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The debate on the sign of the soil moisture–precipitation feedback remains open. On
the one hand, studies using global coarse-resolution climate models have found strong
positive feedback. However, such models cannot represent convection explicitly. On
the other hand, studies using km-scale regional climate models and explicit convection
have reported negative feedback. Yet, the large-scale circulation is prescribed in such
models. This study revisits the soil moisture–precipitation feedback using global,
coupled simulations conducted for 1 y with explicit convection and compares the results
to coarse-resolution simulations with parameterized convection. We find significant
differences in a majority of points with feedback that is weaker and dominantly negative
with explicit convection. The model with explicit convection is more often in a wet
regime and prefers the triggering of convection over dry soil in the presence of soil
moisture heterogeneity, in contrast to the coarse-resolution model. Further analysis
indicates that the feedback not only between soil moisture and evapotranspiration
but also between evapotranspiration and precipitation is weaker, in better agreement
with observations. Our findings suggest that coarse-resolution models may not be well
suited to study aspects of climate change over land such as changes in droughts and
heatwaves.

land–atmosphere coupling | soil moisture–precipitation feedback | storm-resolving model |
explicit convection

Already at the turning of the 20th century, Aughey (1) and others (2–4) started to
wonder whether soil moisture affects precipitation. In principle, the link between soil
moisture and precipitation seems straightforward: more soil moisture leads to more
evapotranspiration, more moisture in the atmosphere, and more precipitation. However,
it turned out that the direct moistening effect of soil moisture is negligible over many
regions of Earth, as most water vapor that feeds precipitation over a region stems from
advected moisture and not from locally evaporated moisture (5, 6). Still, indirectly,
soil moisture can affect the amount of precipitation, first by affecting the propensity
of convection to develop (7–13). Depending on the morning stratification of the
atmosphere, either warming (dry soil) or moistening (wet soil) promotes the development
of convection. Second, the presence of heterogeneous soil moisture conditions can
generate thermally direct, shallow circulations, from the wet to the dry soil. These
circulations trigger convection and precipitation on the dry soil (14–17). Thus, it is not
obvious whether an increase in soil moisture leads to an increase in precipitation, and
how strong this response may be. This may be masked by other processes that control
the development of precipitation.

Past studies with coarse-resolution climate models, which have to rely on a convective
parameterization to represent convection due to grid spacings coarser than 10 km,
have reported a preference for wet soils (18–22). As precipitation itself replenishes soil
moisture, this maintains a positive feedback between soil moisture and precipitation.
Consistent with the existence of such intrinsic positive feedback, further studies have
highlighted the link between spring soil moisture deficit and summer precipitation
deficit (23, 24), the amplification of heat wave and temperature variability by soil
moisture (20, 24, 25), or the strong decline of precipitation following a reduction in
evapotranspiration due to land surface changes such as Amazon deforestation (26). These
similar results have been obtained despite the use of different coarse-resolution climate
models, integrated in different configurations, but all of these models had to employ
a convective parameterization. Yet, convection is at the heart of the soil moisture–
precipitation feedback.

Hohenegger et al. (27) were the first to report, using limited-area simulations, that the
soil moisture–precipitation feedback depends upon the treatment of convection: negative
in simulations with explicit convection and positive in simulations with parameterized
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convection. Their convective parameterization led precipitation
to be sensitive to surface moistening rather than to surface
heating. Follow-up studies confirmed the dependency of the
feedback sign on the treatment of convection by using regional
climate simulations over the Alps (28) and superparameteriza-
tions (29). Furthermore, focusing on the feedback between soil
moisture heterogeneity and convection, Taylor et al. (30) found
negative feedback in observations and positive feedback in coarse-
resolution global climate simulations. Large-eddy simulations
(31–33) and km-scale models with explicit convection (34, 35)
can well reproduce the triggering of convection by such soil
moisture heterogeneities. By looking at the partitioning of
tropical precipitation between land and ocean, Hohenegger and
Stevens (36) deduced a negative feedback between water storage
and precipitation in observations and a positive feedback in
the ensemble mean of coarse-resolution global climate models
used for the Coupled Model Intercomparison Project phase 6
(CMIP6).

Although there is increasing evidence that coarse-resolution
climate models may misrepresent the soil moisture–precipitation
feedback, studies that have looked at the feedback in simulations
with explicit convection were constrained by the limited size
of the simulations’ domains. However, interactions between
the atmosphere and the land surface vary with the scale of
the soil moisture anomaly, large-scale circulation, and oceanic
forcing (28, 37–39). Here, we take advantage of global, coupled
simulations conducted for 1 y with explicit convection, at a
grid spacing of 5 km, with the ICON model (40), to look at
land–atmosphere interactions anew. We focus on the sign and
strength of the soil moisture–precipitation feedback, quantified
by its local coupling via correlation coefficient, during the boreal

summer. As documented in two previous studies (40, 41),
this storm-resolving version of ICON reproduces well the
latitudinal variations of precipitation and its seasonal migration
over land. We compare these results with a 60-y simulation
conducted with ICON using a coarse grid spacing of 160 km
(42), which is representative of the typical behavior of coarse-
resolution global climate models as it employed parameterized
convection. The hydroclimate of the two models, in terms of
time series of soil moisture, precipitation, and evapotranspiration
for specific domains, is shown in SI Appendix, Figs. S1 and S2 for
reference.

Results
Weaker and More Negative Soil Moisture–Precipitation Feed-
back. Fig. 1 A–C shows the correlation coefficient between soil
moisture index (SMI) and precipitation, taken as a measure for
the feedback strength (Materials and Methods). As we only have
1 y of simulation at storm-resolving resolution (5 km), we use the
SD of the 60 correlation coefficients for each individual year of the
coarse-resolution model as a measure of internal variability and to
assess the significance of the difference between the two models.
We exclude the results in cases where precipitation is smaller than
0.1 mm d−1 in both simulations or where the SMI-precipitation
correlation coefficient of the storm-resolving model (SRM) falls
within one SD of the year-to-year variability of the correlation
coefficient of the coarse-resolution model. Given this definition,
46.8% of the rainy area exhibits a difference in feedback between
the two models. For our subsequent analysis, we only consider
those points and will always give percentage values with respect
to this subset of points except if noted otherwise.

A B C

D E F

G H I

Fig. 1. Correlation coefficients computed based on daily mean values for June–July–August between (A–C) SMI and precipitation, (D–F ) SMI and
evapotranspiration, and (G–I) evapotranspiration and precipitation for the 60-y mean of the coarse-resolution model (LR), the SRM, and the resulting difference
in correlation coefficient (Materials andMethods). Areas where precipitation is smaller than 0.1 mm d−1 in both simulations (called non-rainy area, corresponding
to 21.8% of the land area) or where the SMI-precipitation correlation coefficient of the SRM is within one SD of the year-to-year variability of the correlation
coefficient in the coarse-resolution model (53.2% of the rainy area) are masked in gray.
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Fig. 1A clearly indicates that the soil moisture–precipitation
feedback is weaker in the SRM than in the coarse-resolution
model: 90.1% of the points display a weaker correlation.
Moreover, 78.2% of the points in the SRM exhibit a correlation
coefficient close to zero, with values comprised between ±0.2,
whereas a similar fraction of points (70.1%) exhibit a correlation
coefficient larger than 0.2 in the coarse-resolution model. As a
further check (SI Appendix, Fig. S3), we computed how often
the correlation coefficient in the coarse-resolution model is
smaller than that in the SRM. For the vast majority of rainy
points (61.5%), this happens at best 10% of the time, meaning
6 y out of 60 y, confirming that the feedback is consistently
weaker in the storm-resolving simulation. The areas where
the coarse-resolution model shows frequent smaller coefficient
mostly belong to the areas where the SRM falls within one SD
of the year-to-year variability of the correlation coefficient of the
coarse-resolution model.

It is not only that the strength is weaker in the SRM, but
the sign also differs. In the coarse-resolution model, we observe
widespread positive correlations, covering 97.9% of the points. In
the SRM, those areas have shrunk to 65.8%. Part of this positive
correlation could result from the fact that days with precipitation
tend to have higher soil moisture simply because precipitation
replenishes soil moisture. To filter out this effect, we follow
Duerinck et al. (43) and compute the correlation coefficient
between SMI and subsequent 9-d mean precipitation (Fig. 2).
In the SRM, this changes the sign of the correlation coefficient
to widespread negative (66.6% of the points), whereas the values
in the coarse-resolution model remain mostly unaffected. Using
different rain averaging periods (SI Appendix, Fig. S4) does not
alter this behavior.

Although our study focuses on boreal summer, due to the
larger frequency of convective events over land, repeating the
analysis for austral summer (SI Appendix, Fig. S5) reveals broadly
consistent results. The feedback is weaker in the SRM. Compared
to boreal summer, the differences are reduced in the northern
hemisphere and enhanced in the southern hemisphere. This
is consistent with the shift of frontal activity to the northern
hemisphere and of convective activity to the southern hemisphere
during austral summer.

Weaker SoilMoisture–EvapotranspirationFeedback. To under-
stand why the soil moisture–precipitation feedback is weaker and
even negative in the SRM, we decompose the feedback into its

terrestrial and atmospheric segments by computing correlation
coefficients between SMI and evapotranspiration as well as
between evapotranspiration and precipitation.

The strength of the soil moisture–evapotranspiration feed-
back (Fig. 1 D–F ) is weaker in the SRM than in the coarse-
resolution model at 70.4% of the points. Like with the soil
moisture–precipitation feedback, but to a lesser extent, the sign
has also changed. In addition, 86.6% of the points exhibit
positive correlations in the coarse-resolution model, against
71.3% in the SRM. A weaker or even negative soil moisture–
evapotranspiration feedback means that evapotranspiration is less
often soil moisture limited and rather constrained by the amount
of available energy. This is confirmed by determining to which
soil moisture–evaporation regime grid points belong, following
the method of Budyko (44, 45) (SI Appendix, Fig. S6). In the
coarse-resolution model, the percentages are 6.5% for dry regime,
81.6% for transitional regime, and 11.9% for wet regime. The
corresponding numbers are 3.5%, 59.5%, and 37% for the SRM.

The difference in feedback between the two models may stem
from a difference in the functional relationship between soil
moisture and evapotranspiration or from different soil moisture
amounts. Fig. 3A indicates that the strength of the correlation
between SMI and evapotranspiration exhibits very similar values
across soil moisture indices in both models. This similarity is
consistent with the fact that the two models employ the same
land surface model, the same soil and vegetation properties
except for the leaf area index, see methods and SI Appendix,
Fig. S7. The existing differences in leaf area index between the
two models nevertheless do not match well with the obtained
differences in the soil moisture–evapotranspiration correlation
coefficient between the two models. For instance, differences
in the correlation coefficient over Europe or over Africa in
the northern hemisphere are always of the same sign, whereas
differences in leaf area index exhibit both positive and negative
values within each domain. Hence, we attribute the weaker
soil moisture–evapotranspiration feedback in the SRM primarily
to the occurrence of higher soil moisture, as confirmed by
Fig. 3A. The two soil moisture distributions are distinct, with
the distribution from the SRM being shifted to higher values,
independently of the years included in the coarse-resolution
model (see thin lines in Fig. 3A). In the SRM, soil moisture
indices are higher than 0.5 at 75.6% of the points, whereas this
number decreases to only 37.6% for the 60-y mean in the coarse-
resolution model. Likewise, if we take 75% of the field capacity as

A B

Fig. 2. Correlation coefficient between SMI and subsequent 9-d mean precipitation for (A) the 60-y mean of the coarse-resolution model (LR) and (B) the SRM.
Gray areas as in Fig. 1.
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A

C

B

Fig. 3. (A) Correlation coefficient based on daily mean values for June–July–August between SMI and evapotranspiration (ET) as a function of SMI for the 60-y
mean of the coarse-resolution (red line) and the storm-resolving (blue line) models with ±1 SD in shading together with histogram of 60-y mean (bar) and
each year (thin red line) of SMI (%). Bin with less than 1% of data are excluded. (B) Same as (A) but correlation coefficient between evapotranspiration and
precipitation (P) (solid line) and between sensible heat flux (SH) and precipitation (dashed line). (C) Precipitation as a function of evapotranspiration (solid line)
with linear regression (dashed line) for the two models. Data are excluded if the percentage of data per bin is less than 0.3% of total.

the critical soil moisture value for the start of the wet regime, we
find that soil moisture is larger than this value 37% of the times in
the SRM, versus 11.9% in the coarse-resolution model. Higher
soil moisture values are already present at the beginning of the
boreal summer season (SI Appendix, Fig. S8 A–C ), and then, soil
moisture remains higher in the SRM during the analysis period
(SI Appendix, Fig. S1) and most regions even moistened during
the summer season, ending up at a higher soil moisture value
(SI Appendix, Fig. S8 D–F ). This may indicate the tendency of
the SRM to equilibrate at higher soil moisture than the coarse-
resolution model. That the two models would equilibrate at a
different soil moisture would be consistent with the two models
having a distinct land–atmosphere coupling and with the fact
that simulations with and without convective parameterization
rain differently (see figure 9 in Prein et al. 46).

Negative Evapotranspiration–Precipitation Feedback. Looking
now at the atmospheric segment, the coarse-resolution model ex-
hibits expected positive correlations between evapotranspiration
and precipitation. In contrast, in the SRM, those correlations are
changed to negative ones (Fig. 1 G–I ). In the coarse-resolution
model, the sign of the feedback is positive for 72.6% of the
points. Negative signs can only be found over the regions in
the wet regime (compare to SI Appendix, Fig. S6A), those being
North-Eastern America and Eastern Asia. In the wet regime,
evapotranspiration is primarily determined by net radiation and
tends to decrease when precipitation increases due to increased
cloud cover (SI Appendix, Fig. S9). In contrast, in the SRM,
negative feedback exists at 56.2% of the points. Even over the
region with remaining positive feedback, the strength is weaker,
with a value of 0.22 compared to 0.35 in the coarse-resolution
model on average.

Two mechanisms could explain the weaker and more negative
correlations in the SRM: more wet regimes and/or a distinct
relationship between evapotranspiration and precipitation. As
already indicated in Section 2, wet regimes are much more
widespread in the SRM than in the coarse-resolution model.
But also the functional relationship between evapotranspiration
and precipitation differs: for a given SMI, the correlation between
evapotranspiration and precipitation is weaker in the SRM where
SMI is smaller than 0.9 (Fig. 3B). More strikingly (Fig. 3C ),
whereas precipitation linearly increases with evapotranspiration
in the coarse-resolution model, there is no monotonic increase in
the SRM. This suggests that evapotranspiration is not the main
control of precipitation in the SRM, also evidenced by the fact
that it can still rain by very small evapotranspiration amounts, in
contrast to the coarse-resolution model.

Hohenegger et al. (27) explained the distinct feedback sign
between parameterized and explicit convection in their limited-
area simulations over the Alpine region by the design of the
triggering function of their default convective parameterization,
making convection couples to moisture rather than to heat.
A similar mechanism could be at play here. At least, the
correlation between sensible heat flux and precipitation is indeed
stronger in the SRM than in the coarse-resolution model for
a given SMI (Fig. 3B). Moreover, in the presence of soil
moisture heterogeneities, Taylor et al. (30) showed that afternoon
precipitation is triggered over dry soils, while coarse-resolution
models favor wet soils. In our SRM, afternoon precipitation
is indeed triggered over dry soils (SI Appendix, Fig. S10), as
in observations (see figure 1 in Taylor et al. 14 and figure 1A
in Guillod et al. 47). These results could further explain the
documented weaker evapotranspiration–precipitation feedback
in the SRM. Finally, it may just be an indication that the SRM
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couples convection to circulation (48) rather than to surface
fluxes.

Land–Atmosphere Coupling in Observations. In the previous
sections, we demonstrated that the coupling between the land
surface and the atmosphere is weaker and more negative in the
SRM. Do observations agree with our findings? To determine
which model better represents the coupling, we compare the
simulated coupling to the one recorded by the FLUXNET2015
dataset (49) at 102 sites (Materials and Methods). Although being
observations, it is important to remember that those observations
still contain measurement errors and noise that will degrade the
correlation (50). The comparison also suffers from the different
scales considered: point observation is ideally representative for
a larger fetch area versus a km-scale and a low-resolution model
output downgraded to a 2◦ grid analysis box.

Fig. 4 provides clear evidence that the SRM better represents
the sign and strength of land–atmosphere coupling. In terms
of the soil moisture–precipitation feedback, the SRM exhibits
closer values to FLUXNET2015 at 83.3% of sites. Strikingly,
the correlation coefficients derived from the coarse-resolution
model rarely fall into the range of the correlation coefficients
measured at the selected FLUXNET2015 sites. Similarly, for
the soil moisture–evapotranspiration and evapotranspiration–
precipitation feedback, the SRM indicates closer correlations to
FLUXNET2015 at 71.6% and 70.7% of the sites, respectively.

Concluding Thoughts
Our study shows that land–atmosphere coupling in a global SRM
is weaker than what we have known from global coarse-resolution
models and is much closer to observations. Not only the feedback
between soil moisture and evapotranspiration is weaker, but the
feedback between evapotranspiration and precipitation as well as
between soil moisture and precipitation is weaker. The preference
is for a negative soil moisture–precipitation feedback, against
a positive feedback in global coarse-resolution models. The
underlying hypothesis is that this difference primarily stems from
the treatment of convection, being parameterized at the coarse
resolution but explicit at the storm-resolving resolution, rather
than by other differences in the employed model setups such as
simulated period, grid spacing, and treatment of the land surface.
To test this hypothesis, we recomputed the correlation coefficient
between soil moisture and precipitation and their difference to the
SRM in a coarse-resolution model under present-day conditions
instead of pre-industrial, with two different grid spacings (180 vs.
100 km), using the wettest year instead of the mean, and using a
different treatment of plant (SI Appendix, Fig. S11). Despite some
variation in the strength of the feedback, all coarse-resolution
simulations exhibit positive feedback and feedback that is
systematically stronger than at storm-resolving resolution. This is
consistent with past literature which has revealed a positive feed-
back at coarse resolution despite the use of various climate models.
Finally, we repeated our analysis on a newer version of our 5-km

A

B

C

Fig. 4. Correlation coefficients computed based on daily mean values for June–July–August between (A) soil moisture and precipitation, (B) soil moisture and
evapotranspiration, and (C) evapotranspiration and precipitation for the 60-y data of the coarse-resolution model (LR, red), the SRM (blue), and FLUXNET2015
(gray) at each site. The site names are colored in blue when SRM is closer to FLUXNET2015 and colored in red when LR is closer to FLUXNET2015. Center line:
median; box limits: 25th and 75th percentiles; whiskers:±1.5 times the interquartile range from the box limits; dots: correlation coefficient for each year. Which
measurement depths or model soil layer depths are used to compute correlation coefficients at each site are listed in SI Appendix, Table S1.
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model. This newer version especially entails an updated descrip-
tion of land-surface fields, which makes it less comparable to our
coarse-resolution model, but this version was integrated globally,
coupled to an ocean, for five full years (SI Appendix, Fig. S12).
Every year exhibits predominantly weaker correlation coefficients
between soil moisture and precipitation in the storm-resolving
than in the coarse-resolution model, confirming our results.

Our results imply the possibility that global coarse-resolution
models, due to too strong and too positive coupling, may
overestimate the increase in frequency/strength of droughts and
heatwaves under climate change. Moreover, the results of this
study may suggest that precipitation over the Amazon is more
resilient to deforestation than previously thought. This is so
because a decrease in evapotranspiration following deforestation
should not lead to a strong decrease in precipitation in a model
with weak and negative feedback between soil moisture, or
evapotranspiration, and precipitation. Also, as weak feedback
between soil moisture and precipitation implicitly means that
soil moisture is less important for the atmosphere, the state of the
soil moisture, being wet or dry, especially at the initial time, and
related spin-up issues, may be of less relevance at storm-resolving
than at coarse resolution. Our study highlights that global SRMs
can behave fundamentally different than state-of-the-art coarse-
resolution models, demonstrating the needs to consider such
models for studies of climate change over land.

Materials and Methods
Simulations. We use two simulations integrated with different configurations
of the ICON model. The first one is a fully coupled global simulation integrated
at 5 km. This simulation was initialized on 20 January 2020 and integrated until
28 February 2021. It employs the new configuration of the ICON model, called
Sapphire and is fully described in Hohenegger et al. (40), see the simulation
called G_AO_5km. The second simulation is a fully coupled global simulation
integrated at 160 km (42). It is part of the CMIP6 and we use the piControl
simulation as it allows a better estimation of interannual variability than a
transient simulation such as the historical simulation. The official simulation
name is ICON-ESM-LR.piControl (51). We limit our analysis to a 60-y of the
simulation as extending the time span of the data does not change the main
findings.

The key difference between the two simulations is that convection is explicitly
resolved at 5 km but parameterized at 160 km in ICON-ESM-LR.piControl. Both
simulations use JSBACH (52) to represent land surface processes, with five
soil layers, but slightly different configurations for the vegetation processes.
Given the shortness of the simulation, the big leaf (BL) approach is used at 5 km,
whereas plant functional types (PFT) approach is used in ICON-ESM-LR.piControl.
The main differences between the two approaches are i) BL does not explicitly
define a vegetation type, PFT up to eleven types of vegetation per grid box, and
ii) BL prescribes leaf area index from monthly-mean observed climatological
values, whereas PFT computes leaf area index interactively based on phenology.
The other soil and vegetation properties are based on the same datasets.

Coupling Metric. To quantify the strength and the sign of land–atmosphere
coupling, first, the simulation output is daily averaged and, second, interpolated
to a common 2◦ grid. Using a larger box of, for instance, 5◦ grid or 10◦ grid,

does not affect the main conclusion of the study. Lastly, we compute three
Pearson correlation coefficients between: i) SMI and precipitation, ii) SMI, and
evapotranspiration, and iii) evapotranspiration and precipitation. The analysis
is restricted to the boreal summer season (June–July–August, JJA). For the
soil moisture analysis, we use the SMI as this is the variable employed in the
computation of evapotranspiration in JSBACH:

SMI =
� − �pwp

�crit − �pwp
, [1]

where � is soil moisture in the root zone, �pwp is the permanent wilting point,
and �crit is 75% of the field capacity. These definitions follow what is done in
JSBACH.

Given the 60-y time span of the coarse-resolution model, we compute
the correlation coefficients for each year and then average them over 60 y.
Subsequently, we only retain the computed correlations if the JJA mean
precipitation is larger than 0.1 mm d−1 in both simulations and where
differences in the correlation coefficient between SMI and precipitation between
the two models may not be due to internal variability. We assess this by
computing the SD of the correlation coefficient between SMI and precipitation
in the coarse-resolution model based on the 60 y of simulation output and only
retain the points where the difference in correlation coefficient between the two
models is larger than one SD.

As a further metric, we compute the correlation coefficient between SMI
and subsequent precipitation. It is computed following Duerinck et al. (43) by
correlating daily mean SMI with precipitation averaged on subsequent days. We
tested the sensitivity to the chosen averaging period by varying it between 1
and 120 d, see SI Appendix, Fig. S4.

FLUXNET2015. We use the FLUXNET2015 dataset (49) to evaluate the
simulated coupling. Among 206 available sites, we select 102 sites which
have measurements of daily soil moisture, precipitation, and latent heat flux,
needed to compute correlation coefficients. Days when at least one of the
variables exhibits a quality control flag with a value below 0.75 are filtered out,
conservatively. Since soil moisture in the root zone is not available at all sites,
we compute correlation coefficients using surface soil moisture in FLUXNET2015
and simulated soil moisture in the soil layer closest to the measurement depth
at each site for the simulations. Which measurement depths or soil layer depths
are used to compute the correlation coefficients at each site are listed in SI
Appendix, Table S1.

Data, Materials, and Software Availability. The G_AO_5km simulation was
done with the ICON branch nextgems_cycle1_dpp0066 as commit62dbfc
(https://doi.org/10.17617/3.1XTSR6 (40)). The ICON-ESM-LR.piControl simu-
lation is available here https://www.wdc-climate.de/ui/cmip6?input=CMIP6.
CMIP.MPI-M.ICON-ESM-LR.1pctCO2 (51). FLUXNET2015 data can be accessed
at https://fluxnet.org/data/fluxnet2015-dataset/ (49). The key analysis codes
can be found from GitHub (https://github.com/junhonglee89/PNAS_land-
atm_coupling_in_global_SRM) (53).
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