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Heterogeneity is the norm in biology. The brain is no different: Neuronal cell types
are myriad, reflected through their cellular morphology, type, excitability, connectivity
motifs, and ion channel distributions. While this biophysical diversity enriches neural
systems’ dynamical repertoire, it remains challenging to reconcile with the robustness
and persistence of brain function over time (resilience). To better understand the
relationship between excitability heterogeneity (variability in excitability within a
population of neurons) and resilience, we analyzed both analytically and numerically a
nonlinear sparse neural network with balanced excitatory and inhibitory connections
evolving over long time scales. Homogeneous networks demonstrated increases in
excitability, and strong firing rate correlations—signs of instability—in response to
a slowly varying modulatory fluctuation. Excitability heterogeneity tuned network
stability in a context-dependent way by restraining responses to modulatory challenges
and limiting firing rate correlations, while enriching dynamics during states of low
modulatory drive. Excitability heterogeneity was found to implement a homeostatic
control mechanism enhancing network resilience to changes in population size,
connection probability, strength and variability of synaptic weights, by quenching
the volatility (i.e., its susceptibility to critical transitions) of its dynamics. Together,
these results highlight the fundamental role played by cell-to-cell heterogeneity in the
robustness of brain function in the face of change.
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Neural systems exhibit surprisingly reliable behavior across a lifespan. Despite high
phenotypic variability (1–4), learning-related plasticity changes (5), and constant
alterations in neuromodulatory tone (6–9) and circuit topology (7, 10), neural dynamics
remain qualitatively invariant in healthy brains over extended time scales. This is a
signature of the brain’s manifest resilience, where its dynamics persist despite changes
in intrinsic and/or extrinsic control parameters, preserving associated function (11–14).
In contrast, the failure to regulate such perturbations may predispose neural systems
to dynamic volatility: qualitatively distinct dynamics following changes in stability,
resulting from critical transitions (15). Such volatile dynamics in neural systems often
arise from disease states: For example, changes associated with epilepsy (16), stimuli
(17), or modulatory fluctuations associated with circadian and/or multidien rhythms
(18) may cause these systems to slip toward critical transitions, such as recurrent
seizures (19–21).

The resilience of neural circuits has been thoroughly studied through pioneering
experiments in the crab and lobster stomatogastric ganglia (STG) network (1, 22).
These experiments revealed highly stable, robust and invariant rhythmic activity
despite pervasive phenotype heterogeneity, even when exposed to severe environmental
perturbations (1). These discoveries in neuroscience echo a long history, primarily in the
field of macroecology, of experimental and theoretical studies examining the relationship
between biodiversity, stability, and the resilience of ecosystems and food webs over time
(see refs. 12, 14, 23–28 and references therein), which typify the well-known “stability-
diversity” debate (12, 14, 27, 29). In this setting, resilience is a system’s propensity
for invariance and ability to retain its (in)stability in response to changing control
parameters. In contrast, volatile systems are associated with changes in stability and critical
transitions, also called bifurcations (11, 13, 15, 27). A confluence of theoretical studies in
macroecology have explored this question and shown (see ref. 29 and references therein)
that diversity often renders a system volatile. Combined graph-theoretic and spectral
approaches have shown that complex networks tend to lose stability when population
sizes increase (12, 30), coupling weights are too strong and/or diverse (12, 23–25, 28),
connection probability is too dense (12, 28, 30, 31), or when connectivity motifs become
too heterogeneous (32).
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These questions have been examined by neuroscientists as well:
Numerous experimental (1, 4, 22, 33–37) and theoretical (37–
43) studies have explored the influence of cellular heterogeneity,
seemingly the norm in the brain (44–47), on neural dynamics
and communication. The impact of heterogeneities on the
stability of task-specific recurrent neural networks has also
been extensively examined (48–58). In the context of disease
states, excitability heterogeneity can stabilize neural dynamics
away from pathological brain states (37, 59). Collectively, these
studies have shown that cell-to-cell diversity stabilizes “healthy”
dynamics to optimize responses, learning, information flow, and
coding capacity by tuning neural networks toward criticality (60),
a regime that balances quiescence and excitability while residing
between stability and instability. Despite these advances, linking
single-neuron attributes with emergent physiological activity that
undergirds the persistence of brain function remains inaccessible
by current experimental techniques.

Inspired by decades of theoretical work in macroecology, we
extended spectral theory for large-scale random systems (30, 61)
and applied it to neuroscience to study the impact of biophysical
diversity on the brain’s resilience over extended time scales.
We considered a generic large-scale nonlinear neural network
with sparse balanced excitatory and inhibitory connections, over
time scales spanning minutes, hours, and/or days to examine
the persistence of its dynamics. We exposed this network to
a slowly fluctuating modulatory input, a control parameter
that is continuously interrogating the system’s stability. Over
such time scales, slow modulation influences neural activity
in a manner mimicking fluctuations during the resting state
resulting from modulatory (6–9), environmental (1, 22, 62),
and/or stimuli-induced perturbations, for instance. We explored
how heterogeneity impacts the dynamics of neurons and neuronal
networks during such modulatory challenges. To quantitatively
determine a system’s resilience or volatility, we leveraged spectral
theory for large random systems (30, 61), commonly used in
macroecology to examine the stability of complex natural systems,
such as food webs (12, 14, 23–28). Through this framework, we
analyzed the statistical properties of eigenvalues resulting from
changes in network size, synaptic weights, connectivity motifs,
modulatory drive, and cell-to-cell biophysical diversity among
neurons. In so doing, we looked beyond the stability of the system
to how this stability responds to gradual intrinsic and/or extrinsic
changes, in order to understand how biophysical diversity
predisposes balanced neural systems to stability transitions.

We begin these explorations by showing that excitability
heterogeneity, one of many types of intrinsic biophysical diversity
(Discussion), transforms the dynamics of neural networks while
rendering them less prone to sudden shifts in stability. Here,
excitability heterogeneity refers to cell-to-cell variability in firing
rate thresholds (Materials and Methods), a focus motivated by
the reality that neuronal excitability is a primary mechanism
targeted by intrinsic plasticity mechanisms in learning (63, 64)
and is altered in pathological states like epilepsy (37) and
neuropsychiatric conditions (65).

Our joint computational and mathematical analysis shows that
diversity in neuronal excitability restrains neural populations’
response to perturbations by promoting gradual and linear
changes in network firing rates. This manifests through a
heterogeneity-induced decrease in firing rate correlations, a result
with important implications for stability. We hence leveraged
the spectral theory for large-scale random systems to reveal that
excitability heterogeneity implements a generic control mecha-
nism promoting: 1) homeostasis, by tuning the distribution of
eigenvalues in the complex plane in a context-dependent way,

and 2) resilience, by anchoring this eigenvalue distribution and
making it less dependent on modulatory influences. We explored
how excitability heterogeneity can influence system resilience to
“insults” like increases in network size, connection probability,
strength and variability of synaptic weights, and modulatory
fluctuations which promote stability transitions. We found that
intrinsic excitability heterogeneity rendered the network more
resilient to these insults, a generic feature that was further pre-
served across a wide range of network topologies. These findings
are particularly relevant to learning where synaptic plasticity,
unless stabilized by homeostatic mechanisms, would lead to
runaway (i.e., unstable) activity (5, 66, 67). Taken together, these
results indicate that neuronal diversity, a fundamental organizing
principle of neuronal circuits (44, 45), serves a role in generating
the brain’s resilience.

Results

Neural systems display activity that remains qualitatively in-
variant over extended time scales. This feature highlights their
resilience in the face of changes in connectivity, development
and aging, pathological insults, and exposure to perturbations
such as stimuli and/or modulatory influences (6–9). To better
understand the mechanisms underlying such resilience and how
it is influenced by excitability heterogeneity, we developed a
mathematical framework in which long-term stability can be
analytically quantified (Materials and Methods). We built and
analyzed a large-scale, balanced and sparse network with excita-
tory and inhibitory connections (Fig. 1) whose dynamics extend
over time scales spanning minutes, hours, and/or days. This
model is both flexible and general, encompassing a wide range
of population-based models involving excitatory and inhibitory
interactions. It relates network size, the mean activity of neurons,
their mutual synaptic connectivity, their individual level of
excitability, and the influence of slowly varying modulatory
inputs. We required that neurons were exposed to balanced
synaptic connectivity such as seen experimentally (68, 69), in
which the net sum of excitatory and inhibitory synaptic weights
is zero. We further selected connection probabilities reflecting
those observed experimentally (70).

Within this framework, we can tune the intrinsic excitability
of each individual neuron, resulting in increasingly heteroge-
neous networks; without such variability, the network remains
homogeneous. It is well known that balanced networks are prone
to volatility, i.e., susceptible to stability transitions (71, 72). To
confirm this, neurons in the network were collectively exposed to
a random, slowly varying modulatory input, mimicking excitabil-
ity changes in neural activity arising from endogenous and/or
exogenous control parameter changes (i.e., neuromoduation,
temperature, etc.) (6–9). Such a slowly varying modulatory input
continuously interrogates network stability and therefore is an
ideal tool to expose the system’s resilience. As expected from
this context, the homogeneous network (i.e., where neurons
possess an identical excitability profile; Fig. 1A) was predisposed
to volatility through recurring changes in stability. Frequent sharp
transitions between states of low- and high-frequency dynamics
could be observed in the network’s mean activity (Materials and
Methods), confirmed using power spectral analysis. Such transi-
tions index states of instability, characterized by high-frequency
and correlated activity, and are reminiscent of dynamics seen in
electrophysiological recordings during seizures (73).

However, heterogeneous networks (i.e., where neurons possess
distinct excitability profiles; Fig. 1B) did not exhibit such
transitions in response to an identical modulatory input. Instead,
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Fig. 1. Intrinsic neural diversity promotes the re-
silience of balanced networks. (A) Homogeneous
networks contain neurons with identical excitability
profiles (Left). Mean network activity (Materials and
Methods) displays recurring sudden shifts in stability
characterized by transitions between states of low- and
high-frequency activity. Frequent sudden increases in
oscillatory power (warm colors) at higher frequencies
occur in the spectrogram. (B) Excitability heterogene-
ity results in variability in the excitability profile of
neurons (Left) while suppressing shifts in stability.
Low-frequency activity persists. (C) The distribution
of excitability thresholds in homogeneous networks
(�2

H = 0.0; gray histogram) displays zero variance, while
heterogeneous networks have increased excitability
threshold variability (�2

H > 0; blue histogram). Thresh-
olds were sampled from a normal distribution of
mean zero and variance �2

H > 0 (Main Text). (D) Such
heterogeneity is reflected in the firing rate response
functions which encapsulates the excitability profile of
each neuron. In the homogeneous case (black lines;
indistinguishable from each other), response functions
are identical but differ in the presence of heterogeneity
(blue lines). (E) In contrast, heterogeneous networks
containing neurons with diversified baseline activities
yield varied responses to perturbations (blue lines).
The perturbation applied [i.e., S(t)] is plotted in red
(Top). The input applied is a filtered step function, i.e.,
Ṡ(t) = −S(t)+I(t) with I(t) = 0.05 at t = 150 and I(t) =
0 otherwise. In panels A–C , parameters are given by
N = 100, � = 0.05, f = 0.8, �e = 0.08, �i = −0.32, � =

50, ` = −1, �2
W,e = �2

W,i = 0.005, B = −0.05, �2
H = 0.05.

In panels D and E, parameters are the same except for
� = 15, which has been scaled for illustrative purposes.

intrinsic excitability variability was found to suppress these
transitions, and low-frequency uncorrelated activity persisted
throughout. Intrinsic variability among neurons was imple-
mented by varying the effective firing rate response functions,
reflecting diverse degrees of cellular excitability. We randomized
firing rate response thresholds in which excitability is sampled
from a normal distribution of mean 0 and variance σ 2

H (Fig. 1C ;
Materials and Methods). This way of characterizing heterogeneity
is well aligned with experimental evidence that excitability is a
key target for intrinsic plasticity mechanism (3, 37, 63, 65, 74)
and echoes numerous previous studies on heterogeneous net-
works (37, 41, 43, 75). This heterogeneity leads to differing
response functions for individual neurons (Fig. 1D) as well
as variable responses to perturbations such as those caused by
modulatory input (Fig. 1E).

Effect of Excitability Heterogeneity on Network Dynamics.
We further characterized the influence of heterogeneity on
the dynamics and volatility of our network in Fig. 2. In the
homogeneous case (i.e., σ 2

H = 0), neuronal activity was indeed
characterized by alternating epochs of stability and instability,
as portrayed in Fig. 2A. Transient stable dynamics indexes
states in which neural activity is stable and relaxes back to
equilibrium after perturbations. In contrast, other periods were
characterized by unstable neural activity in which the activity
of individual neurons diverges away from equilibrium. Such
periods of instability result from critical transitions (15) in which
neural activity departs from stability, and may diverge, become
synchronous and/or chaotic.

To illustrate the corresponding activity of the neurons, we
generated exemplar Poisson spike trains whose rates match those
predicted by our network model (Materials andMethods). As illus-
trated in Fig. 2A, modulatory input triggered abrupt and frequent
transitions between regimes of quiescence (i.e., low firing rates)
and high-frequency firing in which burst-like activity could also

be observed. Such periods of intense spiking repetitively followed
the onset of instability, resulting in network-wide correlated
fluctuations. The presence of such covariability is also apparent
through the high variance of the mean network firing rate.
These observations suggest that slowly fluctuating modulatory
input may expose the volatility of homogeneous networks by
revealing sudden stability transitions and dynamical regimes that
are qualitatively distinct, exemplifying nonresilient behavior.

In contrast, when excitability heterogeneity is introduced (i.e.,
σ 2
H > 0) in Fig. 2B, significantly different dynamics are observed

despite identical connectivity and modulatory drive. Indeed,
the long-term dynamics of the network are resilient: Robust,
invariant stability replaced the intermittent behavior seen in
the homogeneous case. No transitions between stability and/or
instability occurred. As a direct consequence of heterogeneity,
redundancy in the neurons’ equilibria is broken: Neuron fixed
points were now distributed with a mean µuo = B + So and
variance σ 2

uo (Materials and Methods). As can be seen in the
representative spiking activity of neurons, such differences in
excitability yield increasingly moderate responses to modulation.
Neurons with high excitability compensate for those with
low excitability, and vice versa, thereby restraining network
fluctuations by distributing them across the population. This
translates into more gradual changes in the network mean firing
rate, compared to the homogeneous case (cf. Fig. 2 A and B).

We quantified both numerically and mathematically such
changes in mean network firing rate, to quantify network-
wide excitability (Materials and Methods). Fig. 2C shows that
excitability heterogeneity promotes increasingly linear, moderate
changes in mean firing rate resulting from modulatory input.
In contrast, homogeneous networks exhibit steep, nonlinear
responses. Such results confirm that differences in excitability
restrain firing rate fluctuations across the population by limiting
sudden increases in activity. Counterintuitively, a consequence of
these results is that heterogeneity also enhances the net excitability
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Fig. 2. Dynamics and volatility of balanced networks exposed to modulatory input over long time scales. (A) Dynamics of a homogeneous network where all
neurons possess the same excitability profiles. A slowly varying modulatory input S(t) (red line) continuously interrogates and challenges network stability,
leading the network through alternating epochs of stability and instability. This typifies high volatility. Individual neurons (ui ; gray shaded lines) display transient
unstable dynamics, alternating with periods of stability (Top). Below, exemplar spiking activity of neurons is presented alongside the network mean firing rate.
The raster plot shows abrupt transitions between quiescence and high firing rates accompanying transitions toward instability. (B) Long time-scale dynamics
of a heterogeneous network (�2

H = 0.05) exposed to the same slowly varying modulatory input [S(t); red line] as in Panel A. Individual neuron activity (ui ;
blue-shaded lines) is now distributed around a mean activity �uo = B+ So and variance �2

uo . Network stability is preserved throughout (Top). Sorting neurons
according to their excitability thresholds, illustrative network spiking responses reveal that neurons with different excitability respond to distinct modulation
amplitudes compensating for each other. This results in a smooth network response. Such a gradual response is also reflected in the mean firing rate (Bottom).
(C) Normalized network mean firing rate as a function of modulatory input amplitude. The response of the homogeneous network (�2

H = 0.0; black line) is
highly nonlinear. In contrast, the response of the heterogeneous network (�2

H = 0.05; blue line) is approximately linear. Bold curves correspond to analytical
calculations (SI Appendix), while shaded curves correspond to numerical simulations based on spike trains realizations performed over 10 independent trials of
duration T = 10,000 a.u. for the homogeneous (gray) and heterogeneous (blue) cases, respectively. (D) Mean pairwise firing rate correlations between neurons
driven by a common modulatory input. Increasing the difference in excitability threshold between neurons 1hij = hi − hj suppresses firing rate correlations
in heterogeneous networks (blue dots) which otherwise remain high in the homogeneous case (black dots, centered at 1hij = 0). To facilitate comparison,
the mean pairwise firing rate correlation in the homogeneous case is also plotted (dashed black curve). In the weak connectivity limit, theoretical calculations
(solid black curve) align with numerical simulations (gray dots) (Materials and Methods). (E) Network mean Lyapunov exponent 〈l〉 over independent network
configurations for the homogeneous (�2

H = 0; black scatter) and heterogeneous (�2
H = 0.05; blue scatter) cases, realized using identical parameters but different

net connectivity. Shading indicates ± SD computed over 10 independent trials of duration T = 3000 a.u. Other parameters are N = 100, � = 0.05, f = 0.8,
�e = 0.08, � = 50, ` = −1, �i =

f
f−1 �e, �2

W,e = �2
W,i = 0.005, and B = −0.05. In Panel D, S̄ = 0.1.

of the network: Smaller modulatory amplitudes are required to
trigger a (albeit weaker) response compared to homogeneous
networks. Conversely, decreased heterogeneity can be seen as
normalizing excitability across neurons. Such network changes

echo those resulting from a transition between class I and class II
excitability (76), in line with previous experimental observations
comparing healthy and epileptogenic neurons (37) as well as other
pathologies (77). Such linearization in mean firing rate response is
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known to have profound consequences on the stability or neural
networks (37, 78, 79).

To better understand how this linearization arises, we next
evaluated how neuron-to-neuron differences in excitability pro-
files impacted firing rate covariability. To do so, we considered
regimes of stability (in both the homogeneous and heterogeneous
cases) and quantified pairwise firing rate correlations between
neurons jointly driven by a common modulatory input of varying
amplitude. As shown in Fig. 2D, neuron-to-neuron differences in
excitability threshold limit covariation between their individual
firing rates. We validated these results analytically in the weak
connectivity limit (Materials and Methods). These results provide
context to those presented in Fig. 1 A and B, in which the
steepness of the response of heterogeneous networks is suppressed
in favor of smooth uncorrelated fluctuations. The effect was
also found to scale with modulatory amplitude. We note that
this is a direct consequence of the effect portrayed in Fig.
2C . This analysis suggests that excitability heterogeneity also
manifests through the decorrelation of neural responses—thereby
limiting network-wide (i.e., correlated) firing rate fluctuations
caused by modulatory inputs (59, 80). This decorrelation is
complementary yet distinct from the synaptic mechanisms of
excitatory–inhibitory balance (81), relying instead on cell-to-cell
differences in excitability profiles.

The influence of heterogeneity on stability (and hence volatil-
ity) was also confirmed by numerically computing Lyapunov
exponents across independent realizations of the network con-
nectivity and independent trials, in which the system exhibits
different configurations and is exposed to variable modulatory
inputs. The network is unstable whenever Lyapunov exponents
are positive, and stable otherwise. As shown in Fig. 2E , persistent
positive mean Lyapunov exponents with large variance are
observed in the homogeneous case. Such volatility is expected
from the theory of nonlinear balanced networks (71, 72). In
the heterogeneous case, Lyapunov exponents remained bounded
below zero throughout. These results confirm persistent stability
and suggest enhanced resilience in the presence of excitability
heterogeneity.

Volatility of Homogeneous Networks. Figs. 1 and 2 illustrate
the cell and circuit manifestations of the profound dynamical
changes that can arise from excitability heterogeneity and its
attendant loss. To better understand the underlying mechanisms
underlying the cell and circuit effects of excitability heterogeneity
on dynamical stability, we harnessed spectral theory for random
matrices (28, 61, 82), which is a way of characterizing the stability
of large-scale networks and dynamical systems. By construction,
our network model is subject to the circular law of random
matrix theory (61, 82) in which the eigenvalues—defining
stability—are constrained with high probability in a disk in the
complex plane. The eigenvalues populating that disk are complex
numbers. If they all possess negative real parts, the network is
stable: Fluctuations are absorbed by the network, and neural
activity returns to its equilibrium after being perturbed. In our
network model, such stability manifests through low-intensity,
asynchronous neuronal firing smoothly driven by modulatory
inputs (e.g., Fig. 2B). However, if some eigenvalues have positive
real parts, the network is instead unstable: Neural activity diverges
once perturbed, exhibiting synchronous and/or chaotic dynamics
(e.g., Fig. 2A). In the intermediate case, when eigenvalues lie
close to the imaginary axis, the network is said to reside at a
critical point sitting between stability and instability, commonly
referred to as metastable. The circular law provides a powerful

way to analyze the behavior of a large number of eigenvalues
simultaneously, without the challenging task of considering them
individually. We direct the reader toward ref. 83 for an excellent
introduction and discussion on spectral analysis, the circular law,
and its applications in neuroscience.

The circular law (61, 82) has been extensively used in
neuroscience to characterize the dynamics of neural circuits (83–
86) and in macroecology to examine the stability of complex
natural systems, such as food webs (12, 14, 23–28). It provides
a powerful and intuitive framework for characterizing resilience
in our network model. Given that eigenvalues are constrained
within a disk of radius 0 (called spectral radius), one can thus
quantify stability by considering how0 changes with modulatory
input, heterogeneity, and other control parameters. The spectral
radius may be viewed as a measure of robustness of neuronal
populations, indexing how much networks resist change and
retain stability.

Geometrically, changes in the spectral radius 0 (reflecting
changes in the size of the spectral disk) result either in the
clustering or dispersion of eigenvalues centered around the local
relaxation gain `; Materials and Methods. As can be seen in
Fig. 3A, whenever the spectral radius 0 becomes larger (resp.
smaller) than |`|, eigenvalues will cross the imaginary axis, and
the network becomes unstable (resp. stable) with high probability
(30, 31, 61, 87–89). If the spectral radius remains commensurate
with |`|, then the network is considered metastable and in the
vicinity of a critical point.

While the net size of the spectral radius determines the system’s
stability, how this spectral radius changes with respect to a
control parameter (e.g., modulatory input amplitude So) reflects
the system’s resilience or volatility. If eigenvalues (which are
contained in the spectral disk) move significantly in the complex
plane due to perturbations (e.g., modulatory input or other
control parameters), the network is prone to sudden qualitative
changes in dynamics. Indeed, as neural systems can reside in
both stable (relaxation) and/or unstable (oscillations, synchrony,
chaos) functionally meaningful dynamic regimes, the value of
eigenvalues (inferred from the spectral radius 0) evaluated at a
given moment in time conveys little information. It is instead how
these eigenvalues change that reflects resilience or volatility. To
examine this sensitivity, we subjected the homogeneous network
to a thorough spectral analysis (Materials and Methods). By virtue
of having homogenous excitability, individual neurons’ steady
states were found to be identical across the network and entirely
dependent on the modulatory input amplitude (i.e., uoj = B+So),
as expected. This is fully consistent with the dynamics observed
in Fig. 2. Over short time scales, the modulatory input S(t) ≈ So
can be considered constant: Its influence on the spectral radius 0
may thus be quantified. Indeed, as can be seen in Fig. 3A, both
numerically and analytically, the spectral radius was found to be
highly sensitive to modulatory input: Changes in So resulted in
high-amplitude clustering and/or dispersion of the eigenvalues
around the relaxation gain, causing frequent transitions between
stability and instability. The spectral radius 0 was found to
increase with the modulatory input amplitude (So), indicating
that such fluctuations generally lead to instability.

We confirmed this volatility in Fig. 3B, alongside the align-
ment between our numerical and analytical calculations. Time-
dependent changes in the amplitude of the modulatory input
(such as those exemplified in Fig. 2) significantly contract and/or
expand spectral radius 0, whose value intermittently crosses the
stability threshold, leading to an alternation between stability
and instability. As So fluctuates, the network undergoes epochs
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A B

C

D

Fig. 3. Spectral analysis of homogeneous networks exposed to modulatory input. Modulatory inputs influence the statistical properties and distributions of
eigenvalues for homogeneous networks, which may be quantified by the spectral radius 0. (A) The network eigenvalues (�j , computed for one instance of the
network connectivity; gray dots) are complex and distributed in the complex plane within a disk (black circle), centered around the linear relaxation gain `

(yellow vertical line) and delineated by a circle of radius 0. Whenever 0 matches or exceeds the stability threshold (vertical black dashed line located at 0), the
system is considered unstable (gray shaded area) with high probability. The slowly fluctuating modulatory input S(t) ≈ So influences the system’s stability by
expanding or contracting the spectral radius, and hence the spectral disk containing eigenvalues. As the modulatory input amplitude So increases (horizontal
red arrows), the spectral disk and radius increase, resulting in instability. Here, three examples are plotted for So = 0 (small black circle), So = 0.025 (medium
black circle), and So = 0.05 (large black circle). (B) When S(t) fluctuates slowly in time (top red line), the spectral radius 0 expands and contracts above or below
the stability threshold (0 = d = 1; orange horizontal line) leading to alternating epochs of stability and instability (gray shaded area) as exemplified in Fig. 2.
Aside from changes in the amplitude So, other parameters remained fixed. (C). Spectral radius 0 as a function of So. At baseline (i.e., So = 0), the spectral radius
is small and hence the network is stable. As So increases, the spectral radius increases, exposing the system to stability transitions as eigenvalues cross the
imaginary axis. As the modulatory input increases further, the spectral radius starts to decrease as the neurons reach saturation. The threshold of stability is
plotted for 0 = |`| = 1 (Materials and Methods; orange horizontal line), alongside both numerically (gray) and theoretically (black) computed spectral radius 0.
The instability region is shaded in gray. (D) Changes in connection probability (�; orange line), network size (N; cyan line), firing rate response gain (�; green line),
and mean synaptic strength (�; red line) are all collectively destabilizing and increase monotonically the spectral radius 0. In this panel, So = |B|. Each parameter
was varied independently within the range specified, while other parameters were set to their default value, i.e., N = 100, � = 0.05, ` = −1, �e = � = 0.08,
� = 50, f = 0.8, �i = f�/(f − 1), �2

W,e = �2
W,i = 0.005, B = −0.05.

of instability, alternating with periods where neural activity is
either suppressed (So strongly inhibiting) and/or saturated (So
strongly exciting). We note that fast changes in S(t) might
cause the network to cross the unstable regime briefly; instability
is then difficult to observe since the system does not evolve
sufficiently fast to exhibit unstable observable dynamics. Results
plotted in Fig. 3C show a high dependence of the spectral radius
on modulatory input amplitude (So). Stability (i.e., relaxing
neural activity, small 0) characterizes inhibitory and/or low-
amplitude modulatory input, while higher amplitudes lead to
instability (i.e., divergent, chaotic, and/or synchronous neural
activity, large 0) and eventually saturation (i.e., neural activity
plateaus, small 0). As shown in Fig. 3D, our analysis also
revealed that the spectral radius 0—and hence the dispersion
of eigenvalues in the complex plane—increases with network size
(N ), connection probability (ρ), firing rate response gain (β), as
well as net synaptic strength (µ); individually or collectively, all
these network features diminish the system’s resilience. This is in
line with previous results (25, 30) notably on balanced networks
(71, 72), highlighting that homogeneous networks are generically
prone to instability. Taken together, our analysis indicates that
in sparse balanced and homogeneous networks, high sensitivity
to modulatory input and other control parameters underlies the
system’s volatility.

Intrinsic Excitability Heterogeneity Tunes Stability and Re-
silience. Numerous previous studies (39, 41, 60, 75) have shown
that heterogeneous neural systems adapt and converge toward
a regime of metastability to optimize responses and coding
properties. Such metastability manifests itself through critical-
like neural activity (90, 91) and/or dynamics residing in the
vicinity of a state transition (92). From the perspective of the

aforementioned circular law, such dynamical properties emerge
whenever these networks are brought toward and operate in
dynamical regimes resulting from an intermediate spectral radius,
neither too small (i.e., strong stability leading to quiescence;
eigenvalues all have negative real parts) nor too large (i.e., strong
instability leading to divergence, chaos, and/or synchrony; some
eigenvalues have positive real parts).

Our previous findings (37) suggest that intrinsic excitability
heterogeneity should improve network resilience, as portrayed
in Figs. 1 and 2. To better understand the mechanism behind
these dynamics, we adapted the spectral theory for large-
scale random systems (28, 61, 82) to expose the influence of
excitability heterogeneity on the distribution of eigenvalues. We
specifically explored the susceptibility of the spectral radius 0—
and hence the dispersion of eigenvalues in the complex plane—to
modulation across various degrees of heterogeneity (σ 2

H > 0)
(Materials and Methods). Our analysis revealed two main roles
played by diversity on network dynamics: a) homeostatic control
on network stability and b) the promotion of its resilience.

Indeed, we found that intrinsic excitability heterogeneity is
a homeostatic mechanism exerting bidirectional and context-
dependent control on network stability: enriching the dynamics
whenever they are too poor or, conversely, stabilizing network
activity whenever it is too unstable. Indeed, as shown in Fig.
4A, heterogeneity increased the spectral radius (0) for small
modulatory input amplitudes (So). This is also illustrated at
the cell and circuit level in Fig. 2B. Excitability heterogeneity
maintains network activity during low-drive (So) states, and
restrains activity in high-drive states. By doing so, heterogeneity
prevents both quiescence and excessive firing, while decorrelating
firing rates. For low amplitudes of modulation, lack of het-
erogeneity yields highly stable neural activity that invariably
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relaxes back to equilibrium whenever perturbed: The spectral
radius is infinitesimal, and eigenvalues are clustered around
the relaxation gain `. Introducing excitability heterogeneity
expands the spectral disk, enriching network dynamics toward
instability. Surprisingly, heterogeneity has the opposite effect
for higher modulatory input amplitudes, for which the system
is highly unstable: Here, heterogeneity instead contracts the
spectral disk and stabilizes network dynamics. This contextual
control of excitability heterogeneity on stability which depends
on modulatory fluctuations suggests that heterogeneity tunes
the spectral disk—and hence eigenvalue dispersion—toward an
optimal intermediate size.

Indeed, we found that intrinsic excitability heterogeneity is
a homeostatic mechanism exerting bidirectional and context-
dependent control on network stability: enriching the dynamics
whenever they are too poor, or conversely, stabilizing network
activity whenever it is too unstable. Indeed, as shown in Fig.
4A, heterogeneity increased the spectral radius (0) for small
modulatory input amplitudes (So). This is also illustrated at the
cell and circuit level in Fig. 2B, where excitability heterogeneity
maintains network activity during low-drive (So) states, while
dampening the activity in high-drive states, preventing both
quiescence and excessive firing, while decorrelating firing rates.
For low amplitudes of modulation, lack of heterogeneity yields

A B

C D

Fig. 4. Heterogeneity-induced homeostatic control on stability. Increasing
the degree of heterogeneity in the network strongly influences the network’s
response to modulatory input. (A) Diversity has an enrichment effect
for low modulatory input, yet remains stabilizing whenever modulatory
input is strong and/or saturating. When modulatory input amplitude (So)
is small, increased diversity results in an enrichment of neural activity.
As heterogeneity increases, the spectral radius (0) expands (�2

H = 0.01,
0.025, 1; blue lines) compared to the homogeneous case (�2

H = 0; black
line). In contrast, when modulatory input amplitude is large, heterogeneity
stabilizes neural activity by contracting the spectral radius compared to
the homogeneous case, causing a clustering of the eigenvalues around the
linear relaxation gain ` (vertical yellow line). (B) The homeostatic influence of
heterogeneity on the spectral radius depends on modulatory input. Diversity
will invariably stabilize the network (i.e., decrease 0) whenever So is high (bold
red curve), while enrichment (i.e., increased 0) will occur for weak So (pale
red curve). High levels of heterogeneity are always stabilizing as 0 decreases
to zero. (C) Variance of the steady-state distribution �2

uo as a function of
heterogeneity �2

H. As heterogeneity increases, the variance of the steady-
state distribution increases. The dotted line corresponds to the numerically
computed steady-state distribution variance averaged over 50 independent
network realizations. The bold blue line represents the analytical calculations
in which the approximation �2

uo � �2
H was used. Error bars reflect SDs over

trials. (D) Stability transition rate as a function of excitability heterogeneity.
This rate corresponds to the number of bifurcations per unit time over
independent realizations of the network, for 10 trials of duration 5,000 a.u.
Error bars reflect SDs over trials. Parameters are given by N = 100, � = 0.05,
` = −1, f = 0.8, �e = � = 0.08, � = 15, �i = f�/(f − 1), �2

W,e = �2
W,i = 0.005,

and B = −0.05 .

highly stable neural activity that invariably relaxes back to equi-
librium whenever perturbed: The spectral radius is infinitesimal,
and eigenvalues are clustered around the relaxation gain `.
Introducing excitability heterogeneity expands the spectral disk,
enriching network dynamics toward instability. Surprisingly,
higher modulatory input amplitudes, for which the system is
highly unstable, led to the opposite. Indeed, heterogeneity was
found to here instead contract the spectral disk and stabilize the
dynamics. This contextual control of excitability heterogeneity
on stability which depends on modulatory fluctuations suggests
that heterogeneity tunes the spectral disk—and hence eigenvalue
dispersion—toward an optimal intermediate size.

The contextual influence of excitability heterogeneity on
network stability described above stems from a damping of
spectral radius sensitivity with respect to modulatory input (Fig.
4A). Indeed, sharp changes in 0 caused by So (such as those
seen in Fig. 3 B and C ) were evened out by heterogeneity,
resulting in an enrichment or stabilization of the dynamics
as the spectral radius is increased or decreased, respectively.
Specifically, heterogeneity increased the spectral radius for low
modulatory input, while doing the opposite for high amplitudes.
The homeostatic influence of heterogeneity on network stability
could be confirmed in Fig. 4B. Irrespective of modulatory input
amplitude So, heterogeneity was found to tune the spectral
radius—through either enrichment or stabilization—toward the
same intermediate radius.

To confirm the alignment of our mathematical analysis and
numerical simulations, we computed the variance of the neuron’s
fixed point distribution (i.e., σ 2

uo ), which was also found to
depend on the degree of heterogeneity (Fig. 4C ). Introduc-
ing heterogeneity consistently prevented stability transitions,
rendering the system more resilient. Indeed, as can be seen
Fig. 4D, the transition rate—corresponding to the number of
bifurcations observed in the network per unit time—decreased
monotonically, confirming the trend seen in Figs. 1 and 2.

Another important conclusion stemming from our analysis
is that excitability heterogeneity generically enhances network
resilience. As can be seen from Fig. 4, increasing excitability
heterogeneity significantly damped spectral radius changes re-
sulting from modulatory input. This implies that excitability
heterogeneity anchors eigenvalues in the complex plane, limiting
how much they change in response to modulatory input. As
discussed before, this limits the probability of changes in stabil-
ity, preventing bifurcations and confirming resilience. Indeed,
excitability heterogeneity made 0 less sensitive to changes in So,
and by doing so, quenched volatility. This was confirmed in Fig.
5A by systematically varying modulatory input amplitude and the
degree of heterogeneity while measuring the spectral radius. We
found that heterogeneity damped the sensitivity of the network
stability on So, as the spectral radius gradually becomes effectively
independent of So beyond a given degree of heterogeneity
(dashed box in Fig. 5A). To encapsulate the effect of excitability
heterogeneity on the network’s resilience, we computed both the
spectral volatility (κ)—which measures the effective sensitivity
of the spectral radius on a given control parameter—as well
as the resilience parameter (R)—which is the reciprocal of the
spectral volatility—as a function of modulatory input amplitude
(i.e., So). These metrics quantify how invariant to changes in
a given control parameter the eigenvalue distribution is. This
is done by looking at variations of the spectral radius, see
Materials and Methods. As shown in Fig. 5B, heterogeneity
optimized resilience to modulatory input, and the spectral
volatility decreased. Collectively, these results demonstrate that
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A B

Fig. 5. Heterogeneity enhances the resilience of balanced networks. (A)
Diversity limits variations of the spectral radius. Increasing heterogeneity
constrains changes in the spectral radius 0 resulting from changes in
modulatory input amplitude. Without heterogeneity, the same fluctuations
in modulatory input (red arrows; Left) result in much wider changes in 0.
Spectral radius (0) as a function of the degree of heterogeneity and the
amplitude of the modulatory input (So). Increasing heterogeneity suppresses
the system’s dependence on the modulatory input as the spectral radius 0
becomes constant despite changes in So (dashed box). (B) Resilience (RSo ;
red curve) and spectral volatility (�So ; gray curve) measures with respect to the
modulatory input amplitude (So) as a function of the degree of heterogeneity.
Resilience increases with heterogeneity while the spectral radius sensitivity
(i.e., volatility) decreases with �2

H = 0. Parameters are given by N = 100,
� = 0.05, ` = −1, f = 0.8, �e = � = 0.08, � = 15, �i = f�/(f − 1),
�2
W,e = �2

W,i = 0.005, and B = −0.05.

excitability heterogeneity greatly enhances the resilience of sparse
balanced networks by anchoring the eigenvalues in the complex
plane and decreasing the sensitivity of their distribution to
modulatory input.

Heterogeneity May Stabilize Networks across Changes in Con-
nectivity. Our results so far indicate that excitability heterogene-
ity implements a long time-scale homeostatic control mechanism
that promotes resilience in networks exposed to modulatory
inputs. However, other control parameters might influence the
neural systems’ stability over these time scales. Neural systems are
subjected to perpetual change, even in the absence of modulatory
fluctuations and/or stimuli. Synaptic plasticity is a salient
example: During learning, the number of synapses and/or the
effective synaptic weights change, as a consequence of processes
such as long-term potentiation (LTP) and depression (LTD)
(10). Networks undergoing such plasticity-induced structural
modifications of their connectivity tend to be weakly resilient.
Indeed, most forms of synaptic plasticity lead to the development
of instability, in which run-away neural activity departs from
baseline and needs to be compensated/stabilized through various
homeostatic feedback processes (5, 66, 67), a few of which have
found experimental support (93).

We asked whether excitability heterogeneity, on its own,
could prevent stability transitions in neural systems undergo-
ing plasticity-induced changes in connectivity. Our previous
analysis demonstrates that the spectral radius 0—and hence
the dispersion of eigenvalues in the complex plane—increases
with connection probability (ρ) as well as net synaptic strength
(µ). This suggests that long time-scale changes in these network
features—prone to increase together or independently during
learning—generically promote instability and volatility. As can
be seen in Fig. 6, this is confirmed numerically: Increasing both
the connection probability (Fig. 6A) and synaptic strength (Fig.
6B) over a physiologically realistic range resulted in instability,
as measured with the mean Lyapunov exponent. However, this
occurred only in the homogeneous case. Indeed, increasing the
heterogeneity suppressed this instability with the mean Lyapunov
exponent remaining negative over the range of values of explored,
i.e., the system did not experience any stability transitions.

Mathematical analysis affirms this finding. Fig. 6C shows that
the spectral radius 0 increases monotonically with connection

probability (ρ) and synaptic strength (µ) interchangeably,
underlying such systems’ volatility and associated vulnerability
to stability transitions. Slow time-scale changes in connectivity
resulting from plasticity (illustrated by the gray curves linking
points a and b in Fig. 6C ) result in stability transitions.
Introducing heterogeneity moved the effective stability threshold
(i.e., 0(ρ,µ) = |`|) further in parameter space, resulting in
overall compensation for the destabilizing influence of increases
in connection probability and synaptic strength (c.f., Fig. 3D). In
this case, slow time-scale changes in connectivity cause stability
transitions to become increasingly unlikely as the net size of the
stability region increases. In addition to this stabilizing influence,
heterogeneity was also found to promote resilience via anchoring
the eigenvalue distribution in the complex plane. We thus
computed the resilience metric, now as a function of connection
probability (ρ; Rρ) and synaptic strength (µ; Rµ). As shown
in Fig. 6D, increasing the degree of excitability heterogeneity
enhanced resilience for both these control parameters, i.e.,
promoting the persistence of stability by decreasing the spectral
volatility and the susceptibility of the spectral radius on changes
in connection probability (ρ) and synaptic strength (µ).

Discussion

In the last several years, with continued advancements in high-
throughput single-cell RNA sequencing (scRNAseq) (94), it is
abundantly clear that within cell types, there is a transcriptomic
continuum rather than discrete subtypes (44, 45, 47). This
within-cell-type transcriptomic diversity is also reflected in
functional diversity in excitability features in human (4, 37)
and rodent neurons (45, 47) and likely a direct manifestation
of the observed transcriptomic variability, given the correlation
between the transcriptome and electrophysiological properties
of neurons (95, 96). In the light of these technical advances
in describing the properties of individual neurons at scale,
a major challenge for neuroscience is to bridge across the
divide between individual neuronal properties and network
function (97). While bridging this gap remains a significant
challenge experimentally, although advances in imaging tech-
nologies, NeuroPixels (98), Ca2+ (99), and ultrasound (100) are
continually closing it, it is the promise of computational and
mathematical analyses to simplify the complexity of the brain
while addressing this critical divide between brain structure and
function (101).

It is within this context of bridging scales that we here bridge
between neuronal diversity—a seemingly fundamental design
principle of the brain—and the stability of cortical dynamics.
Collectively, our results suggest that excitability heterogeneity
makes balanced sparse neural networks insensitive to changes in
many key control parameters, quenching volatility. Our analyses
and results can be generalized across a wide range of network
sizes, connectivity profiles, topologies, types of heterogeneity,
dynamics (e.g., asynchronous, rhythmic), and individual neuron
response properties. Indeed, while we have focused here on
Erdős–Rényi-type topology, our results may be easily extended
to other graph structures (e.g., multimodal, scale-free, cascade
models) through a proper rescaling of the spectral radius (29, 32)
and can also be modified to study time-delayed systems (88, 102).
In particular, the distribution of eigenvalues reported here might
adopt a different shape whenever predator–prey (i.e., excitation-
inhibition), competition and/or mutualistic interactions are
introduced, yet are fully amenable to explore heterogeneous
neuronal properties (62, 84–86, 103, 104).
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A B

C D

Fig. 6. Heterogeneity compensates the destabilizing
effect of changes in connection probability and synap-
tic strength. (A) Increasing the connection probability
generically destabilizes sparse balanced networks. In
the homogeneous case (�2

H = 0; black curve), in-
creasing the connection probability from � = 0 to 0.2
leads the network into an unstable regime. Lyapunov
exponents li increase and become positive. In contrast,
in the presence of heterogeneity (�2

H = 1; blue curve),
they remain more or less constant, and stability per-
sists. Here, �e = � = 0.08, �i = f� (f − 1) (B) The same
trend is observed whenever the synaptic strength is
increased from � = 0 to � = 0.2. Here, � = 0.05. (C) The
spectral radius 0 increases with both connection prob-
ability (�) and synaptic strength (�), suggestive of insta-
bility. The instability threshold (0(�,�) = |`|) is shown
as a black dashed line. Introducing excitability hetero-
geneity shifts the instability threshold in parameter
space (blue-shaded dashed lines), promoting stability.
Illustrative curves representing a trajectory in param-
eter space occurring during plasticity (gray curves),
connecting the network state before (� = 0, � = 0;
A) and after learning (� > 0, � > 0; B). (D) Resilience
measure, computed as a function of connection prob-
ability (�;R�; orange curve) and synaptic strength (�;
R� ; yellow curve), shown along modulatory input
amplitude (So;RSo ; red curve) for reference. All these
increase with an increasing degree of heterogeneity.
Other parameters are given by N = 100, ` = −1,
� = 50, f = 0.8, �2

W,e = �2
W,i = 0.005. In panel D, B = 0.

We have been in part biased by our initial work in the
context of epilepsy, which is a pathological condition where
individuals slip in and out of pathological dynamical brain states
(21, 105) called seizures, and how excitability homogenization
renders circuits more prone to such seizure-like states (37). By
drawing parallels to this previous work (37), we find a reasonable
approximation of what the heterogeneities studied here might
translate to in an in vitro or in vivo setting. Indeed, the model
neurons implemented in this study are analogous to those used
in this previous work and allow us to conclude that changes in
σ 2
H from values on the order of 10−2 to values on the order

of 101 roughly correspond to increasing the heterogeneity from
pathological levels of approximately 1 mV (SD in the distance
to threshold) to physiological levels of approximately 10 mV.
While this correspondence is by no means exact given the
intricacies of the respective neuron models, it supports the range
of relevant heterogeneity that has been (37) and could be observed
experimentally.

Our choice to explore excitability heterogeneity is not haphaz-
ard, and for four reasons, it is not surprising that we find that
it has profound effects on resiliency of brain circuits. First, as
discussed above, cellular diversity is the norm in the brain and
thus appears to be a clear “design principle” of neuronal circuits,
which we accept at face value to be beneficial to the brain and
for which the biological machinery clearly exists (106). Second,
there is ample evidence both experimentally and computationally
that excitability heterogeneity is helpful for information coding
in the brain, decorrelating brain networks while expanding their
informational content (3, 74). Third, we have shown that among
a number of experimentally determined electrophysiological fea-
tures of human neurons, it is the loss of excitability heterogeneity
that accompanies epilepsy (37), echoing the normalization in
excitability that accompanies other disease states (77). Our
mathematical and computational work showed that excitability
heterogeneity prevents sudden transitions to highly correlated
information-poor brain activity. Lastly, neuronal excitability is
highly malleable. This malleability arises from the process of

intrinsic plasticity, where neuronal excitability is modulated by
the neuron’s past activity (5, 63). Indeed learning is accompanied
by changes in voltage and calcium-activated channels that are
principally involved in setting resting membrane potential, input
resistance, and rheobase (63). These channels are also altered in a
number of neuropsychiatric conditions, including epilepsy (65).
Excitability thus represents a local parameter tuned to activity of
each neuron of the network it is embedded in.

In the light of these results, various forms of neuronal (44–46)
and glial (36) heterogeneity support the resilience and qualitative
invariance of neural circuits over extended time scales. This of
course holds true in healthy brains despite continuous external
and internal changes, driven by factors including modulatory in-
puts (6–9), environmental fluctuations and/or stimuli (1, 22, 62),
and changes in connectivity like those resulting from synaptic
plasticity (66, 67). This also holds true for processes that
continuously change the brain during development and aging,
where brain dynamics remain stable over many decades despite
the structural changes that accompany time and pathological
processes, where failure to regulate brain activity in the face of
pathological insults predisposes the brain to dynamic volatility
(15, 18). A confluence of both experimental (1, 4, 22, 33–
37) and theoretical studies (37–43, 59) have highlighted the
role of heterogeneity in brain dynamics and stability. Notably,
phenotypic diversity has been shown to promote the stability of
brain function and its associated dynamics through degeneracy,
redundancy, and covariation (1, 22, 107). Notably, in ref. 32, the
authors provided a comprehensive overview of the destabilizing
influence of motif heterogeneity—the variability in the connec-
tion degree or alternatively a lack of redundancy in connectivity—
on complex random graphs. Recontextualized from the per-
spective of neural systems, these results and ours suggest that
networks exhibiting redundant connectivity motifs alongside
node heterogeneity will generically exhibit enhanced stability and
resilience, corroborating numerous experimental findings (1).

Like all computational and theoretical work, there are lim-
itations to the contexts in which these results are applicable.
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First, our model represents a balance between neurophysiological
relevance and mathematical tractability. More detailed and
biophysically rich models are certainly required to provide a more
comprehensive understanding of the role of diversity on network
stability. Second, phenotype diversity certainly impacts neural
activity beyond excitability. A more thorough characterization of
neural variability is surely warranted to reinforce the alignment
between our model and experimental data, notably to improve
the scope of our predictions. Third, our model does not consider
stochastic fluctuations that are known to be ubiquitous in neural
systems (108) and to influence their stability (79, 109, 110). We
have neglected this source of variation due to the long time scales
considered here and the moderate nonlinearity of the system
(i.e., parameterized by the firing rate response gain β). Future
work is required to incorporate noise in both our simulations
and analyses.

In summary, our results position excitability heterogeneity
and, possibly more generally, neuronal diversity (from transcrip-
tomic and functional studies), as a critical design feature of the
brain to ensure that its rich dynamics are preserved in the face
of a wide set of network parameters. Furthermore, resilience of
dynamics to scale (physical scale as in the number of neurons
or connectivity as in the strength of connections) is of course
critically important for a growing developing brain as well as
an aging brain. Excitability heterogeneity might provide the
dynamical resilience required to stabilize brain dynamics through
these profound structural changes.

Materials and Methods
Network Model. We consider a large network of N neurons whose activity
evolves according to the interplay between local relaxation, recurrent synaptic
connectivity, and slowly varying modulatory input. This model provides a
description of dynamics unfolding over extended time scales, hence quantifying
mean neuronal activity. The mean somatic membrane potential of neuronsui(t),
i ∈ [1, N] obeys the following set of nonlinear differential equations:

τ
d
dt
u = L[u] + Wf[u + H] + B + S(t), [1]

where τ � 1 represents the slow time scale at which the dynamics occur. In
the following, we rescale time by t→ tτ for convenience. The model in Eq. 1 is
both flexible and general, encompassing the mean behavior of a wide scope of
interconnected neuron models involving excitatory and inhibitory interactions,
such as the celebrated Wilson–Cowan and Jansen–Rit models, for instance.
Depending on the spatial scale considered, which remains here undefined, such
models can be either considered to be neuron-based (where nodes represent
individual neurons—the perspective we adopt here) or populations (where nodes
represent assemblies of such neurons), geared toward the characterization of
neuronal mean activity across extended time scales. The term L[u] = `u
is a linear local relaxation term with rate ` < 0, and (f[u])i = f(ui) =
1
2 (1 + erf[βui]) represents the firing rate response function of neurons with
the Gaussian error function erf[·]. This function relates the membrane potential
activity to the firing rate of the neurons. The choice of such response functions is
motivated by the fact that they can be generalized to various classes of excitability
by a proper adjustment of the response gain β . For instance, small values of
β yield class I excitability, while larger values correspond to class II (76). These
different cases are both examined in the subsequent analysis. The vector-valued
term H implements node diversity through spatially heterogeneous neuronal
excitability, i.e., variable firing rate thresholds between neurons. The entries
of H are sampled from a zero-mean Gaussian distribution of variance σ 2

H . The
neuron’s baseline activityB < 0 is a constant offset term used to set the neurons
in a subthreshold regime in the absence of input. Last, the network in Eq. 1 is
further subjected to a slow modulatory input S(t).

The connectivity matrix W in Eq. 1 specifies synaptic coupling between
any pair of neurons. We assume randomly distributed excitatory and inhibitory

coupling (89), with connection probabilityρ. This connectivity motif corresponds
to a weighted Erdős–Rényi random graph; we emphasize, however, that the
following results may be easily extended to other topologies (e.g., ref. 32). The
strength of these synaptic connections is Gaussian-distributed with mean µe
and µi, variance σ 2

e and σ 2
i , and with probability density functions pe and pi,

respectively. We ensure that there are no self-connections, i.e., Wii = 0 ∀i.
In addition, we parameterize the relative density of excitatory versus inhibitory
connections by a coefficient f , 0 ≤ f ≤ 1. Consequently, the probability density
function of synaptic weights Wij may be written as p = ρfpe − ρ(1 − f)pi
(89). Moreover, we choose balanced connectivity with

∑N
j=1 Wij = 0, i.e., the

sum over excitatory and inhibitory synaptic connections vanishes at each node
yieldingµW = 0 and a corresponding synaptic connectivity varianceσ 2

W (seeSI
Appendix for details). The mean network activity 〈u〉(t) is defined as the average
activity across all neurons 〈u〉(t) =

∑N
i=1 ui(t)/N.

Stability. By construction, the network in Eq. 1 subscribes to the circular law
of random matrix theory (61, 82). According to this law, the distribution of
eigenvalues—reflecting stability—is constrained with high probability within a
disk centered around the local relaxation gain ` (called the spectral disk) in the
complex plane, whose radius 0 (called the spectral radius) can be determined
analytically. If the disk is bounded in the left-hand side of the imaginary axis (i.e.,
all real parts of these eigenvalues are negative), the network is said to be stable
and itsactivity invariablyrelaxes back to its equilibriumafter a perturbation. Inour
network model, such stable equilibrium is characterized by weak, asynchronous
neuronal firing. If some eigenvalues cross the imaginary axis (i.e., the spectral
disk is too large, and some eigenvalues possess positive real parts), the network
is said to be unstable, leading to activity that diverges, is synchronous and/or
chaotic. In the intermediate case, when dominant eigenvalues (those possessing
the largest real part) lie close to the imaginary axis, the network is said to reside
at a critical point sitting between stability and instability, commonly referred to
as metastable. Through this framework, equilibria of Eq. 1 are stable whenever
0 < |`|, metastable if 0 ≈ |`|, and unstable otherwise. One may hence
determine the spectral radius 0 and determine whether stability persists to
changes in modulatory input and other control parameters. At short time scales
(τ � 1), the slowly varying modulatory input in Eq. 1 can be considered
constant, i.e., S(t) = So(1, . . . , 1)t . Consequently, if all neurons share the
same excitability profile, i.e., H = 0, we find the stability condition

0H=0,S6=0 =

√
σ 2
W(N− 1)ρβ2

π
e−β

2(So+B)2
< |`|. [2]

Eq. 2 further reveals that increasing the network size (N), the connection
probability (ρ), the variance of synaptic weights ( σ 2

W ; implying increases of the

mean (µ) and variances σ 2
e , σ 2

i ) as well as the firing rate response gain (β)
all cause an expansion of the spectral radius 0, as does the modulatory input
amplitude So. The dependence of Eq. 2 on these various parameters is plotted
in Fig. 3. Consequently, they all lead to instability of Eq. 1, in line with previous
studies (32, 110).

The influence of excitability heterogeneity on stability may also be exposed
by investigating how diversity in excitability thresholds, i.e., H 6= 0, impacts
the spectral radius 0. Recall that elements of H are random and sampled from
a Gaussian distribution of mean 0 and variance σ 2

H . In this case, the stability
condition becomes instead

0H6=0,S 6=0 =

√√√√σ 2
W(N− 1)ρβ2

π
√
γ

e−(So+B)2
β2/d2γ < |`|, [3]

where γ = 1 + 4β2(σ 2
uo + σ 2

H) (see SI Appendix for a detailed derivation).

Volatility and Resilience. Resilience refers to the qualitative invariance of
dynamical states and the absence of stability transitions. To measure resilience,
one may quantify the sensitivity of the spectral radius, i.e., how much0 fluctuates
when exposed to changes to a given control parameter P. To do so, we defined
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the spectral volatility measure κP , reflecting the sensitivity of the spectral disk
to change in the parameter P over the range of values that this parameter can
take (cf., SI Appendix for more details). Small volatility reflects persistence of the
eigenvalue distributions and its overall resistance toward stability transitions.
We may thus introduce the reciprocal of κP to quantify resilience, i.e.,RP =
1/(1 + κP). Note that low (high) volatility corresponds to high (low) resilience.

Given that we have derived the spectral radius analytically in Eq.3, we are in a
position to compute the spectral volatility and resilience analytically. Specifically,
if one considers P = So, one obtains

κSo = 2σW

√
(N− 1)ρβ
π
√
γ

, [4]

RSo =

√
π
√
γ√

π
√
γ + 2σW

√
(N− 1)ρβ

, [5]

where γ = 1 + 4β2(σ 2
uo + σ 2

H). Eqs. 4 and 5 show that the volatility and
resilience of the network with respect to the modulatory input amplitude both
depend on excitability heterogeneity through the factor γ . Whenever σ 2

H > 0
increases, the spectral volatility κSo decreases and the resilienceRSo increases.

Network Statistics. To generate representative spiking activity in Fig. 2 A and
B associated with the dynamics of our network model (i.e., Eq. 1), we simulated
Poisson spike trains whose firing rates match those generated by neurons in our
network. Specifically, we simulated Poisson processesXi → Poisson(ri), where
ri = fi = f [ui + hi] corresponds to the firing rate of individual neurons. The
resulting exemplar spiking activity corresponds to a given a realization of such
Poisson processes whose rates are identical to the ones predicted by our model.

Normalized mean network firing rates r̄ in Fig. 2C can be computed with
and without heterogeneity. Since r̄ =

∑N
i=1 fi/N, in the N� 1 limit of large

networks, we find

r̄ ≈
1
2

1 + erf

 β(So + B)√
1 + 2β2(σ 2

uo + σ 2
H)

 , [6]

see SI Appendix for more details.
Excitability heterogeneity also shapes pairwise firing rate correlations. Over

long time scales (i.e., τ � 1) the modulatory input is not constant and may be

considered a normally distributed and uncorrelated random process of mean 0
and variance 2S2

o , resulting in correlated fluctuations in neuronal activity. One
may further consider the weak coupling limit where the recurrent connectivity is
small compared to modulatory input amplitude (σ 2

W � S2
o ). In this regime, the

activity of individual neurons in Eq. 1 is strongly driven by modulatory inputs,
exhibiting a normally distributed probability density function of mean 0 and
variance S2

o . We note that these approximations hold whenever the network is
stable (i.e.,0 < |`|).

For neurons i and j with excitability thresholds hi and hj, respectively, the
mean pairwise correlation coefficient cij between the firing rates ri = f [ui + hi]
and rj = f [uj + hj] may be expressed as

cij =
cov[rirj](1hij)√

Var[ri]Var[rj]
, [7]

where cov[rirj](1hij) corresponds to the covariance expressed as a function of
the difference1hij = hj − hi in excitability between two neurons i and j, and
Var[ri,j] is the firing rate variance (see SI Appendix for further details).

Data, Materials, and Software Availability. Code data have been deposited
in GitHub (https://github.com/Jeremie-Lefebvre/Hutt-et-al-PNAS-2023) (111).
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