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Abstract

The Koopman operator has become an essential tool for data-
driven analysis, prediction and control of complex systems,
the main reason being the enormous potential of identify-
ing linear function space representations of nonlinear dynam-
ics from measurements. Until now, the situation where for
large-scale systems, we (i) only have access to partial obser-
vations (i.e., measurements, as is very common for experi-
mental data) or (ii) deliberately perform coarse graining (for
efficiency reasons) has not been treated to its full extent. In
this paper, we address the pitfall associated with this situa-
tion, that the classical EDMD algorithm does not automati-
cally provide a Koopman operator approximation for the un-
derlying system if we do not carefully select the number of
observables. Moreover, we show that symmetries in the sys-
tem dynamics can be carried over to the Koopman operator,
which allows us to massively increase the model efficiency.
We also briefly draw a connection to domain decomposition
techniques for partial differential equations and present nu-
merical evidence using the Kuramoto–Sivashinsky equation.

Introduction
Many phenomena in nature can be described by partial dif-
ferential equations (PDEs), where the system state depends
both on space and time. Popular examples are fluid dynam-
ics or electromagnetics. Studying such systems poses many
challenges, including sophisticated numerical discretization
schemes (using, e.g., finite elements), a very high dimension
of the resulting discretized nonlinear systems, and the chal-
lenge that in real experiments, the entire system state is ac-
cessible in few cases only. Finally, we only have very crude
models (if at all) for some systems, e.g., from biology.

Due to these reasons, there has been an increasing interest
in the scientific community to develop and improve methods
to infer and predict dynamical systems from data. Popular
examples are the Sparse Identification of Nonlinear Dynam-
ics (Brunton, Proctor, and Kutz 2016), statistical approaches
such as the Mori-Zwanzig framework (Chorin, Hald, and
Kupferman 2000), or techniques based on deep learning
(Vlachas et al. 2018), also using physical knowledge (Raissi,
Perdikaris, and Karniadakis 2019). Another approach that
has been particularly successful in the past decade is the
Koopman operator framework (Koopman 1931; Rowley

et al. 2009; Mezić 2013). The driving force behind this re-
naissance is twofold: (1) The Koopman operator yields a
linear representation of nonlinear dynamical systems, thus
giving us access to powerful techniques from linear systems
theory, and (2) the advances in numerical approximation
(here in the form of the Extended Dynamic Mode Decom-
position (EDMD) (Williams, Kevrekidis, and Rowley 2015;
Klus, Koltai, and Schütte 2016; Klus et al. 2020)) now allow
us to identify the Koopman operator from measurements us-
ing simple linear regression. As a consequence, the Koop-
man operator has been studied extensively for data-driven
analysis (Brunton et al. 2022), coarse graining (Boninsegna,
Nüske, and Clementi 2018; Klus et al. 2020; Niemann, Klus,
and Schütte 2021; Nüske et al. 2021) and control (Proctor,
Brunton, and Kutz 2015; Korda and Mezić 2018a; Peitz and
Klus 2019; Peitz, Otto, and Rowley 2020; Schaller et al.
2023) of a very large number of applications from neuro-
science over social systems and robotics to fluid dynamics.
Besides, a formal treatment of Koopman operator methods
for PDEs was addressed in Nakao and Mezić (2020); Mau-
roy (2021), and recent results on finite-data error bounds can
be found in Zhang and Zuazua (2023); Nüske et al. (2023);
Philipp et al. (2023); Bevanda et al. (2023).

Contributions:
• Even though the Koopman operator allows for arbitrary
observations, there are severe pitfalls when we do not know
or cannot efficiently discretize the system’s state space.
Many articles simply use the full state observable, which
greatly simplifies the situation. Here, we address this issue
in detail and derive rigorous conditions on partial observa-
tions that rely on fundamental embedding theorems.
• There is only little literature on Koopman operators for
systems with symmetries; see, e.g., Salova et al. (2019)
for ordinary differential equations, or Weissenbacher et al.
(2022), where the matrix approximation of the Koopman
operator was used to heuristically identify symmetries in
Markov Decision Processes. Here, we provide a systematic
treatment of symmetries in PDEs, which will allow us to sig-
nificantly increase the numerical performance of the Koop-
man operator approximation. Furthermore, our approach al-
lows us to transfer a learned Koopman approximation from
one domain to another without retraining.
• We draw a connection between our equivariant Koop-
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man formulation to well-established domain decomposition
methods for PDEs.

Koopman operator for PDEs
We start by introducing the Koopman operator for par-
tial differential equations, although everything that follows
applies equally to ordinary differential equations (ODEs).
Consider the general dynamical system

∂y

∂t
= N (y), y(·, 0) = y0. (1)

Here, y(x, t) is the space- and time-dependent system state,
t ∈ R≥0 is the time and x ∈ Ω the spatial coordinate (for
now one-dimensional). Moreover, y(·, t) ∈ L2(Ω) and N :
D(N ) → L2(Ω) (with D(N ) ⊂ L2(Ω) being the domain
of N ) is a nonlinear partial differential operator describing
the dynamics of the system. We assume periodic boundary
conditions (BCs). The system’s flow map Φτ : L2(Ω) →
L2(Ω) is defined by

y(·, t+ τ) = Φτ (y(·, t)).
Furthermore, we assume that the system possesses an in-
variant compact set A ⊂ D(N ), i.e., Φτ (A) = A, which
has dimension dim(A) = d (often, the box counting dimen-
sion is used in this context (Ziessler, Dellnitz, and Gerlach
2019)). Usually, A is the system’s attractor or an invariant
manifold, and it is well known that many PDEs possess an
attractor with d <∞.

Example 1. The well-known Kuramoto–Sivashinsky equa-
tion that we will study in this paper is, in dimensionless form,

∂y

∂t
+ 4

∂4y

∂x4
+ µ

[
∂2y

∂x2
+ y

∂y

∂x

]
= 0 (2)

on the domain Ω = [0, L] = [0, 2π] with µ ∈ (0,∞). De-
pending on µ, the system exhibits rich dynamics, from bi-
modal fixed points to traveling waves to fully chaotic be-
havior (Hyman, Nicolaenko, and Zaleski 1986). Moreover,
one can bound the dimension of the attractor A in terms of
the domain size L via d ≤ L2.46 when not considering the
non-dimensionalized version as we do in (2), see Ziessler,
Dellnitz, and Gerlach (2019) for more details.

The semigroup of Koopman operators associated with (1)
is defined on a space of observable functionals, see (Mauroy
2021).

Definition 2 (Koopman semigroup and generator). Con-
sider the space C(A) of continuous real-valued function-
als f : A → R, endowed with the supremum norm
∥f∥ = supy∈A |f(y)|. The semigroup of Koopman opera-
tors (Kτ )τ≥0 associated with the semiflow (Φτ )τ≥0 is de-
fined by

Kτf = f ◦ Φτ , f ∈ C(A). (3)

The Lie generator of the semigroup is the linear operator
K : D(K) → C(A) that satisfies

Kf = lim
τ→0

Kτf − f

τ
. (4)

Remark 3. An extension to vector-valued observable func-
tions f : A → Rq in C(A)q can be realized in a straight-
forward manner, see, e.g., (Budišić, Mohr, and Mezić 2012).

In the case of a Koopman semigroup associated with a
semiflow generated by the PDE (1), it follows from the chain
rule that the generator is given by

(Kf)(y) = DN (y)f(y), (5)

which can be interpreted as the Lie derivative associ-
ated with the infinite-dimensional vector field N , where
DN (y)f(y) denotes the (linear) Gâteaux derivative of f at
y in the direction N (y). Note that this is closely related to
the generator PDE that we find for ODEs (Klus et al. 2020).
An alternative derivation using the functional derivative can
be found in Nakao and Mezić (2020).

Even though the Koopman operator formalism has been
known for a very long time, it has received a massive in-
crease in attention in the past decade, mostly due to the ad-
vances in its numerical approximation via EDMD. Based on
the observation that Eqs. (3) and (4) are linear, we can try
to compute finite-dimensional approximations Kτ ∈ Rℓ×ℓ

and K ∈ Rℓ×ℓ to Kτ and K, respectively. We achieve this
via Galerkin projection by introducing a finite dictionary
{ψj}ℓj=1 of functions ψj ∈ C(A)q , and coefficients a ∈ Rℓ:

f(y(·, t)) ≈
ℓ∑

j=1

ajψj(y(·, t)) = a⊤Ψ(y(·, t)). (6)

Using observed time series data [Ψ(y0),Ψ(y1), . . . ,Ψ(ym)],
where yi = y(·, iτ) and Ψ = [ψ⊤

1 , · · · , ψ⊤
ℓ ]

⊤ : A → Rℓq ,
we can now simply use linear regression to find the best fit
matrix Kτ :

min
Kτ∈Rℓq×ℓq

m−1∑
i=0

∥Ψ(yi+1)−KτΨ(yi)∥22 . (7)

A very similar regression problem can be formulated to ap-
proximate the generator K via K (Klus et al. 2020). In both
cases, it can be shown that this matrix converges to the
Galerkin projection of Kτ in the infinite data limit m → ∞
(Williams, Kevrekidis, and Rowley 2015; Klus, Koltai, and
Schütte 2016), and to the true Koopman operator when ad-
ditionally ℓ → ∞ (Korda and Mezić 2018b). Moreover,
finite-data error bounds can be found in Zhang and Zuazua
(2023); Nüske et al. (2023); Philipp et al. (2023); Bevanda
et al. (2023), using either i.i.d. or ergodic sampling.

Partial measurements, coarse graining &
unknown state spaces

A large part of the existing literature focuses on small-scale
systems or the situation where f is the identity mapping,
i.e., the full state observable. Alternatively, it is at least as-
sumed that the state space (here: L2(Ω)) is known and that
the observable f can be numerically approximated in an ef-
ficient manner. (An exception is Otto, Peitz, and Rowley
(2022), where a Kalman filter was used to infer the state
of an unknown system from measurements.) However, this



viewpoint has severe limitations. If, for instance, we con-
sider PDEs, the state space may be challenging to approx-
imate numerically. Moreover, if the data stems from real
experiments, the domain may be unknown altogether. The
same challenges occur in large-scale systems of ODEs such
as molecular dynamics, agent-based systems or dynamics on
graphs (e.g., electric grids, where the entire graph is not nec-
essarily known). In this situation, a coarse graining to mean-
ingful macro observables (Zhang, Hartmann, and Schütte
2016; Boninsegna, Nüske, and Clementi 2018; Niemann,
Klus, and Schütte 2021; Nüske et al. 2021) is highly de-
sirable, at the cost of loosing knowledge of the underlying
dynamical equations.

A common pitfall of partial measurements
In the following, we will precisely consider the above-
described situation where we do not necessarily know f or
the state space, not to mention the attractor A. Formally,
there still exists an observable f : A → Rq , according to
which we collect our measurements zi = f(yi). However, as
we are ignorant of f or the domain A, we appear to be at an
impasse: we cannot define a dictionary {ψj}ℓj=1 in C(A)q ,
which is the key step in EDMD, cf. Eqs. (6)–(7).

A practical means to overcome this impasse is to collect
measurements z = [z0, z1, . . . , zm] ∈ Rq×(m+1), where
zi = f(yi), and try to approximate the Koopman oper-
ator directly from the data. If the measurement is low-
dimensional (i.e., q is small) people often simply lift the data
z using a dictionary such as delay coordinates or polynomi-
als with maximal degree s, i.e.,

Ψ(z) =
[
1 z1 . . . zq z21 z1z2 . . . zsq

]⊤
· (8)

Examples of this approach are, e.g., lift and drag measure-
ments of a fluid flow (Peitz and Klus 2019), coarse-grained
coordinates of large molecules (Nüske et al. 2021) or de-
lay coordinates of highway traffic data (Avila and Mezić
2020). However, this approach provides a major pitfall when
it comes to learning anything about the dynamics of the
original system. Conceptually, we treat our measurements in
such a way that we now use the full state observable on a dif-
ferent, implicitly defined dynamical system φτ : Rq → Rq

that describes the dynamics of the observed quantity z on
the artificial state space Rq:

zi+1 = φτ (zi). (9)

Following Dellnitz, Hessel-von Molo, and Ziessler (2016);
Ziessler, Dellnitz, and Gerlach (2019), we will call (9) the
Core Dynamical System (CDS).

Assuming that the CDS exists and is uniquely defined,
we can now define a new observable h ∈ H = C(f(A))q ,
h : Rq → Rq whose domain is now the state space of the
CDS. In this setting, we can simply apply EDMD in its stan-
dard form (Eqs. (6)–(7) in combination with a dictionary as
in (8)), to identify the Koopman operator associated with the
CDS and the observable function h.1 This concept is illus-

1For convenience, we will use the full state observable h = id
here, but our equivalence result in Theorem 6 also covers the more
general setting for arbitrary h.

trated in Fig. 1, where z = h(z) = h(f(y)), and {ψj}ℓj=1

spans a subspace of H instead of C(A).

Figure 1: The extended Koopman operator concept for par-
tially observed or unknown states. Instead of directly learn-
ing the Koopman operator for the observable f : Y → Rq ,
we introduce the core dynamical system φτ as an interme-
diate model that – given a sufficiently large embedding di-
mension q – has a one-to-one correspondence to Φτ on the
attractor. The Koopman operator is then defined in the stan-
dard ODE setting using a new observable function h ∈ H,
h : Rq → Rq . For simplicity, we choose h = id here.

Relation between the Core Dynamical System and
the underlying PDE
What remains to be shown is the correspondence between
the original dynamical system Φτ and the corresponding
CDS φτ . To this end, we closely follow the approach in
Ziessler, Dellnitz, and Gerlach (2019) and make use of well-
known embedding theorems such as Whitney (1936), Tak-
ens (1981), or Robinson (2005). For a detailed discussion
on the more intricate implications of the following theorem
— as well as the definitions of the terms box counting di-
mension, thickness exponent (which is usually σ = 0) and
prevalence — we refer the reader to Ziessler, Dellnitz, and
Gerlach (2019).
Theorem 4 (Robinson (2005); Ziessler, Dellnitz, and Ger-
lach (2019)). Let A ⊂ Y be a compact, invariant set, with
upper box counting dimension dim(A) = d, and thickness
exponent σ. Choose an integer q > 2(1 + σ)d, and suppose
further that the set Ap of p-periodic points of Φτ satisfies
dim(Ap) < p/(2 + 2σ) for p = 1, ..., q. Then for almost
every (in the sense of prevalence) Lipschitz map g : Y → R
the delay observation map f := Dq[g,Φ

τ ] : Y → Rq de-
fined by

y 7→
[
g(y) g(Φτ (y)) . . . g(Φ(q−1)τ (y)

]⊤
is one-to-one on A. The same holds for a set of q distinct
observables g1, . . . , gq : Y → R, i.e.,

f = [g1(y) . . . gq(y)]
⊤
.

Remark 5. The central message of the above theorem is
that we can draw a close connection between the observable
f in the Koopman setting (Definition 2 and Remark 3) and
the observation map g in the embedding framework. The key



statement for our purposes is that if the system dynamics of
Φτ is restricted to a compact set A with a finite dimension d,
then we need to have at least q > 2d distinct measurements
g – which jointly form the Koopman observable f – to obtain
a one-to-one correspondence between Φτ and φτ :

Φτ = E ◦ φτ ◦Dq[g,Φ
τ ] = E ◦ φτ ◦ f,

where E is the inverse of f . This way, the CDS becomes:

φτ = f ◦ Φτ ◦ f−1. (10)

As a consequence, we can relate the Koopman operator
for φτ to the Koopman operator for Φτ .
Theorem 6. Let the assumptions of Theorem 4 hold and de-
fine the Koopman operator Kτ for the PDE (1) in its stan-
dard form as in (3). Furthermore, define the Koopman op-
erator for the CDS φτ with observable h : Rq → Rp as
follows:

K̂τh = h ◦ φτ , h ∈ H.
Then h◦Kτf = K̂τh◦f . Moreover, we find that Kτ and K̂τ

share the same spectrum, and the eigenfunctions are related
via f .

Proof. The proof immediately follows from the one-to-one
correspondence established in Theorem 4, which means that
for every z ∈ f(A) we find exactly one y ∈ A such that
f(y) = z. Choose an arbitrary y0 ∈ A with y1 = Φτ (y0) ∈
A (we have y1 ∈ A due to the invariance of A). Then

h((Kτf)(y0)) = h(f(Φτ (y0))) = h(f(y1)) = h(z1)

= h(φτ (z0)) = (K̂τh)(z0) = (K̂τh)(f(y0))

= (K̂τh ◦ f)(y0).

For the spectrum, consider an eigenfunction ξ̂ with associ-
ated eigenvalue λ̂ such that

K̂τ ξ̂ = λ̂ξ̂.

Then, using Eq. (10) and introducing ξ = ξ̂ ◦ f , we find

ξ̂ ◦ φτ = ξ̂ ◦ f ◦ Φτ ◦ f−1 = λ̂ξ̂

⇔ ξ̂ ◦ f ◦ Φτ = λ̂ξ̂ ◦ f
⇔ ξ ◦ Φτ = λ̂ξ.

Remark 7. For h = id, we find Kτf = K̂τh ◦ f .

Equivariant Koopman operators for
equivariant PDEs and convolution observables
We now want to make use of the above-mentioned partial
observations in order to approximate local, spatially con-
fined Koopman operators for partial differential equations
(PDEs) that possess symmetries. That means, instead of
measuring the entire state, we will only utilize point mea-
surements from a small subregion of the spatial domain. We
are going to realize this by means of a convolution observ-
able, which as a special case yields point measurements, but
covers many other settings as well.

In order to discuss the basic symmetry concepts, let us
forget about the time dependence of y for a moment and
instead denote the state at a fixed time t by yt(x) = y(x, t)
for x ∈ Ω For a more detailed introduction, see (Bronstein
et al. 2021). A group is a set G along with an associative
composition operation ◦ : G × G → G that contains an
identity and inverses. A group action of G on a set Ω is then
defined as a mapping (g, x) → g [x] associating a group
element g ∈ G and a point x ∈ Ω with some other point in
Ω in a way that is compatible with the group operations, i.e.,
g [(h [x])] = (gh) [x] for all g, h ∈ G and x ∈ Ω.

Example 8. The Euclidean group E(2) in the plane is the
group of transformations of R2 that preserves Euclidean dis-
tances, consists of translations, rotations, and reflections.
The same group can also act on the space of functions on
the plane, that is, if we have a group G acting on Ω, we
automatically obtain an action of G on the space Y(Ω):
g [yt] (x) = yt(g

−1 [x]). Due to the inverse on g, this is in-
deed a valid group action, in that we have (g [(h [yt])])(x) =
((gh) [yt])(x).

For the subset of linear group actions, we can define group
representations Tg : Ω → Ω. If Tg satisfies yt(x) = yt(Tgx)
for all g ∈ G and x ∈ Ω, then we say that yt is invariant
or symmetric to Tg and that {Tg}g∈G is a set of symmetries
of yt. A related notion is equivariance. Given a transforma-
tion map Tg : Ω → Ω and some yt ∈ Y , we say that yt
is equivariant to the transformation if there exists a second
transformation operator T ′

g : Y → Y in the output space
of yt such that T ′

gyt(x) = yt(Tgx) for all g ∈ G, yt ∈ Y .
The operators Tg and T ′

g can be seen as describing the same
transformation, but in different spaces. Invariance is a spe-
cial case of equivariance, if we set T ′

g to the identity for all g.
Let us now define a particular observable, namely the

Convolution operator. Generally, a convolution is the com-
position of two functions which produces another function
in a new coordinate. Usually, a function of interest (e.g., our
system state y) is composed with a kernel θ:

(yt ⋆ θ)(s) =

∫
Ω

yt(x)θ(s− x) dx.

In many situations, θ is a Gaussian kernel that somewhat “lo-
calizes” yt around the center s (even though not in a strict
sense, of course). Now, fixing s, we can define the observ-
able function

fs(yt) = zt(s) = (yt ⋆ θ)(s). (11)

Remark 9. Eq. (11) is very general, as it includes point ob-
servables (using a Dirac-Delta kernel) as well as integrals
over parts of the domain. An extension to more complex ex-
pressions (i.e., nonlinear functions of the full state y) can be
realized in a straightforward manner by applying the convo-
lution to a nonlinear transformation of the state.

Let us now assume that our group action is a shift oper-
ation (e.g., Tgx = x − a mod L). Furthermore, we assume
that the partial differential operator N defined by Eq. (1)
does not explicitly depend on space x or time t. We thus
obtain shift equivariance of the right-hand side of the PDE



and thus, the group action on the position commutes with
the flow Φt (Ober-Blöbaum and Peitz 2021, Remark 1):

y(g−1 [x] , t) = g [y] (x, t) = Φt(g [y] (x, 0))

= Φt(y(g−1 [x] , 0)).

Note that the group action g formally transforms the func-
tion y which depends on x and t, but acts as the identity
on t. Using the convolution observable and the equivariance
of the PDE, we find that the corresponding Koopman opera-
tor inherits the equivariance property.
Theorem 10. Consider a PDE of the general form (1) with
periodic boundary conditions, where N does not explicitly
depend on space x or time t and is thus equivariant under
translations in x (and t) in view of the periodic boundary
conditions. Then, the Koopman operator associated with (1)
and the observable fs as defined in (11) is also equivariant
under the same group action.

Proof. Introducing x̃ = x− a, we get (under periodic BCs)

fg−1[s](yt) = zt(g
−1 [s]) =

∫
Ω

yt(x)θ(s+ a− x) dx

=

∫
Ω

yt(x̃+ a)θ(s− x̃) dx̃

=

∫
Ω

yt(g
−1 [x̃])θ(s− x̃) dx̃

= (g [yt] ⋆ θ)(s) = g [(yt ⋆ θ)] (s)

= g [zt] (s) = g
[
f(·)(yt)

]
(s),

where we have exploited the linearity of both the convolu-
tion operation and the group action in line four in order to
exchange the operations. As a consequence, we also obtain
equivariance of the action of the Koopman operator. For any
y0 ∈ A with y1 = Φτ ∈ A, we find(

Ktfg−1[s]

)
(y0) = fg−1[s]

(
Φt(y0)

)
= g

[
f(·)

(
Φt(y0)

)]
(s)

= g
[(
Ktf(·)

)
(y0)

]
(s).

What follows is that the same Koopman operator can be
applied to different observables fs1 and fs2 , where s2−s1 =
a ∈ R. We can thus compute a Koopman operator for some
fs, and apply the same operator of a shifted version of fs,
which opens up the possibility to pursue domain decompo-
sition strategies as they are very common in finite element
techniques or numerical solution approaches for PDEs in
general. Moreover, we obtain the possibility to decouple the
Koopman operator from a specific spatial domain Ω. As long
as we remain within domains with periodic boundary condi-
tions, a transfer is possible in a simple and straightforward
manner. Moreover, the equivariance can easily be extended
to vector-valued convolution observables, cf. Remark 3.
Remark 11. Related approaches for the exploitation of
translational equivariance have been studied for reservoir
computing (Pathak et al. 2018) and in the context of rein-
forcement learning (Peitz et al. 2023; Vignon et al. 2023).

Practical considerations and numerical
examples

In this section, we will compare local Koopman models K̂τ

– obtained from q point measurements located in a com-
pact subset of [0, L] (e.g., neighboring grid points in the
discretization) – to a global Koopman model Kτ which is
obtained using the classical full state observable (i.e., we
observe the entire numerical grid at once). As briefly men-
tioned above, these point measurements can be interpreted
in terms of Eq. (11) by considering a Dirac delta function as
the kernel. This way, we obtain

[zt,1 = fx1(yt) = yt(x1) . . . zt,N = yt(xN )] .

We will compare these two models both regarding the
Koopman spectrum and the prediction accuracy. In the latter
case, Fig. 2 (a) illustrates how the local models Kτ can be
combined to a global model of repeating entries. Concep-
tually, we simply obtain a number of entirely independent
predictors for subsections of Y . As we always have to deal
with approximations of K̂τ , it is clear that the approximate
solution can quickly lead to inconsistencies with respect to
the PDE state, for instance by developing artificial disconti-
nuities. The question is therefore whether we can establish
a link between the different local models. A first intuitive
approach would be to simply consider overlapping domains.
For instance – considering the example of a local model of
size three – we can apply the same K̂τ to Ψ((z1, z2, z3))
and to Ψ((z2, z3, z4)). However, this means that we effec-
tively obtain multiple predictors for the same quantity (in
the previous example, z2 and z3 are contained in both mod-
els). While it is certainly possible to project each of the local
systems back onto the coordinates z and then use the aver-
age as the predictor, we would still not achieve a coupling
between different model instances.
Remark 12. In fact, if we were able to obtain an exact finite-
dimensional approximation of K̂τ , then we would quickly
run into inconsistencies, as the same matrix would be a pre-
dictor for (z1, z2, z3) and for (z2, z3, z4). A quick calcula-
tion then shows that the prediction of any zi can not de-
pend on any other zj , which would mean that Kτ is just a

(a) (b)

Figure 2: Schematic of the local Koopman approach. We
consider a local Koopman matrix K̂τ ∈ Rq×q . (a) The
same approximation K̂τ can be applied anywhere in the do-
main such that we obtain a global matrix K̃τ with identical
blocks K̂τ . (b) The shadedB terms represent coupling terms
to neighboring local models if we pursue a DMDc-like ap-
proach.



diagonal matrix. Our interpretation of this dilemma is that
inconsistencies cannot be avoided, as in the generic situa-
tion, any finite-dimensional approximation is inexact, mean-
ing that the local Koopman models have to be globally in-
consistent or yield trivial dynamics.

Instead, a coupling can be achieved in two different ways.
The first option is to treat the connection between two neigh-
boring models as it is done in the Dynamic Mode Decom-
position with control (DMDc, Proctor, Brunton, and Kutz
(2015)), meaning that using a slightly modified regression
problem, we obtain a model of the form

Ψ((zt+τ,2, zt+τ,3, zt+τ,4)
⊤) ≈

K̂τΨ((zt,2, zt,3, zt,4)
⊤) +Blzt,1 +Brzt,5,

(12)

where the two terms Br, Bl ∈ Rq×1 are used to treat the left
and right neighbors as control inputs to the dynamics.

As the above approach only works for control inputs that
enter the original system in a purely linear fashion (Nüske
et al. 2023), an alternative approach is to accept that a purely
linear approach may be too much to ask for. Instead, a cou-
pling can be achieved by predicting the next state, project
from Ψ(z) onto the coordinates z, and then lift again for
each system. Due to the project-then-lift step, we “synchro-
nize” the local systems, at the cost of obtaining nonlinear
dynamics. Note that if we use kernel EDMD, then this ap-
proach is very closely related to Gaussian Process models.

Numerical setup

In the following, we will study the proposed approaches
using the Kuramoto-Sivashinsky equation for two differ-
ent parameter values µ > 0. For the data generation pro-
cess, we numerically solve (2) using the spectral Galerkin
method implemented in the open source package shenfun
(Mortensen 2018). As a spatial discretization of Ω, we use
N = 32 Fourier modes, which is equivalent to N = 32
equidistant grid points, i.e., we have ∆x = L

N = π
16 . The

time step for the PDE solver is ∆t = 0.01, and we set
τ = 20∆t = 0.2 for the traveling wave and τ = 5∆t = 0.05
for the bimodal fixed-point setting. We collect M = 1000
samples from the attractor A, which yields a sufficient cov-
erage for the considered µ values.

In our experiments, we first compare the PDE solution to
the approximation K of the global Koopman operator K,
where f(y) = y. We then compare this to local Koopman
models K̂ both in terms of the Koopman spectrum as well
as regarding the prediction accuracy. For the latter, we con-
struct a global model K̃ from the local K̂. We do so follow-
ing both the classical approach (Fig. 2 (a)) and the DMDc
approach (Fig. 2 (b)). Following Theorem 4, we study dif-
ferent embedding dimensions, where qw is the window width
(i.e., the number of neighboring points of the discretized
PDE), qd is the number of delays, and the total dimension
is q = qw · qd. The global Koopman model K is thus a spe-
cial case of K̂ where qw = N . We will use standard DMD
(i.e., Ψ = id) in all experiments.

Traveling wave (µ = 15)
At µ = 15, the system exhibits a traveling wave solution,
as shown in Fig. 3. As this is a very simple behavior, we do
not study delay coordinates and set qd = 1, i.e., q = qw.
We see in Fig. 3 (bottom) that the DMD approximation (i.e.,
Ψ = id) is sufficient to yield accurate long-term predictions,
even though a slow decay is visible after a while.
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Figure 3: PDE solution vs. global Koopman-approximation
for µ = 15. To computeK, we have used the standard DMD
algorithm on the full state observable (i.e., f = Ψ = id).
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Figure 4: Eigenvalues of K vs. K̂ for varying q values.

We next compare K and the local Koopman model K̂ for
different values of qw = q, varying between q = 1 and
q = 16, which is half of the domain. The corresponding
spectra are compared in Fig. 4, and we observe a very good
agreement for the leading eigenvalues (the lowest frequency
corresponds to the frequency of the traveling wave).

The prediction of the state y using the reconstructed
Koopman operator K̃ (according to Fig. 2 (a)) is depicted
in Fig. 5. As discussed before, the complete decoupling
of the local models K̂ yields globally inconsistent dynam-
ics caused by small prediction errors. This is most evident
for q = 4 and q = 8. At q = 16, the approximation
is sufficiently accurate that we do no longer observe this
phenomenon. Interestingly, this decoherence is quite severe
even though the one-step prediction error reaches a very
small value already at q = 4, cf. Fig. 6.
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Figure 5: Predictions using K̃ with varying q values.
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Figure 6: One-step prediction error for varying window
widths qw.

Unsurprisingly, the prediction accuracy improves mas-
sively when we build in a coupling term according to Fig.
2 (b) and Eq. (12). Using a single input from left and right,
we obtain high-quality predictions using a very small linear
system (q = 1 and two inputs), see Fig. 7.

Bimodal fixed point (µ = 18)

As a second system, we study the parameter µ = 18
which results in a “checkerboard” pattern. As the dynam-
ics are now much more complex (due to the equivariance
w.r.t. translations in space, the attractor consists of infinitely
many checkerboard patterns), we here additionally consider
qd = 50 delay observations. Using this higher-dimensional
observable, many results from the previous case hold in a
very similar fashion. Fig. 8 shows a comparison of different
approximations, more figures can be found in the appendix.
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Figure 7: Local DMDc-approximation according to Fig. 2
(b), with q = 1 and an additional control input from left and
right, respectively.
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Figure 8: PDE vs. local model with qw = 8 and qd = 50
versus DMDc model with qw = 1 and qd = 50.

Conclusion

We have presented two extensions to the current Koopman
theory that deal with (i) the issue of not knowing the sys-
tem’s state space (i.e., using partial measurements, for in-
stance from sensors) and (ii) the exploitation of symmetries
when setting up Koopman-based surrogate models. Regard-
ing part (i), we have shown that there exists a close connec-
tion between the Koopman observable function f and ob-
servation maps as they are defined in the embedding litera-
ture (Takens, Whitney, ...). If we observe sufficiently many
points (more than two times the attractor dimension), then
we can simply treat our measurements as if they have been
generated by another dynamical system with state space Rq ,
on which we can then use standard EDMD techniques. This
yields rigorous criteria for the situation when building Koop-
man models exclusively from partial measurements. For part
(ii), we have then exploited this in order to simply use q local
measurements to build a local Koopman operator approxi-
mation. Our numerical results show that including coupling
terms (in the spirit of DMD with control) significantly in-
creases the accuracy, even for very small model sizes.
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Brunton, S. L.; Budišić, M.; Kaiser, E.; and Kutz, J. N. 2022.
Modern Koopman Theory for Dynamical Systems. SIAM
Review, 64(2): 229–340.
Brunton, S. L.; Proctor, J. L.; and Kutz, J. N. 2016. Discover-
ing governing equations from data by sparse identification of
nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15): 3932–3937.
Budišić, M.; Mohr, R.; and Mezić, I. 2012. Applied Koop-
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Ober-Blöbaum, S.; and Peitz, S. 2021. Explicit multiob-
jective model predictive control for nonlinear systems with
symmetries. International Journal of Robust and Nonlinear
Control, 31(2): 380–403.
Otto, S. E.; Peitz, S.; and Rowley, C. W. 2022. Learn-
ing Bilinear Models of Actuated Koopman Generators from
Partially-Observed Trajectories. arXiv:2209.09977.
Pathak, J.; Hunt, B.; Girvan, M.; Lu, Z.; and Ott, E. 2018.
Model-Free Prediction of Large Spatiotemporally Chaotic
Systems from Data: A Reservoir Computing Approach.
Physical Review Letters, 120(2).
Peitz, S.; and Klus, S. 2019. Koopman operator-based model
reduction for switched-system control of PDEs. Automatica,
106: 184–191.
Peitz, S.; Otto, S. E.; and Rowley, C. W. 2020. Data-
Driven Model Predictive Control using Interpolated Koop-
man Generators. SIAM Journal on Applied Dynamical Sys-
tems, 19(3): 2162–2193.
Peitz, S.; Stenner, J.; Chidananda, V.; Wallscheid, O.; Brun-
ton, S. L.; and Taira, K. 2023. Distributed Control of Partial
Differential Equations Using Convolutional Reinforcement
Learning. arXiv:2301.10737.
Philipp, F.; Schaller, M.; Worthmann, K.; Peitz, S.; and
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Zhang, W.; Hartmann, C.; and Schütte, C. 2016. Effective
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Appendix
Additional plots for µ = 18

We here show the same figures as for the traveling wave so-
lution at µ = 15. The key difference in the numerical ap-
proximation is that we now consider delay observables, i.e.,
f consists of qd = 50 delays and varying numbers qw of
observed grid nodes.
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Figure 9: Numerical PDE solution versus global Koopman-
approximation for µ = 18.
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Figure 10: Eigenvalues of K vs. K̂ for varying q values.
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Figure 11: Predictions using K̃ with varying q values.
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Figure 12: One-step prediction error of K̃-predictions for
varying q values.
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Figure 13: Local DMDc-approximation according to Fig. 2
(b), with qd = 50, qw = 1 and an additional control input
from left and right (all qd = 50 delays), respectively.


