = 60 equidistant, overlapping phase bins. Moving along the respira-
tion cycle in increments of Δω=π/30, we collected all SPRiNT outputs
(i.e., slope fits and periodic spectra) computed at a respiration angle of
ω ±π/10. At this point, we computed individual bin-wise averages of 1/f
slope and periodic spectra, yielding quasi-continuous ‘phase courses’
of aperiodic and periodic neural signals for each participant (see
Supplementary Figs. S1 and S2 for bin-wise event numbers). Supple-
mentary Figs. S3 and S4 show phase-locked power spectra over
parieto-occipital MEG sensors and EEG channels, respectively. For the
control MEG studies, we separately applied this pipeline to the MEG
data recorded during deep/normal and nasal/oral breathing, respec-
tively. The methodological approach is illustrated in Fig. 1.

For the source-level MEG analyses shown in Figs. 4 and 5, SPRiNT
computed 1/f slope fits and periodic spectra based on the source-
localised time series of individual parcels from the HCP atlas.

Statistical analysis of sensor-level 1/f slope modulation
As a first analysis of respiration phase-locked changes in 1/f slope, we
computed the following linear mixed-effects model (LMEM):

SEj =β0 + ðS1,j +β1Þ � sinresp + ðS2,j = β2Þ � cosresp + ej ð1Þ
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For each participant j, the model predicted individual slope
(resulting from SPRiNT computations, see above) as a combination of
the intercept (β0), fixed effects of respiratory sine and cosine (β1, β2),
and an error term (ej ~ N(0,σ2)). In line with previous work9, resulting
beta weights for sine and cosine of the respiratory signal were com-
bined in a respiratory phase vector norm, i.e.

v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2
1 +β

2
2

q

ð2Þ

To test whether 1/f was significantly modulated over the ROI sen-
sors,wecomputed k= 5000 random iterationsof theLMEMbyshuffling
bin-wise 1/f slope fits on the individual level. This way, any meaningful
relations between 1/f slope and respiratory phase were removed,
thereby specifically testing the hypothesis that 1/f slope changes sig-
nificantly with respiratory phase. For each of these iterations, we once
again computed the phase vector norm from the resulting betaweights,
yielding a random distribution of k= 5000 ‘null vector norms’. Sig-
nificance of the empirical vector normwas determined by its percentile
relative to this null distribution. As shown in Figs. 2 and 3, for the sensor-
level analyses, SPRiNT parameterisation was conducted on individual
MEG sensors (Münster) and EEG channels (Leipzig). For the analysis of
1/f slope modulations within the parieto-occipital ROI, we computed
mean SPRiNT estimates across the corresponding sensors or channels,
respectively. LMEMs were then computed on ROI-average estimates for
1/f slope~respiration phase for each lab individually (Münster, Leipzig)
as well as for the pooled data from both labs (see Fig. 2). For the whole-
scalp analyses shown in Fig. 3, LMEMswere computed on single-sensor/
channel SPRiNT estimates. Having established an over all significant
influence of respiratory phase on 1/f slope with the LMEM approach
described above, we next aimed to characterise when (i.e., at which
respiratory phases) 1/f slope was significantly steeper or flatter. To this
end, we implemented a permutation approach as follows: For each
participant, we constructed a surrogate respiration time series using the
iterated amplitude-adjusted Fourier transform (IAAFT54). In contrast to
shuffling the respiration time series, this iterative procedure preserves
the temporal autocorrelation of the signal, which is critical for con-
structing a fitting null distribution for permutation testing. From these
IAAFT-transformed respiration time series, we extracted the surrogate
respiratory phase values corresponding to each slope estimation from
SPRiNT. In keeping with the approach above, we finally binned all
SPRiNT outputs into n =60 equidistant, overlapping phase bins cover-
ing one entire respiratory cycle (-π to π) and computed the bin-wise
average slope fit to yield a ‘null time series’ of 1/f slope over surrogate
respiration phase. For each participant, this procedure was repeated
5000 times and resulted in a null distribution of 5000 surrogate 1/f
slope estimates x 60 phase bins. We then computed the group-level
average null distribution of 1/f slope for each of the 60 phase binswhich
allowed us to extract the percentiles of empirical bin-wise groupmeans
relative to these null distributions. As illustrated in Fig. 2, empirical
group-level means were deemed significant if they exceeded the 95th

percentile (or fell below the 5th percentile) of the null distribution.
For single-sensor slope analyses (Fig. 3) as well as single-parcel

analyses of 1/f slope and periodic spectra (Fig. 4), we used the circstat
toolbox for Matlab55 to compute the circular means of group-level
average slope (and power) courses over the respiratory cycle. In the
absence of meaningful slope modulation by respiratory phase, a polar
illustration of the binned slope estimates would be a uniform circle. In
contrast, any phase-locked slope changes would be represented as
modulations or peaks within the polar representation. Albeit not for all
distributions, the circular mean provides at least some indication with
regard to the direction of suchmodulations (see below for alternative
measures). Therefore, we used it to characterise the consistency of
slopemodulations across thewhole scalpbothwithinMEG/EEGdata as
well as across both modalities and labs (see Fig. 3).

In addition to potential respiration-related modulations of slope
courses, we quantified the strength of these phase-locked modula-
tions. To this end, we computed z scores from sensor-specific LMEM
beta weights of the respiratory phase vector norm (see above for
details) by subtracting themean of its null distribution and dividing by
the corresponding standard deviation:

z =
v� μvðnullÞ
σvðnullÞ

ð3Þ

with v being the vector norm of beta weights for respiratory sine and
cosine (see Eq. 2). This way, empirical LMEM beta weights for the
respiratory phase vector are given in units of standard deviation rela-
tive to their null distribution.

Source reconstruction
Source reconstruction was performed using the linearly constrained
minimum variance (LCMV) beamformer approach56 with the lambda
regularisation parameter set to 5%. This approach estimates a spatial
filter for each location of the 5mm grid along the direction yielding
maximum power. A single broadband LCMV beamformer was used to
estimate voxel-level activities across all frequencies.

ROI-based analyses of source-level 1/f slope and oscilla-
tory power
For the investigation of source-level modulations of 1/f slope and
periodic spectra, we first extracted neural time series from a total of
n = 230 cortical parcels from the HCP atlas21. In order to ground our
analyses in previous findings, we then focussed our analyses on those
parcels representing the cortical nodes of the RMBO network2. This
network has been demonstrated to show respiration-modulated brain
oscillations (RMBOs) during resting state, which is why it was parti-
cularly well-suited to investigate potentially distinct dynamics of per-
iodic and aperiodic modulations. As some RMBO nodes comprised
bilateral or wider-spread anatomical sites, a total of N = 10 ROIs con-
sisting of n = 23 parcels were used for source-level analyses (see Fig. 4).
For the average time series within theseparcels,we applied the SPRiNT
analysis described above to yield both 1/f slope and oscillatory power
across the respiratory cycle. For the latter, SPRiNT computed periodic
spectra between 1 and 40Hz with the aperiodic component removed,
i.e., solely the power of the periodic neural signal. Just as with the 1/f
exponents, we sorted all periodic spectra with respect to the corre-
sponding respiratory phase to yield individual bin-average periodic
spectra for n = 60 overlapping phase bins. These spectra thus reflect,
for each phase of the respiratory cycle, the extent of ‘true’ oscillatory
activity remaining after the underlying 1/f characteristic is removed. In
a first step, we quantified the amount of oscillatory activity by com-
puting the accumulated sum over all frequencies (illustrated in Fig. 4).
For frequency band-specific power courses, we then computed accu-
mulated power for canonical bands separately (theta: 4–8Hz, alpha:
8–13Hz, beta: 13–30Hz).

Next, we aimed to investigate potentially distinct respiration
phase-locked dynamics of periodic and aperiodic modulations.
Therefore, for each HCP parcel, we implemented Watson’s U² tests
with k = 5000 random permutations (watsons_U²_perm_test function57

for Matlab) to test the null hypothesis that the group-level average
vectors of slope andpowerweredrawn from the samedistribution.We
chose the U² test as an additional measure as it is sensitive towards
multimodal distributions58, which is not the case for the circular mean
alone. For the sake of comparability, however, we also computed
phase differences between each parcel’s circular means of slope and
power courses: If 1/f slope and oscillatory power were similarly cou-
pled to the respiratory rhythm, their respective courses over respira-
tory phase would not differ and the phase difference between their
circular means would be (close to) zero. In contrast, systematically
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different distributions of slope and power would suggest differential
dynamics in their respective coupling to respiratory phase.

Finally, we characterised the strength of slope and power mod-
ulations for eachof then = 10RMBOROIs bymeans ofU² statistics. For
each participant, we conducted Watson’s U² tests of the (potentially
multimodal) courses of 1/f slope and accumulated power within each
ROI against a uniform distribution. Here, higher U² values indicate
stronger non-uniformity within a given parcel, which allowed us to
characterise RMBO ROIs by their respective group-level U² distribu-
tions (as shown in Fig. 4c).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed data generated in this study are publicly available from
the Open Science Framework (https://osf.io/8nw9t/). Processed and
re-analysed data from the control MEG study for deep vs normal
breathing (see3) are publicly available from the same folder. While
ethics protocols disallow publicly sharing the raw data of the present
study aswell as the controlMEG study, these datamay be shared upon
request. To obtain the data, please contact the corresponding author,
Daniel Kluger (daniel.kluger@wwu.de). Source data are provided with
this paper.

Code availability
All customMatlab code to reproduce the central findings of this study
are publicly available from the Open Science Framework (https://osf.
io/8nw9t/).
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