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Abstract 

Conceptual knowledge is central to human cognition. Neuroimaging studies suggest that 

conceptual processing involves modality-specific and multimodal brain regions in a task-

dependent fashion. However, it remains unclear (1) whether conceptual representations within 

these regions are also modulated by the task, (2) whether conceptual representations in 

multimodal areas are indeed cross-modal, and (3) how the conceptual system relates to the 

large-scale functional brain networks. To address these issues, we conducted multivariate 

pattern analyses on fMRI data. 40 participants performed three tasks—lexical decision, sound 

judgment, and action judgment—on written words. We found that (1) conceptual 

representations are strongly modulated by the task, (2) conceptual representations in several 

multimodal regions are cross-modal, and (3) conceptual feature retrieval involves the default, 

frontoparietal control, and dorsal attention networks. Conceptual representations in these 

large-scale networks are task-dependent and cross-modal. Our findings support theories that 

assume conceptual processing to rely on a flexible, multi-level architecture. 
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1. Introduction 

Conceptual knowledge is crucial for many cognitive abilities, such as word comprehension 

and object recognition (Lambon Ralph, 2014; van Elk et al., 2014). Previous neuroimaging 

studies indicate that conceptual processing involves both modality-specific perceptual-motor 

regions and cross-modal convergence zones (for a meta-analysis, see Kuhnke et al., 2023; 

for reviews, see Binder & Desai, 2011; Borghesani & Piazza, 2017; Kiefer & Pulvermüller, 

2012; Lambon Ralph et al., 2016). Modality-specific regions represent perceptual-motor 

features of concepts. For instance, action features are represented in somatomotor regions 

(Hauk et al., 2004; Tettamanti et al., 2005; Vukovic et al., 2017), while sound features are 

represented in auditory areas (Bonner and Grossman, 2012; Kiefer et al., 2012, 2008; Trumpp 

et al., 2013). Cross-modal convergence zones integrate modality-specific features into more 

abstract, cross-modal representations (Binder, 2016; Fernandino et al., 2016a; Kuhnke et al., 

2023, 2020b; Tong et al., 2022). We previously proposed a distinction among cross-modal 

convergence zones between “multimodal” regions which retain modality-specific information, 

and “amodal” regions which completely abstract away from modality-specific input (Kuhnke et 

al., 2023, 2022, 2020b). Multimodal regions seem to include the left inferior parietal lobe (IPL) 

and posterior middle temporal gyrus (pMTG) (Fernandino et al., 2022, 2016a; Kuhnke et al., 

2023, 2020b), whereas the anterior temporal lobe (ATL) acts as an amodal hub of the 

conceptual system (Jefferies, 2013; Lambon Ralph et al., 2016; Patterson et al., 2007).  

While a common terminology is currently lacking in the field, we refer to “perceptual-

motor modalities” as the brain’s major input and output channels of perception and action 

(Kuhnke et al., 2023, 2021). Note that these modalities do not simply correspond to the senses 

(hence the term “perceptual-motor” and not “sensory”) as they include channels of internal 

perception (e.g. emotion) as well as motor action (Kiefer and Harpaintner, 2020). We call brain 

regions “modality-specific” if they represent information related to a single perceptual-motor 

modality (Barsalou, 2016; Kiefer and Pulvermüller, 2012). 

Crucially, the recruitment of both modality-specific and multimodal regions is task-

dependent. Several studies indicate that modality-specific perceptual-motor regions are 

selectively engaged when the task requires the retrieval of perceptual-motor features of 

concepts (Borghesani et al., 2019; Hoenig et al., 2008; Hsu et al., 2011; Kemmerer, 2015; 

Kuhnke et al., 2020b; van Dam et al., 2012). For example, we previously showed that auditory 

regions are selectively recruited for sound features during sound judgments, whereas 

somatomotor regions are selectively engaged for action features during action judgments 

(Kuhnke et al., 2021, 2020b). Remarkably, multimodal regions (e.g., left IPL and pMTG) also 

showed a task-dependent activation profile, responding to sound features during sound 

judgments and to action features during action judgments. 
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However, several issues remain unclear. First, it is unknown whether conceptual 

representations within modality-specific and multimodal regions are also modulated by the 

task. Previous neuroimaging studies have exclusively investigated task-dependent changes 

in general recruitment of brain regions, that is, changes in mean activation magnitude via 

univariate analyses (Borghesani et al., 2019; Hsu et al., 2011; Kemmerer, 2015; Kuhnke et 

al., 2020b; van Dam et al., 2012). However, neural representations of mental contents are 

generally assumed to be encoded in “population codes”—patterns of activity distributed across 

multiple representational units within a specific region (Connolly et al., 2012; Haxby et al., 

2014; Ritchie et al., 2019). Whereas univariate analyses are insensitive to such fine-grained 

activity patterns, population codes can be studied using multivariate pattern analyses (MVPA) 

of functional neuroimaging data (Haxby, 2012; Mur et al., 2009). MVPA decoding aims to 

predict a mental content based on the activity patterns within a brain region (Haynes, 2015; 

Norman et al., 2006). 

Second, it is unclear whether neural representations in multimodal convergence zones 

are indeed cross-modal, that is, similar for different modalities. As multimodal areas are 

typically identified via conjunctions of brain activation maps (Fernandino et al., 2016a; Kuhnke 

et al., 2020b), it is possible that multimodal overlap reflects spatially overlapping but distinct 

fine-grained activity patterns for different modalities (Downing et al., 2007; Haxby et al., 2001). 

Third, it remains unknown how the conceptual system is related to the large-scale 

functional networks of the human brain, as identified using resting-state functional connectivity 

MRI (Buckner et al., 2009; Yeo et al., 2011). Several authors have noted the topographical 

similarity of the conceptual system, especially cross-modal areas, to the default mode network 

(DMN) (Binder et al., 2009, 1999; Fernandino et al., 2016a). The DMN is a set of brain regions 

that show deactivation during attention-demanding tasks (as compared to rest), and strong 

functional coupling during the resting state (Buckner et al., 2008; Raichle et al., 2001). The 

DMN is engaged in spontaneous thought, self-referential and autobiographical processes, as 

well as mentalizing (Andrews-Hanna, 2012; Smallwood et al., 2021). These forms of 

introspective information may contribute to conceptual knowledge (Kiefer et al., 2022; Ulrich 

et al., 2022). In addition, conceptual processing is frequently assumed to involve domain-

general executive control or “multiple demand” systems, such as the frontoparietal control 

network (FPN) and/or the dorsal attention network (DAN) (Hodgson et al., 2021; Noonan et 

al., 2013; Wang et al., 2021). Specifically, FPN and DAN may support the controlled retrieval 

and/or selection of task-relevant conceptual representations (Noonan et al., 2013; Thompson-

Schill et al., 1999; Wagner et al., 2001). 

Here, we asked (1) whether conceptual representations in modality-specific and cross-

modal brain regions are modulated by the task, (2) whether conceptual representations in 

putative multimodal convergence zones are indeed cross-modal, and (3) how the brain regions 
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engaged in conceptual processing relate to large-scale functional brain networks. To this end, 

we conducted MVPA decoding analyses on our previous fMRI data (Kuhnke et al., 2021, 

2020b). 40 participants performed three different tasks—lexical decision, sound judgment, and 

action judgment—on written words with a high or low association to sounds and actions (e.g., 

“telephone” is a high sound–high action word).  

First, in “searchlight” decoding analyses, we localized brain regions enabling above-

chance decoding of sound and action features of concepts. In each task, we trained a 

machine-learning classifier to decode high vs. low action or sound words based on the local 

activity patterns. We compared the results for searchlight MVPA to classical univariate 

analysis to identify additional information represented in fine-grained activity patterns. Next, to 

test for cross-modal representations of task-relevant conceptual features, we trained a 

classifier on sound features (high vs. low sound words) during sound judgments, and tested 

the classifier on action features (high vs. low action words) during action judgments, and vice 

versa. Finally, we investigated the involvement of the large-scale functional brain networks, 

as characterized in the resting-state network parcellation by Yeo et al. (2011). To this end, we 

assessed the spatial overlap between the MVPA searchlight maps and each functional 

network, and performed MVPA decoding analyses using the activity patterns within each 

network separately. 

We hypothesized that conceptual representations are modulated by the task: In both 

modality-specific and multimodal brain regions, activity patterns for sound and action features 

should be most distinctive when they are task-relevant. Secondly, multimodal convergence 

zones should contain cross-modal conceptual representations, enabling cross-decoding 

between task-relevant sound and action features. Finally, we expected that conceptual feature 

retrieval involves the DMN, and possibly domain-general control (FPN) and attention (DAN) 

networks.  
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2. Methods 

2.1. Subjects 

Data from 40 healthy native German speakers (22 female; mean age: 26.6 years; SD: 4.1; 

range: 19-33) were analyzed. 42 participants were initially recruited, but two were excluded 

due to strong head movement or aborting the experiment. All participants were right-handed 

(mean laterality quotient: 93.7; SD: 9.44; Oldfield, 1971) and had no history of neurological 

disorders or head injury, or exhibited contraindications to fMRI. They were recruited via the 

subject database of the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 

Germany. Written informed consent was obtained from each subject prior to the experiment. 

The study was performed according to the guidelines of the Declaration of Helsinki and 

approved by the local ethics committee of the University of Leipzig. 

 

2.2. Experimental procedures 

The experimental procedure is reported in detail in Kuhnke et al. (2020), and summarized 

here. We used a 3 x 2 x 2 within-subject design with the factors TASK (lexical decision, sound 

judgment, action judgment), SOUND (high, low association), and ACTION (high, low 

association). During event-related fMRI, participants performed three different tasks—lexical 

decision, sound judgment, and action judgment—on 192 written words with a high or low 

association to sounds and actions (Figure 1). In the lexical decision task, participants had to 

decide whether the presented stimulus was a real word or pseudoword. In the sound judgment 

task, participants judged whether the object denoted by the word was strongly associated with 

sounds. In the action judgment task, participants judged whether the object was strongly 

associated with actions. Whereas the lexical decision task acted as an implicit control task 

that did not require sound or action knowledge, the sound and action judgment tasks explicitly 

required sound and action knowledge, respectively. 

 High and low sound words selectively differed in their association to sounds, while high 

and low action words selectively differed in their association to actions, as determined by the 

ratings of a different group of 163 volunteers (cf. Fernandino et al., 2016; Trumpp et al., 2014). 

Word types were matched on ratings of visual conceptual associations and familiarity, number 

of letters and syllables, word frequency, bi- and trigram frequencies, and number of 

orthographic neighbors (see the Supplementary Material of Kuhnke et al., 2020). Stimuli for 

all conditions were selected from the same superordinate categories of animals, inanimate 

natural entities, and man-made objects (Goldberg et al., 2006; Kiefer et al., 2008). For the 

lexical decision task, a pseudoword was generated for each word matched in length, syllable 

structure and transition frequencies using the Wuggy software (Keuleers and Brysbaert, 2010; 

http://crr.ugent.be/Wuggy). 
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Figure 1. Experimental design. (A) Participants were presented with written words that had 

a high or low association to sounds and actions. (B) Stimuli were presented in random order 

within 6 blocks (64 trials each). Blocks were separated by 20-s rest periods (blue-striped bars). 

Sound and action judgment tasks were performed in mini-blocks of 16 trials. (C) On each trial, 

a word was shown for 1 s, followed by an inter-trial interval (fixation cross) of 2.5-7 s. 

Participants responded via left-handed button press. 

 

2.3. fMRI acquisition and preprocessing 

fMRI data were collected on a 3T Prisma scanner (Siemens, Erlangen, Germany) equipped 

with a 32-channel head coil. Functional blood oxygenation level dependent (BOLD) images 

were acquired using a multiband dual-echo EPI sequence (repetition time (TR): 2 s; echo 

times (TE): 12 & 33 ms; flip angle: 90°; field of view (FoV): 204 mm; voxel size: 2.5 x 2.5 x 2.5 

mm; slice gap: 0.25 mm; bandwidth: 1966 Hz/Px; phase encoding direction: A/P; multiband 

factor 2). We used a dual-echo sequence (Halai et al., 2014; Poser et al., 2006) and tilted 

slices 10° up from the AC-PC line (Weiskopf et al., 2006) to minimize susceptibility artifacts 

and maximize BOLD sensitivity throughout the entire brain, including in regions suffering from 

signal loss in single-echo EPI such as the ATL (Devlin et al., 2000). B0 field maps were 

acquired for susceptibility distortion correction using a gradient-echo sequence (TR: 0.62 s; 

TE: 4 & 6.46 ms; flip angle: 60°; bandwidth: 412 Hz/Px; other parameters identical to functional 

sequence). Structural T1-weighted images were acquired for normalization using an MPRAGE 

sequence (176 slices in sagittal orientation; TR: 2.3 s; TE: 2.98 ms; FoV: 256 mm; voxel size: 

1 x 1 x 1 mm; no slice gap; flip angle: 9°; phase encoding direction: A/P). 
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 fMRI analysis was performed using Statistical Parametric Mapping (SPM12; Wellcome 

Trust Centre for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm/) implemented in Matlab 

(version 9.10). The two images with a short and long TE were combined using an average 

weighted by the temporal signal-to-noise ratio (tSNR) at each voxel, which yields optimal 

BOLD sensitivity (Poser et al., 2006). tSNR was calculated based on 30 volumes collected at 

the beginning of each scanning run, which were excluded from further analyses. Functional 

images were realigned, distortion corrected, slice-timing corrected, and normalized to MNI 

space (via normalization of the coregistered structural image). 

 

2.4. Univariate analyses 

Univariate analysis employed the classical two-level approach in SPM. At the first level, 

individual subject data smoothed with a 5 mm3 FWHM Gaussian kernel were modeled using 

the general linear model (GLM). The subject-level GLM included one regressor for each 

experimental condition, modeling trials as stick functions convolved with the canonical HRF 

and its temporal derivative. Only correct trials were analyzed, error trials were modeled in a 

separate regressor-of-no-interest. To account for potential differences in response time (RT) 

between trials and conditions, a duration-modulated parametric regressor (duration = RT) was 

included (Grinband et al., 2008). Nuisance regressors included the 6 motion parameters, 

individual regressors for time points with strong volume-to-volume movement (framewise 

displacement > 0.9; Siegel et al., 2014), and a duration-modulated parametric regressor 

accounting for response time differences between trials and conditions. The data were 

subjected to an AR(1) auto-correlation model to account for temporal auto-correlations, and 

high-pass filtered (cutoff 128 s) to remove low-frequency noise. 

 Contrast images were computed at the first level for each participant. At the second 

(group) level, these contrast images were submitted to non-parametric permutation tests 

(5000 permutations; SnPM toolbox; https://warwick.ac.uk/fac/sci/statistics/staff/academic-

research/nichols/software/snpm/). To identify brain regions sensitive to action or sound 

features of concepts in each task (lexical decisions, action judgments, sound judgments), we 

compared activation for high > low action words, and high > low sound words in each task. To 

localize “multimodal convergence zones” engaged in both sound and action feature retrieval, 

we performed conjunction analyses between [sound judgment: high > low sound words] ∩ 

[action judgment: high > low action words] via minimum-statistic conjunctions (testing the 

conjunction null; Nichols et al., 2005). All activation maps were thresholded at a voxel-wise p 

< 0.001 and a cluster-wise p < 0.05 FWE-corrected for multiple comparisons. Notably, to 

optimally match the univariate and MVPA decoding analyses. our current univariate analyses 

slightly differ from those in our previous publication (Kuhnke et al., 2020b) in smoothing (5 vs. 

8 mm3) and thresholding (cluster-wise FWE vs. voxel-wise FDR correction). 
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2.5. MVPA searchlight analyses 

To allow for valid comparison to our univariate analyses, searchlight MVPA was performed 

with as similar parameters as possible. As for univariate analysis, individual subject data were 

modeled separately using the GLM. The subject-level GLM for MVPA was identical to the 

univariate GLM (i.e., same HRF model, same nuisance regressors, same auto-correlation 

model and high-pass filtering), with two exceptions: First, MVPA was performed on 

unsmoothed subject-level data as is common for MVPA to retain fine-grained multi-voxel 

activity patterns (Haxby et al., 2014; Raizada and Lee, 2013). Moreover, the subject-level GLM 

for MVPA included one regressor for each trial to obtain trial-wise activity estimates (betas). 

 Next, these subject-specific trial-wise estimates were used as input for MVPA decoding 

using The Decoding Toolbox (version 3.999E; Hebart et al., 2015) implemented in Matlab 

(version 9.10). For searchlight MVPA, we moved a spherical region-of-interest (or 

“searchlight”) of 5 mm radius through the entire brain (Kriegeskorte et al., 2006). At each 

searchlight location, a machine-learning classifier (an L2-norm support vector machine; C=1) 

aimed to decode between high vs. low action words, as well as high vs. low sound words, 

within each task. We performed leave-one-block-out cross validation, training on the activity 

patterns for 5 blocks, and testing on the remaining 6th block (Hebart et al., 2015). 

To identify cross-modal representations of task-relevant conceptual features, we 

performed “cross-decoding” (i.e., training and testing the classifier on different experimental 

conditions; Skerry & Saxe, 2014; Wurm & Lingnau, 2015). Specifically, we trained the classifier 

on high vs. low sound words in the sound judgment task, and tested the classifier on high vs. 

low action words in the action judgment task. We also performed training and testing in the 

reverse direction, and averaged the results for each subject before group analysis. 

Subject-specific classification accuracy maps (minus chance accuracy of 50%) were 

smoothed with a 5 mm3 FWHM Gaussian kernel, matching the smoothing level for our 

univariate analyses. Finally, the smoothed subject-specific accuracy maps were entered into 

non-parametric permutation tests at the group level (5000 permutations; SnPM toolbox). The 

right somatomotor cortex was masked out to remove brain activity related to left-handed button 

presses (using a mask of right M1/S1/PMC/SMA from the human motor area template; Mayka 

et al., 2006). As for our univariate analyses, all MVPA searchlight maps were thresholded at 

a voxel-wise p < 0.001 and cluster-wise p < 0.05 FWE-corrected. 
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2.6. Spatial relationship between conceptual processing and large-scale 

functional networks 

To assess the spatial relationship between conceptual brain regions revealed by searchlight 

MVPA and large-scale functional brain networks, we tested the overlap of our MVPA 

searchlight maps with the resting-state networks by Yeo et al. (2011). This functional overlap 

analysis was performed with both the 7-network and 17-network parcellations by Yeo et al. 

(2011). Specifically, we computed the percentage of voxels in our MVPA searchlight maps for 

action and sound feature retrieval, as well as cross-modal areas that fell into each large-scale 

network. As a measure for above-chance contribution of a functional network, the percentage 

overlap was compared to a baseline of equal contribution of each network (7-network 

parcellation: 100 / 7 = 14.29%; 17-network parcellation: 100 / 17 = 5.88%) using χ2-tests, 

correcting for multiple comparisons using Bonferroni correction. 

 

2.7. ROI-based MVPA decoding in large-scale functional networks 

As a more direct test of the involvement of each large-scale functional network in conceptual 

processing, we also performed MVPA decoding in regions-of-interest (ROIs) corresponding to 

each functional network by Yeo et al. (2011). Our main analyses focused on the 7-network 

parcellation; the 17-network parcellation was tested in supplementary analyses (see 

Supplementary Material). Subject-level ROI-based decoding employed the same methods as 

our searchlight analyses, with the exception that the activation pattern across all voxels of the 

network was used for classification (Mur et al., 2009). As for our searchlight analyses, the right 

somatomotor cortex was masked out of the network ROIs to remove button press related 

activity.  

At the group level, classification accuracies for each ROI and condition were entered 

into one-sample t-tests (vs. chance level of 50%). Moreover, we performed (two-tailed) paired 

t-tests for differences in decoding accuracy between conditions for a given ROI, and between 

ROIs for a given condition. P-values were corrected for multiple comparisons via Bonferroni 

correction for the number of ROIs. 
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3. Results 

 

3.1. Whole-brain analyses: Univariate vs. MVPA 

For both univariate analysis and searchlight MVPA, brain activity for action and sound features 

was strongly task-dependent. 

 

3.1.1. Action feature retrieval 

During lexical decisions, neither univariate analysis nor MVPA revealed any significant brain 

activity for action features (high vs. low action words). During sound judgments, both univariate 

analysis and MVPA yielded activity differences for action features selectively in the left AG, 

and no other brain region (Figure S1 A-C).  

 During action judgments, however, both univariate analysis and MVPA yielded 

widespread activity for action features. Univariate analysis (Figure 2A; Table S1) revealed 

action-related activations in left anterior inferior frontal gyrus (aIFG), inferior parietal lobe (IPL) 

/ intraparietal sulcus (IPS), posterior middle and inferior temporal gyri (pMTG/ITG), posterior 

cingulate cortex (PCC), caudate, and cerebellum.  

 Searchlight MVPA (Figure 2B; Table S2) found action-related activity in left IFG, 

IPL/IPS, pMTG/ITG, PCC and precuneus (PC), the lateral temporo-occipital junction (LTO), 

premotor cortex (PMC), dorsomedial prefrontal cortex (dmPFC), and cerebellum.  

 Comparison between univariate analysis and searchlight MVPA revealed overlap in 

left IPL/IPS, aIFG, pMTG/ITG, PCC, and cerebellum (Figure 2C purple; Table S3). However, 

MVPA activity patterns were broader in these regions, and only MVPA revealed recruitment 

of the right cerebral hemisphere, specifically in right IPL (area PGp), IFG, and LTO (Figure 2C 

red). Moreover, only MVPA found action-related activity in left posterior IFG, PMC, LTO, PC, 

and dmPFC.  

 

3.1.2. Sound feature retrieval 

During lexical decisions, neither univariate analysis nor MVPA revealed any significant brain 

activity for sound features (high vs. low sound words). During action judgments, small clusters 

emerged in left IPL and bilateral PC/PCC, and no other area (Figure S1 D-F).  

During sound judgments, both univariate analysis and MVPA revealed widespread 

activity for sound features. Univariate analysis (Figure 2D; Table S4) showed sound-related 

activations in left pMTG/ITG, IPL/IPS, aIFG, middle frontal gyrus (MFG) / precentral sulcus 

(PreCS), dmPFC, and right cerebellum.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2023. ; https://doi.org/10.1101/2023.04.15.536954doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.15.536954
http://creativecommons.org/licenses/by/4.0/


12 
 

Searchlight MVPA (Figure 2E; Table S5) detected sound-related activity in bilateral 

IPL/IPS, pMTG/ITG, IFG, MFG/PreCS, mPFC, PC/PCC, cerebellum, as well as auditory 

association cortex (AAC; area TE3).  

Comparison between univariate analysis and searchlight MVPA showed overlap in left 

IPL/IPS, aIFG, pMTG/ITG, and dmPFC (Figure 2F purple; Table S6). However, MVPA activity 

patterns were more extensive in these areas, and only MVPA revealed engagement of the 

right cerebral hemisphere, specifically in right IPL/IPS, pMTG, and aIFG (Figure 2F red). 

Moreover, only MVPA revealed sound-related activity in bilateral PC/PCC, mPFC, and AAC 

(area TE3).  

 

 

Figure 2. Comparison of results for whole-brain univariate analysis vs. searchlight 

MVPA on task-relevant conceptual feature retrieval. Both univariate and MVPA subject-

specific maps were smoothed with a 5 mm3 FWHM Gaussian kernel. All group-level maps 

were thresholded at a voxel-wise p < 0.001 and a cluster-wise p < 0.05 FWE-corrected using 

non-parametric permutation tests. 

 

3.1.3. Multimodal convergence zones 

To identify multimodal convergence zones engaged in both action and sound feature retrieval, 

we performed conjunction analyses between [action judgments: high vs. low action words] 

and [sound judgments: high vs. low sound words] for both univariate analyses and searchlight 

MVPA. 
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 Univariate analysis (Figure 2G; Table S7) identified multimodal areas in left IPL/IPS, 

pMTG/ITG, aIFG, and right cerebellum. Searchlight MVPA (Figure 2H; Table S8) found 

multimodal regions in left pMTG/ITG, MFG/PreCS, dmPFC, cerebellum, as well as in bilateral 

IPL/IPS and IFG.  

Direct comparison between univariate analysis and MVPA revealed overlap in left 

IPL/IPS, pMTG/ITG, and aIFG (Figure 2I purple; Table S9). However, MVPA multimodal 

clusters were broader in all of these areas, and only MVPA yielded multimodal regions in the 

right cerebral hemisphere, specifically in right IPL/IPS, and aIFG (Figure 2I red). In addition, 

only MVPA revealed multimodal overlap in left MFG/PreCS, PC/PCC and dmPFC.  

 

3.2. Cross-modal conceptual representations 

Next, we assessed whether “multimodal” overlap between sound and action feature retrieval 

was indeed based on cross-modal conceptual representations. As the machine-learning 

classifier was trained and tested on sound and action features separately, it is possible that 

successful decoding relied on spatially overlapping but distinct activity patterns. We reasoned 

that if these regions indeed hold cross-modal conceptual representations, it should be possible 

to train a classifier on sound features during sound judgments, and test it on action features 

during action judgments, and vice versa. 

 We found that cross-decoding of task-relevant conceptual features was possible (i.e., 

significant above chance level) in bilateral IPL/IPS, as well as in left PC and dmPFC (Figure 

3; Table S10). 
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Figure 3. Brain regions showing significant cross-decoding of task-relevant conceptual 

features. The classifier was trained on activation patterns for task-relevant sound features 

(sound judgments: high vs. low sound words) and tested on task-relevant action features 

(action judgments: high vs. low action words), and vice versa. The searchlight map was 

thresholded at a voxel-wise p < 0.001 and a cluster-wise p < 0.05 FWE-corrected using non-

parametric permutation tests. 

 

 

3.3. Relationship between conceptual processing and large-scale functional 

networks 

To investigate the relationship between brain regions engaged during conceptual feature 

retrieval and the large-scale functional networks of the human brain, we analyzed the overlap 

between our MVPA searchlight maps and the resting-state networks by Yeo et al. (2011).  

 

3.3.1. Action feature retrieval 

In the 7-network parcellation, action feature retrieval (action judgments: high vs. low action 

words) mainly involved parts of the default (27.6% voxels; χ2 = 335.13, p < 0.001), 

frontoparietal control (24.9%; χ2 = 223.20, p < 0.001), and dorsal attention (18.4%; χ2 = 38.93, 

p < 0.001) networks (Figure 4A and C).  

 In the 17-network parcellation, action feature retrieval overlapped with the dorsal 

attention A (13.5%; χ2 = 207.01, p < 0.001), control B (17.5%; χ2 = 407.36, p < 0.001) and 

control C (9.8%; χ2 = 67.36, p < 0.001), as well as the default C (10.6%; χ2 = 91.45, p < 0.001) 

and temporo-parietal (12.4%; χ2 = 160.16, p < 0.001) networks (Figure 4B). 

 

3.3.2. Sound feature retrieval 

In the 7-network parcellation, sound feature retrieval (sound judgments: high vs. low sound 

words) mainly involved the default (34.9% voxels; χ2 = 335.13, p < 0.001) and frontoparietal 

control (26.7%; χ2 = 223.20, p < 0.001) networks (Figure 5A and C). The dorsal attention 

network also showed some overlap (13.1%), but below the baseline level of equal overlap with 

each network (14.29%). 

 In the 17-network parcellation, sound feature retrieval overlapped with the control B 

(14.8%; χ2 = 473.58, p < 0.001) and control C (13.6%; χ2 = 371.55, p < 0.001), default C 

(14.8%; χ2 = 474.36, p < 0.001) and temporo-parietal (13.7%; χ2 = 379.51, p < 0.001), as well 

as the saliency ventral attention B (8.1%; χ2 = 42.41, p < 0.001) networks (Figure 5B). 
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3.3.3. Cross-modal conceptual representations 

Finally, we compared the searchlight MVPA map for cross-decoding of task-relevant 

conceptual features to the resting-state networks. In the 7-network parcellation, cross-modal 

decoding mainly overlapped with the default (31.67%; χ2 = 125.94, p < 0.001), frontoparietal 

control (35.38%; χ2 = 175.99, p < 0.001) and dorsal attention (19.72%; χ2 = 15.30, p < 0.001) 

networks (Figure 6A and C). 

In the 17-network parcellation, cross-decoding overlapped with the control A (10.74%; 

χ2 = 22.98, p < 0.001), control B (11.75%; χ2 = 31.80, p < 0.001) and control C (22.38%; χ2 = 

167.89, p < 0.001), default C (14.18%; χ2 = 56.62, p < 0.001) and temporo-parietal (9.59%; χ2 

= 14.32, p = 0.003), and dorsal attention A (8.91%; χ2 = 9.98, p = 0.03) networks (Figure 6B). 

Involvement of the dorsal attention B network was not significantly above baseline level of 

equal overlap with each network (5.88%) (7.09%; χ2 = 1.80, p > 0.05).  
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Figure 4. Overlap between the MVPA searchlight map for action feature retrieval and 

the resting-state networks by Yeo et al. (2011). We investigated both the 7-network (A) and 

17-network (B) parcellations. Dashed lines represent the baseline level of equal overlap with 

each network. (C) Illustration of the three core networks from the 7-network parcellation that 

overlap with the MVPA searchlight map for action feature retrieval (blue; action judgments: 

high vs. low action words). Vis = visual; SomMot = somatomotor; DorsAttn = dorsal attention; 

SalVentAttn = salience ventral attention; Cont = frontoparietal control; VisCent = visual center; 

VisPeri = visual periphery; TempPar = temporo-parietal. 
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Figure 5. Overlap between the MVPA searchlight map for sound feature retrieval and 

the resting-state networks by Yeo et al. (2011). We investigated both the 7-network (A) and 

17-network (B) parcellations. Dashed lines represent the baseline level of equal overlap with 

each network. (C) Illustration of the two core networks from the 7-network parcellation that 

overlap with the MVPA searchlight map for sound feature retrieval (blue; sound judgments: 

high vs. low sound words). Vis = visual; SomMot = somatomotor; DorsAttn = dorsal attention; 

SalVentAttn = salience ventral attention; Cont = frontoparietal control; VisCent = visual center; 

VisPeri = visual periphery; TempPar = temporo-parietal.    
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Figure 6. Overlap between the MVPA searchlight map for cross-modal conceptual 

representations and the resting-state networks by Yeo et al. (2011). We investigated both 

the 7-network (A) and 17-network (B) parcellations. Dashed lines represent the baseline level 

of equal overlap with each network. (C) Illustration of the three core networks from the 7-

network parcellation that overlap with the MVPA searchlight map for cross-decoding (blue). 

Vis = visual; SomMot = somatomotor; DorsAttn = dorsal attention; SalVentAttn = salience 

ventral attention; Cont = frontoparietal control; VisCent = visual center; VisPeri = visual 

periphery; TempPar = temporo-parietal. 
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3.4. MVPA decoding in large-scale functional networks 

As a more direct test of the involvement of large-scale functional networks in conceptual 

processing, we performed MVPA decoding based on the activation patterns in each network 

of the 7-network parcellation by Yeo et al. (2011).  

Mirroring our searchlight analyses, we found that neural representations for sound and 

action features were strongly task-dependent (Figure 7; see Table S11 for statistics). During 

lexical decisions, no network displayed above-chance decoding of sound features (high vs. 

low sound words) or action features (high vs. low action words).  

In contrast, all networks showed significant decoding of task-relevant conceptual 

features: sound features during sound judgments (Figure 7 yellow), and action features during 

action judgments (Figure 7 cyan). However, decoding accuracies for task-relevant features 

were higher in the default, frontoparietal control, and dorsal attention networks than in the 

other networks (visual, somatomotor, saliency ventral attention, limbic) (Table S12).  

Moreover, selectively the default, frontoparietal control, and dorsal attention networks 

enabled above-chance decoding of task-irrelevant conceptual features in both judgment tasks: 

action features during sound judgments (Figure 7 purple), and sound features during action 

judgments (Figure 7 green). Nonetheless, in all three networks, decoding accuracies were 

higher for task-relevant than -irrelevant features (Table S13). 

The 17-network parcellation yielded similar results at a higher granularity (Figure S2).  

 

3.4.1. Cross-modal representations in large-scale functional networks 

Finally, we also performed cross-decoding of task-relevant conceptual features in each 

network, training the classifier on sound features (high vs. low sound words) during sound 

judgments, and testing on action features (high vs. low action words) during action judgments, 

and vice versa. We found that cross-decoding was significant above chance in all networks 

except the limbic network (Figure 8; Table S14).  

However, decoding accuracies were higher in the frontoparietal control network than 

in the visual, somatomotor, salience ventral attention, limbic, and default networks (Table 

S15). Accuracies were higher in the default than visual and limbic networks; and decoding 

was more accurate in the dorsal attention than visual network. 

Again, the 17-network parcellation showed similar results at a higher granularity 

(Figure S3).  
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Figure 7. Results of ROI-based MVPA decoding analyses in the 7 resting-state networks 

by Yeo et al. (2011). A machine-learning classifier was trained on the activation patterns in a 

given network for 5 out of the 6 blocks, and tested on the remaining block (i.e., leave-one-

block-out cross validation). *: p < 0.05 (Bonferroni-corrected for the number of networks). 

 

 

Figure 8. Cross-decoding of task-relevant conceptual features in the 7 resting-state 

networks by Yeo et al. (2011). The classifier was trained on activation patterns for task-

relevant sound features (sound judgments: high vs. low sound words) and tested on task-
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relevant action features (action judgments: high vs. low action words), and vice versa. ***: p < 

0.001; **: p < 0.01; *: p < 0.05 (Bonferroni-corrected for the number of networks). 

 

 

4. Discussion 

This study investigated neural representations of conceptual features in the human brain. 

Specifically, we asked (1) whether conceptual representations in modality-specific perceptual-

motor and multimodal brain regions are modulated by the task, (2) whether conceptual 

representations in putative multimodal areas are indeed cross-modal, and (3) how the 

conceptual system relates to the large-scale functional brain networks.  

 We found that neural representations of conceptual features are strongly modulated 

by the task. Searchlight MVPA revealed task-dependent modulations of activity patterns for 

sound and action features of concepts: Both in modality-specific perceptual-motor and 

multimodal brain regions, activity patterns were most distinctive for sound features during 

sound judgments, and for action features during action judgments.  

 Several multimodal areas indeed showed evidence for cross-modal conceptual 

representations. Specifically, the bilateral IPL/IPS, left PC and left dmPFC enabled cross-

decoding of task-relevant conceptual features—from task-relevant sound to action features, 

and vice versa.  

 Finally, conceptual feature retrieval mainly involved the default mode network (DMN), 

frontoparietal control network (FPN), and dorsal attention network (DAN). MVPA searchlight 

maps for action and sound feature retrieval, as well as cross-modal areas showed extensive 

spatial overlap with these three networks. Direct MVPA decoding analyses within each 

network revealed that the DMN, FPN and DAN display the highest decoding accuracies for 

task-relevant conceptual features, constitute the only networks that could decode task-

irrelevant features, and enable cross-decoding between task-relevant sound and action 

features.  

These results suggest that conceptual representations in large-scale functional brain 

networks are task-dependent and cross-modal. Our findings support theories that assume 

conceptual processing to rely on a flexible, multi-level neural architecture. 

 

4.1. Task dependency of conceptual representations 

Our results indicate that conceptual representations encoded in fine-grained, multi-voxel 

activity patterns are strongly modulated by the concurrent task. Searchlight MVPA revealed 

by far the most extensive brain activity for sound and action features when they were task-
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relevant (i.e., for sound features during sound judgments, and for action features during action 

judgments).  

 These findings extend previous results from univariate neuroimaging analyses 

showing that the general involvement of brain regions in conceptual processing is task-

dependent, with the strongest activation for task-relevant conceptual features (Borghesani et 

al., 2019; Hoenig et al., 2008; Hsu et al., 2011; Kemmerer, 2015; Kiefer and Pulvermüller, 

2012; van Dam et al., 2012). For example, we previously found that both modality-specific 

perceptual-motor and multimodal brain regions are selectively engaged for sound features 

during sound judgments, and for action features during action judgments (Kuhnke et al., 2021, 

2020b).  

However, compared to univariate analysis, MVPA revealed more extensive brain 

activity for task-relevant features in both modality-specific and multimodal areas. Only for 

MVPA, sound feature retrieval recruited the bilateral auditory association cortex (AAC) 

(Fernandino et al., 2016a; Kiefer et al., 2008; Trumpp et al., 2013), while action feature 

retrieval engaged the left premotor cortex (PMC) (Hauk et al., 2004; Kellenbach et al., 2003; 

Tettamanti et al., 2005; van Elk et al., 2014). These regions were selectively engaged for one 

feature, indicating that they are modality-specific (Barsalou, 2016; Kiefer and Pulvermüller, 

2012). Multimodal convergence zones were more extended for MVPA than univariate analysis 

in left aIFG, pMTG/ITG and IPL/IPS. Moreover, MVPA selectively revealed additional 

multimodal areas in left MFG/PreCS, PC/PCC, dmPFC, as well as in right IPL/IPS and aIFG. 

These results converge with two recent MVPA studies demonstrating multimodal conceptual 

effects in bilateral IFG, MFG/PreCS, PC/PCC and dmPFC (Fernandino et al., 2022; Tong et 

al., 2022).  

Finally, only MVPA revealed conceptual feature activity in the right cerebral 

hemisphere. These findings suggest that the right hemisphere is also involved in conceptual 

processing, but plays a weaker role than the left hemisphere, at least under “normal” 

conditions in young and healthy human adults. In support of this view, Jung-Beeman (2005) 

summarized evidence that both the left and right hemispheres are engaged in conceptual-

semantic cognition, but the right hemisphere seems to perform coarser computations than the 

left. This view is also corroborated by a recent large-scale fMRI study (n=172) which revealed 

conceptual effects in both the left and right IPL, but stronger in the left (Kuhnke, Chapman et 

al., 2022).  

Notably, the task dependency of conceptual representations seems to be graded, 

rather than binary: Whereas no brain region showed significant activity for sound or action 

features during lexical decisions, we found some activity for sound features during action 

judgments, and for action features during sound judgments. These results suggest that in 

contrast to implicit tasks (e.g., lexical decision), explicit conceptual tasks (e.g., sound or action 
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judgment) can induce task-irrelevant feature activation. However, this feature-related activity 

was restricted to high-level, cross-modal regions (i.e., left IPL, PC/PCC). Modality-specific 

perceptual-motor regions were selectively engaged when the respective feature was task-

relevant (e.g., AAC during sound judgments, PMC during action judgments). These results 

are in line with the view that the recruitment of modality-specific perceptual-motor areas is 

particularly task-dependent (Binder and Desai, 2011; Kemmerer, 2015; Kuhnke et al., 2023; 

Willems and Casasanto, 2011). This view is now supported by several functional 

neuroimaging studies (Hoenig et al., 2008; Hsu et al., 2011; Kuhnke et al., 2021, 2020b; van 

Dam et al., 2012).  

Overall, our findings support theories that assume conceptual processing to rely on a 

flexible, multi-level architecture (Binder and Desai, 2011; Fernandino et al., 2016a; Kemmerer, 

2015; Kiefer and Harpaintner, 2020; Popp et al., 2019). For instance, we previously proposed 

that conceptual processing relies on a representational hierarchy from modality-specific 

perceptual-motor regions to multiple levels of cross-modal convergence zones (Kuhnke et al., 

2023, 2021, 2020b). The representation of a concept within this neural hierarchy is not a static, 

task-independent entity, but it is flexibly shaped to the requirements of the current task or 

context (Hoenig et al., 2008; Kiefer and Pulvermüller, 2012; Lebois et al., 2015; Yee and 

Thompson-Schill, 2016). Crucially, our current results indicate that the task dependency of 

conceptual representations varies between different levels of the neural hierarchy: Conceptual 

representations in modality-specific perceptual-motor regions seem to be selectively retrieved 

when they are task-relevant (Binder and Desai, 2011; Kuhnke et al., 2021, 2020b). In contrast, 

conceptual representations in multimodal convergence zones can also be activated (to some 

extent) when they are task-irrelevant, at least in explicit conceptual judgment tasks 

(Fernandino et al., 2016a, 2016b).        

 

4.2. Cross-modal conceptual representations in multimodal convergence zones 

We found that multimodal convergence zones in the bilateral IPL/IPS, left PC and left dmPFC 

allowed for cross-decoding of task-relevant conceptual features: from task-relevant sound to 

action features, and vice versa. This suggests that these multimodal cortices indeed contain 

cross-modal representations of task-relevant conceptual information.  

Importantly, our results indicate that these cross-modal representations are not 

“amodal” (i.e., completely invariant to modality-specific features) but “multimodal”, that is, they 

retain modality-specific information (Kuhnke et al., 2023, 2022, 2020b). Multimodal areas 

encode action features (high vs. low action words) during action judgments, and sound 

features (high vs. low sound words) during sound judgments. Crucially, however, these task-

relevant features are represented in an abstract fashion across modalities, encoding their 

presence vs. absence (cf. Binder, 2016). This multimodal view is supported by several 
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neuroimaging studies (Fernandino et al., 2022, 2016a; Kuhnke et al., 2022, 2020b; Tong et 

al., 2022). For example, Fernandino et al. (2016a) showed that neural activity in the bilateral 

IPL, PC and dmPFC correlated with the strength of perceptual-motor associations for all tested 

modalities (action, sound, shape, color, and motion). 

As an alternative explanation, cross-decoding between sound and action features 

could reflect the concomitant activation of action features during sound feature processing, 

and vice versa (Reilly et al., 2016). Such “cross-modality spreading” is plausible due to “sound-

action coupling”—the phenomenon that many human actions are associated with typical 

sounds (e.g., knocking on a door; Lemaitre et al., 2018). However, cross-modality spreading 

is highly unlikely to explain the cross-modal representations identified in our study. If cross-

modality spreading was prevalent, we would have expected cross-modal effects in modality-

specific perceptual-motor regions. For example, auditory cortex should have been engaged 

for action feature retrieval, and somatomotor cortex for sound feature retrieval (Lemaitre et al., 

2018; Reilly et al., 2016). This was clearly not the case: Cross-modal representations were 

exclusively found in high-level multimodal hubs distant from modality-specific cortices (Binder 

and Fernandino, 2015; Margulies et al., 2016).  

Notably, evidence for a causal role of multimodal conceptual areas is currently weak. 

For example, we previously found that transcranial magnetic stimulation (TMS) over left IPL 

selectively impairs action judgments, but not sound judgments, on written words (Kuhnke et 

al., 2020a). These findings suggest that left IPL might be specialized for action knowledge 

retrieval, challenging the view of left IPL as a multimodal conceptual hub (also see Ishibashi 

et al., 2011; Pobric et al., 2010). Future studies should further test the causal relevance of 

presumptive multimodal areas for the processing of multiple conceptual features. 

 

4.3. Involvement of large-scale functional networks in conceptual processing 

Our results indicate that conceptual processing mainly recruits the large-scale networks of the 

DMN, FPN and DAN. The searchlight MVPA maps for action and sound feature retrieval, as 

well as cross-modal representations showed extensive spatial overlap with the DMN, FPN and 

DAN. In direct network-based decoding analyses, the DMN, FPN and DAN yielded the highest 

decoding accuracies for task-relevant conceptual features, constituted the only networks that 

enabled decoding of task-irrelevant features, and showed evidence for cross-modal 

conceptual representations. 

 These findings partially support views suggesting a correspondence between the 

conceptual system—particularly cross-modal convergence zones—and the DMN (Binder et 

al., 2009, 1999; Fernandino et al., 2016a). However, our results indicate that the DMN is not 

the only large-scale network engaged in conceptual cognition; conceptual processing also 

recruits domain-general executive control (FPN) and attention (DAN) networks. Moreover, our 
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findings suggest that not only the DMN contains cross-modal conceptual representations. 

While almost all large-scale networks enabled above-chance cross-decoding between task-

relevant sound and action features, cross-decoding accuracies were highest in DMN, FPN 

and DAN. Cross-modal conceptual representations seem to be widely distributed throughout 

the large-scale networks of the human brain.  

Crucially, in all networks including the DMN, FPN and DAN, task-relevant features 

were associated with higher decoding accuracies than task-irrelevant features. This result 

further corroborates the task dependency of conceptual feature retrieval (Binder and Desai, 

2011; Kemmerer, 2015; Kiefer and Harpaintner, 2020; Kuhnke et al., 2021, 2020b). The task 

dependency of the FPN and DAN is expected. FPN and DAN strongly overlap with “multiple 

demand” cortex, which has an established role in cognitive control and flexibility (Assem et al., 

2020; Duncan, 2010; Wang et al., 2021). Activation level of these areas positively correlates 

with cognitive demand across a large variety of tasks (Camilleri et al., 2018; Duncan, 2010; 

Fedorenko et al., 2013), and their activity patterns can encode task-relevant information 

(Bracci et al., 2017; Cole et al., 2016; Wang et al., 2021). 

The task dependency of the DMN is a more intriguing result. The DMN is traditionally 

characterized as a “task-negative” network, which is deactivated during attention-demanding 

tasks as compared to the resting state (Fox et al., 2005; Raichle, 2015). Under the task-

negative account, the DMN should not be actively engaged in attention-demanding tasks and 

should not encode task-relevant information (Wang et al., 2021). Our findings are clearly 

inconsistent with the task-negative view: The DMN showed significant decoding of sound and 

action features, with the highest decoding accuracies when these features were task-relevant 

in explicit, attention-demanding conceptual judgment tasks. In contrast to the task-negative 

view, our results converge with a growing body of evidence that the DMN is actively engaged 

in demanding cognitive tasks (Crittenden et al., 2015; Smallwood et al., 2021; Sormaz et al., 

2018; Wang et al., 2021). We show that the DMN actively supports task-relevant conceptual 

feature retrieval. This is in line with the view that DMN deactivation during (non-conceptual) 

attention-demanding tasks as compared to the “resting state” may indeed reflect its 

involvement in conceptual processing (Binder et al., 2009, 1999; Kuhnke et al., 2022). 

“Resting” can involve spontaneous thought, autobiographical memory, as well as self-

referential and introspective processes (Andrews-Hanna, 2012; Smallwood et al., 2021). 

Crucially, all of these processes may involve the retrieval of conceptual knowledge (Binder et 

al., 2009, 1999; Kuhnke et al., 2022). Therefore, the DMN may be “deactivated” during non-

conceptual attention-demanding tasks, as compared to rest, since the conceptual processing 

that occurs during rest is interrupted (Kuhnke et al., 2022; Seghier, 2013). Moreover, the DMN 

may contribute to conceptual processing via its role in mentalizing (Buckner et al., 2008; 

Christoff et al., 2016), which could be particularly relevant for the processing of abstract 
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concepts (Kiefer et al., 2022; Ulrich et al., 2022). Self-referential processes may also play a 

role for concrete concepts, particularly during explicit conceptual tasks that involve simulating 

oneself as experiential agent (e.g. sound or action judgment; Barsalou, 1999). 

Finally, our findings converge with a recent study showing that task goals during 

conceptual feature matching can be decoded from activity patterns in DMN, FPN and DAN 

(Wang et al., 2021). However, in that study, task goals were confounded with stimulus 

differences, and task-irrelevant information could not be decoded. Our study extends these 

previous findings by demonstrating task dependency of conceptual representations in DMN, 

FPN and DAN, even when the stimuli are identical. Moreover, we could show that DMN, FPN 

and DAN contain task-irrelevant conceptual feature information. This could reflect a graded 

task dependency, where task-irrelevant features can be activated (albeit less strongly) in 

explicit conceptual judgment tasks (i.e., sound features during action judgments, and action 

features during sound judgments). Alternatively, it could reflect the active suppression of task-

irrelevant features, which is particularly plausible for the FPN and DAN (Corbetta and 

Shulman, 2002).  

 

5. Conclusion 

In conclusion, we found that (1) conceptual representations in modality-specific perceptual-

motor and multimodal brain regions are strongly modulated by the task, (2) conceptual 

representations in several multimodal convergence zones are indeed cross-modal, and (3) 

conceptual processing recruits the default mode network (DMN), frontoparietal control network 

(FPN), and dorsal attention network (DAN). Neural representations in all three of these core 

networks are enhanced for task-relevant (vs. –irrelevant) conceptual features, and enable 

cross-decoding between modalities. Overall, these findings suggest that large-scale functional 

brain networks contribute to conceptual processing in a task-dependent and cross-modal 

fashion. 
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