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In this supplementary text, we discuss the measurements of the lifetimes of the electronic dephasing and describe
the global fitting a pproach. We t hen p resent t he two-dimensional ( 2D) decay-associated s pectra (DAS) o f t he PSII
reaction center. We also show the transformation from the site to the exciton basis representation and resolve the
occupation dynamics of each pigment in the exciton basis. The Tukey window Fourier transformation is reviewed as
well. Moreover, the detailed fitting p rocedure, t he r esolved e lectronic and v ibrational c oherence and t he associated
lifetimes are presented in the subsequent section. For the analysis of the 2D spectra, we also describe the exciton
model and the refined fitting of the parameters ofthe PSII reaction ce nter. Then, detailed calculations of the response
function and the 2D electronic spectra are presented in the following. In addition, we describe the modified Redfield
quantum master equation and the quasiadiabatic propagator path integral method in the last section.

I. TIME CONSTANT OF THE ELECTRONIC DEPHASING MEASURED FROM 2D SPECTRA

In this section, we investigate the time constant of the electronic dephasing extracted from the measured 2D
electronic spectra. In Fig. S1(a), we show the 2D electronic spectrum (total and real part) and the anti-diagonal cut
(black solid line). The magnitude along the probing frequency is plotted as red solid line in Fig. S1(b). We resolve
the bandwidth of the main peak and analyze it by a fit to a  Lorentizan l ine shape f unction. The fitting is  performed
by the Curve Fitting Toolbox (Matlab 2021(b)) and the resulting data are shown as blue dashed line in Fig. S1(b).
We resolve the time constant of the electronic dephasing as 165 fs. It manifests the timescale of optical dephasing
between the electronic ground and the excited states in the PSII reaction center.

II. GLOBAL FITTING APPROACH AND RESOLVED COMPONENTS OF THE DAS

Here, we briefly r eview t he g lobal fitting ap proach. A de tailed ac count is  found in  Re f. 33 . Fi rst, we  construct a
series of 2D electronic spectra of the PSII reaction center and fit the k inetics by s everal amplitude maps Ai(ωτ , ωt)
with exponential decay components characterized by τi, i.e.,

S(ωτ , T, ωt) =
∑
i

Ai(ωτ , ωt) exp(−T/τi), (S1)

where Ai(ωτ , ωt) is the decay associated spectrum (DAS) with the decay time τi. We extend the probing window to
500 ps in order to capture the process of secondary charge transfer. The obtained results are shown in Fig. S2. The
data analysis yields 6 components with the decay time constants of 27 fs, 700 fs, 4.9 ps, 27 ps, 104 ps and infinity,
respectively. The fastest component with the timescale of 27 fs mainly stems from the peak broadening and the
pulse-overlap effect. The second DAS component shows clear evidence of down-hill population transfer. The positive
main peak and the negative cross peaks indicate the energy and CT dynamics occurring on the timescale of 700
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FIG. S1. (a) Anti-diagonal cut in 2D electronic spectrum at 30 fs (real total part). (b) Measured lineshape of the anti-diagonal
profile and estimate of the lifetime of the electronic dephasing by a fitted Lorentzian lineshape function. The obtained lifetime
of electronic dephasing is 165 fs.

fs. The detailed description of this component is presented in the main text. More importantly, we note that the
uncovered electronic quantum coherence in the PSII reaction center persists for 600 fs (with a lifetime of 177 fs), which
coincides with the timescale of the 700 fs-component. We thus conclude that the DAS component associated with
the decay time of 700 fs strongly relates to the coherent energy transfer in the PSII reaction center. In addition, we
also resolve the DAS components with timescales of 4.9 ps, 27 ps and 104 ps, respectively. The growth of the transfer
times manifests the multiple pathways of the secondary charge transfers in the PSII reaction center. Moreover, the
“infinity” component indicates the energy levels of the lowest excitonic states in the PSII reaction center.

III. TUKEY WINDOW FOURIER TRANSFORM

In this section, we provide the details of the Fourier transform with the Tukey window. To suppress the high-
frequency jitters, Fourier filtering in the frequency domain is employed to isolate each of these regions of interest by
a Tukey window of the form

ω(n) =

{
1, 0 ≤ |n| ≤ αN

2 ,
1
2

(
1 + cos

[π(n−αN
2 )

(1−α)N
2

])
, αN

2 ≤ |n| ≤ N
2 ,

(S2)

which, due to the flat top, conserves the amplitudes of the Fourier components of interest over a frequency range
larger than a cosine or a Gaussian window, while it still limits the artifacts arising from a pure bandpass filter. In
this work, we use the Tukey window with α = 1/5 and a Fourier bandpass filter with ≤700 cm−1.

IV. FITTING PROCEDURE AND RESOLVED ELECTRONIC AND VIBRATIONAL COHERENCES

In this section, we describe the procedure to treat the residuals and to disentangle the electronic and vibrational
coherences using the Curve Fitting Toolbox in Matlab 2021(b). First, we extract the time-resolved traces starting
from the raw data of the rephasing part of the 2D electronic spectra. The results are shown as black square dots in
Fig. S3. The subsequent treatments by the Tukey window Fourier transform yield to the red solid lines in Fig. S3(a)
to (c). The excellent quality of the fits of the raw data and the refined traces demonstrates the suitability of this data
treatment by the Tukey window Fourier transform. By this, we obtain refined data of the time-resolved kinetics. We
further employ the exponential functions to fit the kinetics and obtain the residuals after subtracting the kinetics.
The quality of the fitting is indicated by the magenta dashed lines in Fig. S3(a), (b) and (c). The resulting residuals
are plotted as blue solid lines.

The obtained Fourier-filtered traces are uploaded into the curve fitting toolbox in Matlab 2021(b). The fitting
function is given as

N∑
i

Ai exp(−T/τi) sin(ωiT + ϕi) . (S3)



FIG. S2. The 2D DAS with the corresponding resolved decay time constant. The fastest DAS component shows the lifetime
of 27 fs. The other components belong to the timescale of 700 fs, 4.9 ps, 27 ps, 104 ps and infinity, respectively.

To find the oscillation frequencies in the residuals, we Fourier transform them and plot the results in Fig. 3(b), (d)
and (f) in the main text. For the first trace of the cross peak “X”, we obtain three peaks at the frequencies of 122,
250 and 345 cm−1. Importantly, the resolved vibrations at 250 and 345 cm−1 agree with the measurements of other
research groups (Ref. 29, 30, 36). From this, we start the fitting procedure by an initial guess of the frequencies at
122, 250 and 345 cm−1. We restrict the mode frequencies in a range of 5 cm−1 and fix the initial guess of the lifetime
identically to 500 fs, with a range from 0 to ∞. With these parameters, we obtain a high quality fit with an R-square
≥0.95 from the curve fitting toolbox. The trace and the resulting fits are shown as blue square dots and red solid
lines in Fig. 4 in the main text, with a confidence range of 95% (green shadow). To achieve a good fit, the first time
point has been excluded in the fitting procedure. By these processes, we are able to separate the electronic coherence
from ground-state vibrations. The frequency components and the associated decay time constants are shown in Fig.
4 in the main text. We find the frequency of the electronic coherence to be 122 cm−1, with a decay time constant of
180 fs. Clearly, the electronic coherence lasts for two oscillation periods and completely disappears after 600 fs. In
addition, the vibrational coherences show the frequencies of 250 and 345 cm−1. The long-lived vibrational coherences



FIG. S3. Raw data of the peaks “X”, “Y” and “Z” are plotted as black dots in (a) to (c). The coordinates of the cross peaks
“X”, “Y” and “Z” are (ωτ , ωt) = (14812, 14690), (14690, 14350) and (14874, 14526) cm−1, respectively. The treatments of
the Tukey window Fourier transforms are shown as red solid lines and the resulting residuals are presented as blue solid lines
in (a), (b) and (c), respectively.

decay with time constants of 527 fs and 829 fs in the 2D spectra.
We repeat the same procedure for the traces in Fig. S3(b) and (c) and we plot the filtered data as red solid lines.

The exponential fits are performed to obtain the residuals, which are plotted as blue solid lines. The residuals of the
cross peak “Y” is uploaded to curve fitting toolbox. The initial, guessed parameters of the vibrations come from the
resolved modes in Fig. 3(d) in the main text. They are 64, 262, 336 and 421 cm−1. Based on this, we put the initial
values of the vibrational modes into the toolbox and set a range of ±5 cm−1 for the modes. As described before,
the initial guess of the timescale is 500 fs for all the modes, with a range from 0 to infinity. The fitting procedure is
finished with R-square ≥0.95. The obtained results are shown in the Fig. 4(b) in the main text. All the oscillation
frequencies and the associated lifetimes are resolved by this approach. In addition, we repeat the same procedure for



the residuals of Fig. S3(c). The Fourier transform shows the resolved modes with the frequencies 112, 248 and 356
cm−1, which are presented in Fig. 3(f) in the main text. The fitting results are shown in Fig. 4(c) in the main text.

V. 2D POWER SPECTRA OF RESOLVED VIBRATIONS

In the previous section, we have treated the time-resolved traces of the cross peaks in the 2D electronic spectra of
the PSII reaction center. However, a global data analysis needs to be performed to resolve the coherent dynamics in
all the 2D maps. For this, we process the data of the time series of the 2D electronic spectra. Based on the global
fitting approach, we resolve the kinetics of each pixel in the 2D electronic spectra and we remove the kinetics by
subtracting the components of exponential fits. We then perform the Fourier transform of the 2D residuals along the
waiting time T to obtain the coherent dynamics along the new frequency ωT. We show the resulting data in Fig. S4
with the corresponding resolved frequencies. In order to identify the origin of these modes, the contours of the 2D
spectrum (T = 435 fs) are plotted as well and overlap with the 2D power spectra.

VI. 2D CORRELATION ANALYSIS

To verify the origin of the oscillations observed in the 2D electronic spectra, we have performed a cross-correlation
analysis of the residuals across ωτ = ωt. The residual R(ωt, ωτ , T ) is obtained by subtracting the globally fitted kinetics
from the real part of the total 2D electronic spectra. Then, we calculate the correlation coefficients C between two
residuals of a pair of conjugated spectral positions in the delay time window up to 2 ps. The delay time steps are
equally distributed with intervals of 15 fs. The correlation coefficients are defined as

C(ωt, ωτ ) = corr[R(ωt, ωτ , T ), R(ωτ , ωt, T )] , (S4)

where the correlation is evaluated with the respect to T .
In Fig. S5, we depict the 2D correlation map of the residuals obtained after the global fitting of the time sequence of

the 2D spectra. It shows a negative magnitude in the upper-left and lower-right parts of the 2D spectrum. Based on
Ref. 37, the positive correlation indicates the electronic coherence, while the negative anti-correlation manifests the
vibrational coherence. Thus, the strong negative peaks at the center wavelength of the 2D spectra clearly manifest
the vibrational origin of the coherent dynamics. In the other words, due to the relatively strong Huang-Rhys factors,
the more than 48 resolved vibrational modes (Ref. 36) strongly overlap with the electronic quantum coherence, which
challenges the identification of the pure electronic coherence.

VII. MODEL HAMILTONIAN AND REFINED PARAMETERS

In this section, we discuss the model Hamiltonian and its parameters. The detailed information of the tight-binding
model and the system-bath interaction model are described in the section of the theoretical calculations in the main
text. The PSII reaction center model includes 8 pigments and 4 charge-transfer states, in total 12 singly excited
states. We also include 52 double excited states and one additional electronic ground state. Thus, the exciton model
involves 65 states. The off-diagonal elements in the Hamiltonian matrix are, in a first step, directly taken from Ref.
9 and used without further changes. The initial, guessed values of the site energies of the 8 pigments are taken from
Ref. 9. Then, the population dynamics of the density matrix and the absorption spectra of the PSII reaction center
are calculated using the modified Redfield quantum master equation. The obtained results are shown in Fig. S10 for
different temperatures. The experimental counterparts are plotted as black square dots. Based on this, we obtain
a set of parameters of the site energies and the refined parameters of the bath spectral density. Furthermore, we
also optimize the system-bath interaction and the static disorder of each pigment by comparing the bandwidth of the
anti-diagonal profile of the 2D electronic spectrum at the initial waiting time. By this, the refined site energies, the
parameters of the spectral density and the static disorder (inhomogeneity) are further optimized to the final version
used in all the calculations of this work. We give the final form of the Hamiltonian matrix as shown in Tab. S1. All
entries are given in units of cm−1.
The parameters of the spectral density are η = 0.68 and ωc = 350 cm−1, which corresponds to the reorganization

energy of 238 cm−1. The static disorder of the chlorophylls are 50 cm−1 and of the pheophytins 70 cm−1. Due to
the strong electronic interaction due to the static dipole moment of the charge-transfer states, we assume a pretty
large value of the static disorder, i.e., δ = 100, 200, 200 and 300 cm−1 for the four CT states. The order of the states
follows the sites in the system Hamiltonian.



FIG. S4. 2D power spectra of the PSII reaction center, obtained after Fourier transforming the 3D residuals along the waiting
time T. Five modes are resolved with the frequencies of 98, 117, 253, 351 and 741 cm−1, respectively. The rephasing part (real)
of the 2D electronic spectrum (T = 435 fs) is shown as contour lines to locate the origin of the vibrations. In addition, the
diagonal lines and the shifted lines according to the resolved frequencies are presented as blue dashed lines in panels (a) to (e).

VIII. THE CALCULATED ABSORPTION SPECTRA AND EXPERIMENTAL RESULTS

In this section, we show the calculated absorption spectra of the reaction center at 6, 77 and 300 K. The corre-
sponding formula used is given in the Eq. (S25) below and the resulting data are shown in Fig. S6. They show an
excellent agreement between experimental and theoretical results.



FIG. S5. 2D correlation analysis of the rephasing part (real) of the 2D electronic spectra of the PSII reaction center. The
positive magnitude in the spectrum shows a correlation, while the negative magnitude indicates an anti-correlation. The 2D
electronic spectrum at T = 435 fs is shown as contour lines in order to present the coordinates of the correlations.

TABLE S1. Matrix elements of the single exciton Hamiltonian in basis states. All entries are given in units of cm−1.

PD1 PD2 ChlD1 ChlD2 PheoD1 PheoD2 ChlzD1 ChlzD2 P+
D2P

−
D1 Chl+D1Pheo

−
D1P

+
D1Chl

−
D1 P+

D1Pheo
−
D1

PD1 14960 150 -42 -55 -6 17 1 1 45 0 0 0

PD2 150 14890 -56 -36 20 -2 1 1 45 0 0 0

ChlD1 -42 -56 14700 7 46 -4 3 0 0 70 0 0

ChlD2 -55 -36 7 14850 -5 37 0 2 0 0 0 0

PheoD1 -6 20 46 -5 14800 -3 -4 0 0 70 0 0

PheoD2 17 -2 -4 37 -3 14720 0 -4 0 0 0 0

ChlzD1 1 1 3 0 -4 0 15000 0 0 0 0 0

ChlzD2 1 1 0 2 0 -4 0 14930 0 0 0 0

P+
D2P

−
D1 45 45 0 0 0 0 0 0 14882 0 70 0

Chl+D1Pheo
−
D1 0 0 70 0 70 0 0 0 0 15692 0 40

P+
D1Chl

−
D1 0 0 0 0 0 0 0 0 70 0 15542 40

P+
D1Pheo

−
D1 0 0 0 0 0 0 0 0 0 40 40 15832

IX. TRANSFORMATION BETWEEN SITE AND EXCITON BASIS

The optimal parameters of the Hamiltonian and the reorganization energies of each site are obtained from the
spectroscopic calculations. With those, we can perform the transformation between the site and exciton bases. The
transformation matrix is shown in Tab. S2.



FIG. S6. Experimental (dashed blue lines) and simulated (red solid lines) absorption spectra of the PSII reaction center at
6K (a), 77K (b) and 300 K (c).

X. CALCULATION OF THE 2D ELECTRONIC SPECTRA OF THE PSII REACTION CENTER

In this section, we describe the details of the theoretical calculations of the 2D electronic spectra of the PSII reaction
center. The third-order polarization function which defines the 2D spectra is given by

P (3)(t) =

∫ ∞

0

dt3

∫ ∞

0

dt2

∫ ∞

0

dt1R̂(t3, t2, t1)E3(t− t3)E2(t− t3 − t2)E1(t− t3 − t2 − t1), (S5)

where the response function R̂(t3, t2, t1) is a function of the three times t1, t2 and t3. It can be separated into the
summation of three parts based on the doorway-window functions (Ref. 41), which has the form

R̂(t3, t2, t1) = R(c)(t3, t2, t1) +
∑
µ,ν

∫ t2

0

dt′′
∫ t′′

0

dt′W̄ν(t3, t2 − t′′)Ḡµν(t
′′ − t′)D̄ν(t

′, t1) +W0(t3)D0(t1). (S6)

The doorway function D̄ν represents the population of the νth exciton created after two interactions with the radiation
field. Ḡµν(t

′′ − t′) is the conditional probability for the νth exciton to hop to the µth exciton state during t′′ − t′.
W̄µ is the window function representing the contribution of the µth exciton to the signal. In the Markov limit, the
equation can be simplified to the form

R̂(t3, t2, t1) = R(c)(t3, t2, t1) +
∑
µ,ν

Wν(t3)Gµν(t2)Dν(t1) +W0(t3)D0(t1), (S7)



TABLE S2. Square of the eigenvector elements of the exciton Hamiltonian in the exciton basis with the corresponding site
index.

Chl 1 Chl 2 Chl 3 Chl 4 Pheo 5 Pheo 6 Chl 7 Chl 8 CT 1 CT 2 CT 3 CT 4

Exciton 1 0.0 0.0 0.0 0.00032 0.0 0.00026 0.0 0.99941 0.0 0.0 0.0 0.0

Exciton 2 0.02732 0.00348 0.017 0.0774 0.00694 0.86135 0.0 0.00038 0.00428 0.00138 0.00038 0.0

Exciton 3 0.00705 0.06694 0.55098 0.00219 0.24134 0.01652 0.00019 0.0 0.03325 0.0766 0.00409 0.00085

Exciton 4 0.3944 0.4944 0.0607 0.00014 0.0 0.03906 0.0 0.0 0.00048 0.1069 0.0 0.0

Exciton 5 0.00805 0.05411 0.02225 0.62258 0.2 0.0534 0.0 0.0 0.00449 0.03365 0.0 0.0

Exciton 6 0.00759 0.00071 0.1167 0.24 0.5126 0.02856 0.0 0.0 0.0 0.09296 0.0 0.00036

Exciton 7 0.00582 0.0223 0.01569 0.0017 0.00737 0.0006 0.0 0.0 0.795 0.00835 0.1425 0.0

Exciton 8 0.0 0.0 0.0 0.0 0.0 0.0 0.99951 0.0 0.0 0.0 0.0 0.0

Exciton 9 0.0 0.00278 0.1892 0.0 0.03022 0.0 0.0 0.0 0.0 0.7638 0.00215 0.01069

Exciton 10 0.5482 0.3542 0.02668 0.05542 0.0 0.0 0.0 0.0 0.0147 0.0 0.0 0.0

Exciton 11 0.0007 0.00106 0.00051 0.0 0.0 0.0 0.0 0.0 0.14692 0.00214 0.82555 0.02306

Exciton 12 0.0 0.0 0.0 0.0 0.0001 0.0 0.0 0.0 0.0 0.0 0.025 0.96406

and the time propagation of the conditional probability can be obtained from the equation

d

dt
Gµν(t) =

∑
α,α̸=µ

[KµαGαν(t)−KαµGµν(t)]. (S8)

Here, Kµν =
∫∞
0

dtK̄µν(t) and K̄µν(t) = KL
µν(t) +KL

µν(−t). The kernel function can be calculated according to the
formula

KL
µν(τ) = KF

µν(τ){g̈µν,νµ(τ)− [g̈νµ,µµ(τ) + 2iλνµ,νν ][ġνν,µν(τ)− ġµµ,µν(τ) + 2iλµν,νν ]}, (S9)

for τ > 0. The dots stand for the time derivative, and

KF
µν(τ) = exp[−i(ϵµ − ϵν)τ − gµµ,µµ(τ)− gνν,νν(τ) + gνν,µµ(τ) + gµµ,νν(τ)− 2i(λνν,νν − λµµ,νν)τ ]. (S10)

The gµν,µ′ν′ denotes the lineshape function (see Eq. (S24)) and λµνµ′ν′ = −Im limτ→∞ ˙gµν,µ′ν′(τ). The coherent part
of the response function is written as

R(c)(t3, t2, t1) = R(t3, t2, t1)−
∑
µ

Wµ(t3)Dµ(t1)−W0(t3)D0(t1), (S11)

where three terms contribute to R(t3, t2, t1) according to

R(t3, t2, t1) =RI(t3, t2, t1) +RII(t3, t2, t1) +RIII(t3, t2, t1),

RI(t3, t2, t1) =− i
∑
µν

dµdµdνdν exp[−f (1)
µν (0, t2 + t1, t3 + t2 + t1, t1)] exp[−iϵµ(t3 + t2) + iϵν(t2 + t1)],

RII(t3, t2, t1) =− i
∑
µν

dµdµdνdν exp[−f (1)
µν (0, t1, t3 + t2 + t1, t2 + t1)] exp[−iϵµt3 + iϵνt1],

RIII(t3, t2, t1) =− i

{∑
µνα

dµᾱdνᾱdνdµ exp[−f
(2)
µν,ᾱ(t1, t2 + t1, t3 + t2 + t1, 0)] exp[−iϵµ(t3 + t2 + t1) + iϵν̄t3 + iϵνt2]

}∗

.

(S12)
Here, f (1) and f (2) are given by

f (1)
µν (τ1, τ2, τ3, τ4) =gµµ(τ3 − τ4)− gµν(τ2 − τ4) + gµν(τ1 − τ4)

+ gµν(τ2 − τ3)− gµν(τ1 − τ2) + gνν(τ1 − τ2),

f
(2)
µν,ᾱ(τ1, τ2, τ3, τ4) =gµµ(τ3 − τ4)− gµᾱ(τ3 − τ4) + gµᾱ(τ2 − τ4) + gµν(τ2 − τ4)

+ gµν(τ1 − τ4)− gµᾱ(τ2 − τ3) + gµν(τ2 − τ3)− gµν(τ1 − τ3)

+ gᾱᾱ(τ2 − τ3)− gᾱν(τ2 − τ3) + gᾱν(τ1 − τ3)− gᾱν(τ1 − τ2) + gνν(τ1 − τ2) .

(S13)



The remaining terms are given by∑
µ

Wµ(t3)Dµ(t1) =− i
∑
µ

d2µ exp[iϵµt1 − g∗µµ(t1)]{d2µ exp[−iϵµt3 − g∗µµ(t3) + 2iλµµt3]−
∑
ν

d2µ,ν̄ −
∑
ν

d2µ,ν̄

× exp[−i(ϵbarν − ϵµ)t3 − gµµ(t3)− gν̄ ν̄(t3) + 2gµν̄(t3) + 2i(λµν̄ − λµµ)t3]},
(S14)

and

W0(t3)D0(t1) = −i
∑
µν

d2νd
2
µ exp[iϵνt1 − g∗νν(t1)]× exp[−iϵµt3 − gµµ(t3)], (S15)

∑
µν

Wµ(t3)Gµν(t2)Dν(t1) =− i
∑
µν

d2ν exp[iϵνt1 − g∗νν(t1)]Gµν(t2)× {d2µ exp[−iϵµt3 − g∗µµ(t3) + 2iλµµt3]

−
∑
µ

d2µ,ν̄ exp[−i(ϵµ)t3 − gµµ(t3)− gν̄ν(t3) + 2gµν̄ + 2i(λµν̄ − λµµ)t3]}.
(S16)

XI. ANTI-DIAGONAL BANDWIDTH IN THEORY AND EXPERIMENT

In this section, we show the anti-diagonal profile of the calculated 2D spectra and compare it to the experimental
counterpart. We show the results in Fig. S7. The anti-diagonal profile of the calculated 2D spectrum at T = 30 fs
(real rephasing part) is plotted as blue solid line. The experimental counterpart is shown as black square dots. Both
agree well quantitatively, which demonstrates the validity of our model and parameters to capture the main dephasing
features in our spectroscopic calculations.
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FIG. S7. Anti-diagonal profile of the calculated 2D spectrum (real rephasing part, blue solid line) and the experimental
counterpart (black square dots). The selected waiting time is T = 30 fs at the temperature of 20 K.

XII. MEASURING OF 2D SPECTRA WITH DIFFERENT COHERENCE TIMES

In this section, we address the question of length of the coherence time τ window in our measurement. For this, we
plot one of our 2D spectroscopic measurements at T = 30 fs. We show the measured results in Fig. S8. We depict the
results with different colors, as indicated in the colorbar, to demonstrate the results after -400 fs is very weak and,
thus, is expected to hardly contribute to the signal in the measurement. Hence, the τ scanning window from -450 fs
to 250 fs is long enough for the detections carried out in this work. In addition, we also plot the detected profiles of
spectra at different τ times. In Fig. S9, we show the photo-echo signals for different times from 0 to -350 fs.



FIG. S8. The measured signal of photo-echo in the coherence time window between -450 fs to 250 fs.

FIG. S9. Time-dependent measured spectral profiles for the selected coherence times of τ = 0 to -350 fs.

XIII. MODIFIED REDFIELD QUANTUM MASTER EQUATION

The modified Redfield theory can be derived from the Nakajima-Zwanzig equation using a scheme for the separation
of the total Hamiltonian which does not treat the whole system-bath interaction term HSB perturbatively Ref. 56
and 57. Instead, the Hamiltonian is separated as

H0 = HS +HB +
∑
µ

|µ⟩ ⟨µ|HSB |µ⟩ ⟨µ| ,

H ′ =
∑

µν,µ̸=ν

|µ⟩ ⟨µ|HSB |ν⟩ ⟨ν| ,
(S17)

where |µ⟩ are eigenstates of HS and H ′ collects the off-diagonal terms of the system-bath interaction in the exciton
basis. In this basis, H0 is diagonal and the matrix elements read

⟨µ|H0 |µ⟩ = ϵµ − λµµµµ +HB(µ), (S18)



where ϵµ is the exciton energy of the system Hamiltonian and

λµνµ′ν′ =
∑
m

⟨µ|Km |ν⟩ ⟨µ′|Km |ν′⟩
∑
j

c2mj

2mmjω2
mj

(S19)

is the weighted reorganization energy. Moreover,

HB(µ) =
1

2

∑
ξ

 p2ξ
mξ

+mξω
2
ξ

(
xξ +

∑
k

⟨µ|Kk |µ⟩
mξω2

ξ

)2
 (S20)

describes a bath of harmonic oscillators with mass mξ, frequency ωξ and momentum pξ, shifted according to the
coupling with the exciton state |µ⟩.
In addition to the redefinition of the system part and the bath Hamiltonian, one has to define a different type of

projection operator which only projects on the diagonal part of the system density matrix in the eigenstate basis,

P̃ =
N∑

µ=0

Pµ with Pµ· = Rµ
eqtr{|µ⟩ ⟨µ| ·}, (S21)

where Pµ is the projector onto the µth excitonic state and Rµ
eq = exp(−βHB(µ)) is the equilibrium density matrix of

the bath when the system is in the excitonic state |µ⟩.
Inserting these definitions into the Nakajima-Zwangzig equation, determining theH ′ up to second order and invoking

the time-dependent population transfer rate one obtains an equation of motion for the time-dependent populations
as

∂

∂t
ρµµ(t) =

∑
ν ̸=µ

(Rµµνν(t)ρνν −Rννµµ(t)ρµµ), (S22)

where the population transfer rates Rµµνν (Ref. 41) are given by

Rµµνν(t) = 2Re

∫ t

0

dτtr{|ν⟩ ⟨ν| exp(−iH0τ)H
′ |µ⟩ ⟨µ|Rµ

eq exp(iH0τ)H
′}

= 2Re

∫ t

0

dτ exp(−iωµντ − gµµµµ(τ)− gνννν(τ) + gννµµ(τ) + gµµνν(τ)− 2i(λνννν − λµµνν)τ)

× {g̈µννµ(τ)− [ġνµνν(τ)− ġνµµµ(τ) + 2iλνµνν ][ġννµν(τ)− ġµµµν(τ) + 2iλµννν ]}.

(S23)

The lineshape function gµνµ′ν′(t) can be written as the two-time integral of the bath correlation function

gµνµ′ν′(t) =
∑
k

⟨µ|Kk |ν⟩ ⟨µ′|Kk |ν′⟩
∫ t

0

dτ

∫ τ

0

dτ ′C(τ ′),

with C(t) =

∫ ∞

−∞

dω

π
J(ω)

eiωt

eβω − 1
.

(S24)

In Eq. (S23), we have used the cumulant expansion technique up to second order in the system-bath coupling and
took the independent bath model into account. The absorption lineshape within the modified Redfield theory is given
by

I(ω) = Re
∑
µ

dµ

∫ ∞

0

dt exp[i(ω − ωµ0)t− gµµµµ(t)−
1

2

∑
ν ̸=µ

∫ t

0

Rµµνν(τ)]. (S25)

as detailed in Ref. 53.
The well developed modified Redfield theory has been described above. Next, based on the population transfer

term, Eq. (S22), we derive the extended quantum master equation, in which the population terms are given as

∂

∂t
ρ(t) = −i[H + F (t), ρ(t)]−ℜ{ρ(t)},

ℜ{ρ(t)}µµ =
∑
ν ̸=µ

(Rµµνν(t)ρνν −Rννµµ(t)ρµµ).
(S26)



Here, ℜ{ρ(t)}µµ is the diagonal term of the relaxation operator, which was described in Ref. 55 and F (t) is the
time-dependent system-field interaction term.

The off-diagonal terms ℜ{ρ(t)}µν in the master equation are required to describe decoherenece of excited states and
electronic dephasing between ground and excited states. Here, we use the relation 1/T2 = 1/2T1 + 1/T ∗

2 to estimate
the different contributions to the dephasing rate. T2 is the transverse relaxation time, T1, T

∗
2 are called longitudinal

relaxation time and pure dephasing time, respectively (Ref. 56). In detail, 1/T1 =
∑

e̸=µ Rµµee +
∑

e̸=ν Rννee and

1/T ∗
2 is given by the first derivative of the lineshape function gµµνν(t). Therefore, the off-diagonal terms of the excited

states and between ground and excited states can be written as

ℜ{ρ(t)}µν =

1

2
(
∑
e̸=µ

Rµµee(t) +
∑
e̸=ν

Rννee(t)) + ġµµνν(t)

 ρµν(t),

ℜ{ρ(t)}µ0 =

1

2
(
∑
m̸=n

Rmmnn(t) +
∑
n̸=m

Rnnmm(t)) + ġµµµµ(t)

 ρµ0(t).

(S27)

XIV. MODEL OF DIMER SYSTEMS

In the last section, we have constructed a model of the PSII reaction center and optimized the parameters for the
spectroscopic calculations. Here, we study the coherent dynamics of the primary charge transfer in the dimer system.
For this, we construct a dimer model with a charge-transfer state. In the first case, we examine the coherent dynamics
of the pigments of ChlD1 and PheoD1. One additional charge-transfer state Chl+D1Pheo

−
D1 is included. The system

Hamiltonian is given by

Hs =

ϵChlD1
V VCT

V ϵPheoD1
VCT

VCT VCT ϵCT

 , (S28)

where the site energies are ϵChlD1
= 14700 cm−1, ϵPheoD1

= 14800 cm−1 and ϵCT = 15692 cm−1. Moreover, the
excitonic interaction between two pigments is V = 46 cm−1 and the couplings between exciton and charge-transfer
state is VCT = 70 cm−1. The parameters of the spectral density are η = 0.68 and ωc = 350 cm−1. To take into account
the strong system-bath interaction, we assume the interaction of the charge-transfer state with the environment to
be three times stronger than the one of the pigment. For this, we assign the system-bath interaction factor to 3.0
for the charge-transfer state, the others are assumed to be 1.0. All the parameters are taken from the set of optimal
parameters based on the 2D spectroscopic calculations of the PSII reaction center. We employ the QUAPI approach to
obtain numerically exact results of the dynamics and we plot the time-evolved dynamics in Fig. S10. The calculations
are performed at 20 K. At this low temperature, the memory timescale of the system has to be carefully treated. We
use the QUAPI parameters Kmax = 9 and ∆t = 30 fs, thus, the total memory time τ = 270 fs to achieve numerical
convergence. In Fig. S10, we observe clear evidence of electronic quantum coherence with a period of 273 fs and
with a lifetime of 177 fs. Hence, electronic coherence persists for 600 fs at 20 K. More interestingly, the calculated
results do not show any evidence of an oscillatory dynamics in the charge-transfer state Chl+D1Pheo

−
D1. Our model and

calculations manifest that the strong static dipole moment of the charge-transfer state results in a strong interaction
with the environment. It significantly reduces the amplitude of the electronic coherence. We may conclude that, even
at low temperature of 20 K, there is no substantial role of electronic coherence during the charge-transfer process.

We repeat the same procedure to calculate the population dynamics of the pigments PD1 and PD2. The system
Hamiltonian of the dimer is taken from the elements of the reaction-center Hamiltonian

Hs =

ϵPD1
V VCT

V ϵPD2
VCT

VCT VCT ϵCT

 , (S29)

where the V = 150 cm−1 and VCT = 45 cm−1. The site energies are ϵPD1
= 14960 cm−1 and ϵPD2

= 14890 cm−1. The
site energy of the charge-transfer state is ϵCT = 14882 cm−1. Other parameters are exactly the same as used in the
model of the first case. We construct the dimer model and perform the calculations by QUAPI. The time-resolved
population dynamics are calculated and shown in Fig. S11. We observe that the electronic coherence between PD1

and PD2 persists for 400 fs at 20 K, although with the strong excitonic coupling between them (V = 150 cm−1).
Moreover, we do not observe any electronic coherence of the charge-transfer state P+

D2P
−
D1.



FIG. S10. Population dynamics of the reduced density matrix of the dimer model. The population of ChlD1 and PheoD1

are plotted as blue and red solid lines. They show clear evidence of electronic coherence (period of 273 fs) with the lifetime
of 177 fs. The results do not show any evidence of oscillations in the charge-transfer state Chl+D1Pheo

−
D1. The calculations are

performed at 20 K.

FIG. S11. Population dynamics of PD1, PD2 and P+
D2P

−
D1. The electronic coherence persists for 400 fs. There is no evidence

of electronic coherence of the charge-transfer state P+
D2P

−
D1. The calculations are performed at 20 K.

Moreover, we examine the lifetime of the electronic coherence for varying temperature. We change the temperature
to 80 K and calculate the population dynamics of the dimer model. The results are shown in Fig. S12 and S13,
respectively. In Fig. S12, the population dynamics of ChlD1 and PheoD1 are plotted as blue and red solid lines. The
dynamics of the charge-transfer state of Chl+D1Pheo

−
D1 is plotted as black dashed line. It shows that the electronic

coherence between cofactors of ChlD1 and PheoD1 vanishes with increasing temperature to 80 K. However, the calcu-
lated results in Fig. S13 show the electronic coherence in the radical pairs of PD1 and PD2. The data analysis shows
that the magnitude and lifetime of the electronic coherence is significantly reduced due to the increased temperature.
The results yield the lifetime of electronic coherence of 120 fs at 80 K.

We further increase the temperature to 300 K and present the calculated results in Fig. S14 and Fig. S15, respectively.
In Fig. S14, the population dynamics of the cofactors are plotted as blue and red solid lines. The charge-transfer
state is depicted as black dashed line. No evidence of electronic coherence during the population transfer between the
cofactors and the charge-transfer process is found. Moreover, compared to the case of 80 K, the rate of the energy
transfer from the pigments to the charge-transfer state is enhanced when temperature is increased. Interestingly, the
calculations of the population dynamics between PD1 and PD2 in Fig. S15 show rather weak signatures of electronic
coherence even at room temperature (300 K). The blue and red solid lines reveal a small magnitude of electronic



FIG. S12. Population dynamics of the cofactors ChlD1, PheoD1 and the associated charge-transfer state Chl+D1Pheo
−
D1. The

calculations are performed at 80 K.

FIG. S13. Population dynamics of PD1, PD2 and P+
D2P

−
D1 at 80 K.

quantum coherence at initial time which rapidly disappears within 120 fs. Due to the strong electronic interaction
between PD1 and PD2, the electronic coherence could survive for more than 100 fs at room temperature. The energy
gap of PD1 and PD2 in the excitonic basis is 340 cm−1, which yields the electronic coherence with a period of 98 fs.
Thus, even at room temperature, the electronic quantum coherence between PD1 and PD2 oscillates for more than
one period in the PSII reaction center. However, we do not observe any coherent dynamics of the charge-transfer
state P+

D2P
−
D1, which implies that the observed coherence in the cofactors does not participate in the process of charge

transfer. Based on the estimate of magnitude of the population of the charge-transfer state, we conclude that the rate
of charge transfer is strongly enhanced by increasing of temperature.

In order to examine the role of vibrational coherence, we also study the population dynamics of two dimer systems
in the presence of an interaction with an additional vibrational mode. We pick up the vibrational mode of 340 cm−1

in the PSII reaction center and assume the Huang-Rhys factor of this particular mode to be S = 0.01. We calculate
the population dynamics of both systems and show the results in Fig. S16 and S17, respectively. In Fig. S16, the
population dynamics of ChlD1 and PheoD1 are plotted as blue and red solid lines, respectively. The dynamics of
the charge-transfer state is plotted as black dashed line. It shows long-lived electronic coherence between ChlD1 and
PheoD1. However, the oscillatory dynamics is absent in the charge-transfer state Chl+D1Pheo

−
D1. The calculation is

performed at 20 K. Interestingly, the calculated results do not show any signature of vibrational coherence. This
reveals a weak vibronic interaction (S = 0.01). Furthermore, off-resonance of the vibrational mode of 340 cm−1 and
the excitonic energy gap of ChlD1 and PheoD1 significantly reduces the magnitude of vibrational coherence. The



FIG. S14. Population dynamcis of ChlD1 and PheoD1 at 300 K.

FIG. S15. Time-resolved dynamics of the population transfer between PD1 and PD2 at 300 K.

calculated population dynamics of PD1 and PD2 are shown in Fig. S17. The oscillatory dynamics of the red and blue
solid lines manifests the mixture of electronic and vibrational coherence when compared to the population in Fig.
S11. However, the electronic and vibrational coherence is still absent in the charge-transfer state P+

D2P
−
D1 due to the

strong system-bath interaction.

To study the role of temperature, we calculate the population dynamics of the dimer model systems for varying
temperature. In Fig. S18, we show the population dynamics of ChlD1, PheoD1 and the associated charge-transfer
state. With increasing temperature, the electronic coherence is strongly reduced. The calculations of PD1 and PD2

show a different picture in Fig. S19. Here, the electronic coherence strongly mixes with vibrational coherence at
80 K. However, there is no strong signature of coherence in the charge transfer state P+

D2P
−
D1. We further perform

the calculation of the population dynamics at 300 K and show them in Fig. S20 and S21, respectively. In Fig. S20,
no evidence of electronic coherence between pigments and also the charge-transfer state is revealed. In addition,
compared to the dynamics at 80 K, the efficiency of charge transfer is further strongly enhanced by increasing of
temperature. More important, it shows only weak evidence of electronic and vibrational coherences in the process of
energy transfer of PD1 and PD2 in Fig. S21.



FIG. S16. Population dynamics of cofactors ChlD1 and PheoD1. The spectral density includes an underdamped mode with
parameters, S = 0.01 and ωvib = 340 cm−1. The calculations are performed at 20 K.

FIG. S17. Population dynamics of cofactors of PD1 and PD2 at 20 K. An underdamped mode is included in the spectral
density for the calculation, S = 0.01 and ωvib = 340 cm−1.

XV. THE MODEL OF THE PSII REACTION CENTER

Motivated by the numerical results for the dimer model, we extend our calculations to the PSII reaction center. The
system Hamiltonian includes 8 cofactors, which is quite challenging for the numerically exact QUAPI method. Due
to the long memory time at low temperature of 20 K, we cannot obtain converged results with the limited number of
Kmax =3 in QUAPI with present-day hardware capacities. An increasing of Kmax induces an exponential growth of
the memory space in the computer. Thus, we only can carry out calculations of the population dynamics at 80 and
300 K. In addition, we need to turn off the underdamped mode in the spectral density to simplify the calculations,
i.e., by setting S = 0. Then, the calculated population dynamics only contains electronic coherence by construction.
We show the calculated results for 80 K in Fig. S22. The initial relative populations are assumed to be 0.125. The
population are propagated to 3000 fs. At 80 K, the weak magnitude of the electronic coherence between PD1 and PD2

persists for 250 fs at 80 K.
Moreover, we change temperature to 300 K and keep the remaining parameters unchanged. We obtain the calculated

population dynamics of the PSII reaction center and show them in Fig. S23. They show a quite weak magnitude of
coherence between PD1 and PD2 at initial population time, which is due to the strong excitonic interaction between
them, V = 150 cm−1. There is no evidence of electronic coherence in the other electronic or charge-transfer states at
room temperature.



FIG. S18. Population dynamics of ChlD1 and PheoD1 with the same parameters except the temperature (T = 80 K).

FIG. S19. Population dynamics of PD1 and PD1 at 80 K.

FIG. S20. Population dynamics of ChlD1 and PheoD1 at 300 K.



FIG. S21. Population dynamics of PD1 and PD1 at 300 K. The weak oscillatory dynamics of vibrational the coherence is
present during the population dynamics of PD1 and PD2.

FIG. S22. Population dynamics of the PSII reaction center at 80 K. The population of the cofactors (charge-transfer states)
are plotted as solid (square dotted) lines.

XVI. UNIQUENESS OF THE MODEL PARAMETERS AND COMPARISON

In this section, we address the uniqueness of our model and parameters and also compare to other results from
Ref. 29, 30. For this, we take the parameters (site energies and electronic couplings) from Ref. 29, 30 and show
the resulting calculated 2D electronic spectra (rephasing part) in Fig. S24. We show that, based on the modified
Redfield quantum master equation, our model and parameters show the highest fitting quality. The results which we
obtain from the model and parameters of Ref. 29 and 30 show slightly less accurate 2D spectra. This illustrates that
the model developed here and the obtained parameters are a suitable approach to calculate 2D electronic spectra
of the PSII reaction center at 20 K. Based on the modified Redfield quantum master equation and the calculations
of response functions by the doorway-window method, we cannot completely rule out the models and parameters of
other groups with advanced approaches of calculations. However, the calculations with numerically exact methods
is commonly limited by computational resources. Thus, we employ in the next section the QUAPI approach for the
calculations of the coherent dynamics in the PSII reaction center at low temperature (20 K), yet, with only the limited
dimer model with a particular CT state involved.



FIG. S23. Population dynamics of the PSII reaction center at 300 K. The population of cofactors (charge-transfer states) are
plotted as solid (square dotted) lines.

FIG. S24. Rephasing part of 2D electronic spectra of the measured (a) to (c) and calculated (d) to( l) data. The 2D electronic
spectra from this study are shown from (d) to (f). The results from Ref. 30 are shown from (g) to (i). The calculated 2D
spectra from Ref. 29 are presented from (j) to (l).



XVII. NUMERICALLY EXACT QUASI-ADIABATIC PATH INTEGRAL METHOD

In this section, we briefly summarize the quasi-adiabatic path integral (QUAPI) method. For simplicity, we assume
that the interaction between the system and bath is switched on at t = 0, i. e., the initial density matrix has the form

ρ(0) = ρS(0)ρB(0). (S30)

Then, the evolution of the reduced density matrix of the system

ρS(s
′′, s′, t) = trB ⟨s′′| e−iHt/h̄ρ(0)eiHt/h̄ |s′⟩ , (S31)

is given by

ρS(s
′′, s′; t) =

∫
ds+0

∫
ds+1 · · ·

∫
ds+N−1

∫
ds−0

∫
ds−1 · · ·

∫
ds−N−1 ⟨s

′′| e−iH0∆t/h̄
∣∣s+N−1

〉
· · ·
〈
s+1
∣∣ e−iH0∆/h̄

∣∣s+0 〉
×
〈
s+0
∣∣ ρs(0) ∣∣s−0 〉 〈s−0 ∣∣ eiH0∆t/h̄

∣∣s−1 〉 · · · 〈s−N−1

∣∣ eiH0∆t/h̄ |s′⟩ I(s+0 , s
+
1 , · · · , s

+
N−1, s

′′
, s−0 , s

−
1 , · · · , s

−
N−1, s

′
; ∆t)

(S32)
where the time-discretized influence functional is

I(s+0 , s
+
1 , ..., s

+
N−1, s

′′, s−0 , s
−
1 , ..., s

−
N−1, s

′; ∆t) = trB[e
−iHB(s′′)∆t/2h̄e−iHB(s+N−1)∆t/2h̄

× ...e−iHB(s+0 )∆t/2h̄ρB(0)e
−iHB(s′−0 )∆t/2h̄ × ...e−iHB(s′−N−1)∆t/2h̄e−iHB(s′)∆t/2h̄],

(S33)

which is taken from Ref. 43. Specifically, if the bath is initially at temperature (kBβ)
−1, the influence functional is

given by

I = exp{−1/h̄

N∑
k=0

k∑
k′=0

(s+k − s−k )(ηkk′s+k′ − η∗kk′s−k′)}. (S34)

The parameters ηkk′ , η∗kk′ are given by

ηkk′ =
2

π

∫ ∞

−∞
dω

J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
sin2(ω∆t/2)e−iω∆t(k−k′), 0 < k′ < k < N,

ηkk =
1

2π

∫ ∞

−∞
dω

J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
(1− e−iω∆t), 0 < k < N,

ηN0 =
2

π

∫ ∞

−∞
dω

J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
sin2(ω∆t/4)e−iω(t−∆t/2),

η00 = ηNN =
1

2π

∫ ∞

−∞
dω

J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
(1− e−iω∆/2),

ηk0 =
2

π

∫ ∞

−∞
dω

J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
sin(ω∆t/4) sin(ω∆t/2)e−iω(k∆t−∆t/4), 0 < k < N,

ηNk =
2

π

∫ ∞

−∞
dω

J(ω)

ω2

exp(βh̄ω/2)

sinh(βh̄ω/2)
sin(ω∆t/4) sin(ω∆t/2)e−iω(t−k∆t−∆t/4), 0 < k < N,

(S35)

see Ref. 43, 44. The time propagation of QUAPI is performed by the reduced density tensor

T (2∆kmax)(s±k , s
±
k+1, ..., s

±
k+2∆kmax−1)

and the propagator matrix A∆kmax . Both are given by

A(∆kmax)(s±k+∆kmax
, ..., s±k+2∆kmax−1; (k +∆kmax)∆t) =∫

ds±k ...

∫
ds±k+∆kmax−1T

(2∆kmax) × (s±k , s
±
k+1, ..., s

±
k+2∆kmax−1)A

∆kmax

× (s±k , ..., s
±
k+∆kmax−1; k∆t)

(S36)

and by

T (2∆kmax)(s±k , s
±
k+1, ..., s

±
k+2∆kmax−1) =

k+∆kmax−1∏
n=k

I0(s
±
n )I1(s

±
n )I2(s

±
n , s

±
n+2)

×...I∆kmax(s
±
n , s

±
n+∆kmax

)K(s±n , s
±
n+1).

(S37)



The initial condition of the reduced density tensor can be expressed as

A(∆kmax)(s±0 , s
±
1 , ..., s

±
∆kmax

; 0) =
〈
s+0
∣∣ ρs(0) ∣∣s−0 〉 . (S38)

Based on this iteration, we obtain the time-resolved density matrix of the system. The finite memory time of the
system can be written as τ = ∆kmax∆t. The reduced density matrix at time t = N∆t is given by

ρs(s
±
N ;N∆t) = A(∆kmax)(s±N , s±N+1 = ... = s±N+∆kmax−1 = 0;N∆t)I0(s

±
N ). (S39)



REFERENCES AND NOTES 

1. Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a

resolution of 1.9 Å. Nature 473, 55–60 (2011).

2. R. Dods, P. Båth, D. Morozov, V. A. Gagnér, D. Arnlund, H. L. Luk, J. Kübel, M. Maj, A. Vallejos, C.

Wickstrand, R. Bosman, K. R. Beyerlein, G. Nelson, M. Liang, D. Milathianaki, J. Robinson, R.

Harimoorthy, P. Berntsen, E. Malmerberg, L. Johansson, R. Andersson, S. Carbajo, E. Claesson, C. E.

Conrad, P. Dahl, G. Hammarin, M. S. Hunter, C. Li, S. Lisova, A. Royant, C. Safari, A. Sharma, G. J.

Williams, O. Yefanov, S. Westenhoff, J. Davidsson, D. P. De Ponte, S. Boutet, A. Barty, G. Katona, G.

Groenhof, G. Brändén, R. Neutze, Ultrafast structural changes within a photosynthetic reaction centre.

Nature 589, 310–314 (2021).

3. M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M.

Yamamoto, H. Ago, J.-R. Shen, Native structure of photosystem II at 1.95 Å resolution viewed by

femtosecond X-ray pulses. Nature 517, 99–103 (2015).

4. B. A. Diner, F. Rappaport, Structure, dynamics, and energetics of the primary photochemistry of

photosystem II of oxygenic photosynthesis. Annu. Rev. Plant Biol. 53, 551–580 (2002).

5. V. I. Novoderezhkin, E. G. Andrizhiyevskaya, J. P. Dekker, R. van Grondelle, Pathways and timescales of

primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of

time-resolved fluorescence and transient absorption. Biophys. J. 89, 1464–1481 (2005).

6. V. I. Novoderezhkin, J. P. Dekker, R. van Grondelle, Mixing of exciton and charge-transfer states in

photosystem II reaction centers: Modeling of stark spectra with modified redfield theory. Biophys. J. 93,

1293–1311 (2007).

7. V. I. Prokhorenko, A. R. Holzwarth, Primary processes and structure of the Photosystem II reaction center:

A photon echo study. J. Phys. Chem. B 104, 11563–11578 (2000).

8. E. Romero, I. H. M. van Stokkum, V. I. Novoderezhkin, J. P. Dekker, R. van Grondelle, Two different

charge separation pathways in Photosystem II. Biochemistry 49, 4300–4307 (2010).

9. V. I. Novoderezhkin, E. Romero, J. P. Dekker, R. van Grondelle, Multiple Charge-separation pathways in

photosystem II: Modeling of transient absorption kinetics. Chemphyschem 12, 681–688 (2011).

10. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, G. R.

Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.

Nature 446, 782–786 (2007).



11. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, G. D. Scholes, Coherently wired light-

harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

12. J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, 

R. J. D. Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H.-S. Tan, R. Tempelaar, M. Thorwart, E. 

Thyrhaug, S. Westenhoff, D. Zigmantas, Quantum biology revisited. Sci. Adv. 6, eaaz4888 (2020).

13. H.-G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, R. J. D. Miller, 

Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc. 

Natl. Acad. Sci. U.S.A. 114, 8493–8498 (2017).

14. G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. 

van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. Mc Cusker, S. Mukamel, J. P. Ogilvie, A. 

Olaya-Castro, M. A. Ratner, F. C. Spano, K. Birgitta Whaley, X. Zhu, Using coherence to enhance 

function in chemical and biophysical systems. Nature 543, 647–656 (2017).

15. E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, Karel Žídek, D. Bína, J. Knoester, T. L. C. Jansen, D. 

Zigmantas, Identification and characterization of diverse coherences in the Fenna–Matthews–Olson 

complex. Nat. Chem. 10, 780–786 (2018).

16. H.-G. Duan, A. Jha, L. Chen, V. Tiwari, R. J. Cogdell, K. Ashraf, V. I. Prokhorenko, M. Thorwart, R. J.

D. Miller, Quantum coherent energy transport in the Fenna–Matthews–Olson complex at low

temperature. Proc. Natl. Acad. Sci. U.S.A. 119, e2212630119 (2022). 

17. L. Wang, M. A. Allodi, G. S. Engel, Quantum coherences reveal excited-state dynamics in biophysical

systems. Nat. Rev. Chem. 3, 477–490 (2019).

18. E. Romero, V. I. Novoderezhkin, R. van Grondelle, Quantum design of photosynthesis for bio-inspired

solar-energy conversion. Nature 543, 355–365 (2017).

19. V. Tiwari, W. K. Peters, D. M. Jonas, Electronic resonance with anticorrelated pigment vibrations drives

photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. U.S.A. 110, 1203–

1208 (2013).

20. A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, M. B. Plenio, The role of

non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein

complexes. Nat. Phys. 9,113–118 (2013).

21. A. Halpin, P. J. M. Johnson, R. Tempelaar, R. S. Murphy, J. Knoester, T. L. C. Jansen, R. J. D. Miller,

Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton

coherences. Nat. Chem. 6,196–201 (2014).



22. H.-G. Duan, P. Nalbach, V. I. Prokhorenko, S. Mukamel, M. Thorwart, On the origin of oscillations in

two-dimensional spectra of excitonically-coupled molecular systems. New J. Phys. 17, 072002 (2015).

23. C. Kreisbeck, T. Kramer Long-lived electronic coherence in dissipative exciton dynamics of

light-harvesting complexes. J. Phys. Chem. Lett. 3, 2828–2833 (2012).

24. D. Egorova Self-analysis of coherent oscillations in time-resolved optical signals. J. Phys. Chem. A 118,

10259–10267 (2014).

25. F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, J. Hauer,

vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular

J-aggregates. J. Phys. Chem. A 117, 6007–6014 (2013).

26. J. A. Myers, K. L. M. Lewis, F. D. Fuller, P. F. Tekavec, C. F. Yocum, J. P. Ogilvie, Two-dimensional

electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction Center complex. J. Phys. Chem.

Lett. 1, 2774–2780 (2010).

27. K. L. M. Lewis, F. D. Fuller, J. A. Myers, C. F. Yocum, S. Mukamel, D. Abramavicius, J. P. Ogilvie,

Simulations of the two-dimensional electronic spectroscopy of the photosystem II reaction center. J. Phys.

Chem. A 117, 34–41 (2013).

28. A. Gelzinis, L. Valkunas, F. D. Fuller, J. P. Ogilvie, S. Mukamel, D. Abramavicius, Tight-binding model

of the photosystem II reaction center: Application to two-dimensional electronic spectroscopy. New J.

Phys. 15, 075013 (2013).

29. E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, R. van Grondelle,

Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682

(2014).

30. F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. Seckin Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D.

Abramavicius, J. P. Ogilvie, Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711

(2014).

31. Y. Yoneda, E. A. Arsenault, S.-J. Yang, K. Orcutt, M. Iwai, G. R. Fleming, The initial charge separation

step in oxygenic photosynthesis. Nat. Commun. 13, 2275 (2022).

32. H. H. Nguyen, Y. Song, E. L. Maret, Y. Silori, R. Willow, C. F. Yocum, J. P. Ogilvie, Charge separation

in the photosystem II reaction center resolved by multispectral two-dimensional electronic spectroscopy.

Sci. Adv. 9, eade7190 (2023).

33. V. I. Prokhorenko, “Global analysis of multi-dimensional experimental data,” European Photochemistry

Association Newsletter, June 2012, pp. 21–23.



34. H.-G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, R. J. D. Miller,

Two-dimensional electronic spectroscopy of light-harvesting complex II at ambient temperature: A joint

experimental and theoretical study. J. Phys. Chem. B 119, 12017–12027 (2015).

35. H.-G. Duan, V. I. Prokhorenko, E. Wientjes, R. Croce, M. Thorwart, R. J. D. Miller, Primary charge

separation in the photosystem II reaction center revealed by a global analysis of the two-dimensional

electronic spectra. Sci. Rep. 7, 12347 (2017).

36. E. J. G. Peterman, H. van Amerongen, R. van Grondelle, J. P. Dekker, The nature of the excited state of

the reaction center of photosystem II of green plants: A high-resolution fluorescence spectroscopy study.

Proc. Natl. Acad. Sci. U.S.A. 95, 6128–6133 (1998).

37. V. Butkus, D. Zigmantas, L. Valkunas, D. Abramavicius, Vibrational vs. electronic coherences in 2D

spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

38. V. Butkus, L. Valkunas, D. Abramavicius, Vibronic phenomena and exciton–vibrational interference in

two-dimensional spectra of molecular aggregates. J. Chem. Phys. 140, 034306 (2014).

39. H.-G. Duan, A. G. Dijkstra, P. Nalbach, M. Thorwart, Efficient tool to calculate two-dimensional optical

spectra for photoactive molecular complexes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 042708

(2015).

40. M. Yang, G. R. Fleming, Influence of phonons on exciton transfer dynamics: Comparison of the

Redfield, Förster, and modified Redfield equations. Chem. Phys. 282, 163–180 (2002).

41. W. M. Zhang, T. Meier, V. Chernyak, S. Mukamel, Exciton-migration and three-pulse femtosecond

optical spectroscopies of photosynthetic antenna complexes. J. Chem. Phys. 108, 7763–7774 (1998).

42. C. Olbrich, T. L. C. Jansen, J. Liebers, M. Aghtar, J. Strümpfer, K. Schulten, J. Knoester, U.

Kleinekathöfer, From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO

light-harvesting complex. J. Phys. Chem. B 115, 8609–8621 (2011).

43. N. Makri, D. E. Makarov Tensor propagator for iterative quantum time evolution of reduced density

matrices. I. Theory. J. Chem. Phys. 102, 4600–4610 (1995).

44. N. Makri, D. E. Makarov Tensor propagator for iterative quantum time evolution of reduced density

matrices II. Numerical methodology. J. Chem. Phys. 102, 4611–4618 (1995).

45. P. Nalbach, D. Braun, M. Thorwart Exciton transfer dynamics and quantumness of energy transfer in the

Fenna-Matthews-Olson complex. Phys. Rev. E 84, 041926 (2011).

46. S. Caffarri, R. Kouril, S. Kereïche, E. J. Boekema, R. Croce, Functional architecture of higher plant

photosystem II supercomplexes. EMBO J. 28, 3052–3063 (2009).



47. S. Caffarri, R. Croce, L. Cattivelli, R. Bassi, A look within LHCII:  Differential Analysis of the Lhcb1−3

complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43,

9467–9476 (2004).

48. D. A. Berthold, G. T. Babcock, C. F. Yocum, A highly resolved, oxygen-evolving photosystem II

preparation from spinach thylakoid membranes. FEBS Lett. 134, 231–234 (1981).

49. P. J. van Leeuwen, M. C. Nieveen, E. J. van de Meent, J. P. Dekker, H. J. van Gorkom, Rapid and simple

isolation of pure photosystem II core and reaction center particles from spinach. Photosynth. Res. 28, 149–

153 (1991).

50. C. Eijckelhoff, J. P. Dekker, A routine method to determine the chlorophyll a, pheophytin a and

β-carotene contents of isolated Photosystem II reaction center complexes. Photosynth. Res. 52, 69–73

(1997).

51. S. L. S. Kwa, W. R. Newell, R. van Grondelle, J. P. Dekker, The reaction center of photosystem II studied

with polarized fluorescence spectroscopy. Biochim. Biophys. Acta 1099, 193–202 (1992).

52. J. D. Hybl, A. A. Ferro, D. M. Jonas, Two-dimensional Fourier transform electronic spectroscopy. J.

Chem. Phys. 115, 6606–6622 (2001).

53. M. Schröder, U. Kleinekathöfer, M. Schreiber, Calculation of absorption spectra for light-harvesting

systems using non-Markovian approaches as well as modified Redfield theory. J. Chem. Phys. 124,

084903 (2006).

54. A. Ishizaki, G. R. Fleming, On the adequacy of the Redfield equation and related approaches to the study

of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130, 234110 (2009).

55. M. Schröder, M. Schreiber, U. Kleinekathöfer, A time-dependent modified Redfield theory for

absorption spectra applied to light-harvesting systems. J. Lumin. 125, 126–132 (2007).

56. V. May, O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH Press,

2011).

57. R. P. Feynman, F. L. Vernon Jr., The theory of a general quantum system interacting with a linear

dissipative system. Ann. Phys. 24, 118–173 (1963).



REFERENCES 

1. Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a 

resolution of 1.9 Å. Nature 473, 55–60 (2011). 

2. R. Dods, P. Båth, D. Morozov, V. A. Gagnér, D. Arnlund, H. L. Luk, J. Kübel, M. Maj, A. Vallejos, C. 

Wickstrand, R. Bosman, K. R. Beyerlein, G. Nelson, M. Liang, D. Milathianaki, J. Robinson, R. 

Harimoorthy, P. Berntsen, E. Malmerberg, L. Johansson, R. Andersson, S. Carbajo, E. Claesson, C. E. 

Conrad, P. Dahl, G. Hammarin, M. S. Hunter, C. Li, S. Lisova, A. Royant, C. Safari, A. Sharma, G. J. 

Williams, O. Yefanov, S. Westenhoff, J. Davidsson, D. P. De Ponte, S. Boutet, A. Barty, G. Katona, G. 

Groenhof, G. Brändén, R. Neutze, Ultrafast structural changes within a photosynthetic reaction centre. 

Nature 589, 310–314 (2021). 

3. M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. 

Yamamoto, H. Ago, J.-R. Shen, Native structure of photosystem II at 1.95 Å resolution viewed by 

femtosecond X-ray pulses. Nature 517, 99–103 (2015). 

4. B. A. Diner, F. Rappaport, Structure, dynamics, and energetics of the primary photochemistry of 

photosystem II of oxygenic photosynthesis. Annu. Rev. Plant Biol. 53, 551–580 (2002). 

5. V. I. Novoderezhkin, E. G. Andrizhiyevskaya, J. P. Dekker, R. van Grondelle, Pathways and timescales of 

primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of 

time-resolved fluorescence and transient absorption. Biophys. J. 89, 1464–1481 (2005). 

6. V. I. Novoderezhkin, J. P. Dekker, R. van Grondelle, Mixing of exciton and charge-transfer states in 

photosystem II reaction centers: Modeling of stark spectra with modified redfield theory. Biophys. J. 93, 

1293–1311 (2007). 

7. V. I. Prokhorenko, A. R. Holzwarth, Primary processes and structure of the Photosystem II reaction center: 

A photon echo study. J. Phys. Chem. B 104, 11563–11578 (2000). 

8. E. Romero, I. H. M. van Stokkum, V. I. Novoderezhkin, J. P. Dekker, R. van Grondelle, Two different 

charge separation pathways in Photosystem II. Biochemistry 49, 4300–4307 (2010). 

9. V. I. Novoderezhkin, E. Romero, J. P. Dekker, R. van Grondelle, Multiple Charge-separation pathways in 

photosystem II: Modeling of transient absorption kinetics. Chemphyschem 12, 681–688 (2011). 

10. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, G. R. 

Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. 

Nature 446, 782–786 (2007). 



 

 

11. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, G. D. Scholes, Coherently wired 

light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010). 

12. J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer, T. L. C. Jansen, T. Mančal, 

R. J. D. Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H.-S. Tan, R. Tempelaar, M. Thorwart, E. 

Thyrhaug, S. Westenhoff, D. Zigmantas, Quantum biology revisited. Sci. Adv. 6, eaaz4888f (2020). 

13. H.-G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, R. J. D. Miller, 

Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc. 

Natl. Acad. Sci. U.S.A. 114, 8493–8498 (2017). 

14. G. D. Scholes, G. R. Fleming, L. X. Chen, A. Aspuru-Guzik, A. Buchleitner, D. F. Coker, G. S. Engel, R. 

van Grondelle, A. Ishizaki, D. M. Jonas, J. S. Lundeen, J. K. Mc Cusker, S. Mukamel, J. P. Ogilvie, A. 

Olaya-Castro, M. A. Ratner, F. C. Spano, K. Birgitta Whaley, X. Zhu, Using coherence to enhance 

function in chemical and biophysical systems. Nature 543, 647–656 (2017). 

15. E. Thyrhaug, R. Tempelaar, M. J. P. Alcocer, Karel Žídek, D. Bína, J. Knoester, T. L. C. Jansen, D. 

Zigmantas, Identification and characterization of diverse coherences in the Fenna–Matthews–Olson 

complex. Nat. Chem. 10, 780–786 (2018). 

16. H.-G. Duan, A. Jha, L. Chen, V. Tiwari, R. J. Cogdell, K. Ashraf, V. I. Prokhorenko, M. Thorwart, R. J. 

D. Miller, Quantum coherent energy transport in the Fenna–Matthews–Olson complex at low 

temperature. Proc. Natl. Acad. Sci. U.S.A. 119, e2212630119 (2022). 

17. L. Wang, M. A. Allodi, G. S. Engel, Quantum coherences reveal excited-state dynamics in biophysical 

systems. Nat. Rev. Chem. 3, 477–490 (2019). 

18. E. Romero, V. I. Novoderezhkin, R. van Grondelle, Quantum design of photosynthesis for bio-inspired 

solar-energy conversion. Nature 543, 355–365 (2017). 

19. V. Tiwari, W. K. Peters, D. M. Jonas, Electronic resonance with anticorrelated pigment vibrations drives 

photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. U.S.A. 110, 1203–

1208 (2013). 

20. A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, M. B. Plenio, The role of 

non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein 

complexes. Nat. Phys. 9,113–118 (2013). 

21. A. Halpin, P. J. M. Johnson, R. Tempelaar, R. S. Murphy, J. Knoester, T. L. C. Jansen, R. J. D. Miller, 

Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton 

coherences. Nat. Chem. 6,196–201 (2014). 



 

 

22. H.-G. Duan, P. Nalbach, V. I. Prokhorenko, S. Mukamel, M. Thorwart, On the origin of oscillations in 

two-dimensional spectra of excitonically-coupled molecular systems. New J. Phys. 17, 072002 (2015). 

23. C. Kreisbeck, T. Kramer Long-lived electronic coherence in dissipative exciton dynamics of 

light-harvesting complexes. J. Phys. Chem. Lett. 3, 2828–2833 (2012). 

24. V. Butkus, D. Zigmantas, L. Valkunas, D. Abramavicius, Vibrational vs. electronic coherences in 2D 

spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012). 

25. V. Butkus, L. Valkunas, D. Abramavicius, Vibronic phenomena and exciton–vibrational interference in 

two-dimensional spectra of molecular aggregates. J. Chem. Phys. 140, 034306 (2014). 

26. D. Egorova Self-analysis of coherent oscillations in time-resolved optical signals. J. Phys. Chem. A 118, 

10259–10267 (2014). 

27. F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, J. Hauer, 

vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular 

J-aggregates. J. Phys. Chem. A 117, 6007–6014 (2013). 

28. J. A. Myers, K. L. M. Lewis, F. D. Fuller, P. F. Tekavec, C. F. Yocum, J. P. Ogilvie, Two-dimensional 

electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction Center complex. J. Phys. Chem. 

Lett. 1, 2774–2780 (2010). 

29. K. L. M. Lewis, F. D. Fuller, J. A. Myers, C. F. Yocum, S. Mukamel, D. Abramavicius, J. P. Ogilvie, 

Simulations of the two-dimensional electronic spectroscopy of the photosystem II reaction center. J. Phys. 

Chem. A 117, 34–41 (2013). 

30. A. Gelzinis, L. Valkunas, F. D. Fuller, J. P. Ogilvie, S. Mukamel, D. Abramavicius, Tight-binding model 

of the photosystem II reaction center: Application to two-dimensional electronic spectroscopy. New J. 

Phys. 15, 075013 (2013). 

31. E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, R. van Grondelle, 

Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 

(2014). 

32. H. H. Nguyen, Y. Song, E. L. Maret, Y. Silori, R. Willow, C. F. Yocum, J. P. Ogilvie, Charge separation 

in the photosystem II reaction center resolved by multispectral two-dimensional electronic spectroscopy. 

Sci. Adv. 9, eade7190 (2023). 

33. Y. Yoneda, E. A. Arsenault, S.-J. Yang, K. Orcutt, M. Iwai, G. R. Fleming, The initial charge separation 

step in oxygenic photosynthesis. Nat. Commun. 13, 2275 (2022). 



 

 

34. F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. Seckin Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. 

Abramavicius, J. P. Ogilvie, Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 

(2014). 

35. V. I. Prokhorenko, “Global analysis of multi-dimensional experimental data,” European Photochemistry 

Association Newsletter, June 2012, pp. 21–23. 

36. H.-G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, R. J. D. Miller, 

Two-dimensional electronic spectroscopy of light-harvesting complex II at ambient temperature: A joint 

experimental and theoretical study. J. Phys. Chem. B 119, 12017–12027 (2015). 

37. H.-G. Duan, V. I. Prokhorenko, E. Wientjes, R. Croce, M. Thorwart, R. J. D. Miller, Primary charge 

separation in the photosystem II reaction center revealed by a global analysis of the two-dimensional 

electronic spectra. Sci. Rep. 7, 12347 (2017). 

38. E. J. G. Peterman, H. van Amerongen, R. van Grondelle, J. P. Dekker, The nature of the excited state of 

the reaction center of photosystem II of green plants: A high-resolution fluorescence spectroscopy study. 

Proc. Natl. Acad. Sci. U.S.A. 95, 6128–6133 (1998). 

39. H.-G. Duan, A. G. Dijkstra, P. Nalbach, M. Thorwart, Efficient tool to calculate two-dimensional optical 

spectra for photoactive molecular complexes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 042708 

(2015). 

40. M. Yang, G. R. Fleming, Influence of phonons on exciton transfer dynamics: Comparison of the 

Redfield, Förster, and modified Redfield equations. Chem. Phys. 282, 163–180 (2002). 

41. W. M. Zhang, T. Meier, V. Chernyak, S. Mukamel, Exciton-migration and three-pulse femtosecond 

optical spectroscopies of photosynthetic antenna complexes. J. Chem. Phys. 108, 7763–7774 (1998). 

42. C. Olbrich, T. L. C. Jansen, J. Liebers, M. Aghtar, J. Strümpfer, K. Schulten, J. Knoester, U. 

Kleinekathöfer, From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO 

light-harvesting complex. J. Phys. Chem. B 115, 8609–8621 (2011). 

43. N. Makri, D. E. Makarov Tensor propagator for iterative quantum time evolution of reduced density 

matrices. I. Theory. J. Chem. Phys. 102, 4600–4610 (1995). 

44. N. Makri, D. E. Makarov Tensor propagator for iterative quantum time evolution of reduced density 

matrices II. Numerical methodology. J. Chem. Phys. 102, 4611–4618 (1995). 

45. P. Nalbach, D. Braun, M. Thorwart Exciton transfer dynamics and quantumness of energy transfer in the 

Fenna-Matthews-Olson complex. Phys. Rev. E 84, 041926 (2011). 



 

 

46. S. Caffarri, R. Kouril, S. Kereïche, E. J. Boekema, R. Croce, Functional architecture of higher plant 

photosystem II supercomplexes. EMBO J. 28, 3052–3063 (2009). 

47. S. Caffarri, R. Croce, L. Cattivelli, R. Bassi, A look within LHCII:  Differential Analysis of the Lhcb1−3 

complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43, 

9467–9476 (2004). 

48. D. A. Berthold, G. T. Babcock, C. F. Yocum, A highly resolved, oxygen-evolving photosystem II 

preparation from spinach thylakoid membranes. FEBS Lett. 134, 231–234 (1981). 

49. P. J. van Leeuwen, M. C. Nieveen, E. J. van de Meent, J. P. Dekker, H. J. van Gorkom, Rapid and simple 

isolation of pure photosystem II core and reaction center particles from spinach. Photosynth. Res. 28, 149–

153 (1991). 

50. C. Eijckelhoff, J. P. Dekker, A routine method to determine the chlorophyll a, pheophytin a and 

β-carotene contents of isolated Photosystem II reaction center complexes. Photosynth. Res. 52, 69–73 

(1997). 

51. S. L. S. Kwa, W. R. Newell, R. van Grondelle, J. P. Dekker, The reaction center of photosystem II studied 

with polarized fluorescence spectroscopy. Biochim. Biophys. Acta 1099, 193–202 (1992). 

52. J. D. Hybl, A. A. Ferro, D. M. Jonas, Two-dimensional Fourier transform electronic spectroscopy. J. 

Chem. Phys. 115, 6606–6622 (2001). 

53. Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at 

a resolution of 1.9 Å. Nature 473, 55–60 (2011). 

54. V. I. Prokhorenko, European Photochemistry Association Newsletter, June 2012, p. 21. 

55. V. Butkus, D. Zigmantas, L. Valkunas, D. Abramavicius, Vibrational vs. electronic coherences in 2D 

spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012). 

56. M. Schröder, U. Kleinekathöfer, M. Schreiber, Calculation of absorption spectra for light-harvesting 

systems using non-Markovian approaches as well as modified Redfield theory. J. Chem. Phys. 124, 

084903 (2006). 

57. A. Ishizaki, G. R. Fleming, On the adequacy of the Redfield equation and related approaches to the study 

of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130, 234110 (2009). 

58. C. Meier, D. J. Tannor, Non-Markovian evolution of the density operator in the presence of strong laser 

fields. J. Chem. Phys. 111, 3365–3376 (1999). 

59. M. Schröder, M. Schreiber, U. Kleinekathöfer, A time-dependent modified Redfield theory for 

absorption spectra applied to light-harvesting systems. J. Lumin. 125, 126–132 (2007). 



 

 

60. V. May, O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH Press, 

2011). 

61. R. P. Feynman, F. L. Vernon Jr., The theory of a general quantum system interacting with a linear 

dissipative system. Ann. Phys. 24, 118–173 (1963). 


	sciadv.adk1312_sm_L1_corrected
	sciadv.adk1312
	SI_for merge
	Supplementary Text [3mm] Unraveling Quantum Coherences Mediating Primary Charge Transfer Processes in Photosystem II Reaction Center 
	Time constant of the electronic dephasing measured from 2D spectra
	Global fitting approach and resolved components of the DAS
	Tukey window Fourier transform
	Fitting procedure and resolved electronic and vibrational coherences
	2D power spectra of resolved vibrations
	2D correlation analysis
	Model Hamiltonian and refined parameters
	The calculated absorption spectra and experimental results
	Transformation between site and exciton basis
	Calculation of the 2D electronic spectra of the PSII reaction center
	Anti-diagonal bandwidth in theory and experiment
	 Measuring of 2D spectra with different coherence times 
	Modified Redfield quantum master equation
	Model of dimer systems
	The Model of the PSII reaction center
	Uniqueness of the model parameters and comparison
	 Numerically exact quasi-adiabatic path integral method 


	zreferences

	References



