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Abstract

Reduced cortical inhibition by somatostatin-expressing (SST) interneurons has been

strongly associated with treatment-resistant depression. However, due to technical limita-

tions it is impossible to establish experimentally in humans whether the effects of reduced

SST interneuron inhibition on microcircuit activity have signatures detectable in clinically-rel-

evant brain signals such as electroencephalography (EEG). To overcome these limitations,

we simulated resting-state activity and EEG using detailed models of human cortical micro-

circuits with normal (healthy) or reduced SST interneuron inhibition (depression), and found

that depression microcircuits exhibited increased theta, alpha and low beta power (4–16

Hz). The changes in depression involved a combination of an aperiodic broadband and peri-

odic theta components. We then demonstrated the specificity of the EEG signatures of

reduced SST interneuron inhibition by showing they were distinct from those corresponding

to reduced parvalbumin-expressing (PV) interneuron inhibition. Our study thus links SST

interneuron inhibition level to distinct features in EEG simulated from detailed human micro-

circuits, which can serve to better identify mechanistic subtypes of depression using EEG,

and non-invasively monitor modulation of cortical inhibition.

Author summary

Reduced somatostatin-expressing interneuron (SST) inhibition has been implicated in

depression. However, it is impossible to establish experimentally in humans how these

inhibitory changes are reflected in clinically relevant brain signals (electroencephalogra-

phy, EEG). We performed detailed simulations of human neuronal network activity and

EEG signals in health and depression. We found that reduced SST inhibition led to signifi-

cant changes in EEG, which accounts for changes seen in depression. Our study thus pro-

vides biomarkers that link inhibition level of a key interneuron type to measurable
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signatures in EEG. These biomarkers can be used to identify subtypes of depression and

non-invasively monitor cortical inhibition modulation.

Introduction

Major depressive disorder (depression) is a leading cause of disability worldwide [1] and

involves varying mechanisms and symptoms [2,3]. Consequently, a significant proportion of

patients remain resistant to antidepressants [4] and second-line treatments [5]. Electro-

encephalography (EEG) offers a non-invasive and cost-effective method for brain signal-based

biomarkers to improve diagnosis, monitoring and treatment of depression subtypes [6,7].

However, the multi-scale mechanisms of depression and their link to clinically-relevant brain

signals remain poorly understood.

There is growing evidence that reduced cortical inhibition plays a mechanistic role in

depression [8] and treatment-resistant depression [9–11], especially inhibition mediated by

somatostatin-expressing (SST) interneurons [11–15]. Recent studies showed a marked reduc-

tion in SST expression by SST interneurons in post-mortem tissue of depression patients,

across all layers of the prefrontal cortex (PFC) and anterior cingulate cortex–key regions impli-

cated in depression [16–18]. Reduced SST expression by SST interneurons would mechanisti-

cally present as reduced synaptic and tonic inhibition by SST interneurons since SST and

gamma-aminobutyric-acid (GABA) receptors are colocalized, and SST is co-released with

GABA to strengthen inhibitory effects through postsynaptic mechanisms [19]. In rodent mod-

els, SST knockout mice show altered GABAergic genes in SST interneurons consistent with

reduced GABA function [20]. Relatedly, silencing SST interneuron inhibition led to depres-

sion symptoms [15], and novel therapeutic compounds acting via positive allosteric modula-

tion of alpha-5-GABA-A (α5-GABAA) receptors targeted by SST interneurons resulted in pro-

cognitive and anxiolytic effects [15,21]. In contrast, indications of changes in parvalbumin-

expressing (PV) interneuron inhibition were inconsistent and less pronounced, signifying a

more selective vulnerability for SST interneurons in depression [22,23]. Other disorders such

as Alzheimer’s and aging that show changes in SST interneuron inhibition involve other key

changes such as cell and synapse loss, therefore the altered inhibition may play a less central or

less consistent role in these conditions than in depression [24–26].

The effects of reduced SST inhibition on circuit activity could have signatures detectible in

EEG, due to this cell type’s principal role in modulating input to pyramidal (Pyr) neurons in

layer 2/3, which is closest to surface EEG electrodes, as well as layer 5/6 Pyr neurons whose

dendrites reach the superficial layers. SST interneurons provide synaptic and tonic inhibition

onto the apical dendrites of Pyr neurons [27,28], and mediate lateral inhibition in the cortex

[29–31], particularly during periods of quiet, resting wakefulness (resting state) [32]. Accord-

ingly, previous studies indicate that reduced SST interneuron inhibition in depression

increases baseline activity of Pyr neurons [12,29,33]. While the contribution of SST interneu-

rons to resting-state cortical oscillations remains largely unknown, studies show a role for this

cell type in modulating low-frequency oscillations. SST stimulation entrains network activity

in the 5–30 Hz range, and SST suppression modulates theta band (4–8 Hz) power [34,35]. SST

interneurons have also been suggested to govern network synchrony in slow-wave sleep,

which is marked by slow oscillations [36]. Thus, reduced SST interneuron inhibition in

depression may affect EEG low-frequency power. Conversely, PV interneurons have been

shown to modulate high beta (20–30 Hz) and gamma (30–50 Hz) frequencies, indicating that

these two interneuron types likely modulate distinct frequency domains in recorded EEG
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[37,38]. We recently showed that a 40% reduction in SST interneuron inhibition, estimated

from post-mortem tissue studies of depression patients [16], significantly increased baseline

Pyr spike rate in simulated human microcircuits [33]. However, it is still unknown if this level

of reduction in SST interneuron inhibition would significantly alter baseline oscillatory

dynamics detectable in EEG.

Previous studies have linked neuronal spiking to extracellular signals, although mostly

using animal models and local field potential (LFP) [39–41]. Human studies have character-

ized LFP oscillations in cortical slices and showed phase-amplitude coupling between deep

and superficial layers [42]. Others have studied the phase preference of Pyr neuron spikes rela-

tive to spindle events in rodent intracranial EEG oscillations [43]. However, experimental

methods are limited in their ability to characterize the effects of the cellular changes in depres-

sion on human brain signals in vivo, thus meriting the use of computational models. Previous

computational studies have identified inter-laminar mechanisms underlying evoked related

potentials during stimulus response using simplified neuron morphologies and connectivity

[44,45]. The increased availability of human neuronal electrical and synaptic connectivity data

[31,46,47] provides important constraints for detailed models of human cortical microcircuits

[33], which can be used to link mechanisms of microcircuit activity in human health and dis-

ease to signatures in local circuit-generated EEG signals [48,49].

In this study, we identified EEG biomarkers of microcircuit effects due to reduced SST

interneuron inhibition, as estimated from gene expression changes in depression [16,33].

Using biophysically detailed models of human cortical microcircuits, we simulated resting-

state activity in health and depression together with local EEG signals. We characterized

changes in resting-state EEG spectral power, and in relation to spiking activity in different

neuron types, to identify biomarkers of reduced SST interneuron inhibition in depression.

Results

Human cortical microcircuit models reproduce resting-state EEG features

We used our previous detailed models of human cortical L2/3 microcircuits [33] (Fig 1A) as

canonical cortical microcircuit models for simulating resting state spiking and EEG signals.

The model microcircuits included the four key neuron types: Pyr neurons, SST interneurons,

Parvalbumin-expressing interneurons (PV), and Vasoactive intestinal polypeptide-expressing

interneurons (VIP). To simulate intrinsic healthy resting-state spiking activity, all neurons

received random background excitatory input corresponding to baseline cortical and thalamic

drive. The model microcircuits were implemented in a physical volume, enabling simulation

of LFP and EEG together with microcircuit spiking (Fig 1A–1D).

Baseline microcircuit activity was oscillatory, marked by synchronous spiking events

(Fig 1D) and corresponding fluctuations in LFP and EEG signals (Fig 1B and 1C). We quanti-

fied oscillatory activity in the healthy microcircuits by calculating EEG power spectral density

(PSD). The microcircuit EEG exhibited a peak in theta (4–8 Hz) and alpha (8–12 Hz) bands

(n = 60 randomized microcircuits, Fig 2A) and a 1/f background trend (Fig 2A, inset). We

then calculated spectrograms of circuit activity to analyze the evolution of signal strength in

the time-frequency domain. The spectrograms showed 41 ± 3 transient theta-alpha events per

28 s simulation, with average duration of 181 ± 12 ms (Fig 2B). The circuit simulations thus

reproduced several key temporal and spectral features of resting-state human EEG, including

an oscillatory peak power in theta and alpha bands and a background 1/f trend [50–52]. Criti-

cally, these oscillatory properties were emergent, and were not explicitly optimized for, which

therefore constitutes an important validation of the model and demonstration of its ability to

capture key properties of human cortical microcircuit dynamics and associated EEG signals.
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Fig 1. Simulating neuronal spiking and EEG signals from human cortical microcircuits. (a) Detailed models of human cortical microcircuits, showing

somatic placement of 1000 neurons in a 500x500x950 μm3 volume along layer 2/3 (250–1200 μm below pia) and reconstructed morphologies used in the

neuron models. (b–d) Temporally aligned multi-scale simulated signals: EEG (b) from scalp electrode directly above the microcircuit; LFP signal (c) recorded

at the middle of L2/3 (depth of -725 μm); Raster plot of spiking in different neurons in the microcircuit (d), color-coded according to neuron type. Neurons

received background excitatory inputs to generate intrinsic circuit activity.

https://doi.org/10.1371/journal.pcbi.1010986.g001

Fig 2. Models of human cortical microcircuits reproduce key features of resting-state EEG. (a) Power spectral density plot of circuit simulations (n = 60

randomized microcircuits, bootstrapped mean and 95% confidence intervals), exhibiting peak power in theta and alpha frequency bands. Inset–same power

spectral density plot shown on log-log scale, illustrating the 1/f relationship between power and log frequency, inversely linear between 3–30 Hz with slope

-1.17 ± 0.09. Frequency bands are delimited by dotted lines. (b) Example spectrogram of simulated microcircuit EEG, exhibiting theta and alpha events.

https://doi.org/10.1371/journal.pcbi.1010986.g002
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EEG biomarkers of reduced SST in depression microcircuits

We compared simulated EEG in healthy versus depression microcircuits using our previous

depression models, in which SST synaptic and tonic inhibition were reduced (n = 60 random-

ized microcircuits, Fig 3A). The simulated EEG from depression microcircuits exhibited a

prominent peak in theta and alpha bands (4–12 Hz) similarly to the healthy microcircuits, but

there was significantly increased power in these bands and in low-beta frequencies (5–16 Hz,

56% increase on average, p< 0.001, d = 1.67, Fig 3B). We decomposed EEG PSDs into aperi-

odic (Fig 3C) and periodic (Fig 3D) components, to compare the distinct functional compo-

nents of the absolute PSDs. There was a 23% decrease in aperiodic exponent in depression

compared to healthy microcircuits (healthy = 1.2 ± 0.1, depression = 0.8 ± 0.1, p< 0.001,

d = 2.92), and 30% decrease in offset (healthy = 8.8e−14± 2.2e−14, depression = 6.1e−14 ± 1.6e−14,

p< 0.001, d = 1.39). Together, these changes led to a 41% increase in aperiodic broadband

power (5–30 Hz) in depression compared to healthy microcircuits (p = 0.015, d = 4.1).

Detected peaks above the aperiodic component, which corresponded to periodic components,

were clustered into canonical frequency bands based on center frequency. Depression micro-

circuits showed a 40% increase in peak periodic power within theta band (4–8 Hz, p< 0.001,

d = 1.0), 30% increase in alpha bandwidth (8–13 Hz, p< 0.001, d = 0.7), 33% increase in peak

periodic power within low-beta band (13–16 Hz, p = 0.002, d = 0.9), and 49% increase in low-

beta bandwidth (p = 0.006, d = 0.8), but no significant change in alpha peak power compared

to healthy microcircuits (p = 0.1), or center frequency for any frequency bands (p = 0.48).

Fig 3. EEG signatures of reduced SST interneuron inhibition in depression microcircuit models. (a) Schematic connectivity diagram

highlighting the key connections between different neuron types in the microcircuit. In the depression condition, dotted lines from the SST

interneurons illustrate reduced synaptic and tonic inhibition onto different neuron types. (b) Power spectral density plot of simulated EEG

from the healthy (black) and depression (red) microcircuit models (n = 60 randomized microcircuits per condition, bootstrapped mean and

95% confidence interval). (c) Fitted aperiodic component of the PSD. (d) Fitted periodic component of the PSD.

https://doi.org/10.1371/journal.pcbi.1010986.g003
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Thus, the absolute power increase involved a combination of an aperiodic broadband compo-

nent, and periodic theta and low-beta components.

EEG biomarkers of reduced SST inhibition are specific

To better establish the specificity of EEG biomarkers due to reduced SST interneuron inhibi-

tion, we simulated different levels of SST and PV interneuron inhibition reduction (20–60%)

and compared their effects. Spectral profiles of reduced SST interneuron inhibition were dis-

tinct from reduced PV interneuron inhibition (Fig 4A and 4D). Absolute low-frequency

power (5–16 Hz) from microcircuits with reduced PV interneuron inhibition was not signifi-

cantly different from the healthy microcircuits (20–60% reduction, 8% change, p = 0.3),

whereas PSDs from microcircuits with 20–60% reduced SST interneuron inhibition had sig-

nificantly increased power (20% inhibition reduction: 24% increase, p = 0.03, d = 0.9; 60%

inhibition reduction: 100% increase, p = 0.005, d = 2.4). The separability between the two types

of reduced inhibition based on the raw PSD stemmed primarily from changes in decomposed

aperiodic components (Fig 4B and 4E) rather than periodic components (Fig 4C and 4F). For

moderate (� 40%) reduced inhibition, there were changes in periodic power that were unique

to each cell type. Microcircuits with reduced SST interneuron inhibition showed an increase

in periodic theta power compared to healthy circuits (26% increase, p = 0.01, d = 0.85),

whereas microcircuits with reduced PV inhibition showed an increase in periodic alpha power

(21% increase, p< 0.001, d = 1.2). However, this distinction was lost at higher (60%) levels of

reduction (SST: 61% increase in theta power, p< 0.001, d = 1.48 and 34% increase in alpha

power, p< 0.001, d = 1.8; PV: 31% increase in theta power, p = 0.002, d = 1.06 and 19%

Fig 4. Distinct EEG signatures from reduced SST vs PV interneuron inhibition. (a) Power spectral density plot of simulated EEG from the healthy (black)

and reduced SST interneuron inhibition (depression, red) microcircuit models, with high-low opacity indicating a 20%, 40% and 60% reduction in inhibition

(n = 30 randomized microcircuits per condition, bootstrapped mean). (b) Fitted aperiodic component of the PSD. (c) Fitted periodic component of the PSD.

(d-f) Same as (a-c) but for microcircuits with reduced PV interneuron inhibition.

https://doi.org/10.1371/journal.pcbi.1010986.g004

PLOS COMPUTATIONAL BIOLOGY In-silico EEG biomarkers of reduced inhibition in depression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010986 April 10, 2023 6 / 21

https://doi.org/10.1371/journal.pcbi.1010986.g004
https://doi.org/10.1371/journal.pcbi.1010986


increase in alpha power, p< 0.001, d = 1.1). For both moderate and high levels of reduction,

the estimated bandwidth of the periodic low-beta component increased only in the case of

microcircuits with reduced SST interneuron inhibition (49% increase, p = 0.006, d = 0.8 and

65% increase, p< 0.001, d = 1.1), but this parameter was less reliable since it was sensitive to

the fit of the primary (larger) alpha component [53]. Periodic power in microcircuits with

either 20% reduced SST or PV interneuron inhibition did not significantly differ from healthy

microcircuits.

In contrast, we found that the aperiodic component largely separated the two conditions

(Fig 4B). Microcircuits with reduced PV interneuron inhibition showed an increase in expo-

nent (20% inhibition reduction: 4% increase, p = 0.03, d = 0.6; 40% inhibition reduction: 7%

increase, p< 0.001, d = 1.0: 60% inhibition reduction; 13% increase, p< 0.001, d = 1.8) and no

significant change in offset. Contrarily, microcircuits with reduced SST interneuron inhibition

showed a decrease in exponent (20% inhibition reduction: 8% decrease, p< 0.001, d = 1.3;

60% inhibition reduction: 42% decrease, p< 0.001, d = 6.6) and no significant change in offset.

The aperiodic changes resulted in microcircuits with reduced PV interneuron inhibition hav-

ing a decrease in broadband power (20% inhibition reduction: 6% decrease, p = 0.07, d = 1.2;

40% inhibition reduction: 27% decrease, p< 0.001, d = 5.0; 60% inhibition reduction: 36%

decrease, p< 0.001, d = 6.4), whereas microcircuits with reduced SST interneuron inhibition

having an increase in broadband power (20% inhibition reduction: 22% increase, p< 0.001,

d = 5.2; 60% inhibition reduction: 70% increase, p = 0.02, d = 6.9). Thus, reduced SST inter-

neuron inhibition affected the aperiodic measures of the PSD in a manner that was distinct

from reduced PV interneuron inhibition.

Microcircuits with reduced PV interneuron inhibition significantly increased baseline Pyr

firing rate at each step (healthy = 0.84 ± 0.03 Hz, 20% reduction: 0.86 ± 0.04 Hz, p = 0.008,

d = 0.6; 40% reduction: 0.93 ± 0.04 Hz, p< 0.001, d = 1.7; 60% reduction: 1.12 ± 0.06 Hz,

p< 0.001, d = 4), but to a lesser extent than reduced SST interneuron inhibition (20% SST:

1.03 ± 0.04 Hz, p< 0.001, d = 5.32; 40% SST: 1.28 ± 0.06 Hz, p< 0.001, d = 4.8; 60% SST:

1.57 ± 0.08 Hz, p< 0.001, d = 4.33). Thus, reduced SST interneuron inhibition affected base-

line microcircuit activity to a greater extent than reduced PV interneuron inhibition.

We identified relationships between neuronal spiking and EEG spectral changes in depres-

sion microcircuit models by determining the EEG phase preference of the neuronal popula-

tions. The EEG time series were bandpass filtered from 4–16 Hz since the absolute PSDs and

the periodic component of the PSDs showed highest power in these frequencies (Fig 5D). We

computed the relative phase (proximity to peak, midpoint, or trough) for 4–16 Hz cycle time-

points. Spike time was converted to phase of EEG signal by temporally aligning the spike time

to the instantaneous phase (Fig 5A–5C). In healthy microcircuits, spiking in all neuronal types

exhibited an average preference to the phase preceding the trough of the EEG waveform (Ray-

leigh’s p< 0.001; Pyr = 66 ± 4˚, SST = 62 ± 9˚, PV = 79 ± 6˚, VIP = 109± 5˚), with a peak pref-

erence of 90˚ for all interneurons, and peak preferences of 0˚ and 90˚ for Pyr neurons.

Depression microcircuits followed a similar phase preference (Rayleigh’s p< 0.001;

Pyr = 72 ± 4˚, SST = 67 ± 9˚, PV = 72 ± 8˚, VIP = 106 ± 5˚), but there was a small decrease in

preference selectivity, as quantified by population spike concentrations about the preferred

phase for all cell types except SST interneurons (kurtosis, Pyr: 7% decrease, p< 0.001, d = 0.8;

SST: 1% decrease, p = 0.72; PV: 21% decrease, p< 0.001, d = 1.7; VIP: 30% decrease,

p< 0.001, d = 3.8).

Lastly, we examined the spatial distribution of scalp-measured EEG signals generated by

the microcircuit simulations using a realistic head model. Picking an example region that is

also relevant to depression, we placed the simulated microcircuit dipoles into L2/3 of the dor-

solateral PFC (dlPFC), at a location underneath the 10–20 system electrode F3 (Fig 6A), and
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used a forward solution based on a boundary-element model with realistic head geometry and

conductivity to compute simulated EEG signals. The resulting time series from this source

were obtained over all EEG sensor locations (Fig 6B). We then placed simulated healthy micro-

circuit dipoles underneath electrodes surrounding the dlPFC region of interest (AF3, F5, F1,

FC1) to provide a more realistic environment to study the potential and power differences in

health and depression. Differences in theta, alpha and beta power in depression versus healthy

microcircuits showed a nonuniform decay over the scalp (Fig 6D–6F). A significant difference

in theta and alpha power was seen at F3 and a significant increase in beta power was seen in F3

and the neighbouring F5, F1, and FC1 electrodes (p< 0.001 for all). Thus, the EEG biomarkers

corresponding to microcircuit changes in depression were mostly localized spatially.

Discussion

In this study, we identified the signatures of reduced cortical inhibition in depression on EEG

signals of resting-state activity using detailed models of human cortical microcircuits. Depres-

sion microcircuits with reduced SST interneuron inhibition showed an increase in absolute

theta, alpha and low beta power, which involved a broadband increase together with a periodic

increase in theta and low-beta activity. These EEG signatures of reduced SST interneuron inhi-

bition were distinct from those corresponding to reduced PV interneuron inhibition, and thus

Fig 5. EEG phase preference of neuronal spiking in health and depression microcircuit models. (a-d) Temporally aligned simulated

microcircuit signals used in calculating population phase-preference. (a) Raster plot of spiking in an example healthy microcircuit model. (b) Pyr

population spike counts, in 10 ms bins. (c) Instantaneous phase of the 4–16 Hz bandpass filtered EEG signal, with trough corresponding to 0˚. (d)

Bandpass filtered EEG signal (black) and unfiltered EEG signal (gray). (e) Population spike counts relative to the bandpass filtered EEG from

healthy (solid-line) and depression microcircuits (dotted-line). Plots show mean and standard deviation normalized by peak spike count. Neuron

type colors for the healthy microcircuits are as in Fig 1.

https://doi.org/10.1371/journal.pcbi.1010986.g005
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provide a measure of estimating the level of cell-specific inhibition from EEG. These signatures

may thus be used as biomarkers to stratify depression subtypes corresponding to altered inhi-

bition, which are particularly associated with treatment-resistant depression [54]. By simulat-

ing both spiking and EEG in detailed microcircuits, we showed that neuronal spiking had a

marked preference for the phase preceding the trough of 4–16 Hz frequencies in both condi-

tions. Our results provide mechanistic links between reduced SST interneuron inhibition and

candidate biomarkers in EEG signals. These findings have multiple clinical applications, such

as improving patient stratification and monitoring the effects of therapeutic compounds tar-

geting SST interneuron inhibition.

We examined changes in EEG PSD in terms of traditionally reported absolute power within

canonical frequency bands [55] and in terms of more recent measures of decomposed aperi-

odic and periodic components using FOOOF [53]. Increased absolute power of theta, alpha,

and low beta bands in our simulated depression microcircuits is in agreement with several pre-

vious depression studies, and was shown to be correlated with diagnosis, severity, and treat-

ment response [7,54,56–60]. Importantly, systematic reviews across psychiatric disorders

showed that these band changes are most consistent in depression and thus particular to this

disorder [57]. Increased frontal theta power is predictive of second line treatment response tar-

geting cortical inhibition in treatment-resistant depression [54,61–64]. Furthermore, depres-

sion patients who are treatment resistant show especially high theta power compared to

Fig 6. Topographic distribution of microcircuit EEG signal in a realistic head model. (a) Microcircuit dipole placement and

orientation in the grey matter of the dlPFC in a realistic head model, perpendicular to the cortical surface. (b) Potential spread of the EEG

signal from the microcircuit source placed under the F3 electrode (green dot) to the EEG electrodes across the head. (c) Example

timepoint of scalp potentials from multiple sources placed under AF3, F7, F3, FC1 electrodes (white dots) surrounding the dlPFC source.

Color bar applies to panels b–c. (d) Distribution of the difference in spectral power from depression versus healthy simulated multi-

source signals for theta band (4–8 Hz). Color bar applies to panels d–f, representing difference in power with a scaling factor of 1e-9. (e)

Same as (d) but for alpha band (8–12 Hz). (f) Same as (d) but for low-beta band (12–16 Hz).

https://doi.org/10.1371/journal.pcbi.1010986.g006
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treatment responders [54,56,58]. Together with the several points mentioned above, our

results provide support for reduced SST interneuron inhibition as a mechanistic subtype of

depression which is associated with treatment-resistant depression, and show that it may be

detectible by a profile of increased power across the low frequency bands [6,57,59,65,66].

Increased periodic theta and low beta power, but not alpha, may explain the smaller change in

relative alpha power seen previously and lend more functional significance to theta and low

beta frequencies [67–70]. Future studies relating our simulated EEG biomarkers to experimen-

tal EEG and depression features will further establish the link to disease stage, subtype and

severity [8,29,71,72].

Increased aperiodic broadband power and decreased aperiodic slope in our depression

microcircuits are consistent with the effects of increased baseline activity and excitation-inhi-

bition ratio, respectively [53,73,74]. Increased excitatory activity, similar phase preference but

decreased selectivity in depression microcircuit models was associated with an increase in

periodic activity around alpha and a broadening of alpha bandwidth. Thus, healthy and

depression microcircuits had overall similar oscillatory dynamics, but spiking in the depres-

sion microcircuit was somewhat less specific, which is in agreement with leading hypothesis of

increased baseline noise in spiking due to reduced inhibition [29]. In summary, our results

show that altered cell-specific inhibition in microscale brain circuits in depression is reflected

in key features of the EEG spectral density, which can be used to better stratify depression sub-

type and severity.

Reduced SST and PV circuits both increased baseline activity but to a different degree, and

had distinct EEG signatures due to their specific spatial innervation on Pyr neurons [48,73,75]

and thus effects on dipole moment generation. The large effect of reduced SST interneuron

inhibition on the baseline firing and EEG is supported by the principal role of SST interneu-

rons in modulating baseline cortical activity via facilitating apical dendritic synapses and lat-

eral disynaptic inhibition [29,30,32,34,38]. Changes in SST interneuron inhibition onto apical

dendrites of Pyr neuron would therefore have a strong effect on the EEG, since dipole

moments increase with distance travelled by axial currents and summate both spatially and

temporally [75,76]. In contrast, reduced PV interneuron inhibition had a smaller effect on

baseline activity and EEG likely due to the dense PV!PV inhibitory connectivity and non-

facilitating synaptic input from Pyr neurons [77], which dampened the effect of reduced inhi-

bition, and also due to their synaptic innervation of the basal dendrites that would have a

smaller effect on dipoles recorded by EEG [75].

Reduced PV interneuron inhibition had opposite broadband effects on the PSD from SST

interneuron inhibition, since decreased inhibitory currents at basal dendrites would negate

apical sources and decrease the amplitude of EEG activity [75]. The decreased broadband

power due to reduced PV inhibition was counteracted by increased periodic power as a result

of more rhythmic spike activity, leading to no significant change in absolute PSDs. Thus, by

decomposing the PSD into its constituents, we further differentiated the absolute EEG signa-

tures of reduced SST from reduced PV interneuron inhibition, highlighting this method’s util-

ity in providing EEG correlates of altered cell-type microcircuitry. The specificity of EEG

biomarkers of reduced SST inhibition conditions indicates that the biomarkers can be used to

estimate the level of neuron-specific inhibition noninvasively from patient EEG and thus

improve patient stratification. These results provide an important validation for our model

microcircuits ability to capture a wide range of modulatory effects of distinct inhibitory popu-

lations on microcircuit oscillations.

Our biophysical models of human cortical microcircuits reproduce the two most ubiqui-

tous features of human resting state EEG: a prominent low-frequency (4–12 Hz) peak in

power and 1/f aperiodic trend [78,79]. In experimental EEG recordings, this low-frequency
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peak is accentuated when subjects are relaxed with their eyes closed and has the highest test-

retest reliability of all spectral features [80]. While recurrent rhythmic activity generated within

cortico-thalamic loops is believed to contribute strongly to scalp-measured EEG alpha, cor-

tico-cortical interactions have also been shown to generate alpha activity in top-down process-

ing [81]. Further, it has been shown that cortical Pyr neurons significantly contribute to and

sustain theta and alpha-phasic firing due to intrinsic properties and recurrent activity. The key

features of human EEG reproduced by our microcircuit models were not explicitly constrained

for, but rather emerged from the interaction of human neuronal electrical properties, synaptic

connectivity, and baseline firing rates. This provides a validation of the models and indicates

that they contain circuit motifs responsible for generating realistic microcircuit activity, and it

can therefore be viewed as a useful canonical cortical microcircuit model irrespective of layer

considerations, in line with previous studies [49,81–83]. It will be of interest in future studies

to use the models for further elucidating the cellular mechanisms of oscillatory generation,

especially in brain states other than rest and during cortical processing, which involve other

frequency bands. In addition, our models captured other periodic features seen in experimen-

tal literature, such as alpha bandwidth [84]. However, these features are especially sensitive to

recording quality and modelling parameters [85]. As our models capture the key spectral EEG

features seen in vivo, the simulated EEG signal magnitude can also be related to that of the

recorded EEG by scaling the signal by 10,000–100,000, to account for the difference between

the number of neurons in our models (1000) compared to the millions of neurons that gener-

ate the recorded EEG at a given electrode [37,45]. Alternatively, one may use relative frequency

power from our microcircuit PSD to compare to previous clinical findings [55].

Linking altered mechanisms at the microcircuit scale to EEG biomarkers is currently

impossible to establish experimentally in humans, thereby meriting the use of data-driven

detailed computational studies. Our previous work discusses modelling considerations in

detail [33]. Briefly, we have estimated reduction of SST interneuron synaptic and tonic inhibi-

tion conductance from gene expression data [16] as supported by the co-localization and co-

release of GABA and SST pre- and post-synaptic [19], and by rodent animal models of depres-

sion [14,86,87]. We have also simulated multiple levels of reduced inhibition to better quantify

the relationship between levels of reduced inhibition and resulting EEG changes. We used a

simplified model of tonic inhibition as a steady-state current due to its long timescale [88].

We simulated human EEG using available detailed models of human cortical L2/3 micro-

circuits to serve as canonical cortical microcircuit models. These layers are closest to the elec-

trode and thus are important contributors to the EEG signal, along with L5/6 [89]. Previous

computational studies have shown that interactions between superficial and deep layers are

important contributors to electrophysiological signals, especially in other contexts such as

event-related potentials [44]. As new human cellular data becomes available, future models

that also include deeper layers (4–6) may bolster narrow-band oscillatory activity to EEG, such

as beta activity [81,90]. Relatedly, including deeper layers will provide insight on laminar inter-

actions mediated by SST interneurons and their contributions to EEG in health and depression

[45,91]. Future studies may further refine our biomarkers by modeling other mechanisms of

depression, such as synapse loss [92]. Through coupling the biophysical simulations with a for-

ward solution using a realistic head model we showed that EEG signals would be fairly local-

ized to the source and neighboring electrodes. This computational approach can serve to

further study source localization in interpreting EEG recordings, improve inverse solutions

[93], and give greater physiological interpretability to statistical decomposition techniques

such as independent component analysis [94] or s/eLORETA [95]. While we modeled and

studied a single cortical region at the microcircuit scale, future studies could simulate several
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distinct microcircuits to examine how altered circuit mechanisms affect multi-regional inter-

actions in depression [29].

Using detailed multi-scale models of human cortical microcircuits, we were able to charac-

terize the EEG and spike correlates of reduced SST interneuron inhibition in depression. Pre-

vious modeling studies have shown that reduced SST interneuron inhibition in depression

impairs stimulus processing due to increased baseline activity and noise [33]. Our models can

serve to identify corresponding biomarkers in task EEG. The computational models we have

developed also provide a powerful tool to identify the EEG biomarkers of novel therapeutic

compounds and treatments for depression [21,96] via in silico simulations to improve treat-

ment monitoring. Finally, our models and methodology may further serve to identify EEG bio-

markers of altered cellular and circuit mechanisms in other neurological diseases, such as

epilepsy and schizophrenia.

Methods

Human cortical microcircuit models

We used our previous models of human cortical L2/3 microcircuits [33], consisting of 1000

neurons distributed in a 500x500x950μm3 volume (250 to 1200μm below pia [97]). All model

assumptions, parameter choices, and simulation methodology followed our previous work

[33]. Briefly, the model microcircuits included the four key neuron types in cortical L2/3: Pyra-

midal (Pyr), Somatostatin-expressing (SST), Parvalbumin-expressing (PV), and Vasoactive

Intestinal Peptide-expressing (VIP) neurons. The proportions of the neuron types were: 80%

Pyr, 5% SST, 7% PV, and 8% VIP in accordance with relative L2/3 neuron densities [98,99]

and RNA-seq data [100,101]. The models were simulated using NEURON version 7.8.0.119

[102] and LFPy version 2.0.2 [103]. The multicompartmental conductance-based models of

human neurons included human neuron morphologies from the Alan Brain Atlas [100,104],

and reproduced firing properties and dendritic sag measured in human neurons. The models

also reproduced synaptic properties (post-synaptic potential amplitudes and short-term

dynamics) as measured in human neuron pair-recordings between Pyr neurons, PV and SST

interneurons [31,46,105,106]. Importantly, the models captured the key disynaptic loop motif

in humans by reproducing Pyr➔ SST➔ Pyr synaptic properties, whereby a train of spikes in

one Pyr neuron triggered a spike in an SST interneuron and the experimental amplitude of

inhibitory postsynaptic potentials in neighboring Pyr neurons [31]. The models included pre-

vious AMPA/NMDA excitatory and GABAA inhibitory synapse mechanisms (τrise,NMDA = 2

ms; τdecay,NMDA = 65 ms; τrise,AMPA = 0.3 ms; τdecay,AMPA = 3 ms; τrise,GABA = 1 ms; τdecay,GABA =

10 ms; reversal potentials Eexc = 0 mV and Einh = -80 mV) [49,107,108]. Connection probabili-

ties for Pyr➔ Pyr connection were set to 15% according to human literature [46], with others

according to rodent literature [100].

Resting-state activity simulations

We simulated eyes-closed resting-state by injecting the microcircuit models with background

excitatory input representing cortical and thalamic drive, as used previously [33]. The back-

ground input was generated by random Orstein-Uhlenbeck (OU) point processes [109] placed

on all neurons at the halfway point of each dendritic arbor, and 5 additional OU processes

placed along the apical trunk of Pyr neurons in equal intervals, from 10% to 90% apical den-

dritic length. This enabled the circuit to generate recurrent activity with neuronal firing rates

as measured in vivo [32,33,110,111]. For both healthy and depression microcircuit models (see

below) we simulated 60 randomized microcircuits, for 28 seconds each.
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Microcircuit models with reduced SST interneuron inhibition (depression

microcircuits)

We used previous models of depression microcircuits [33], with 40% reduced synaptic and

tonic inhibition from SST interneurons onto all other neurons, in accordance with gene

expression studies in SST interneurons in post-mortem brains from depression patients [16].

For Pyr neurons, we decreased apical tonic inhibition by 40%. For each interneuron, we

decreased the relative SST contribution to tonic inhibition by 40%. To compare reduced SST

from reduced PV interneuron inhibition, we then decreased synaptic and tonic inhibition

from SST interneurons by 20%, 40%, and 60%.

Microcircuits with reduced PV interneuron inhibition

Reduced PV interneuron inhibition was modeled by iteratively reducing synaptic and tonic

inhibition from PV interneurons onto all neurons by 20%, 40%, and 60%.

Simulated microcircuit EEG

We simulated layer-averaged dipole moments together with neuronal activity using LFPy [48].

The full methodology and equations for calculating dipole moments are described in Linden

at al 2010 [112] as well as Hagen et al 2018 section 2.3.1 and 2.5.10 [48]. Briefly, dipole

moments for each cell were computed from transmembrane currents:

pðtÞ ¼
Xnseg

n¼1

rnI
m
n ðtÞ

where Imn is the transmembrane current at time t from compartment n at position rn. This was

done for each x, y, z component of the dipole moment, for each timestep, at each segment.

Corresponding EEG timeseries were generated from dipole moment timeseries using a

four-sphere volume conductor model that assumes homogeneous, isotropic, and linear (fre-

quency independent) conductivity for each medium. A four-sphere head model accurately

captures EEG for sources directly under the scalp electrode [48,78,113]. The radii of the four

spheres representing the brain (grey and white matter), cerebrospinal fluid, skull, and scalp

were 79 mm, 80 mm, 85 mm, and 90 mm, respectively. The conductivity for each sphere was

0.47 S/m, 1.71 S/m, 0.02 S/m, and 0.41 S/m, respectively [113,114]. A fixed dipole origin was

placed at the midpoint of L2/3 (-725 μm) oriented normal to the surface of the scalp. The extra-

cellular potential measured from an EEG electrode on the skin placed directly above the circuit

was calculated using the following equations:
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where r is the distance of the electrode from the center of the brain sphere, and θ is the angular

separation between the dipole and the electrode. The first equation describes the potential in

the innermost sphere (brain tissue, s = 1), ϕ1(r, θ), and the second describes the potential in

the other 3 concentric shells (cerebrospinal fluid, skull, and scalp, s = 2,3,4), ϕs(r, θ). The

potential was measured at the extracellular electrode, ϕs(r, θ), using a current dipole moment

of magnitude p at a radial location rz. Since shell conductivity, σs, and radius, rs, affect the
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signal propagation, As
n and Bs

n are introduced as scaling coefficients to account for these effects

in each shell. Pn(cosθ) is the n Legendre Polynomial. Full methodology for computing As
n and

Bs
n for relevant shells is outlined in equations 7–16 in Næss et al 2017 [113]. These equations

for the extracellular potential of a radial dipole accounted for the key component of the simu-

lated EEG signal from the oriented dipole, and were used together with similar equations for

tangential dipoles as outlined in equations 17 and 18 of Næss et al 2017 [113]. EEG power

spectral density (PSD) and spectrograms were calculated using Welch’s method [115], with a

3s second Hanning window for PSD, and 0.5s Hanning window for spectrograms. Both analy-

ses used 30% window overlap.

Quantifying high power events

EEG timeseries were bandpass filtered into their canonical frequency bands. The envelope for

each band was calculated using the real component of the Hilbert transform from SciPy ver-

sion 1.4.1 [116]. High power events were defined as periods between where the envelope height

passed a threshold of 1 standard deviation above the mean envelope height, and which lasted

more than 100 ms.

EEG periodic and aperiodic components

We decomposed EEG PSDs into periodic and aperiodic (broadband) components using the

standard method described in the FOOOF package, version 1.0.0 [53]. The aperiodic compo-

nent of the PSD was a 1/f function, defined by a vertical offset and exponent parameter. After

removing the aperiodic component from the PSDs, we derived from the flattened spectrum

the periodic components (representing putative oscillations) using gaussians, defined by cen-

ter frequency (mean), bandwidth (variance), and power (height). We used the following set-

tings for the algorithm: peak width limits = [2, 6]; max number of peaks = 3; minimum peak

height = 0; peak threshold = 2; and aperiodic mode = ’fixed’. Power spectra were fit across the

frequency range 3–30 Hz with a resolution of 0.33 Hz. The aperiodic fit was refined for a better

fit using the peak-removed spectrum.

Population spiking phase preference

We calculated the instantaneous phase of EEG using the ByCycle python library version 1.0.0

[117]. Briefly, EEG time series were bandpass filtered from 4–30 Hz to isolate the oscillatory

component of the EEG wave while omitting higher frequencies. Peaks and troughs between

narrow 4–16 Hz zero-crossings were identified. Local rise and decay midpoints were then

identified as the midpoint between the EEG cycle’s local maxima and minima. 0˚ was defined

as the cos EEG cycle start (peak) and trough corresponding to 180˚. For each of the four neu-

ron populations (Pyr, SST, PV, VIP), spike times were aggregated into a population spike vec-

tor and converted to corresponding phase of EEG. Spike phases were binned into 10˚ bins and

the counts were summated over all circuits in each condition. To compare spike preference

between conditions, bin counts were normalized by the maximal count.

Simulated EEG from an anatomically detailed head model

Whereas a four-sphere head model is suitable for simulating EEG from microcircuit sources

directly under the scalp electrode, head shape affects EEG signal spread and thus the contribu-

tion of signals from more distant sources to the electrode [75]. To study the EEG signal decay

over the scalp, we generated EEG using an anatomically detailed head model. The x-y-z com-

ponents of microcircuit dipole moments generated from LFPy and used in the four-sphere
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head model were imported into MNE version 0.24.0 [118] and downsampled to a 100 Hz sam-

pling rate. The dipole was placed underneath the F3 electrode, corresponding to the dlPFC

[119] normal to the gyrus surface. We chose to examine this region because it has been impli-

cated in depression [120], and shows a possible decrease in SST inhibition [17]. We solved the

forward solution using a three-layer boundary element model, as implemented in LFPy, corre-

sponding to the inner skull, outer skull, and scalp with conductivities of 0.3 S/m, 0.006 S/m

and 0.3 S/m, respectively. The resulting potential was calculated for a standard 64-channel 10–

20 EEG system. Sensor PSDs were calculated using Welch’s method, as in the four-sphere

head model. To examine differences between healthy and depression microcircuits in a more

realistic multi-regional context, 4 random healthy microcircuit dipole moment timeseries

were placed under electrodes surrounding the dlPFC (F5, F1, AF3, FC1) and resulting poten-

tials over the 64 channel EEG system were collected (n = 60 randomized microcircuits for each

of the source electrodes). In the depression condition, we placed a depression microcircuit

dipole moment timeseries under F3 and random healthy microcircuit timeseries under the

surrounding electrodes. Timeseries for surrounding regions were randomly chosen from a

pool of 60 time-series with the condition that they were not duplicated within a single simula-

tion. We tested sensor-wise significance of depression vs healthy by comparing to the healthy

band power and noise, as estimated by dlPFC source power and the additional noise level pro-

vided by the surrounding random healthy circuit signals.

Statistical tests

We used two-sample t-test to determine statistical significance where appropriate. We calcu-

lated Cohen’s d to show effect size. We used Raileigh’s test of non-uniformity to determine if

populations had a non-uniform phase preference, and kurtosis to quantify variance around

the preferred mean angle.
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