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Genomic history of coastal societies from 
eastern South America

Sambaqui (shellmound) societies are among the most intriguing 
archaeological phenomena in pre-colonial South America, extending from 
approximately 8,000 to 1,000 years before present (yr bp) across 3,000 km 
on the Atlantic coast. However, little is known about their connection 
to early Holocene hunter-gatherers, how this may have contributed to 
different historical pathways and the processes through which late Holocene 
ceramists came to rule the coast shortly before European contact.  
To contribute to our understanding of the population history of indigenous 
societies on the eastern coast of South America, we produced genome-wide 
data from 34 ancient individuals as early as 10,000 yr bp from four different 
regions in Brazil. Early Holocene hunter-gatherers were found to lack shared 
genetic drift among themselves and with later populations from eastern 
South America, suggesting that they derived from a common radiation and 
did not contribute substantially to later coastal groups. Our analyses show 
genetic heterogeneity among contemporaneous Sambaqui groups from 
the southeastern and southern Brazilian coast, contrary to the similarity 
expressed in the archaeological record. The complex history of intercultural 
contact between inland horticulturists and coastal populations becomes 
genetically evident during the final horizon of Sambaqui societies, from 
around 2,200 yr bp, corroborating evidence of cultural change.

The settlement of the Atlantic coast by maritime societies is a central 
topic in South American archaeology. Across ~3,000 km of the coast 
of Brazil, semi-sedentary populations, with seemingly large demogra-
phy, produced thousands of shellmounds and shell middens, locally 
known as sambaquis (heaps of shell, in the Tupi language), for over 
7,000 years. Subsistence was based on a mixed economy, combining 
aquatic resources and plants, complemented by hunting of terrestrial 
mammals and horticulture1–8. Sambaquis are the product of planned 
and long-term deposition of shells, fish remains, plants, artefacts, 
combustion debris and local sediments, and they were used as terri-
torial markers, dwellings, cemeteries and/or ceremonial sites. On the 
southern Brazilian coast, funerary shellmounds can reach monumental 
heights (of up to 30 metres) and often contain hundreds of human buri-
als, suggesting a high demographic density unparalleled in the South 
American lowlands3,6,9–11. In a singular enclave south of São Paulo State, 
further inland from the coast (Vale do Ribeira de Iguape), sambaqui sites 

are within the Atlantic Forest12–15. Here there is evidence of early Holo-
cene settlement in the riverine sambaqui of Capelinha, as revealed by 
a male individual directly dated to ~10,400 years before present (yr bp)  
(we identify all analysed individuals by rounding the mean calibrated 
age in years bp)10. This individual was named ‘Luzio’, as a reference to 
‘Luzia’, a final Pleistocene female skeleton found in the Lagoa Santa 
region in east-central Brazil10,16,17. Both individuals are at the centre 
of long-lasting debates for exhibiting the so-called paleoamerican 
cranial morphology that differs from that of present-day indigenous 
peoples10,18. The earliest evidence of human settlement on the Atlantic 
coast starts between ~8,700 and 7,000 yr bp with an intensification of 
sambaqui construction between 5,500 yr bp and 2,200 yr bp2,4,6,19. The 
relationship between riverine and coastal sambaquis is still a matter of 
debate, although bioarchaeological studies point towards a biological 
link20–23, and some researchers suggest a late Pleistocene/early Holo-
cene cultural connection that faded through time24–27.
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Regarding Sambaqui societies, three previously published middle 
Holocene individuals from Laranjal and Moraes (both riverine shell-
mounds from the southeast coast of Brazil) and five individuals from 
the late Holocene site of Jabuticabeira II (one of the largest coastal shell-
mounds in southern Brazil) showed some level of genetic continuity 
with present-day indigenous populations63. The analysed Jabuticabeira 
II individuals carried a significant affinity to present-day Kaingang 
( Jê speaking) from the southern Brazilian highlands. Although based 
on low-coverage genome-wide data, this supports a shared ancestry 
between the Sambaqui societies and the speakers of proto-Jê63.

The long-term permanence, cultural similarity and rapid disap-
pearance of Sambaqui societies, plus their archaeological and seem-
ingly genetic disconnection from early Holocene hunter-gatherers, 
raise numerous questions about their origins and demographic 
history. First, were Sambaqui individuals genetically different from 
hunter-gatherers from the hinterland (for example, east-central and 
northeastern Brazil)? Second, were the riverine Sambaqui groups 
genetically related to the ones on coastal sites? Third, was there genetic 
homogeneity across Sambaqui groups from the south and southeast 
coast of Brazil? Fourth, was the demise of sambaqui construction after 
2,000 yr bp and the appearance of ceramics associated with an intensi-
fication of contacts with inland populations? Finally, are there genetic 
connections between Sambaqui groups and other archaeological and 
present-day indigenous populations from Amazonia and central and 
northeastern Brazil?

Results
Dataset and ancient DNA authenticity
To understand the genetic structure of pre-colonial Brazilian groups 
and assess their potential genetic transformations through time, 
we attempted to retrieve ancient DNA from 82 individuals from 24 
archaeological sites across four regions: the southeastern and south-
ern Atlantic coast, Lagoa Santa, the lower Amazon, and northeast-
ern Brazil (Supplementary Information and Supplementary Data 1). 
After applying established criteria for ancient DNA authentication, 
we obtained a final dataset of genome-wide data from 34 individuals 
from 11 archaeological sites spanning the past ~10,000 years (Fig. 1  
and Supplementary Data 1). We produced genome-wide data via 
in-solution capture by enriching for a targeted set of ~1.24 million 
single nucleotide polymorphisms (SNPs) across the human genome  
(1240k SNP capture)67. We also captured the entire mitochondrial 
genome (mtDNA) to assign mtDNA haplogroups and to estimate 
contamination levels, which were found to be low for all cases (<2%). 
Nuclear DNA contamination estimated for 20 male individuals on the 
basis of X-chromosome heterozygosity levels68 was also low (<3.5%). 
Principal component analysis (PCA) and a cluster analysis including 
worldwide populations further confirmed that all individuals fall 
within Native American genetic diversity (Extended Data Figs. 1 and 2). 
For population genetic analyses, we combined the newly authenticated 
ancient Brazilian genome-wide dataset with previously published 
ones62,63. Individuals were grouped on the basis of archaeological 
site, radiocarbon date and genetic affinities established through f3 
outgroup statistics (Methods and Supplementary Data 1).

Early Holocene hunter-gatherer radiation
The oldest human presence in southeastern Brazil is directly attested 
by the ‘Luzio’ individual, a skeleton buried in the riverine shellmound 
of Capelinha genetically analysed here (Capelinha_10400BP). The mor-
phological similarity of this male individual to paleoamerican features 
observed in early Holocene groups from the Lagoa Santa region, and 
the chronological gap of almost 3,000 years with other burials from 
the same site, call into question his association with riverine Sambaqui 
societies10. We investigated the genetic affinities of Capelinha_10400BP 
to other ancient Brazilian individuals using f4 statistics of the form 
f4(Mbuti, Capelinha_10400BP; ancient Brazilians—left, ancient 

The disappearance of Sambaqui societies started 2,000 years 
ago, when funerary fishmounds replaced shellmounds in the terri-
tory where they previously thrived4,28–31. This abrupt change in the 
archaeological record is concomitant with environmental and eco-
logical changes related to coastal regression and climatic events32–36 
that had an irreversible impact on the availability of key resources. 
Between 1,200 and 900 years ago, thin-walled non-decorated pot-
tery (Taquara-Itararé tradition) appeared for the first time on the 
southern Brazilian coast2,6,9,11,29,37–39. The makers of Taquara-Itararé 
ceramics were horticulturists that arrived in the southern Brazilian 
highlands about 3,000 years ago, lived in pit houses and cremated 
their dead in funerary mounds. They are considered to be the ances-
tors of present-day Jê-speaking indigenous peoples of southern Brazil  
(Kaingang, Xonkleng, Laklãnõ and the extinct Kimdá and Ingáin), 
a language family of the Macro-Jê stock38,40–43. The dispersal of 
Taquara-Itarare ceramics on the southern coast was first interpreted 
as resulting from the demographic expansion of inland horticulturists. 
However, evidence points to a complex scenario of social interaction 
between inland and coastal populations, with changes in funerary 
practices and post-marital residence patterns after the introduc-
tion of ceramics, biological continuity and maintenance of mobility 
patterns (with local variations), persistence in the exploitation of 
aquatic resources, and development of sophisticated fishing technolo-
gies2,4,11,21,23,39,44–49. Ceramics appear in the southeast coast about 2,000 
years ago but are associated with the Una tradition, also probably 
produced by speakers of the Macro-Jê language stock50,51.

Shortly after the appearance of southern proto-Jê ceramics, 
another major transformation occurred on the Atlantic coast. This is 
documented by the arrival of speakers of the Tupi-Guarani language 
family (of the Tupi stock), a forest-farming culture who migrated from 
southern Amazonia more than 2,500 years ago in one of the largest 
expansion events in the indigenous history of South America. Although 
still a matter of debate, the Tupi-Guarani would have dispersed south-
wards from southwestern Amazonia (homeland of the Tupi stock) 
across the core of South America, reaching the La Plata basin, and 
almost simultaneously from southeastern Amazonia across the Atlan-
tic coast of Brazil38,42,52–57. While on the southern coast of Brazil a late 
Tupi-Guarani chronology is well defined38,52, on the southeast coast a 
much earlier arrival (~3,000 years ago) has been proposed on the basis 
of the archaeological record of the Araruama region (Rio de Janeiro 
State)58–60. European colonists encountered thousands of Tupi-Guarani 
peoples both on the Atlantic coast and along major rivers and their 
tributaries in southern Brazil and northeastern Argentina (Paraná, Para-
guay and Uruguay river basins). The Tupi-Guarani produced painted 
ceramics (red and black on white painting), applied a diversity of plastic 
decorations and made pots with complex and composite contours that 
are archaeologically defined as Tupiguarani, Tupinambá and Guarani, 
depending on the geographical location42,53,61.

Ancient DNA data from Brazil are still very sparse, with only 19 
published individuals with analysable genomic coverage62,63. Early 
Holocene individuals from Lapa do Santo in the Lagoa Santa region, 
dated between ~9,800 and 9,200 yr bp, carried a distinct affinity to the 
oldest North American genome, which is associated with the Clovis 
cultural complex (Anzick-1, ~12,800 yr bp)63,64. A genetic signal of 3–5% 
Australasian ancestry—known as the Population Y signal—was found 
in present-day indigenous individuals from southwestern Amazonia, 
Central Brazil and the northwestern South American coast65,66 and in 
one early Holocene individual from Lapa do Sumidouro (Sumidouro 
5, dated to c. 10,400 yr bp)62. However, this signal was not detected in 
the early Holocene burials from Lapa do Santo, located only four kilo-
metres from Lapa do Sumidouro63. The complete absence of ancient 
DNA data for Amazonia and Northeast Brazil and the low-coverage data 
from the south/southeast Brazilian coast have prevented an assess-
ment of whether the Population Y signal survived in those regions 
through time.
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Brazilians—right) (Extended Data Fig. 3a and Supplementary Data 2). 
None of the tested ancient individuals show a higher allele sharing with 
Capelinha_10400BP, even when the temporally close and phenotypi-
cally similar Lagoa Santa groups are considered. The same pattern is 
observed when Capelinha_10400BP is compared with an early Holocene 
hunter-gatherer from Loca do Suin, dated to ~9,100 yr bp and located 
200 km southwest of the Lagoa Santa region (Loca do Suin_9100BP). 
Conversely, the Lapa do Santo_9600BP and Sumidouro_10100BP 
groups share a higher genetic affinity with each other than with any 
other ancient Brazilian group (significance considered at Z > |3|, if not 
differently indicated) (Extended Data Fig. 3a). These results indicate 
that Capelinha_10400BP does not represent an early occupation of 
the southeast coast by inland groups carrying Lagoa Santa–related 
ancestry and suggest that his population did not leave a substantial 
genetic contribution in the later Brazilian individuals analysed here.

We then used qpWave69 to estimate the minimum number of 
streams of ancestry necessary to explain the genetic variation observed 
among early Holocene hunter-gatherers across South America. Our 
results show that Capelinha_10400BP and Loca do Suin_9100BP can-
not be distinguished from other early Holocene populations as part of 
a distinct wave of ancestry (P > 0.01) (Supplementary Data 3). To the 
limit of our resolution, the lack of close affinity among early Holocene 
individuals from different South American sites suggests that they 
derived from a rapid radiation event63.

A previous study also revealed that the oldest South American 
genomes, Los Rieles_11900BP from Chile and Lapa do Santo_9600BP 
from Brazil, carried a higher affinity to the Clovis-associated Anzick-1 
individual from North America than Lauricocha_8600BP from Peru 
did63. With f4 statistics, we could show that while Capelinha_10400BP 
and Sumidouro_10100BP do not have a lower affinity to Anzick-1 
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Fig. 1 | Geographic and temporal distribution of analysed genome-wide 
data from Brazil. a, The archaeological sites analysed in this study, with the 
number of analysed individuals reported in brackets. Sites with newly reported 
genome-wide data are shown in black font, and those with previously published 
genome-wide data are shown in grey (this color scheme is maintained in all 
main text figures). The symbols used for each site refer to the associated 
archaeological cultures (see the legend in Extended Data Fig. 8). The shaded 
areas represent the broad geographic regions analysed in this work: (1) lower 
Amazon, (2) northeastern Brazil, (3) Lagoa Santa, (4a) southeastern Atlantic coast 
and (4b) southern Atlantic coast. The Kaingang burial is geographically closer 

to the southeastern Atlantic coast but was included in the southern Atlantic 
group due to its specific genetic affinity. The locations of present-day indigenous 
groups are represented with yellow dots. b, The calibrated ages (coloured 
bars) of single directly dated individuals with new genomic data and, in black 
font, the mean calibrated ages for the respective groups/individuals. For the 
previously published ancient genome-wide data62,63, the mean calibrated ages for 
the respective groups/individuals are reported in grey, whereas the white bars 
represent the temporal range of all directly dated individuals included in each 
group. Figure related to Supplementary Data 1.
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than Los Rieles_11900BP and Lapa do Santo_9600BP do, they also 
do not show a higher affinity to Anzick-1 than Lauricocha_8600BP 
does (Supplementary Data 4). To measure the relative proportion of 
the Anzick-1-related ancestry in ancient South American groups, we 
performed an f4-ratio test70 (Methods), using Los Rieles_11900BP and 
Lauricocha_8600BP as the reference individuals with the maximum and 
minimum amount of such ancestry in early Holocene South America, 
respectively. Our results corroborate that Lapa do Santo_9600BP 
carry a significantly higher amount of Anzick-1-related ancestry 
than Lauricocha_8600BP (Z = 3.31), while the other tested groups 
show different proportions without reaching significance (Extended 
Data Fig. 4 and Supplementary Data 4). This trend suggests a genetic 
gradient of Anzick-1-related contribution in early South American 
hunter-gatherers rather than a scenario of two isolated migration waves 
with and without Anzick-1-related ancestry.

Shellmound societies from the middle to the late Holocene
To investigate the affinities between riverine and coastal Sambaqui 
groups, we analysed our newly produced data alongside previously 
published individuals from the riverine sambaquis Laranjal (n = 2, 
~6,700 yr bp) and Moraes (n = 1, ~5,800 yr bp)63 (Extended Data Fig. 3b). 
The southeast coast shellmounds are represented by the sambaqui do 
Limão (n = 6, ~2,700–500 yr bp), located in the State of Espírito Santo. 
The south coast Sambaqui are represented by individuals from three 
shellmounds—Jabuticabeira II (n = 17, ~2,500–1,300 yr bp), Cabeçuda 
(n = 2, ~3,200 yr bp) and Cubatão I (n = 2, ~2,700–2,600 yr bp)—and one 
individual from the fishmound Galheta IV (~1,200 yr bp), representing 
the final horizon of Sambaqui societies.

Our analyses confirm the strong local genetic affinity between the 
riverine Sambaqui individuals compared with all other ancient Brazil-
ian groups in our dataset (f4(Mbuti, Laranjal_6700BP; ancient Brazilian 
group, Moraes_5800BP) > 0). Individuals from the riverine sites also 
show genetic similarities to individuals from the southern coastal sam-
baquis of Cubatão I (CubatãoI_2700BP), Cabeçuda (Cabeçuda_3200BP) 
and Jabuticabeira II ( JabuticabeiraII_~2400BP), indicating some level of 
genetic continuity through time between riverine shellmound builders 
and Sambaqui societies from the southern coast. Interestingly, this 
genetic similarity is not observed between the riverine shellmounds 
and the sambaqui do Limão, located further north (Fig. 1 and Extended 
Data Fig. 3b).

To improve our knowledge on the genetic interactions among 
Sambaqui groups, we co-analysed all individuals from the five coastal 
sites, which are located up to 1,500 km apart along the southeast and 
south coasts (Fig. 1). The archaeological site with the largest num-
ber of analysed genome-wide data is Jabuticabeira II. The 17 indi-
viduals from this site cluster in three genetically distinct groups, as 
revealed through f3 and f4 tests (Supplementary Data 2): (1) a main 
cluster, composed of 14 individuals dated to ~2,500–2,300 yr bp 
( JabuticabeiraII_~2400BP—we identify genetic groups by rounding the 
mean calibrated age for all dated individuals; Supplementary Data 1),  
of which 12 are not first degree related and are grouped together for 
analysis; (2) two first-degree-related individuals dated to ~2,200–
2,100 yr bp ( JabuticabeiraII_111/112_~2200BP, only one individual used 
for analysis); and (3) the most recent individual, dated to ~1,300 yr bp 
( JabuticabeiraII_102_1300BP). This skeleton was found in the topmost 
shell deposit and exhibited a different funerary pattern from the older 
burials, including an extended rather than a flexed position and the 
absence of grave goods (Supplementary Data 1). In f4 statistics, we 
found a higher genetic affinity between the three groups from Jabu-
ticabeira II compared with all other ancient Brazilian groups (Supple-
mentary Data 2). The temporally intermediate individual appears to be 
genetically intermediate to the preceding and succeeding individuals, 
as indicated by f4(Mbuti, JabuticabeiraII_111/112_~2200BP; Jabutica-
beiraII_~2400, JabuticabeiraII_1300BP) ~ 0 (Z = 0.47).

Intersite comparisons showed higher allele sharing between 
the JabuticabeiraII_~2400BP group, JabuticabeiraII_111/112_~220
0BP, Cabeçuda_3200BP and GalhetaIV_1200BP, to the exclusion of 
other ancient Brazilian groups. The CubatãoI_~2700BP group shows 
genetic connections to the other southern shellmound groups such as 
JabuticabeiraII_~2400BP and Cabeçuda_3200BP. The affinities between 
these four shellmound and fishmound individuals thus reveal the 
presence of a late Holocene genetic cluster in the southern coast of 
Brazil (Fig. 2).

On the southeastern coast, the genetic similarities ascertained 
through f3 outgroup and f4 statistics revealed three distinct groups at 
the sambaqui do Limão: (1) the oldest individual (Limão_2700BP), (2) 
a cluster of four temporally intermediate individuals (Limão_~1900BP) 
and (3) the most recent individual (Limão_500BP). The Limão_~1900BP 
group shows the highest genetic affinities to Limão_2700BP and to a 
possibly early to middle Holocene hunter-gatherer from the north-
eastern site of Pedra do Alexandre (Pedra Do Alexandre2_undated)71  
(Fig. 2). This result demonstrates genetic connections between Sam-
baqui individuals from the southeast coast and hunter-gatherer groups 
from northeastern Brazil. When combined with the results obtained 
from the south coast sambaquis, our analyses indicate that shellmound 
societies from the south and southeast (that is, Santa Catarina and 
Espírito Santo states, respectively) do not constitute a genetically 
homogenous population, as previously suggested by the analyses of 
cranial and dental morphological variation21,23.

The final horizons of shellmound societies
The significance of Taquara-Itararé ceramics (associated with proto-Jê 
speakers) at coastal sites after the final horizon of sambaqui construc-
tion has been at the centre of recent academic debates. According to 
some scholars, an intensification in contacts with proto-Jê-speaking 
groups after ~2,000 yr bp, even before the appearance of ceram-
ics at the coast, would have led to the demise of Sambaqui socie-
ties9,11,30. In this work, the post-2,000 yr bp horizon is represented 
by JabuticabeiraII_102_1300BP (Fig. 2), buried at the top of the shell 
deposit, and by an individual from Galheta IV, a fishmound with 
Taquara-Itararé pottery (GalhetaIV_1200BP) (Fig. 2). To further inves-
tigate the genetic connections between individuals in sambaquis and 
fishmounds, proto-Jê-speaking groups, and present-day indigenous 
peoples, we merged our ancient genomic data with two published 
present-day genomic datasets: (1) the Illumina dataset assembled in 
Reich et al.72, combined with 1240k SNP capture data generated in this 
study from an early twentieth-century southeastern Kaingang indi-
vidual from the state of São Paulo (Kaingang burial_100BP), showing 
distinctive affinity with present-day southern Kaingang; and (2) the 
Human Origins dataset54,66,69,73.

Using the Illumina dataset, we observed patterns of shared genetic 
drift between some Sambaqui groups and present-day Kaingang  
(Fig. 3a and Extended Data Fig. 5). To formally test this affinity, we 
performed the following f4 tests: (1) f4(Mbuti, ancient coastal group; 
Kaingang, other present-day indigenous groups) and (2) f4(Mbuti, 
Kaingang; ancient coastal group A, ancient coastal group B). The 
results from the first test reveal an excess of genetic similarity between 
present-day Kaingang and JabuticabeiraII_102_1300BP. The second test 
expands this finding by showing that JabuticaberiaII_111/112_~2200BP 
and even more so JabuticabeiraII_102_1300BP are genetically closer 
to present-day and twentieth-century Kaingang, when compared 
with not only the JabuticabeiraII_~2400BP group but also the 
Taquara-Itararé-pottery-associated GalhetaIV_1200BP individual 
(Supplementary Data 5 and Extended Data Fig. 5). This genetic link 
between Kaingang and the younger Jabuticabeira II individuals cor-
roborates the hypothesis of an intensification of contacts between 
proto-Jê-speaking groups and Sambaqui societies of the southern 
coast, at least from ~2,200 yr bp.
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The analysis of the stable isotope ratio 87Sr/86Sr in the tooth 
enamel of JabuticabeiraII_102_1300BP (0.7111) also points at a different 
provenance for this female individual, possibly from another coastal 
location, when compared with the JabuticabeiraII_~2400BP group 
(0.7095 ± 0.000096; n = 7) (Supplementary Table 16). This could also 
indicate a dietary change, since a mixed marine and C3-resource diet 
has already been described for JabuticabeiraII_102_1300BP, in contrast 
to the high marine protein intake of older individuals74. Instead, the 
absence of a distinctive Jê-related signal in GalhetaIV_1200BP, con-
sidered to be the typical Jê site on the coast, points at a certain level of 
demic continuity with Sambaqui groups after the arrival of ceramics 
and the end of shellmound construction. Therefore, it suggests that 
cultural diffusion might have also been an important mechanism in 
the spread of ceramics across the Atlantic coast of Brazil, as indicated 
by previous studies2,21,23,75.

With the Human Origins dataset, we first expanded the previous 
findings using f3 outgroup statistics (Fig. 3b). Moreover, f4 statistics of 
the form f4(Mbuti, Brazilian ancient groups; present-day indigenous 
groups—left, present-day indigenous groups—right) revealed that 
all Sambaqui individuals show a significant genetic attraction to the 
Xavánte ( Jê-speaking) in contrast to the other available indigenous 
populations (Fig. 4). To investigate whether the influence of Jê-related 
ancestry in the Sambaqui individuals from the southern coast can be 
attributed specifically to either Kaingang or Xavánte, we performed 
the test f4(Tanzania_3000BP, Sambaqui groups; Xavánte, Kaingang_
burial_100BP) (Supplementary Data 5). Here we used ancient African 
individuals73 to mitigate biases due to attraction between ancient 
DNA samples. Our results show that all Jabuticabeira II individuals 
are equally associated with both tested sources of Jê ancestry (Kain-
gang and Xavánte) (|Z| < 1.71). This suggests that the specific Jê-related 
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ancestry contributing to southern Sambaqui groups is missing in our 
ancient and present-day genetic dataset. More genomic data from 
other Jê-speaking groups are needed to accurately assign a specific 
genetic contribution.

The Limão_~1900BP individuals also show genetic affinity to 
the present-day Jê-speaking groups from central Brazil (Xavánte) 
when compared with other linguistic families, such as Karib (Arara 
and Aparai) or Tupi (Mondé, Arikém and Tupi-Guarani). Interest-
ingly, we observed a genetic link between the latest burial at the site, 
Limão_500BP, and the Zoró (a population related to the Tupi-Mondé 
language) in comparison to other present-day Tupi-speaking peoples 
(that is, Nandeva, Gavião, Karitiana and Parakanã) (Fig. 4 and Sup-
plementary Data 5 and 6). This specific affinity might represent the 
first direct genetic evidence for the arrival on the southeast coast of 
Tupi-Guarani speakers, who are thought to have originated in southeast 
Amazonia54,55,59. While we cannot determine the exact arrival time of 
this ancestry, its absence in the older groups from sambaqui do Limão 
(Limão_2700BP and Limão_~1900BP) indicates that it occurred after 
the initial settlement of the site by Sambaqui groups.

Links with ceramists from Amazonia and northeastern Brazil
To investigate the chronological depth of the shared ancestry between 
Sambaqui and Jê-, Tupi- and Karib-speaking groups, we sequenced 
individuals from late Holocene archaeological sites in the Cerrado of 
northeastern Brazil and the lower Amazon Forest. The former is associ-
ated with the Una tradition (Vau_Una_600BP), a ceramic type made by 
horticulturists that occupied a vast territory in central and northeastern 
Brazil76, and the latter is associated with the Koriabo tradition (Palmei-
ras Xingu_500BP), a late pre-colonial/early colonial archaeological 
culture (~1,200–1,600 CE) that may represent the southernmost Karib 
expansion in South America57,59,62,63.

The genetic patterns obtained by performing f4 tests on Vau_
Una_600BP and present-day Native American populations from the 
Human Origins dataset show strong evidence of genetic similarities 

between the Una-context individual and Xavánte, when compared 
with Tupi (Tupi Mondé, Arikén and Tupi-Guarani) and Karib popula-
tions (Arara and Apalai) (Fig. 4). This provides direct evidence for the 
association of Jê-speaking populations with pottery makers of the 
Una tradition. The results of the f4 test performed on Brazilian indig-
enous populations included in the Illumina dataset show that Palmeiras 
Xingu_500BP shares genetic affinities with Arara, a Karib-speaking 
group from the lower Amazon, and with the Tupi-speaking Surui Paiter 
(Extended Data Fig. 5).

In comparison to all Sambaqui individuals analysed here, both 
Vau_Una_600BP and Palmeiras Xingu_500BP present a genetic attrac-
tion to the latest burial from the sambaqui do Limão (Limão_500BP), 
indicating some level of shared genetic drift in the most recent past.

The Population Y signal
We investigated the presence of the Population Y signal in the newly 
produced data with f4 statistics of the form f4(Mbuti, Papuan/Onge/Aus-
tralian; present-day Mexicans, ancient Brazilians)65. The only ancient 
Brazilian group showing significant affinity to Onge, compared with 
present-day Mexicans, is the JabuticabeiraII_~2400BP group. The signal 
is mainly driven by one individual ( JBT009—burial 38), but it remains 
for the entire group even after the exclusion of JBT009. Similarly, there 
is significant genetic attraction between Onge and one individual from 
the Cabeçuda_3200BP group (CBE004—burial 15), while all other tests 
do not reach values close to significance (Supplementary Data 7). How-
ever, no evidence of the Population Y signal is found in the recent Ama-
zonian individual Palmeiras Xingu_500BP, despite the fact that this 
ancestry was first described in present-day Amazonian populations; or 
in Capelinha_10400BP, despite its association with the paleoamerican 
cranial morphology10,65. We further tested the presence of differential 
affinity of ancient Brazilian individuals to present-day Papuans, Onge 
and Australians, as well as the 40,000-year-old Tianyuan genome-wide 
data from China77 using f4 statistics of the form f4(Mbuti, Papuan/Onge/
Australian/Tianyuan; Ancient Brazilian A, Ancient Brazilian B). Only the 
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JabuticabeiraII_~2400BP group reaches significant attraction to both 
Onge and Papuans, and only in comparison to LapaDoSanto_9600BP 
(ref. 63). This suggests either that the Population Y signal is equally 
widespread in most tested ancient individuals from Brazil or that previ-
ously reported attractions to non-American ancestries62,77,78 are exac-
erbated by the use of present-day Mexican populations in comparison 
to ancient groups (Supplementary Data 7).

Uniparental markers, genetic diversity and runs of 
homozygosity
All males in our dataset belong to Y-chromosome haplogroup Q1b, 
which has the highest frequency in present-day South Americans.  

To the limit of the available SNP coverage, the male individuals from 
Jabuticabeira II carry either the common haplogroup Q1b1a1a-M3 or 
the currently rare haplogroup Q1a2a1b-CTS1780, confirming its higher 
frequency in ancient South Americans63 (Supplementary Data 1).

The mtDNA analysis shows that all newly studied individuals 
belong to American-specific mtDNA haplogroups (A2, B2, C1b, C1c, 
C1d1 and D1) (Supplementary Data 1). An exception is individual Loca 
Do Suin_9100BP, who carries the extremely rare and primarily North 
American mtDNA haplogroup C4c. Finding this mtDNA lineage in Brazil 
during the early Holocene provides additional support to the possibil-
ity that haplogroup C4c entered the Americas during early peopling 
events79. On the basis of the mtDNA diversity, we tested the presence 
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of sub-structure among Sambaqui groups. Our results show a level of 
differentiation between Sambaqui individuals from the south coast 
and those from the southeast coast (Extended Data Fig. 6).

At the Jabuticabeira II site, 16 individuals share the same 
mtDNA haplogroup C1c with a maximum of one nucleotide distance 
among all mtDNA sequences. The only exception is represented 
by JabuticabeiraII_102_1300BP, who carries mtDNA haplogroup B2  
(ref. 63). This pattern of uniparental markers, considered alongside 
the generally low pairwise mismatch rate, could be compatible with a 
scenario of consanguinity among Jabuticabeira II individuals (Extended 
Data Fig. 7). To test this, we calculated runs of homozygosity (ROH)80. 
Those results revealed a large number of short ROH (4–8 cM) in the 
JabuticabeiraII_~2400BP group, suggesting a smaller effective popula-
tion size (2n of ~400 to ~1,600 individuals contributing to the next gen-
eration) than for younger burials from the same site (Fig. 5a). Therefore, 
rather than recent consanguinity, this genetic pattern is consistent with 
a bottlenecked population and calls into question the expectation of 
large demography in Sambaqui societies. Studies of pre-contact sub-
sistence fisheries using data from the Cubatão I site have also indicated 
a lower-than-expected population size among southern Sambaqui 
groups81. Contemporaneous individuals from the sambaqui do Limão 
present a similar ROH profile, while the Limao_500BP individual shows 
a pattern consistent with first-cousin consanguinity (Fig. 5a).

Finally, the south coast Sambaqui groups ( JabuticabeiraII_~2400BP, 
Cabeçuda_3200BP and CubatãoI_~2700BP) show lower heterozygosity 
levels than those at the southeast coast site (sambaqui do Limão) 
and even lower than late Sambaqui individuals from the south coast 
( JabuticabeiraII_111/112_~2200BP, JabuticabeiraII_102_1300BP and 
GalhetaIV_1200BP) (Fig. 5b). The increase in heterozygosity through 
time in southern Sambaqui groups is probably associated with gene 
flow of Jê-related ancestry from the inland detected here by 2,200 yr bp.

Discussion
The oldest individual newly sequenced in this study, Capelinha_10400BP, 
does not carry a distinct genetic similarity to any other early Holocene 

or younger populations but shows a generalized affinity to ancient 
Brazilian and present-day South American groups. This suggests that 
his source population had a basal placement among the initial radia-
tion event into South America. Moreover, both Capelinha_10400BP 
and Sumidouro_10100BP lack a significant affinity to Anzick-1-related 
ancestry (Supplementary Data 4 and Extended Data Fig. 4). These 
individuals predate by more than a thousand years the earliest occur-
rence of South American individuals without evidence of this ances-
try (Cuncaicha_9000BP and Lauricocha_8600BP), challenging the 
scenario of two subsequent waves of expansion into South America, 
the first one with and the second one without Anzick-1-related ances-
try63. However, we caution that this result could be affected by the 
lack of statistical power, and another potential scenario would involve 
early South American settlers carrying different proportions of this 
genetic component. Additional genomes from other regions of South 
America would be necessary to assess whether populations carrying 
Anzick-1-related ancestry were replaced by or intermixed with other 
early Holocene groups.

The genetic distinctiveness between early Holocene individu-
als from the Lagoa Santa region, Capelinha_10400BP and Loca Do 
Suin_9100BP, also indicates greater genetic variation among early 
Brazilian hunter-gatherers than previously expected. Within the 
Lagoa Santa region, early Holocene individuals mostly derived 
from a common ancestral group, as shown by the high genetic affin-
ity between the Sumidouro_10100BP and Lapa do Santo_9600BP 
groups. We also detected two distinct genetic attractions between 
Lapa do Santo_9600BP and late Holocene groups. The first signal was 
observed with the southern Sambaqui JabuticabeiraII_~2400BP group 
and Cabeçuda_3200BP, and the second with the Amazonian individual 
Palmeiras Xingu_500BP (Extended Data Fig. 3a). The genetic connec-
tion between individuals separated by thousands of kilometres and 
thousands of years might indicate the survival of this ancestry through 
time (Extended Data Fig. 8).

The Population Y signal related to Andamanese and Aus-
tralasian populations could not be detected in the early 
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Fig. 5 | ROH profiles and heterozygosity of the ancient coastal groups.  
a, Sum of ROH fragments higher than 4 cM for each individual with more than 
190,000 SNPs sorted by population name and in chronological order. The insert 
provides a legend of individual ROH profiles for recent loops (parents from 1st 
to 3rd cousins (C.)) and small population sizes. b, Heterozygosity distribution 
among the tested groups. This was calculated on the basis of the pseudo-diploid 
genotypes of three Sambaqui groups: south coast (n = 17), southeast coast 

(n = 5) and 2,200–1,200 yr bp individuals from the south coast (n = 4). In the box 
plots, the central line represents the median, the box edges represent the 25th 
and 75th percentiles, and the whiskers show the distribution of the remaining 
variation. The connectors mark the significant results obtained with the non-
parametric Kruskal–Wallis test (P = 0.001), followed by the post hoc Conover’s 
test for multiple comparisons using the false discovery rate correction method 
(*P = 0.01914; ***P = 0.00089).
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Holocene Capelinha_10400BP individual or in the Amazonian Palmei-
ras Xingu_500BP individual. However, we report this signal in indi-
viduals from the southern sambaqui sites of Cabeçuda_3200BP and 
JabuticabeiraII_~2400BP. The latter is the only pre-colonial group 
exhibiting higher affinity to non-American ancestries even in direct 
comparison to another ancient Brazilian group (Supplementary  
Data 7). If confirmed, the sporadic identification of the Population Y sig-
nal in ancient individuals with different ancestries, locations and time 
periods across Brazil—where this signal was first described—suggests a 
higher probability that it derives from genetic structure in the found-
ing Native American population65,77 than from multiple independent 
migrations into the Americas62,82.

Middle Holocene riverine Sambaqui individuals (Laranjal_6700BP 
and Moraes_5800BP) are strongly related, confirming a local genetic 
structure63, which might correspond to a distinct genetic group when 
compared with coastal Sambaqui populations. Individuals from Lar-
anjal and Moraes also show a higher affinity with south coast than with 
southeast coast Sambaqui groups, suggesting potential genetic links 
between geographically closer populations. However, the two sites 
represent only a small portion of the riverine sambaquis, and additional 
individuals should be genetically analysed to confirm this pattern.

The coastal Sambaqui groups Cabeçuda_3200BP and Jabuti-
cabeiraII_~2400BP showed high genetic affinity with each other (Fig. 2  
and Supplementary Data 2). Both sites, only 20 km apart, exhibit 
genetic similarities to contemporaneous individuals from Cubatão 
I, about 200 km further north. The late burials from Jabuticabeira II 
(~2,200 yr bp and ~1,300 yr bp) display an incremental genetic attraction 
to southern Jê ancestry represented by both recent and present-day 
Kaingang (Figs. 2b and 3a, Extended Data Fig. 5 and Supplementary 
Data 5). JabuticabeiraII_102_1300BP has an 87Sr/86Sr isotope ratio 
above the range observed for older individuals at Jabuticabeira II 
(Extended Data Fig. 9) and could thus be a non-local individual who 
spent earlier years in continental areas (that is, the Santa Catarina 
highlands) or in a different location on the coast45. The presence of a 
non-local individual after 2,000 yr bp coincides with changes in the 
post-marital residence patterns47 and with dietary changes revealed 
by isotopic analyses44,83. The strong genetic affinity between Kaingang 
and JabuticabeiraII_102_1300BP demonstrates a genetic relationship 
between proto-Jê groups from the southern Brazilian highlands and 
post-2,000 yr bp coastal groups. However, this evidence precedes 
the arrival of Taquara-Itararé ceramics on the coast by around a hun-
dred years39. Considering that Kaingang ancestry is already detected 
in Sambaqui individuals before the 2,000 yr bp horizon of cultural 
change, as indicated by JabuticabeiraII_111/112_~2200BP, our results 
show that the intensification of contacts between inland and coastal 
populations was concomitant with a sharp decline in shellmound 
construction39 and shortly before the appearance of fishmounds. This 
indicates that cultural contacts associated with genetic interactions 
at a time of unprecedented environmental and ecological changes 
may have influenced the end of shellmound architecture. Our results 
also show that one individual from Galheta IV (Galheta IV_1200BP), a 
fishmound with Taquara-Itararé ceramics, is genetically similar to the 
JabuticabeiraII_~2400BP group and Cabeçuda_3200BP. This suggests 
some level of demic continuity after the arrival of ceramics in the region 
(Fig. 2 and Supplementary Data 2 and 5).

On the southeast coast, the sambaqui do Limão individuals carry 
at least two distinct genetic ancestries. The Limão_2700BP individual 
and the Limão_~1900BP group show a significant affinity to the north-
eastern hunter-gatherer from Pedra do Alexandre2_undated and to 
the Amazonian individual Palmeiras Xingu_500BP. Despite cultural 
similarities, we do not observe an extra genetic affinity between indi-
viduals from the sambaqui do Limão and sambaqui sites on the south-
ern coast (Fig. 2 and Extended Data Fig. 3c). The genetic link between 
the older sambaqui do Limão individuals and hunter-gatherers from 
northeast Brazil as well as present-day Xávante from central Brazil 

may explain their separation from contemporaneous groups on the 
southern coast. Furthermore, the high affinity of Limão_500BP with 
Tupi-speaking Zoro provides the first ancient genomic evidence for the 
spread of Tupi-related ancestry to the Brazilian southeast coast. The 
Tupi-Guarani expansion from southeastern Amazonia across the Atlan-
tic coast of Brazil is a well-known demographic phenomenon38,42,53–57, 
and our results reveal an arrival of Tupi-related ancestry on the coast 
of Espírito Santo by at least 500 yr bp (Supplementary Data 6).

In conclusion, our results demonstrate that Sambaqui societies 
from the south and southeast coasts were not a genetically homoge-
nous population. Both regions had different demographic trajectories, 
possibly due to the low mobility of coastal groups2,21,29. This contrasts 
with the cultural similarities described in the archaeological record 
and highlights the need to perform more regional and micro-scale 
studies to improve our understanding of the genomic history of eastern 
South America.

Methods
Archaeological sampling and ethical aspects
Permits for exporting the material for ancient DNA analysis were 
obtained from the Instituto do Patrimônio Histórico e Artístico 
Nacional, and sampling access was granted by the local curators at 
the following housing institutions: Museu de Arqueologia e Etnologia 
da Universidade de São Paulo (MAE-USP), Instituto de Biociências da 
Universidade de São Paulo, Superintendência no Espírito Santo do Insti-
tuto do Patrimônio Histórico e Artístico Nacional, Universidade Federal 
do Amapá, Museu Amazônico da Universidade Federal do Amazonas, 
Museu Paraense Emílio Goeldi, Scientia Consultoria Científica, Museu 
de Arqueologia do Xingó da Universidade Federal de Sergipe, Museu 
Arqueológico do Carste do Alto São Francisco, Grupo de Pesquisa em 
Educação Patrimonial e Arqueologia, Instituto Goiano de Pré-História 
e Antropologia da Pontifícia Universidade Católica de Goiás, Museu 
Histórico de Lins, and Universidade Federal de Pernambuco.

For the early twentieth-century sample originating from a Kain-
gang funerary context (Kaingang_burial_100BP), we reached out for 
approval to the indigenous community at TI Vanuíre, an Indigenous 
Land recognized by the 1988 Brazilian Constitution that is located 
~65 km from the archaeological burial mound (Supplementary Infor-
mation, ‘Kaingang’). The Kaingang spiritual leader who was in charge 
of our solicitation requested two members of our research group to 
engage in dialogue with the Kaingang community, including a slide 
presentation detailing all aspects of the present study. After internal 
community consultation, the research group members were informed 
that the data generated from the Kaingang sample could be included 
in the present study. The contact of our research group with the Kain-
gang community was mediated by M. X. Cury (MAE-USP), an expert in 
decolonizing curatorial processes in Brazilian museums.

The present study is part of a collaborative agreement between 
the Max Planck Institute for Evolutionary Anthropology (MPI) and the 
University of São Paulo. The collaboration includes the training of Bra-
zilian students by the MPI staff in techniques of extraction and analysis 
of ancient DNA. The agreement also includes the establishment of an 
ancient DNA laboratory at USP under the technical guidance of the MPI 
and financed by the Fundação de Amparo à Pesquisa do Estado de São 
Paulo. A Max Planck Partner Group was established by A. Strauss to fund 
early career researchers working in the ancient DNA laboratory at USP.

Ancient DNA processing
All human skeletal elements used in this study were introduced into 
the clean room facilities at the Max Planck Institute for the Science of 
Human History in Jena, Germany. The material was photographed and 
stored in new plastic bags. Petrous portions of the temporal bone and 
teeth were exposed for one hour to ultraviolet radiation on both sides 
to reduce surface DNA contamination before any sampling procedures 
were performed. Between 28 and 60 mg of tooth or bone powder were 
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obtained. Teeth were cut along the enamel–dentin junction and drilled 
into the pulp chamber of the crown using a dentist drill rotated at low 
speed. Petrous bones were sampled following the protocol described 
in Pinhasi et al.84. We sampled 82 skeletal elements from 24 sites: Cape-
linha (4), Cabeçuda (4), Cubatão I (5), Sambaqui do Limão (11), Estreito 
(1), Galheta IV (5), Hatahara (1), Jabuticabeira II (21), Jêrimum (2), Jus-
tino (4), Lapa do Santo (2), Laranjal (2), Loca do Suin (4), Moraes (3), 
Palmeiras-Xingu (2), Pavão XVI (1), São José II (1), Pedra do Alexandre 
(2), Marajoara Anthropomorphic Urn t-8 (1), Gruta das Caretas (1), 
Marabaixo-Macapá (AP) (1), Ramuse Nóbrega (GO-RS-01) (1), Kaingang 
burials (2) and Vau-Una (1) (Supplementary Data 1).

DNA extraction and library preparation
The collected bone/dentin powders were digested using 25 μl of 
0.25 mg ml−1 Proteinase K, 900 μl of 0.45 M EDTA (0.5 M, pH 8.0) and 
75 μl of H2O and rotated for 14–16 hours at 37 °C. The extraction lysates 
were transferred into a new tube and mixed with 10 ml of binding buffer 
(GuHCl 5 M, isopropanol 40% and UV H2O) and 400 μl sodium acetate. 
The solution was spanned through into silica columns for high volumes 
(High Pure Viral Nucleic Acid Large Volume Kit; Roche) and purified 
using the wash buffer provided in the kit. The purified DNA was then 
eluted in 2 × 50 μl of Tris-EDTA-Tween (TE buffer and 0.05% Tween 20), 
and the DNA extracts were stored at −20 °C (ref. 85).

We produced double-stranded libraries treated with uracil-DNA 
glycosylase (UDG) using 25 μl of extract in 50 μl per reaction (UDG-half 
protocol)86,87. The libraries were indexed using a unique combination 
of two indexes that were incorporated into the library molecules as a 
sample-specific DNA barcode88. The indexed libraries of each sample 
were then amplified using different PCR cycles to reach 1.5 × 1013 
copies. The amplified products were then purified using MinElute 
spin columns following the manufacturer’s protocol and quantified 
on the Agilent 4200 TapeStation System. The quantified indexed 
libraries were pooled equimolarly to reach 10 nM, and shallow shot-
gun sequencing was performed on Illumina NextSeq500 or HiSeq  
4000 instruments.

Sample selection for SNP targeted enrichment
The shallow shotgun sequencing data were used to estimate the pres-
ervation of ancient DNA extracted from the archaeological skeletal 
remains. A percentage of endogenous human DNA above 0.1% and 
DNA damage at the molecule termini of above 5% were used as authen-
ticity criteria, estimated using the software EAGER v.1.92.55 (ref. 89). 
Sequencing quality filtering (min. 20), length filtering (min. 30 bp) and 
adapter clipping (min. 1 bp) were performed with AdapterRemoval v.2 
(ref. 90). The resulting reads were mapped against the human genome 
reference hg19 with the Burrows–Wheeler aligner91, duplicated reads 
were masked using MarkDuplicates (Picard) and damage patterns were 
calculated with mapDamage2.0 (ref. 92).

After shallow shotgun screening, libraries with values above the 
previously described thresholds were re-amplified and captured for 
~1.24 million SNPs across the human genome (1240k SNP capture) and 
the entire mtDNA67. The enriched libraries were sequenced on Illumina 
NextSeq500 or HiSeq 4000 instruments. After sequencing, the capture 
data were demultiplexed using bcl2fastq v.2.17.1.14 (Illumina conver-
sion software) and dnaClust v.3.0.0 (ref. 93).

Ancient DNA authentication and genome-wide data 
processing
A total of 49 individuals were enriched for the 1240k SNPs. The cap-
tured individuals were aligned against the human reference genome 
hg19 using the Burrows–Wheeler aligner91. Damage pattern, coverage 
depth and DNA capture efficiency were estimated using published 
tools integrated within the EAGER pipeline89. We measured the level 
of X-chromosome contamination using ANGSD68 for male individu-
als and mtDNA contamination using schmutzi94 for all individuals 

(Supplementary Data 1). We excluded 11 individuals showing more than 
4% human DNA contamination for at least one of the performed tests.

Genotype calls were performed using pileupCaller95 (v.1.4.0.2). 
We trimmed three base pairs at both ends of the reads for the 
double-stranded UDG-half libraries. After independent calls on the 
untrimmed and trimmed sets, we combined the genotype calls, select-
ing transitions from the trimmed genotype files and transversions 
from the untrimmed ones. Since the published individuals from Lapa 
do Sumidouro were processed using a library protocol without UDG 
treatment65, we processed the bam files separately, calling only trans-
versions from the untrimmed data. We excluded 4 individuals with less 
than 40,000 SNPs overlapping the 1240k panel for a total of 34 individu-
als with newly generated genome-wide data usable for further analyses.

A PCA was generated with present-day worldwide individuals to 
calculate the genetic variation onto which ancient samples were pro-
jected using smartpca96 on the 1240k dataset. All ancient individuals 
from Brazil fall in a cluster with present-day Native Americans, which 
also includes the ancient Central and South American individuals 
published in Posth et al.63 (Extended Data Fig. 1). A clustering analysis 
was performed with present-day worldwide populations and ancient 
South American individuals genotyped for the Human Origins dataset69 
using ADMIXTURE97 in unsupervised mode (Extended Data Fig. 2).

f statistics
We created three datasets for genome-wide analyses combining the 
newly and previously generated data from ancient Brazilian individu-
als62,63 with (1) 1240k Allen Ancient DNA Resource v.32.7, (2) the Illumina 
panel72 and (3) the Human Origins panel54,65,69,73,98 (Supplementary  
Data 8). All f statistics were performed using the Mbuti population from 
Africa with diploid genotypes (.DG) as the outgroup.

To assess genetic affinities among ancient groups and between 
ancient groups and present-day indigenous populations from  
Brazil, we measured shared genetic drift using f3 outgroup statistics 
(inbreed, YES)69.

We computed f4 statistics (f4mode, yes)69 in the forms f4(Mbuti.
DG, X; Ancient Brazilian A, Ancient Brazilian B) and f4(Mbuti.DG, X; 
present-day Brazilian group A, present-day Brazilian group B), where 
X represents the tested present-day or ancient Brazilian individuals/
groups. The 1240k dataset was used to investigate the affinities among 
ancient Brazilian individuals/groups. The Illumina and Human Origins 
panels were used to describe the genetic affinities with present-day 
groups (Fig. 3). To minimize the impact on the analysis of ancestry 
introduced post-contact into the Americas, we used the masked ver-
sion of the Illumina dataset72, while for the Human Origins dataset, we 
selected individuals carrying only Native American ancestry on the 
basis of PCA and ADMIXTURE analyses (Extended Data Figs. 1 and 2).

To investigate the proportion of Anzick-1-related ancestry (alpha) 
in the ancient South American genomes, we calculated f4-ratio statistics 
using qpF4Ratio (ref. 70) with the following formula:

f4 ratio = 1 −
f4(Mbuti.DG,Anzick.SG; Lauricocha.8600BP, test)

f4(Mbuti.DG,Anzick.SG; Lauricocha.8600BP, LosRieles.11900BP)

qpWave analysis
We also tested the minimum number of streams of ancestry necessary 
to explain the genetic variation observed in the South American ancient 
genome-wide data. The tests were computed using qpWave software69 
with the following settings: allSNPs, YES; significance threshold, 
‘taildiff’ < 0.01. The left population was a combination of different pairs 
of ancient individuals/groups. The first set of right populations was 
previously used in Posth et al.63 and consisted of Mbuti.DG, Onge.DG, 
French.DG, Han.DG, Russia_MA1.SG and USA_Anzick.SG. Furthermore, 
we included additional shotgun data (Chile_Ayayema_5100BP.SG, E_
San_Nicolas.SG, Mainland_Chumash.SG, San_Francisco_May.SG, LSCI.
SG, SanClemente-SantaCatalina_800BP, Chipewyan.DG and Russia_
Karelia_HG.SG) and present-day Mexican groups (Zapotec and Mixe).  
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To identify an informative set of right populations, we prepared an 
array of comparisons using different combinations. We started with 
a set of outgroups composed of non-Native Americans and Anzick-1 
(outgroup 1) and progressively added one individual or group at the 
time to this growing list, estimating each time the minimum number 
of streams of ancestry. The most informative combination of right 
populations to distinguish the genetic ancestry of the analysed ancient 
individuals/groups is presented in Supplementary Data 3.

Uniparental markers and genetic diversity
To gain an overview of the mtDNA diversity of ancient individuals from 
Brazil, we produced mtDNA capture data for each sample, and we 
assigned mtDNA haplogroups using Haplogrep 2.0 and Haplofind99,100. 
To reconstruct the mtDNA consensus sequences, we applied four 
quality thresholds (q0, q10, q20 and q30) to the likelihood estimated 
for each position by schmutzi. We used the YhaploCaller101 to assign 
Y-chromosome haplogroups followed by manual checking to verify 
the called SNPs for each male individual.

The pairwise FST presented in Extended Data Fig. 6 was performed 
using the mtDNA aligned using MUSCLE v.3.8 (ref. 102) and manu-
ally inspected/edited. The mtDNA indels and mutational hotspots 
under the nucleotide positions 309.1C(C), 315.1C, AC indels at 515–522, 
16182C, 16183C, 16193.1C(C) and C16519T (ref. 103) were removed from 
the alignment.

Heterozygosity was estimated using pileupCaller95 to produce 
pseudo-diploid genotype calls and calculated using the ratio between 
the number of sites in heterozygosity and the total number of cov-
ered sites, multiplied by two. The individual values were grouped in 
three broad regions/temporal intervals. To investigate the magni-
tude of the differences in the heterozygosity levels, we performed the 
non-parametric Kruskal–Wallis test. Conover’s post-hoc analysis was 
performed to determine the differences between groups using a cor-
rection for multiple comparisons (R v.3.6.0 tidyverse104 and conover.
test105 packages) (Fig. 5b).

ROH and kinship analysis
We used hapROH with the default parameters80 to estimate the length 
of segments in homozygosity for individuals with coverage higher than 
190,000 SNPs (Fig. 5a). To investigate the degree of genetic relatedness 
between the ancient individuals, we applied READ106 and calculated the 
pairwise mismatch rate107 (Supplementary Data 9 and Extended Data 
Fig. 7). For population genetic analyses of the Jabuticabeira II_~2400BP 
group, we excluded the first-degree relationships, retaining in such 
pairs the individuals with the highest SNP coverage.

Direct radiocarbon dating
We produced new radiocarbon dates for 23 individuals among the 34 
with usable ancient genomic data analysed in this study. The direct 
dates of the other seven individuals were obtained from previous 
studies, while four individuals were not directly dated (Supplemen-
tary Data 1). In addition, we produced new radiocarbon dates for eight 
individuals without sufficient ancient DNA quality for population 
genomic analyses (Supplementary Information and Supplemen-
tary Data 1). A rib fragment from the Capelinha individual ‘Luzio’ 
was pretreated at the Department of Human Evolution, Max Planck 
Institute for Evolutionary Anthropology, Leipzig, Germany, using the 
method described in refs. 108,109 and the resulting collagen was sent 
for dating to the Curt-Engelhorn-Zentrum Archäometrie gGmbH in 
Mannheim, Germany. Instead, bone fragments from the other dated 
individuals were directly sent to the Mannheim dating lab. Collagen 
was extracted and purified by ultrafiltration (fraction, >30 kDa), 
freeze-dried and combusted to CO2 in an elemental analyser. The CO2 
was catalytically converted to graphite, and the dating was performed 
using a MICADAS-AMS machine. The resulting 14C ages were normal-
ized to d13C = −25‰ and calibrated using OxCal v.4.4 software110 with 

the SHCal20 curve111 (Supplementary Data 1 and 10). The calibrated 
dates were not corrected for marine radiocarbon reservoir effect, 
which could influence age estimations for individuals with strong 
marine diets.

Strontium isotope analysis
Strontium isotopic analysis (87Sr/86Sr) of skeletal material is commonly 
used to detect geographic provenance and mobility among mammals, 
including humans112,113. The tooth enamel records the isotopic signal 
of when it was formed during the earliest stages of life, whereas the 
bone isotopic signal reflects a period closer to the time of death of the 
individual114. Since the radiogenic isotope 87Sr forms by radioactive 
decay from rubidium (87Rb), the 87Sr/86Sr signature of a specific location 
is determined by the underlying bedrock age and its content of Rb115. A 
specific geological strontium signature is incorporated into the hard 
body tissues by direct substitution for calcium116 since strontium enters 
the ecosystem without fractionation117.

We measured the 87Sr/86Sr ratios from enamel samples of ten 
individuals from the Jabuticabeira II site (Extended Data Fig. 9 and 
Supplementary Table 16). Sample preparation and analysis were done 
in dedicated isotope facilities at the University of Cape Town (South 
Africa), as described below. Prior to analysis, an enamel sample was 
taken from along the longitudinal axis of the crown, thus representing a 
single average value for the years while the crown was developing. This 
portion of enamel (ca. 20 mg) was cleaned by abrasion and possible 
dentine remains were removed using a Dremel 3500 drill bit, rinsed 
and ultrasonicated for 20 minutes in MilliQ water. Diamond drill bits 
were cleaned with ethanol and ultrasonicated in MilliQ water between 
samples to avoid cross-contamination118. After this, the cleaned enamel 
sample was digested with 2 mL bi-distilled distilled 65% HNO3 in a 
closed Teflon beaker placed on a hotplate at 140 °C for an hour. Digested 
samples were then dried and redissolved in 1.5 mL of bi-distilled 2M 
HNO3. These redissolved samples were centrifuged at 4000 rpm for 20 
minutes, and the supernatant was collected for strontium separation 
chemistry. A separate fraction for each sample in this step was used to 
calculate the concentration with 88Sr intensity (V) regression equation 
built with SRM987 standard from NIST (National Institute of Standards 
and Technology, Gaithersburg, MD, USA). Strontium was isolated with 
200μl of Eichrom Sr.Spec resin loaded in Bio-Spin Disposable Chroma-
tography Bio-Rad Columns following the method of (ref. 119). The sepa-
rated strontium fraction for each sample was dried down, dissolved in 
2 ml 0.2% bi-distilled HNO3 and diluted to 200 ppb Sr concentrations 
for isotope analysis. 87Sr/86Sr ratios were measured using a NuPlasma 
HR multicollector inductively-coupled-plasma mass spectrometer 
(MC-ICP-MS). Sample analyses were referenced to bracketing analyses 
of SRM987, using a 87Sr/86Sr reference value of 0.710255 from NIST. 
All strontium isotope data are corrected for isobaric rubidium inter-
ference at 87 amu using the measured signal for 85Rb and the natural 
85Rb/87Rb ratio. Instrumental mass fractionation was corrected using 
the measured 86Sr/88Sr ratio and the exponential law, and a true 
86Sr/88Sr value of 0.1194 (ref. 120). Results for repeat analyses of an 
in-house carbonate standard (87Sr/86Sr = 0.708936; 2σ 0.000041; 
n = 33) and an in-house ocean island basalt standard (87Sr/86Sr = 
0.704888; 2σ 0.000027; n = 33) processed and measured with the 
batches of samples in this study are in agreement with long-term results 
for these two in-house standards (87Sr/86Sr; 0.708915; 2σ 0.000047; 
n = 125) (87Sr/86Sr; 0.704902; 2σ 0.000035; n = 67). For every two 
batches one blank was added to assess the cleanness of the process; 
there was no peak and, thus, no contamination from external Sr in any 
of the batches. The 87Sr/86Sr values from the Jabuticabeira II individuals 
have an average of 0.710 ± 0.006 (1σ), with minimum and maximum 
values of 0.709 and 0.711. These values are within the range of sea water 
and within the range previously established for other shellmound 
individuals from the southern coast of Brazil44,121, indicating that all 
analysed individuals grew up in a coastal environment. Nevertheless, 
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the average 87Sr/86Sr ratios differ for the three genetic groups identified 
at Jabuticabeira II. The 87Sr/86Sr ratio increases over time with averages 
of 0.7095 ± 0.000096 (n = 7) for the JabuticabeiraII_~2400BP group, 
0.7104 ± 0.00025 (n = 2) for JabuticabeiraII_111/112_~2200BP and 0.7111 
(n = 1) for JabuticabeiraII_1300BP.

Terminology used to describe ancient individuals and groups
The terminology used here to classify ancient Brazilian societies does 
not represent the entire diversity of indigenous peoples in the coun-
try, nor should it be understood as reflecting a shared identity. The 
archaeological information indicates a complex demographic his-
tory (see Supplementary Information for a detailed description of 
each archaeological site analysed in this study). The complexity and 
contextual diversity of pre-Columbian indigenous peoples prevents 
a classification system that could successfully capture the genetic 
diversity in Brazil during the Holocene. To connect the archaeologi-
cal assemblages with the genetic information, we used a combination 
of the following classifications: foraging strategy (hunter-gatherers, 
fisher-hunter-gatherers and horticulturists), time scale (early Holo-
cene, ~10,000–7,000 yr bp; middle Holocene, ~7,000–4,000 yr bp; and 
late Holocene, ~4,000–0 yr bp), cultural assemblages (riverine sam-
baquis, coastal sambaquis and the ceramic traditions Taquara-Itarare, 
Una, Koriabo and Tupiguarani) and geographical regions (southern 
and southeastern Atlantic coast, Lagoa Santa region, central Brazil, 
northeastern Brazil and lower Amazon).

The cultural assemblages are part of a diverse record of 
pre-Columbian material culture and help contextualize the settlement 
of the southern and southeastern Brazilian coast. The term ‘tradition’ 
is applied in Brazilian archaeology to refer to common technological 
and stylistic traits in the production of ceramics with chronologi-
cal persistence in the archaeological record. The ceramic traditions 
from the late Holocene are directly associated with present-day eth-
nolinguistic groups and represent a putative connection between 
ancient individuals and present-day indigenous peoples. However, the 
present-day populations in our dataset represent only a small fraction 
of the diversity of indigenous peoples currently living in Brazil.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The alignment files of the nuclear DNA and mtDNA sequences for the 
newly reported individuals are available at the European Nucleotide 
Archive under the accession number PRJEB51863.
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Extended Data Fig. 1 | Genetic map of ancient and present-day individuals. 
Principal component analysis on the 1240k dataset where the principal 
components were calculated based on the genetic variation of modern-day 
worldwide populations onto which ancient samples were projected. All newly 

reported ancient individuals from Brazil fall into a cluster with previously 
published ancient genome-wide data from South America, except the Lapa do 
Sumidouro samples that are slightly displaced from the main cluster.
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Extended Data Fig. 2 | Genetic clustering of ancient and present-day 
individuals. Graphic representation of the clustering analysis performed with 
unsupervised ADMIXTURE at K = 7 on the Human Origins dataset. All newly 

reported ancient individuals from Brazil carry the same ancestry component as 
previously published ancient and modern genome-wide data from the Americas, 
without substantial levels of non-Native American ancestry.
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Extended Data Fig. 3 | f4-statistics among ancient Brazilian groups/
individuals from 10,000 BP to 100 BP. Graphical representation of the 
significant f4-statistics (Z-score >3) polarized to positive values performed on 
ancient Brazilian genome-wide data in the form f4 (Mbuti; TEST; Ancient Brazilian 
- left; Ancient Brazilian - right) to test allele sharing among the different groups 
using the 1240k dataset. In the sub-panels TEST refers to A) early Holocene 

individuals; B) middle Holocene riverine Sambaqui individuals; C) post-1,000 
BP or undated individuals. The point sizes refer to the number of SNPs used to 
compute the f4 tests (at least 20,000 SNPs) and colors correspond to the TEST 
ancient group/individual. Bars represent f4-statistics +/− 3 standard errors for all 
tests. Figure related to Supplementary Data 2.
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Extended Data Fig. 4 | F4-ratio test for the Anzick-1-related ancestry. Indirect 
estimates of Anzick-1-related ancestry proportions setting Los Rieles_11900BP 
and Lauricocha_8600BP as the early Holocene reference individuals with the 
highest and lowest amount of Anzick-1-related ancestry, respectively. ‘Test’ refers 
to the ancient Native American individuals/groups included in the calculation 
and highlighted in bold are samples from Brazil. The alpha values were calculated 

using the f4-ratio formula reported in the Methods section. The size of the points 
represents the number of SNPs used to compute comparisons (at least 400,000 
SNPs). Bars represent f4-ratio ± 3 standard errors for all tests. The F4 ratio 
estimates are sorted from the highest to the lowest alpha values. The Lapa do 
Santo_9600BP group (purple dot) shows a significantly higher Anzick-1-related 
ancestry than Lauricocha_8600BP.
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Extended Data Fig. 5 | f4-statistics between ancient Brazilian groups/
individuals and present-day South American populations. Graphical 
representation of the f4-statistics polarized to positive values (Z-score> 2.5) 
performed on the ancient Brazilians genome-wide data and present-day 
indigenous groups from South America using SNPs overlapping with the Illumina 
dataset - f4 (Mbuti; TEST; present-day indigenous groups - left, present-day 

indigenous group - right). Size of the points represents the number of SNPs 
used to compute comparisons (at least 20,000 SNPs), points with black outlines 
indicate tests with Z > 3 and colors correspond to the TEST ancient group/
individual. Bars represent f4-statistics ± 3 standard errors. Figure related to 
Supplementary Data 5.
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Extended Data Fig. 6 | Heatmap of mtDNA pairwise genetic differentiation (FST) among coastal Sambaqui groups. The stars (**) represents a p-value < 0.01 in the 
Amova test. Sambaqui individuals are grouped into south coast, southeast coast, and 2,200-1,200 BP south coast.
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Extended Data Fig. 7 | Biological kinship between Sambaqui individuals. Estimates of relatedness based on genome-wide pairwise mismatch rate (PMR). At the site 
Jabuticabeira II a total of five first-degree, two second-degree and two third-degree kinships were identified. Figure related to Supplementary Data 9.
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Extended Data Fig. 8 | Summary of the genetic affinities reconstructed 
through the analysis of genome-wide data from ancient Brazilian groups. 
The shaded vertical bars indicate ancestries represented by site-related symbols 
that are ordered chronologically in the legend. Genetic connections between 
groups/individuals are represented by shaded lines. Dashed lines indicate the 

extra affinity between the ancestry found in Lapa do Santo_9600BP and Pedra 
Do Alexandre2_undated and other ancient groups. The archaeological and 
radiocarbon dates for the genetically analysed individuals are indicated in the 
timeline on the left.
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Extended Data Fig. 9 | Strontium isotopic signature of individuals from 
the Jabuticabeira II site. Estimates of local origin based on 87Sr/86Sr values. 
We performed the Wilcoxon (two-sided) and t tests (two-sided) to investigate 
the significance of the differences between Group A ( JabuticabeiraII_~2400BP 

burials) and Group B ( Jabuticabeira II burials post-2200 BP). p-values = 0.017 and 
0.036, respectively. σ and 3σ refer to 1 and 3 standard deviations from the mean 
of Group A.
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