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SUMMARY
Amyriad of pathological changes associated with epilepsy can be recast as decreases in cell and circuit het-
erogeneity. We thus propose recontextualizing epileptogenesis as a process where reduction in cellular het-
erogeneity, in part, renders neural circuits less resilient to seizure. By comparing patch clamp recordings
from human layer 5 (L5) cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we
demonstrate significantly decreased biophysical heterogeneity in seizure-generating areas. Implemented
computationally, this renders model neural circuits prone to sudden transitions into synchronous states
with increased firing activity, paralleling ictogenesis. This computational work also explains the surprising
finding of significantly decreased excitability in the population-activation functions of neurons from epi-
leptogenic tissue. Finally, mathematical analyses reveal a bifurcation structure arising only with low het-
erogeneity and associated with seizure-like dynamics. Taken together, this work provides experimental,
computational, and mathematical support for the theory that ictogenic dynamics accompany a reduction
in biophysical heterogeneity.
INTRODUCTION

Epilepsy, the most common serious neurological disorder in the

world (Reynolds, 2002), is characterized by the brain’s proclivity

for seizures, which exhibit highly correlated electrophysiological

activity and elevated neuronal spiking (Jiruska et al., 2013). While

the etiologies that predispose the brain to epilepsy are myriad

(Jasper, 2012), the dynamics appear to be relatively conserved

(Jirsa et al., 2014; Saggio et al., 2020), suggesting a small palette

of candidate routes to the seizure state. One potential route to

ictogenesis is disruption of excitatory/inhibitory balance (EIB),

a possible ‘‘final common pathway’’ for various epileptogenic eti-

ologies motivating decades of research into epilepto- and icto-

genesis (Dehghani et al., 2016; �Ziburkus et al., 2013). A disrupted

EIB can impair the resilience of neural circuits to correlated in-

puts (Renart et al., 2010), a paramount characteristic of ictogen-

esis. In addition to EIB, biophysical heterogeneity also provides

resilience to correlated inputs (Mishra and Narayanan, 2019).
This is an open access article und
Thus, EIB can be considered a synaptic mechanism for input de-

correlation, while biophysical heterogeneity contributes to de-

correlation post-synaptically.

Cellular heterogeneity is the norm in biological systems

(Altschuler and Wu, 2010; Marder and Goaillard, 2006). In the

brain, experimental and theoretical work has demonstrated

that such heterogeneity expands the informational content of

neural circuits by reducing correlated neuronal activity (Padma-

nabhan andUrban, 2010; Tripathy et al., 2013). Since heightened

levels of firing and firing rate correlations hallmark seizures (Jirsa

et al., 2014; Zhang et al., 2011), we hypothesize that epilepsy

may be likened, in part, to pathological reductions in biological

heterogeneity that impair decorrelation, and thus circuit resil-

ience to information-poor (Trevelyan et al., 2013), high-firing (Jir-

uska et al., 2013), and highly correlated states (Zhang et al.,

2011).

A number of pathological changes accompanying epilepto-

genesis can be recast as decreases in biological heterogeneity.
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Losses of specific cell-types homogenize neural populations

(Cossart et al., 2001; Cobos et al., 2005), down- or upregulation

of ion channels homogenize biophysical properties (Arnold et al.,

2019; Klaassen et al., 2006; Albertson et al., 2011), and synaptic

sprouting homogenizes neural inputs (Sutula and Dudek, 2007).

This recontextualizes epileptogenesis as a process associated in

part with the progressive loss of biophysical heterogeneity.

To explore this hypothesis we combine electrophysiological

recordings from human cortical tissue, computational modeling,

and mathematical analysis to detail the existence and conse-

quences of one reduction in biological heterogeneity in epilepsy:

the decrease of intrinsic neuronal heterogeneity. We first provide

experimental evidence for decreased biophysical heterogeneity

in neurons within brain regions that generate seizures (epilepto-

genic zone) when compared to non-epileptogenic regions.

These data constrain an exploration of the effects of heterogene-

ity in neural excitability on simulated brain circuits. Using a

cortical excitatory-inhibitory (E-I) spiking neural network, we

show that networks with neuronal heterogeneity mirroring

epileptogenic tissue are more vulnerable to sudden shifts from

an asynchronous to a synchronous state with clear parallels to

seizure onset. Networks with neuronal heterogeneity mirroring

non-epileptogenic tissue are more resilient to such transitions.

These differing heterogeneity levels also underlie significant,

yet counter-intuitive, differences in neural activation functions

(i.e., frequency-current or FI curves) measured inside and

outside the epileptogenic zone. Using mean-field analysis, we

show that differences in the vulnerability to these sudden transi-

tions and activation functions are both consequences of varying

neuronal heterogeneities. Viewed together, our experimental,

computational, andmathematical results support the hypothesis

that biophysical heterogeneity enhances the dynamical resil-

ience of neural networks while explaining how reduced diversity

can predispose circuits to seizure-like dynamics.

RESULTS

Intrinsic biophysical heterogeneity is reduced in human
epileptogenic cortex
In search of experimental evidence for reduced biophysical het-

erogeneity in epileptogenic regions, we utilized the rare access

to live human cortical tissue obtained during resective surgery.

Whole-cell current clamp recordings characterized the passive

and active properties of layer 5 (L5) cortical pyramidal cells

from these samples, a cell type we have shown to display

notable biophysical heterogeneity (Moradi Chameh et al.,

2021). Biophysical properties of neurons from epileptogenic

frontal lobe cortex were contrasted to frontal lobe neurons of tu-

mor patients, with no previous history of seizures, taken a dis-

tance from the tumor. Additionally, we obtained, from patients

with mesial temporal sclerosis, recordings from neurons in

non-epileptogenic middle temporal gyrus (MTG), which is the

overlying cortex routinely removed to approach deep temporal

structures. The MTG is a well-characterized part of the human

brain, representing a common anatomical region from which

non-epileptogenic brain tissue has been studied electrophysio-

logically and transcriptomically (Hodge et al., 2019; Moradi Cha-

meh et al., 2021; Beaulieu-Laroche et al., 2018; Kalmbach et al.,
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2021) and our primary source of non-epileptogenic neurons. We

note that each of these studies classify these neurons as indica-

tive of ‘‘seemingly normal’’ human neurons independent of the

patients’ epilepsy or tumor diagnoses (i.e., a best-case control

given limitations in obtaining human tissue).

While multiple sources of heterogeneity were recorded in a va-

riety of physiological measurements (Figure S1), we concen-

trated on attributes of cellular heterogeneity that demonstrated

significant differences between the epileptogenic and non-

epileptogenic settings. The first was the distance to threshold

(DTT) measured as the difference between the resting mem-

brane potential (RMP) and threshold voltage (see Figure S1 for

these measures presented individually). DTT displayed reduced

variability (smaller coefficient of variation [CV]; p = 0.04; two

sample coefficient of variation test) in neurons from epilepto-

genic frontal lobe (n = 13, CV = 20.3%) compared to non-epilep-

togenic MTG (n = 77, CV = 37.1%). A significant difference

(smaller CV; p = 0.03) was also seen when comparing epilepto-

genic frontal lobe to non-epileptogenic frontal lobe (n = 12,

CV = 40.8%). Meanwhile, the CVs were not significantly different

when comparing non-epileptogenic MTG and non-epileptogenic

frontal lobe (p = 0.7). These features are more easily appreciated

from the Gaussian fits of this data presented in Figure 1B. These

results imply that the decrease in biophysical heterogeneity

observed in epileptogenic cortex was not confounded by sam-

pling from the temporal versus frontal lobe.

While our non-epileptogenic MTG population is larger, this is

unavoidable given the availability of human cortical tissue and

the additional efforts required to confirm the tissue’s epilepto-

genic nature (see discussion). Statistical tests accounting for un-

equal population sizes were used in comparing the population

CVs and confirmed using the Krishnamoorthy and Lee test, via

the R package cvequality (Marwick and Krishnamoorthy, 2019),

which is robust to uneven sample numbers and small sample

sizes (Krishnamoorthy and Lee, 2014). Additionally, the signifi-

cant difference between the standard deviations (SDs) of the

DTTs in non-epileptogenic MTG and epileptogenic frontal lobe

(p = 0.03, Cohen’s d effect size = 0.5; F-test; SD = 7.8 mV in

non-epileptogenic MTG and SD = 4.4 mV in epileptogenic frontal

lobe) that is implemented in our models has a ‘‘moderate’’ effect

size. Finally, we confirmed that the measured heterogeneities

are not biased by variability between patients (Figure S2), a

finding supported by recent multi-patch data in human cortex

showing that biophysical properties demonstrate smaller be-

tween-subject than within-subject variability (Planert et al.,

2021).

The second measure of cellular excitability that demonstrated

significant difference between groups was the FI curve (i.e., acti-

vation function), which captures the firing rate (F) as a function of

input current (I). The FI curve of the population of neurons from

the epileptogenic zone displayed qualitative and quantitative dif-

ferences compared to neurons from both non-epileptogenic

MTG and frontal lobe (Figure 1C). Interestingly, the FI curve

shows that pyramidal cells from the epileptogenic zone require

more input current to induce repetitive firing and have overall

decreased firing rates for all input currents (p = 0.03 when

comparing to non-epileptogenic frontal lobe at 200 pA, p =

0.02 when comparing to non-epileptogenic frontal lobe at



Figure 1. In vitro human tissue recordings reveal significantly different electrophysiological heterogeneity between epileptogenic and non-

epileptogenic populations

(A) The coefficient of variation (CV) in the distance to threshold (DTT) is significantly larger in both the temporal, non-epileptogenic (i.e., non-epileptogenic MTG;

n = 77) and frontal, non-epileptogenic (i.e., non-epileptogenic frontal lobe; n = 12) populations compared to the frontal, epileptogenic (i.e., epileptogenic frontal

lobe; n = 13) population (p = 0.04 to temporal, non-epileptogenic, p = 0.03 to frontal, non-epileptogenic; two sample coefficient of variation test). The CVmeasure

is implemented considering the significantly reduced mean DTT in frontal, non-epileptogenic data compared with the other two populations (p = 0.01 for both

comparisons; non-parametric Mann-Whitney test). We compare the frontal, epileptogenic and temporal, non-epileptogenic populations computationally given

their similar mean DTT (p = 0.7). Plotted bars indicate mean ± standard deviation (SD).

(B) An alternative visualization of the DTT distributions via fit Gaussian probability density functions. All three datasets were deemed normal after passing both the

Shapiro-Wilk and D’Agostino-Pearson omnibus normality test with alpha = 0.05.

(C) Neurons from non-epileptogenic populations show similar, linear activation functions (i.e., FI curves). Firing frequency is significantly lower in the frontal,

epileptogenic population for a 200-pA injection compared to the temporal, non-epileptogenic (p = 0.009; two-way ANOVA-Tukey’s multiple comparison test) and

frontal, non-epileptogenic (p = 0.03) populations, as well as for a 250-pA injection compared to the temporal, non-epileptogenic (p = 0.002) and frontal, non-

epileptogenic (p = 0.02) populations. Plotted bars indicate mean ± standard error measure (SEM).

(D) All three populations show a similar spike frequency adaptation ratio (see details in STAR Methods), with the only significant difference being between the

means from the frontal, non-epileptogenic and temporal, non-epileptogenic populations (p = 0.01; one-way ANOVA post hoc with Dunn’s multiple comparison

test). Plotted bars indicate mean ± SD.

(E) Example cell voltage responses following depolarizing current injections (50–250 pA) from all three populations, as used to calculate the FI curve (colors denote

population as in previous panels). See also Figures S1 and S2.
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250 pA, p = 0.009 when comparing to non-epileptogenic MTG at

200 pA, and p = 0.002 when comparing to non-epileptogenic

MTG at 250 pA; two-way ANOVA-Tukey’s multiple comparison

test). This non-linear behavior is in strong contrast to the activa-

tion functions measured in non-epileptogenic zones, character-

ized by both higher and more linear changes in firing rates. All

three populations show a similar spike frequency adaptation ra-

tio (Figure 1D), including no significant difference between

epileptogenic frontal lobe and non-epileptogenic MTG (the re-
gions focused on in our modeling), indicating that differences

in the FI curve are not due to differing adaptation ratios. Example

firing traces from each population (in response to each of the cur-

rent steps used in FI curve generation; note that the spike fre-

quency adaptation ratio is calculated from one of these steps,

chosen as described in the STAR Methods for each individual

neuron) are found in Figure 1E. This increased excitability of

the non-epileptogenic populations appears contradictory to

the understanding of seizure as a hyperactive brain state,
Cell Reports 39, 110863, May 24, 2022 3
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although some prior studies have hinted at this phenomenon

(Colder et al., 1996; Schwartzkroin et al., 1983); additionally,

the significantly increased first-spike latency in our epileptogenic

population (Figure S1C) is further evidence for the decreased

single-cell excitability of neurons in this population. We further

investigate this in the context of biophysical heterogeneity

below.

FI curves from epileptogenic neurons also demonstrated

decreased variability: the SDs of the frequencies in the epilepto-

genic population are significantly lower compared to the tempo-

ral, non-epileptogenic population at 150 pA (p = 0.02, Levene’s

test) and at 200 pA (p = 0.03), and to the frontal, non-epilepto-

genic population at 200 pA (p = 0.03). Furthermore, the higher

input current required to elicit repetitive spiking in our epilepto-

genic population can be contextualized as a homogenizing

feature, as neurons will respond homogeneously (i.e., without

spiking) to a larger range of inputs. The smaller slope of the

epileptogenic FI curve has a similar effect when repetitive spiking

occurs, as changes in the input current will yield smaller changes

in the output firing frequency. These findings showcase an

additional pattern of decreased heterogeneity in epileptogenic

neurons’ spiking behavior.

Spiking E-I neural networks with epileptogenic levels of
excitatory heterogeneity are more vulnerable to sudden
changes in synchrony
Given these experimental results, we next computationally

explored the effects of the observed differences in biophysical

heterogeneity on the transition to a synchronous state akin to

the transition to seizure (Zhang et al., 2011). We developed a

spiking network model of a cortical microcircuit comprised of

recurrently connected excitatory and inhibitory neurons (see de-

tails in STAR Methods), motivated in part by the long history of

seizure modeling (Kramer et al., 2005; Jirsa et al., 2014) and pre-

vious models of decorrelated activity in the cortex (Vogels and

Abbott, 2009; Renart et al., 2010; Ostojic, 2014). Our choice of

model parameters (see details in STAR Methods) positioned

the system near a tipping point at which synchronous activity

might arise (Jadi and Sejnowski, 2014a, 2014b; Neske et al.,

2015; Rich et al., 2020b) in order to determine the effects of

cellular heterogeneity on this potential transition.

We subjected these networks to a linearly increasing external

drive to the excitatory cells. This allowed us to observe the dy-

namics and stability of the asynchronous state, known to be

the physiological state of the cortex (Vogels and Abbott, 2009;

Renart et al., 2010; Ostojic, 2014), by determining how vulner-

able the network is to a bifurcation forcing the system into a state

of increased synchrony and firing. A biological analog for this

paradigm would be an examination of whether induced hyper-

excitability might drive the onset of seizure-like activity in vitro,

although such perturbations can more easily be performed

continuously (i.e., our linearly increasing external drive) in silico.

To facilitate implementing experimentally derived heterogene-

ities in our model, we compared epileptogenic frontal lobe with

non-epileptogenic MTG given their similar mean DTT values

(p = 0.7, non-parametric Mann-Whitney test; mean = 21.2 mV

for non-epileptogenic MTG and mean = 21.7 mV for epilepto-

genic frontal lobe). These populations display significantly diff-
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erent SDs in their DTT values (reported above). Given the defini-

tion of our neuron model (rheobases sampled from a normal

distribution with with mean 0; see details in STAR Methods),

we implement differing heterogeneities by sampling rheobase

values for our neural populations from Gaussian distributions

with these varying SDs. In this model, the term rheobase refers

to the inflection point of the model neuron’s activation function

(see STAR Methods). Heterogeneity in this mathematically

defined rheobase is the in silico analog of heterogeneity in the

DTT (i.e., the distribution of rheobases in Figures 2C and 2D cor-

responds to a horizontal shift to a mean of 0 of the DTT distribu-

tions in Figure 1B).

The rheobase heterogeneity was parameterized by the SD se

for excitatory neurons and si for inhibitory neurons (see diagrams

in Figures 2A and 2B). This resulted in diversity in the neurons’

activation functions and aligned the variability in their excitabil-

ities with that measured experimentally. We refer to such rheo-

base heterogeneity simply as heterogeneity in the remainder of

the text. Models with non-epileptogenic (high se = 7:8 mV; Fig-

ure 2E) and epileptogenic (low se = 4:4 mV; Figure 2F) excitatory

heterogeneity with identical inhibitory heterogeneity (si = 10:0

mV) exhibit distinct behaviors. With low excitatory heterogeneity,

a sharp increase in excitatory synchrony associated with

increased firing rates is observed. In contrast, when the excit-

atory heterogeneity was high, both synchrony and firing rates

scaled linearly with input amplitude.

We further investigated the respective roles of excitatory

versus inhibitory heterogeneity in these sudden transitions.

With non-epileptogenic excitatory heterogeneity (high se), in-

creases in excitatory synchrony, excitatory firing rates, and

inhibitory firing rates were all largely linear regardless of whether

si was low (Figure 3A) or high (Figure 3B). Conversely, with excit-

atory heterogeneity reflective of epileptogenic cortex (low se),

synchronous transitions were observed for both low (Figure 3C)

and high (Figure 3D) levels of si. This transition is of notably

higher amplitude when si is low, indicative of differing underlying

dynamical structures driven by si.

Limitations inherent in performing patch-clamp experiments in

human cortical tissue prevented the direct measurement of DTT

variability in human inhibitory interneurons. To circumvent this,

we first studied a range of inhibitory DTT variability aligning

with that measured in pyramidal neurons, and then we systemat-

ically varied and extended this range to account for the possibil-

ity of increased heterogeneity among the interneuronal popula-

tion (Cossart, 2011; Huang and Paul, 2019). This enabled the

characterization of the contribution of both excitatory and inhib-

itory heterogeneity to the onset of seizure-like behavior across

physiologically relevant ranges of se and si. Exploring this range

of si values revealed dichotomous dynamics at low and high het-

erogeneities (Figure S3), of which we illustrate exemplars in Fig-

ures 3 and 4.

Dynamical differences in networkswith varying levels of
heterogeneity are explained by their distinct
mathematical structures
To gain deeper insight into the effect of heterogeneity at a

potential transition to synchrony, we derived and analyzedmath-

ematically the mean-field equations associated with our network



Figure 2. Experimentally observed decreases in heterogeneity among excitatory cells promote ictogenic-like transitions in E-I spiking neural

network models

(A and B) Schematic representation of model spiking E-I networks, with pyramidal neurons represented as triangles and interneurons as circles. Blue neurons

represent non-epileptogenic (i.e., high) levels of heterogeneity (see also the variable neuron sizes), while red neurons represent epileptogenic (i.e., low) levels of

heterogeneity (see also the similar neuron sizes). This color schema is maintained in the remaining figures. Here, the inhibitory (black neurons) heterogeneity is set

at a moderate value among the range studied (si = 10:0 mV), while se = 7:8 mV in (A) and se = 4:4 mV in (B).

(C and D) Visualizations of the distribution of model rheobases, with the solid curve (red or blue for excitatory neurons, black for inhibitory neurons) illustrating the

Gaussian function, and the corresponding histogram illustrating the example random distribution underlying the simulations in this figure.

(E and F) Example simulations with a linearly increasing excitatory drive. Background: raster plot of network activity, with each circle representing the firing of an

action potential of the associated neuron (excitatory neurons below horizontal line, inhibitory neurons above). Foreground: quantifications of network activity

taken over 100-ms sliding time windows, with the excitatory synchrony quantified by the synchrony measure in blue or red (left axis), as well as excitatory (black)

and inhibitory (gray) population firing rates (right axis). Bottom: drive (IeðtÞ) to the excitatory population.
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model (see STAR Methods). Specifically, we calculated and

classified the fixed points of mean-field equations for different

values of se and si for the range of drives studied in the spiking

networks. The fixed point(s) of the mean-field (for the excitatory

population activity, Ue) are plotted in the second row of each

panel in Figure 4. These values correspond to population aver-

ages of the (unitless) membrane potential analog taken across

the individual units in our spiking networks (uje). We then per-

formed linear stability analysis for those fixed points, extracting

eigenvalues that determine the fixed points’ stability, and how

it might change as input drive is varied. The dampening rate rep-

resents the speed at which the system is either repelled from or

returns to its fixed point(s) and thus classifies their stability (i.e.,

the real components of eigenvalues associated with each fixed

point). The dampening rate is plotted in the row below the fixed

points, followed by the frequency associated with fixed points

with imaginary eigenvalues (i.e., the imaginary components of

the eigenvalues).

These mean-field analyses confirm that both excitatory and

inhibitory heterogeneity have notable impacts on changes in

network dynamics analogous to seizure onset. In the top row

of each panel in Figure 4, we present quantifications of our
spiking network dynamics as in Figure 3, but averaged over

100 independent simulations. In the presence of high heteroge-

neity (whenever se and/or si are large, i.e., Figures 4A, 4B, and

4D), increased drive results in a smooth and approximately linear

increase in both mean activity and synchrony. The mean-field

analyses of the associated systems reveal a single fixed point,

whose value increases monotonically with drive.

The similar dynamics in these scenarios are reflected by their

stability properties. When either or both of the heterogeneities

are high (Figures 4A, 4B, and 4D), the mean-field analyses reveal

a single, stable fixed point and the absence of bifurcations.

Oscillatory behavior arises from the interaction between noise

and stable oscillatory fixed points yielding quasi cycles (Boland

et al., 2008), with the development of synchrony occurring

gradually.

In contrast to these cases, spiking networks with low hetero-

geneity (low se and si; Figure 4C) exhibit sudden increases in

mean activity and synchrony. The associated mean-field system

displays multistability: it possesses multiple fixed points. As the

input drive increases, two of these fixed points coalesce and

disappear via a saddle-node bifurcation (Chow and Hale,

2012). The system’s mean activity is thus suddenly drawn
Cell Reports 39, 110863, May 24, 2022 5



Figure 3. Effects of varied inhibitory heterogeneity on sudden transitions into synchrony in E-I spiking neural network models

Schematics and single simulation visualizations following the conventions of Figure 2 (with inhibitory heterogeneity reflected by darker shaded blue and red

neurons), now shown for four combinations of excitatory and inhibitory heterogeneities: se = 7:8mV and si = 2:5mV in (A), se = 7:8mV and si = 16:75mV in (B),

se = 4:4mV and si = 2:5mV in (C), and se = 4:4mV and si = 16:75mV in (D). Relative sizes of se and si represent the relative heterogeneity levels. Transitions into

high levels of excitatory synchrony are seen in (C) and (D), with the transition in (C) yielding a notably higher level of synchrony (highlighted by the gray box) and

occurring much more abruptly. Meanwhile, changes in the dynamics of (A) and (B) are largely linear, with the excitatory synchrony consistently lower when both

excitatory and inhibitory heterogeneities are at their highest in (B). See also Figure S3.
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toward a preexisting large-amplitude limit cycle. This transition

occurs at a drive corresponding with the sudden increase in syn-

chrony and mean activity seen in the spiking network. In the

mean-field system, the frequency of resulting oscillations is

faster compared to the high heterogeneity scenarios, further

emphasizing the uniqueness of the dynamical system with low

heterogeneity.

We note that themore notable inter-trial variability in Figure 4D

(as illustrated by the fainter ± SD curves) results from the vari-

able (yet gradual) onset of increased synchrony, in contrast to

the transition in Figure 4C that reliably occurs at a specific drive.

The different timings of the onset of synchrony in each indepen-

dent simulation yield oscillations at different relative phases,

which explains why oscillations are not observed in our averaged

firing rate measures displayed in Figure 4 (notably, such oscilla-

tions are subtle even in the single simulation visualizations of Fig-

ure 3 given the 100-ms sliding timewindow); rather, the presence

of oscillatory activity is demarcated by a notable increase in the

mean synchrony measure.

In our mathematical analyses, we focus on characterizing the

system’s fixed points and inferring from them the presence of

oscillatory behavior associated with limit cycles. Directly identi-

fying such limit cycles is a mathematically arduous process

(Savov and Todorov, 2000) unnecessary for the conclusions

drawn from our analyses. However, considering the behavior

of our spiking networks remains ‘‘bounded’’ (see Figure S3B),

we can confidently infer that such limit cycles exist, as is typical

when a supercritical Hopf bifurcation yields an unstable fixed

point.
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To facilitate the comparison of our spiking networks with our

mean-field calculations, we developed a bifurcation measure

(see STAR Methods) quantifying the tendency for sudden (but

persistent) changes in the activity of the spiking network. Higher

values of this measure indicate the presence of a more abrupt in-

crease in the quantification of interest as the drive increases.

Given the more subtle qualitative difference in the firing rates in

our spiking networks, we applied the bifurcation measure to

the excitatory firing rate (Be) for the four combinations of se

and si examined in Figure 4. This revealedmore sudden changes

with low se and si (Be =0.1050) as opposed to any other scenario

(high se, low si, Be = 0.0416; high se, high si, Be = 0.0148; low se,

high si, Be = 0.0333) where the transition is smoother. This anal-

ysis indicates that the dynamical transition present in Figure 4C

is not only distinctive in the magnitude of the synchronous onset,

but also in an associated sudden increase in firing rates.

Since the seizure state is typified both by increased synchrony

and firing rates (Jiruska et al., 2013; Zhang et al., 2011), this anal-

ysis confirms that the sharp transition in these quantities only

observed in spiking models with low heterogeneity is driven by

a saddle-node bifurcation (Figure 4C). These results echo other

seizure modeling studies showcasing that ictogenic transitions

can arise driven by mathematical bifurcations, and specifically

the observation that saddle-node bifurcations underlie abrupt

seizure-onset dynamics (Kramer et al., 2005; Jirsa et al., 2014;

Saggio et al., 2020). As a corollary, high heterogeneity improves

network resilience to sudden changes in synchrony by prevent-

ing multistability and fostering gradual changes in network firing

rate and oscillatory behavior.



Figure 4. Effects of heterogeneity on

spiking network dynamics is explained by

stability analysis of mean-field equations

Panels correspond to heterogeneity levels studied

in Figure 3. Top row: measures of spiking network

dynamics (as seen in Figures 2 and 3) averaged

over 100 simulations (dark curve = mean, lighter

curve = ± one SD). Remaining rows: results of

stability analysis on mean-field equations corre-

sponding with these networks visualized via the

fixed point of mean excitatory activity (top), and

the dampening rate and oscillatory frequency

associated with each fixed point. Green and gold

coloring are used to differentiate the three distinct

fixed points in (C), while the stability of fixed points

is color coded (purple = unstable, i.e., positive

dampening rate; black = stable, i.e., negative

dampening rate). Notably, only in (C), where both

heterogeneity levels are low, do we see multiple

fixed points and a saddle-node bifurcation that

occurs at a value of the drive corresponding with

the sudden transition in spiking networks (high-

lighted by the gray box). See also Figures S4–S8.
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Asymmetric effects of excitatory and inhibitory
heterogeneity
Figure 4 highlights distinct effects of excitatory versus inhibitory

heterogeneity on the onset of synchrony in spiking networks and

the structure ofmean-field systems (see the differences between

Figures 4A and 4C). To clarify these effects, we explored a larger

parameter space of se and si, as shown in Figure S3. For each

heterogeneity combination, we applied the bifurcation measure

to excitatory synchrony (B, hereafter referred to simply as the

bifurcation measure; see details in STAR Methods), which quan-

tifies the abruptness of increased network synchrony in
response to a changing network drive.

This exploration confirms the asymmetric

effect of excitatory and inhibitory hetero-

geneity on these sudden transitions, with

a moderate value of B for low se and

high si but a minimal value of B for high

se and low si, comporting with patterns

observed in previous computational liter-

ature (Mejias and Longtin, 2014).

Similar asymmetry is seen in our spiking

network dynamics (B in Figure S3A and

the synchrony measure S in Figure S3B)

and our mean-field systems (the bolded

regimes of networks exhibiting multi-

stability in Figure S3A and networks

exhibiting an unstable fixed point in

Figure S3B). We show an example visual-

ization of the fixed points and their classi-

fications in Figure S4. Figure S5 shows

the details of the determination of fixed

point stability in Figure S3B.

We further used the bifurcation mea-

sure to test whether the asymmetric

effects of excitatory and inhibitory hetero-
geneity are generalizable and confirm our system’s robustness.

In Figure S6 we show the pattern followed by B is robust to

changes in connectivity density. In the four exemplar cases high-

lighted in Figures 3 and 4 the dynamics are robust for reasonable

changes to the primary parameters dictating our network topol-

ogy, as shown in Figure S7, and similar robustness in the bifurca-

tion structure of the associated mean-field systems is shown in

Figure S8.

This analysis shows that notable decreases in B occur at

higher values of si than they do for se, a result that has important

implications for our understanding of the potentially differing
Cell Reports 39, 110863, May 24, 2022 7



Figure 5. Differing levels of neuronal heterogeneity explain population activation function differences observed experimentally between

epileptogenic and non-epileptogenic cortex

(A) Experimentally observed firing frequencies plotted against input current (left and bottom axes, mean ± SEM) for epileptogenic frontal lobe (red) and non-

epileptogenicMTG (blue) tissue (as shown previously in Figure 1C), visualized against an analogousmeasure of the relationship between population activity (firing

probability) and drive (membrane potential analog) in our neuron models (right and top axes, details in STAR Methods). The shape of the curve for the hetero-

geneity value derived from epileptogenic tissue experimentally (red, se = 4:4) qualitatively matches the experimental data, and a best fit (light red, se = 5:03,

r2 = 0.94) is obtained with a similarly low heterogeneity value. In contrast, the curve associated with the heterogeneity value derived from non-epileptogenic tissue

experimentally (blue, se = 7:8) closely matches the experimental data from non-epileptogenic tissue and is nearly identical to the best fit (light blue, se = 7:77,

r2 = .98).

(B) A visualization of the entirety of the sigmoidal input-output relationship for our neuron models, with the regime compared to experimental data in (A) in a black

box. Fainter curves represent input-output relationships for individual neurons, either epileptogenic (red) or non-epileptogenic (blue): the wider variability in the

blue curves yields the flatter sigmoid representing the population activation function for our non-epileptogenic heterogeneity value, and vice-versa for the red

curves associated with the epileptogenic heterogeneity value.
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roles of excitatory and inhibitory heterogeneity in seizure resil-

ience. When the loss of specific interneuron types in some epi-

lepsies (Cossart et al., 2001; Cobos et al., 2005) and increases

in inhibition (Klaassen et al., 2006) are viewed as homogenizing

changes, these computational predictions may help reconcile

how both increases and decreases in inhibition may be destabl-

izing to neuronal circuits.

Differences in population-averaged activation functions
explained by differences in neuronal heterogeneity
Finally, we return to the counter-intuitive differences in activation

functions measured experimentally. As noted previously, the

population of neurons from epileptogenic tissue exhibited qual-

itatively and quantitatively different activation functions via non-

linear and hypo-active firing responses (Figure 1C).

To understand if heterogeneity accounts for these obse-

rvations, we computed analytically the averaged activation

functions of the excitatory populations in our model networks.

In Figure 5A, the experimentally derived firing frequencies from

epileptogenic frontal lobe and non-epileptogenic MTG are

plotted alongside activation functions of our model populations.

For low heterogeneity, the model population’s activation func-

tion captured both the non-linear and low firing rate responses

measured experimentally for neurons in the epileptogenic

zone. The increased excitability and linearity seen experimentally

in non-epileptogenic tissue were captured by the averaged acti-

vation function for our more heterogeneous model population.

This comparison is appropriate considering the FI curve data

from Figure 1C is averaged over the populations of interest,

and is thus analogous to the population activation function of

our model neurons.
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To quantitatively support this correspondence, we found the

values of se that best fit our experimental data using a non-linear

least squares method (see details in STAR Methods). The data

from epileptogenic frontal lobe was best fit by an activation func-

tion (see Equation 12) with se = 5:0 mV (r2 =0.94), while the data

from non-epileptogenic MTG was best fit by an activation func-

tion with se = 7:8 mV (r2 =0.98). The close match between the

best-fit values and the experimentally observed heterogeneity

values means the features of our epileptogenic (resp. non-

epileptogenic) activation curves are captured by neural popula-

tions with low (resp. high) heterogeneity.

This somewhat counter-intuitive result is explained by the line-

arizing effect that increased heterogeneity, and noise more

generally, has on input-output response functions (Mejias and

Longtin, 2014; Lefebvre et al., 2015). This effect is illustrated in

Figure 5B. The bolded sigmoids represent the averaged activity

of the entire population of heterogeneous neurons alongside in-

dividual activation functions (fainter sigmoids). Increased (resp.

decreased) variability dampens (resp. sharpens) the averaged

response curve for the non-epileptogenic (resp. epileptogenic)

setting. Such variability-induced linearization raises the excit-

ability at low input values, corresponding with the dynamics

highlighted in Figure 5A. Figure 5 illustrates that our model

predicts significant differences in the activation function be-

tween epileptogenic and non-epileptogenic tissue, and that het-

erogeneity, or lack thereof, can explain counter-intuitive

neuronal responses. However, these differences are not neces-

sarily reflected in network dynamics, as illustrated by the similar

network firing rates in Figures 4A and 4C at high levels of drive. In

the context of seizure, this implies that excessive synchroniza-

tion of a neural population need not be exclusively associated
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with increased excitability as represented by a lower minimum

input to elicit repetitive firing or a higher firing rate of the popula-

tion of isolated neurons.

DISCUSSION

In this work, we propose that neuronal heterogeneity may serve

an important role in generating resilience to ictogenesis. We

explored this hypothesis using in vitro electrophysiological

characterization of human cortical tissue from epileptogenic

and non-epileptogenic areas, which revealed significant differ-

ences in DTT (a key determinant of neuronal excitability) vari-

ability in the pathological and non-pathological settings. The

ability to perform experiments on tissue from human subjects

diagnosed with epilepsy makes these results particularly rele-

vant to the human condition. We then implemented these

experimentally observed heterogeneities in in silico spiking

neural networks. Our explorations show that networks with

high heterogeneity, similar to the physiological setting, exhibit

a more stable asynchronous firing state that is resilient to sud-

den transitions into a more active and synchronous state.

Differing heterogeneity levels also explained the significant dif-

ferences in the experimentally obtained population activation

functions between epileptogenic and non-epileptogenic tissue.

Finally, using mathematical analysis, we show that differences

in the bifurcation structure of analogous mean-field systems

provide a theoretical explanation for dynamical differences

in spiking networks. Viewed jointly, these three avenues of

investigation provide compelling evidence that reduction in

biophysical heterogeneity exists in epileptogenic tissue, can

yield dynamical changes with parallels to seizure onset,

and that there are theoretical principles underlying these

differences.

Computational studies have established the role played by

heterogeneity in reducing synchronous activity in the context

of physiological gamma rhythms (Börgers and Kopell, 2003,

2005; Börgers et al., 2012). Other investigations have imple-

mented heterogeneity in more varied neural parameters (Yim

et al., 2013) and identified asymmetric effects of excitatory and

inhibitory heterogeneities on network dynamics (Mejias and

Longtin, 2012, 2014). Our study complements and extends the

understanding of the role of biophysical heterogeneity in neural

networks to human epilepsy by (1) using experimentally derived

heterogeneities of the DTT in non-epileptogenic and epilepto-

genic surgical specimens, which when implemented in silico

are dynamically relevant; (2) exploring the effects of heterogene-

ity on the transition to synchrony, a hallmark of seizure onset; and

(3) detailing the differing extents to which inhibitory and excit-

atory heterogeneity contribute to circuit resilience to synchro-

nous transitions. Our mathematical analysis further builds on

this work to provide a theoretical undergird for these observed

dynamics.

The asymmetric effect of excitatory and inhibitory heterogene-

ities in our model network supports predictions regarding inhib-

itory heterogeneity’s role in ictogenesis. Figure S3A shows that

the sudden onset of synchrony is more likely to arise for moder-

ate values of si than se. The physiological heterogeneity of the

entire inhibitory population is likely to be larger than for the excit-
atory population (Cossart, 2011), driven in part by the diverse

subpopulations of interneurons (Huang and Paul, 2019). Thus,

our work makes two interesting predictions: first, a moderate

loss of heterogeneity among inhibitory interneurons might be

sufficient to make a system vulnerable to ictogenesis; second,

the preservation of inhibitory heterogeneity may provide a

bulwark against ictogenesis even if excitatory heterogeneity is

pathologically reduced as observed experimentally.

Our modeling suggests that post-synaptic inhibitory heteroge-

neities, in addition to synaptic mechanisms that underlie the de-

correlating function of interneurons (Tetzlaff et al., 2012; Sippy

and Yuste, 2013), play an important role in the resilience of cir-

cuits to sudden transitions to synchronous states. Thus, in addi-

tion to changes in EIB (Dehghani et al., 2016; �Ziburkus et al.,

2013; Jasper, 2012), it is intriguing to speculate that our results

might explain both loss (Cobos et al., 2005; Cossart et al.,

2001) and gain of function (Klaassen et al., 2006) alterations in in-

hibition as reduction in interneuronal homogeneity that reduce

resilience to ictogenesis.

It is also interesting to conjecture about how these results

might be reconciled with the perspective of epilepsy as a disor-

der of hyper-excitability and the use of high-frequency oscilla-

tions (HFOs) as a marker for the epileptogenic zone. Our findings

suggest how interictal hypometabolism observed using positron

emission tomography (PET) (Niu et al., 2021) and manifestations

of ‘‘hyper-excitability,’’ such as inter-ictally recorded HFOs and

inter-ictal spikes (IIDs) (Frauscher et al., 2017; Jiruska et al.,

2017; Zhang et al., 2011; Schevon et al., 2019), may coexist.

We propose that the PET hypometabolism may arise in part

from cellular homogenization that reduces population excitability

(Figures 1C and 5B), since metabolism is tightly linked to firing

rate, while this homogenization simultaneously makes the sys-

tem more vulnerable to transitions into synchronous states (Fig-

ure 4C) such as HFOs, IIDs, and seizures.

Notably, previous work has indicated that HFOs arise, in part,

from ‘‘uninhibited pyramidal cells’’ (Gulyás and Freund, 2015).

Speculatively, this decreased inhibition could arise from a ho-

mogenized, and in turn hypo-excitable, inhibitory population

(Figure 5). This may further explain the hypometabolism

observed inter-ictally given that interneuronal spiking appears

to contribute more to brain metabolism than pyramidal cells (Ac-

kermann et al., 1984). While speculative, the interconnected na-

ture of neural heterogeneity and excitability identified in this work

can, at minimum, motivate further studies using targeted patch-

ing of interneurons in both human and chronic rodent models to

characterize if homogenization occurs in interneuronal popula-

tions during epileptogenesis and epilepsy.

Lastly, one might wonder what neurobiological processes

render an epileptogenic neuronal population less biophysically

diverse. While under physiological conditions channel densities

are regulated within neurons to obtain target electrical behaviors

(Marder, 2011), it remains speculative as to what processes

might lead to pathological homogenization of neuronal popula-

tions. However, modeling suggests that biological diversity

may be a function of input diversity, so ‘‘homogenizing the input

received by a population of neurons should lead the population

to be less diverse’’ (Tripathy et al., 2013), possibly through

intrinsic plasticity mechanisms (Beck and Yaari, 2008; Zhang
Cell Reports 39, 110863, May 24, 2022 9
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and Linden, 2003). Although requiring further exploration, it is

possible that the information-poor, synchronous post-synaptic

barrages accompanying a seizure (Trevelyan et al., 2013) repre-

sent such a homogenized input, reducing a circuit’s resilience to

synchronous transitions and promoting epileptogenesis by

reducing biophysical heterogeneity.

Limitations of the study
Our results include fewer neurons from the frontal lobe consid-

ering it is a less common source of human cortical tissue than

non-epileptogenic MTG. Thus, we use the population of non-

epileptogenic frontal lobeneuronsonlyasevidence thatheteroge-

neity levels are not confounded by comparison between the tem-

poral and frontal lobes. The sample size of our epileptogenic

neuronswas limitedby thenecessity toconfirmtheepileptogenic-

ity of the resected cortex using using electrocorticography

(ECoG), making this dataset highly selective. Although one might

obtain a greater sample by comparing non-epileptogenic MTG to

epileptogenic mesial temporal structures (i.e., subiculum, para-

hippocampal gyrus, hippocampus), comparing the allocortex

and neocortex would add a further confound. Alternatively, ob-

taining non-epileptogenic medial temporal lobe cortex is exceed-

ingly rare.With these important limitations in the access to human

cortical tissue considered, our comparison between epilepto-

genic frontal lobe, non-epileptogenic frontal lobe, andnon-epilep-

togenic MTG represent a best-case comparison of the biophysi-

cal properties of epileptogenic and non-epileptogenic human

tissue while controlling for confounds introduced by the differing

brain regions. Our computational and mathematical explorations

optimize the conclusions that can be drawn from this rare data.

Our model networks, while analogous to E-I microcircuits

commonly used in computational investigations of cortical activ-

ity (Renart et al., 2010; Ostojic, 2014; Vogels and Abbott, 2009),

are simplified from the biophysical reality and are correspond-

ingly limited. For instance, such models cannot reasonably cap-

ture the full richness and complexity of seizure dynamics and do

not include multiple inhibitory populations (Huang and Paul,

2019). However, this simplifying choice facilitates findings that

have their foundation in fundamental mathematical principles

that are not especially reliant on biophysical intricacies such as

network topology (see the confirmation of the robustness of

our models in Figures S7 and S8).

In addition, experimental limitations arising from patch-clamp

experiments limit the number of potential interneurons that can

be patched in human tissue, precluding measuring inhibitory

DTT and its variability experimentally. Thus, the values of si stud-

ied in our model networks were chosen to approximately align

with that seen experimentally in the excitatory population while

accounting for the possibility of increased inhibitory heterogene-

ity (Cossart, 2011; Huang and Paul, 2019), with this parameter

systematically varied throughout the study.

These limitations warrant the development of biophysically

detailed, human-inspired neuron (Rich et al., 2021) and network

models (Guet-McCreight et al., 2022; Yao et al., 2022), allowing

for the study of additional types of heterogeneity. In this vein,

while we do not model seizures per se in this work, the two

most common types of seizure onsets observed in intracranial

recordings are the low-voltage fast (Lee et al., 2000) and hy-
10 Cell Reports 39, 110863, May 24, 2022
per-synchronous onsets (Velascol et al., 1999). Both reflect a

sudden transition from a desynchronized state to a synchronous

oscillation, albeit of differing frequencies. Given the ubiquity of

such onsets, our modeling of the transition to synchrony is likely

to be broadly relevant to epilepsy.
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Materials availability
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Data and code availability
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LostNeuralHeterogeneity and via Zenodo, and are publicly available as of the date of publication. The DOI is listed in the

key resources table. The simulation data and the raw experimental data are available upon request to the lead contact.

d All original code is openly accessible at https://github.com/Valiantelab/LostNeuralHeterogeneity and via Zenodo at https://doi.

org/10.5281/zenodo.6470912 as of the date of publication. DOIs are listed in the key resources table.
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d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures on human tissuewere performed in accordancewith the Declaration of Helsinki and approved by the University Health

Network Research Ethics board. Patients underwent a standardized temporal or frontal lobectomy under general anesthesia using

volatile anesthetics for seizure treatment (Valiante, 2009). Tissue was obtained from patients diagnosed with temporal or frontal lobe

epilepsy, or patients undergoing tumor resection, who provided written consent. Demographic information (including age, sex, and

diagnosis) was obtained and anonymized as stated in the research protocol, although full demographic information was not available

for every patient.

Tissue from temporal lobe was obtained from 22 patients, 12 male and 8 female (2 sex unknown), age ranging between 21 and 63

years (mean age ± SEM: 37:8± 2:9), with 1-9 cells studied per patient. The resected temporal lobe tissue displayed no structural or

functional abnormalities in preoperative MRI and was deemed ‘‘healthy’’ tissue considering it is located outside of the epileptogenic

zone. Tissue from epileptogenic frontal lobe was obtained from five patients, 4 female and 1 male, age ranging between 23 and 36

years (mean age ± SEM: 30:2± 2:4), andwas deemed ‘‘epileptogenic’’ tissue as confirmed using electrocorticography (ECoG), mak-

ing this data set highly selective. 1-5 cells were studied per patient. Tissue from non-epileptogenic frontal lobe obtained during tumor

resection was obtained from two patients, both female, ages 37 and 58 years, with 8 and 4 cells studied per patient, and was also

considered ‘‘healthy, non-epileptogenic’’ tissue as it was taken away from the tumor itself. This tissue is a common source of human

cortical tissue to study human cell and circuit properties (Kalmbach et al., 2018, 2021; Testa-Silva et al., 2014).

METHOD DETAILS

Experiment: Human brain slice preparation
After surgical resection, the cortical tissue block was instantaneously submerged in ice-cold (� 4�C) cutting solution that was contin-

uously bubbled with 95% O2-5% CO2 containing (in mM): sucrose 248, KCl 2, MgSO4.7H2 O3, CaCl2.2H2O 1, NaHCO3 26,

NaH2PO4.H2O 1.25, and D-glucose 10. The osmolarity was adjusted to 300-305mOsm. The human tissue samples were transported

(5-10 min) from Toronto Western Hospital (TWH) to the laboratory for further slice processing. Transverse brain slices (400 mm) were

obtained using a vibratome (Leica 1200 V) perpendicular to the pial surface to ensure that pyramidal cell dendrites were minimally

truncated (Beaulieu-Laroche et al., 2018; Kalmbach et al., 2018) in the same cutting solution as used for transport. The total duration,

including slicing and transportation, was kept to a maximum of 20-30 min. After sectioning, the slices were incubated for 30 min at

34�C in standard artificial cerebrospinal fluid (aCSF) (in mM): NaCl 123, KCl 4, CaCl2.2H2O 1, MgSO4.7H2O 1, NaHCO3 26,

NaH2PO4.H2O 1.2, and D-glucose 10. The pH was 7.40 and after incubation the slice was held for at least for 60 min at room tem-

perature. aCSF in both incubation and recording chambers were continuously bubbledwith carbogen gas (95%O2-5%CO2) and had

an osmolarity of 300-305 mOsm.

Experiment: Electrophysiological recordings and intrinsic physiology feature analysis
Slices were transferred to a recording chamber mounted on a fixed-stage upright microscope (Axioskop 2 FS MOT; Carl Zeiss, Ger-

many). Recordings were performed from the soma of pyramidal neurons at 32-34� in recording aCSF continually perfused at 4 mL/

min. Cortical neuronswere visualized using an IR-CCD camera (IR-1000,MTI, USA) with a 403water immersion objective lens. Using

the IR-DICmicroscope, the boundary between layer 1 (L1) and 2 (L2) was easily distinguishable in terms of cell density. Below L2, the

sparser area of neurons (L3) was followed by a tight band of densely packed layer 4 (L4) neurons, with a decrease in cell density indi-

cating layer 5 (L5) (Moradi Chameh et al., 2021; Kalmbach et al., 2021).

Patch pipettes (3-6 M U resistance) were pulled from standard borosilicate glass pipettes (thin-wall borosilicate tubes with fila-

ments, World Precision Instruments, Sarasota, FL, USA) using a vertical puller (PC-10, Narishige). Pipettes were filled with intracel-

lular solution containing (in mM): K-gluconate 135; NaCl 10; HEPES 10; MgCl2 1; Na2 ATP 2; GTP 0.3, pH adjusted with KOH to 7.4

(290–309 mOsm).

Whole-cell patch-clamp recordings were obtained using a Multiclamp 700A amplifier, Axopatch 200B amplifier, pClamp 9.2 and

pClamp 10.6 data acquisition software (Axon instruments, Molecular Devices, USA). Electrical signals were digitized at 20 kHz using

a 1320X digitizer. The access resistancewasmonitored throughout the recording (typically between 8 and 25MU), and neuronswere

discarded if the access resistance was > 25 MU. The liquid junction potential was calculated to be�10.8 mV and was not corrected.

Electrophysiological data were analyzed off-line using Clampfit 10.7, Python and MATLAB (MATLAB, 2019). Electrophysiological

features were calculated from responses elicitepd by 600 ms square current steps as previously described (Moradi Chameh et al.,

2021). Briefly, the restingmembrane potential (RMP) wasmeasured after breaking into the cell (IC = 0). The firing threshold was deter-

mined following depolarizing current injections between 50 and 250 pA with 50 pA step size for 600ms; the threshold was calculated

by finding the voltage value corresponding with a value of dVdt that was 5% of the average maximal dVdt across all action potentials eli-

cited by the input current that first yielded action potential firing. The distance to threshold presented in this paper was calculated as

the difference between the RMP and threshold. The average FI curve (i.e., activation function) was generated by calculating the
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instantaneous frequency at each spike for each of the depolarizing current injections (50-250 pA, step size 50 pA, 600 ms) and aver-

aging over the population. Spike frequency adaptation ratio was calculated from the first current injection that yielded at least four

spikes, and is defined as the mean of the ratio of subsequent inter-spike intervals. This could not be quantified in every neuron if suf-

ficient spikingwas not elicited by the current-clamp protocol. This analysis utilizes the IPFX packagemade available through the Allen

Institute (https://github.com/AllenInstitute/ipfx), as used by Berg et al. (2021) amongst others.

Modeling: Spiking neural network
The cortical spiking neural network contains populations of recurrently connected excitatory and inhibitory neurons (Snyder and

Miller, 2012; Stevens and Zador, 1996). The spiking response of those neurons obeys the non-homogeneous Poisson process

Yj/Poisson
�
f
�
uj
x; h

j
� �

(Equation 1)

where Yj =
P
k

dðt � tkÞ is a Poisson spike train with rate f
�
ujx;h

j
�
.

The firing rate of neuron j is determined by the non-linear sigmoidal activation function f
�
ujx;h

j
�
,

f
�
uj
x;h

j
�
=

1

1+ e�bðujx�hjÞ (Equation 2)

where ujx is the membrane potential analogue (x = e whenever j is an excitatory neuron, and x = i whenever j is an inhibitory neuron)

and hj represents the rheobase. The constant b = 4:8 scales the non-linear gain.

Heterogeneity is implemented via the rheobases hj. The hj values are chosen by independently and andomly sampling a normal

Gaussian distribution whose standard deviation is se;i if neuron j is excitatory (e) or inhibitory (i). The values of si and se are varied

throughout these explorations between aminimum value of 2.5mV and amaximum value of 16.75mV. The heterogeneity parameters

for the model have a direct parallel with the heterogeneity in the distance to threshold (DTT) measured experimentally, with b chosen

so that the experimentally observed heterogeneity values and the heterogeneity parameters implemented in the model are within the

same range (compare Figures 1B, 2C, and 2D).

The membrane potential analogue ujx obeys the following dynamics:

a�1
x

duj
x

dt
=
�� uj

xðtÞ+Synj
ex +Synj

ix + Iox + IxðtÞ
�
+

ffiffiffiffiffiffiffi
2D

p
cj
x (Equation 3)

The variable ax represents the rate constant depending upon whether the neuron j is excitatory (x = e;ae = 100 Hz) or inhibitory

(x = i;ai = 200 Hz). The differential time scales are implemented given the different membrane time constants between cortical py-

ramidal neurons and parvalbumin positive (PV) interneurons (Neske et al., 2015).

Synjex and Synjix are the synaptic inputs to the cell j (from the excitatory and inhibitory populations, respectively), dependent upon

whether cell j is excitatory (x = e) or inhibitory (x = i). Our cortical model is built of 800 excitatory (Ne) and 200 inhibitory neurons (Ni)

(Traub et al., 1997; Rich et al., 2017, 2018). The connectivity density for each connection type (E-E, E-I, I-E, and I-I) is varied uniformly

via a parameter p. In this study, p = 1 is used (i.e., all-to-all connectivity) with the exception of in Figure S6. The synaptic strengths

are represented by wxy where x; y = e; i depending upon whether the pre-synaptic cell (x) and the post-synaptic cell (y) are excitatory

or inhibitory. In our model,wee = 100:000,wei = 187:500,wie = � 293:750, andwii = � 8:125. Negative signs represent inhibitory

signaling,while positive signs represent excitatory signalling. These values are chosen toplace the network near a tipping point between

asynchronous and synchronous firing based onmathematical analysis and previousmodelingwork (Rich et al., 2020b), and scaled rela-

tive to the values of b.

The post-synaptic inputs Synjex and Synjix are given by

Synj
ex =

1

Ne

XNe

k = 1;ksj

ckjwex

p
Ykðt � DtÞ (Equation 4)
Synj
ix =

1

Ni

XNi

k = 1;ksj

ckjwix

p
Ykðt � DtÞ (Equation 5)

where x = e; i and Yk is a Poisson spike train given by Yk =
P
l

dðt � tlÞ. The connectivity scheme excludes self-synapses. ckj repre-

sents the connectivity: if neuron k synapses onto neuron j, ckj = 1, and otherwise ckj = 0. The synaptic weights are scaled by the

connectivity density p so that the net input signal to each neuron is not affected by the number of connections.

Equation 3 includes three non-synaptic inputs to the neuron: Iox , IxðtÞ, and and
ffiffiffiffiffiffiffi
2D

p
c
j
x. The variable c

j
x is a spatially independent

Gaussian white noise process. The value of noise intensity was chosen so that the noise-induced fluctuations are commensurate

with endogenous dynamics of the network. Iox represents a bias current whose value depends on whether the neuron is excitatory
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(x = e) or inhibitory (x = i), imparting a differential baseline spiking rate to these distinct populations. Here, Ioi = �31:250, ensuring

that inhibitory neurons will typically require excitatory input to fire. Ioe = � 15:625 is based on previous literature (Jadi and Sejnowski,

2014a, b; Neske et al., 2015; Rich et al., 2020b) to position the system near the transition between asynchronous and synchronous

firing.

IxðtÞ implements time-varying external input only applied to the excitatory population (this is simply referred to as the ‘‘drive’’ to the

system in Figures 2, 3, and 4). IiðtÞ = 0 for inhibitory neurons. In this work, this term is used primarily to study the response of the

spiking network to a linear ramp excitatory input that occurs at a time scale much slower than the dynamics of individual neurons:

to yield the ramp current used throughout the study IeðtÞ simply varies linearly between 0 and 31.25 over a 2500 ms simulation (for

computational efficiency, the simulation length is limited to 2048ms for the heatmaps displayed in Figures S3 and S6). In Figure S3B,

where we characterize the dynamics of the network with constant input, IeðtÞ = 15:625 uniformly.

The final probability of a Poisson neuron j firing at time t depends upon the effect of these various elements on ujx:

rj = 1� e�fðujxðtÞ;hj Þdt (Equation 6)

Parameter values

Parameter values, summarized in the table of key model parameters below, are analogous to those used in previous work on oscil-

latory cortical networks (Jadi and Sejnowski, 2014a, b; Neske et al., 2015; Rich et al., 2020b) with the scaling of our chosen b ac-

counted for.

Key model parameters.
Parameter Value

Number of excitatory neurons, Ne 800

Number of inhibitory neurons, Ni 200

Excitatory rate constant, ae 100 Hz

Inhibitory rate constant, ai 200 Hz

Non-linear gain of activation function, b 4.8

Variance of noisy input, D 3.906

Excitatory bias current, Ioe �15.625

Inhibitory bias current, Ioi �31.250

External input, IeðtÞ Variable

Excitatory-excitatory synaptic strength,wee 100.000

Excitatory-inhibitory synaptic strength, wei 187.500

Inhibitory-inhibitory synaptic strength, wii �8.125

Inhibitory-excitatory synaptic strength, wie �293.750

Excitatory heterogeneity, se Variable

Inhibitory heterogeneity, si Variable

rheobase, hj Variable

Connectivity density, p Variable

Time step, Dt 1 ms
Numerics

All sampling from standard normal Gaussian distributions is done via the Box-Mueller algorithm (Golder and Settle, 1976). Equations

are integrated using the Euler-Maruyama method. In our simulations, Dt = 0:1, scaled so that each time step Dt represents 1 ms.

The excitatory network synchrony (i.e. Synchrony Measure) and excitatory and inhibitory firing rates are calculated over sliding

100ms timewindows in Figures 2, 3, and 4. To preserve symmetry and ensure initial transients do not skew the data, our first window

begins at t = 100.

The Synchrony Measure is an adaptation of a commonly used measure developed by Golomb and Rinzel (Golomb and Rinzel,

1993, 1994) to quantify the degree of coincident spiking in a network as utilized in our previous studies (Rich et al., 2016, 2017,

2018; 2020a). We apply this measure in this work exclusively to the population of excitatory cells. Briefly, the measure involves

convolving a very narrow Gaussian function with the time of each action potential for every cell to generate functions ViðtÞ. The pop-

ulation averaged voltage VðtÞ is then defined as VðtÞ = 1
Ne

PNe

i = 1

ViðtÞ, whereN is the number of cells in the network. The overall variance

of the population averaged voltage VarðVÞ and the variance of an individual neuron’s voltage Var
�
Vi
�
is defined as
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VarðVÞ = <VðtÞ2 > � <VðtÞ> 2 (Equation 7)

and

Var
�
Vi
�
= <ViðtÞ2 > � <ViðtÞ> 2 (Equation 8)

where < ,> indicates time averaging over the interval for which the measure is taken. The Synchrony Measure S is then defined as

S =
VarðVÞ

1
Ne

PNe

i = 1Var
�
Vi
� (Equation 9)

The value S = 0 indicates completely asynchronous firing, while S = 1 corresponds to fully synchronous network activity. Interme-

diate values represent intermediate degrees of synchronous firing.

In the case of sliding time bins, this measure is taken by only considering spikes falling into the time window of interest. In Figure 4

we present averages of S over 100 independent realizations, and if a particular run yields a ‘‘NaN’’ result for S at a given time step

(indicating no spikes in the associated window), we eliminate that value from the average for that time point (this increases the vari-

ability of these values since there are less to average over; thus, this is reflected in an increased range of the ± STD curves). In

contrast, in Figure S3B we generate a single value the Synchrony Measure (or the other measures of interest) over the last

1000 ms of the simulation. Figure S3B displays this measure averaged over five independent simulations.

Figure S3 includes the presentation of our BifurcationMeasureB. This quantifies the presence of sudden and significant changes in

the Synchrony Measure over time. First, we take the Synchrony Measure time series for each independent run (i.e., as presented in

Figure 3), and use the smooth function in MATLAB (MATLAB, 2019) with a 500 step window, generating a new time series from this

moving average filter. This low-pass filter serves to account for fluctuations arising when, for example, a particular 100 ms window

includes more or less activity than average. We denote this filtered time-series Ss. Second, we calculate the difference quotient dSs

dI ,

where I is the value of the external drive (plotted against time in Figure 3), at each step in the time series. Finally, we take the variance

of the values of dSs

dI using the var function inMATLAB (MATLAB, 2019): networks in which the SynchronyMeasure changes in a consis-

tently linear fashion will have a tight distribution of dSs

dI around the average slope (see, for example, Figure 3B), and thus a low variance;

in contrast, networks in which the Synchrony Measure undergoes abrupt transitions will yield a multi-modal distribution of dSs

dI , with

each mode corresponding to different linear sections of Ss, and thus the variance of these values will be notably higher (see, for

example, Figure 3C). The plotted value ofB represents an average over theB values calculated for each independent network instan-

tiation. We note that when we calculate the ‘‘firing rate Bifurcation Measure’’ Be in reference to the four scenarios in Figure 4, we sim-

ply replicate the above steps on the firing rate time series rather than the Synchrony Measure time series.

We emphasize that the Bifurcation Measure is appropriate for identifying the dynamics of interest in this work given that the related

quantifications increase largely monotonically in response to increased drive, especially once these time series are ‘‘smoothed’’ prior

to the application of this measure. The smoothed Synchrony Measure and firing rates do not display any discontinuous behaviors in

our experimental paradigms that might confound this measure.

Analysis of FI curves

In Figure 5, we compare activation functions derived from experimental data with model analogues (i.e., the function F described

below in Equation 12). In Figure 5B we show examples of F with epileptogenic and non-epileptogenic levels of heterogeneity along-

side samples of the function f (Equation 2) randomly chosen based on the differing heterogeneity levels.

In Figure 5A, we confirm the correspondence between the F functions and the experimental data by determining the value of se
best fitting this data. This process involved three steps: first, we qualitatively determined the portion of the F curves most likely to

fit this data as that in � 11:875%Ue % � 6:25; second, both the Ue ([-11.875 -6.25]) and probability of firing ([0.003585 .2118]) vari-

ables were re-scaled to match the ranges exhibited by the input current (pA, [50 250]) and firing frequency (Hz, [0 24]) variables in the

experimental data; finally, a fit was calculated using MATLAB’s (MATLAB, 2019) Curve Fitting application. This process used a non-

linear least squares method, with r2 > :93 for both fits (see details in Results). Additional scaling was performed for plotting so that the

two axes in Figure 5 remain consistent.

Modeling: Mean-field reduction
Following previous work (Hutt et al., 2016, 2020, 2020; Stefanescu et al., 2012; Hutt et al., 2020; Rich et al., 2020b; Lefebvre et al.,

2015) we perform amean-field reduction of the spiking network in Equation 3.We assume that the firing rate of cells is sufficiently high

to make use of the diffusion approximation (Gluss, 1967), yielding

a�1
e

dUe

dt
= � Ue +weeFðUe; seÞ+wieFðUi; siÞ+ Ioe + IeðtÞ (Equation 10)
a�1
i

dUi

dt
= � Ui +wiiFðUi;siÞ+weiFðUe;seÞ+ Ioi (Equation 11)

where Ue;i =
1
Ne;i

PNe;i

j = 1u
j
e;i represents the mean activity of the excitatory or inhibitory population, respectively.
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The function F represents the average activation function conditioned upon the value of se;i via the convolution

FðUe;i; se;iÞ =
Z N

�N

fðUe;i + v; 0ÞrðvÞdv (Equation 12)

where rðvÞ = N
�
0;s2e;i

�
(Lefebvre et al., 2015; Hutt et al., 2016, 2018).

Linear stability analysis of the mean-field equations

Fixed points Ue;i of the mean-field equations satisfy

0 = � Ue +weeFðUe;seÞ+wieFðUi;siÞ+ Ioe + IeðtÞ (Equation 13)
0 = � Ui +wiiFðUi;siÞ+weiFðUe;seÞ+ Ioi (Equation 14)

Linearizing about the steady state values of Ue;i yields the system

d

dt

�
dUe

dUi

�
= A

�
dUe

dUi

�
=

��ae +weeaeRe wieaeRi

weiaiRe �ai +wiiaiRi

��
dUe

dUi

�
(Equation 15)

with Re;i = RðUe;UiÞ =
RN

�N

f 0
	
Ue;i + v;0



rðvÞdv. The system’s stability is given by the eigenvalues of the Jacobian A. Define

B = trace ðAÞ = � ðae +aiÞ+ ðweeaeÞRe + ðwiiaiÞRi (Equation 16)
C = det ðAÞ = ð � ae + ðweeaeÞRe Þð � ai + ðwiiaiÞRi Þ � ððwieaeÞRi ÞððweiaiÞRe Þ (Equation 17)

Eigenvalues of A are thus given by

l± =
1

2

�
B±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4C

p �
(Equation 18)
Bifurcation analysis with varying excitatory input
We investigate bifurcation properties as a function of IeðtÞ. In Figure S3A, multi-stability, as denoted by the bold border, is determined

by testing for the presence of multiple fixed points at IeðtÞ ranging from 0:0.625:9.375, a range encompassing the range for multi-sta-

bility shown in Figure 4.

QUANTIFICATION AND STATISTICAL ANALYSIS

Plotting of experimental datawas performed usingGraphPad Prism 6 (GraphPad software, Inc, CA, USA). The non-parametricMann-

Whitney test was used to determine statistical differences between the means of two groups. The F-test was used to compare stan-

dard deviation (SD) between groups. The two sample coefficient of variation test was used to compare the coefficient of variance (CV)

between groups. Normality of the data was tested with the Shapiro-Wilk and D’Agostino - Pearson omnibus normality tests with

alpha = 0.05. The one-way ANOVA post hoc with Dunn’s multiple comparison test was used to determine statistical significance

in the spike frequency adaptation ratio. A standard threshold of p < 0.05 is used to report statistically significant differences.

Statistical details can be found in the relevant secton of the Results and/or the figure legends. Reported values of n refer to the

number of cells recorded.
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