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Network-wide thermodynamic constraints
shape NAD(P)H cofactor specificity of
biochemical reactions

Pavlos Stephanos Bekiaris1 & Steffen Klamt 1

The ubiquitous coexistence of the redox cofactors NADH andNADPH iswidely
considered to facilitate an efficient operation of cellular redox metabolism.
However, it remains unclear what shapes the NAD(P)H specificity of specific
redox reactions. Here, we present a computational framework to analyze the
effect of redox cofactor swaps on the maximal thermodynamic potential of a
metabolic network and use it to investigate key aspects of redox cofactor
redundancy in Escherichia coli. As one major result, our analysis suggests that
evolved NAD(P)H specificities are largely shaped by metabolic network
structure and associated thermodynamic constraints enabling thermo-
dynamic driving forces that are close or even identical to the theoretical
optimum and significantly higher compared to random specificities. Further-
more, while redundancy of NAD(P)H is clearly beneficial for thermodynamic
driving forces, a third redox cofactor would require a low standard redox
potential to be advantageous. Our approach also predicts trends of redox-
cofactor concentration ratios and could facilitate the design of optimal redox
cofactor specificities.

The redox cofactors NAD (nicotinamide adenine dinucleotide) and
NADP (nicotinamide adenine dinucleotide phosphate), which differ
only in a phosphate group, play an essential role as electron carriers in
the metabolism of all types of living cells. Both cofactors (or coen-
zymes) occur either in the oxidized form (NAD+ andNADP+), which can
take up two electrons in oxidation reactions, or in the reduced form
(NADH and NADPH), which functions as electron donor enabling the
reduction of metabolites. Recent work suggests that both cofactors
were already present in the last bacterial common ancestor1 and the
specificity of functionally related metabolic enzymes for NAD(H) or
NADP(H) is largely conserved in different organisms.

The universal co-occurrence of NAD(H) and NADP(H) raises the
question why there are two different pools of redox cofactors with
very similar chemical properties. It is a common view that the exis-
tence of two pools enables the parallel operation of metabolic path-
ways with different requirements in the thermodynamic potentials of
the used redox cofactor. While the standard Gibbs free energy
changes between oxidized and reduced forms of NAD(H) and

NADP(H) (and thus their redox potentials) are nearly identical, the
actual Gibbs free energies differ largely in vivo. This is because the
in vivo ratio of reduced and oxidized form is typically very low for
NADH/NAD+ (e.g. ~0.02 in Escherichia coli), but very high for NADPH/
NADP+ (~30 in E. coli)2. This enables simultaneous operation of oxi-
dation reactions (through a low NADH/NAD+ ratio) and reduction
reactions (through a high NADPH/NADP+ ratio), which might be
impossible with a single cofactor pool. Consistent with this view,
NAD+ predominantly functions as electron acceptor in catabolic
reactions, while NADPH typically acts as electron donor in biosyn-
thetic pathways. However, a simple association of NAD(H) with cata-
bolism and NADP(H) with anabolism neglects the fact that the
consumed NAD+ and NADPH must be recycled again by appropriate
reactions. For example, in heterotrophic organisms, on which we will
focus herein, NAD+ ismainly recycled by respiration and fermentation
pathways. Conversely, the NADPH pool is often, to a large extent,
replenished via the oxidative pentose phosphate pathway, which is
itself a catabolic route.

Received: 20 March 2023

Accepted: 18 July 2023

Check for updates

1Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany. e-mail: klamt@mpi-magdeburg.mpg.de

Nature Communications |         (2023) 14:4660 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2563-7561
http://orcid.org/0000-0003-2563-7561
http://orcid.org/0000-0003-2563-7561
http://orcid.org/0000-0003-2563-7561
http://orcid.org/0000-0003-2563-7561
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40297-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40297-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40297-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-40297-8&domain=pdf
mailto:klamt@mpi-magdeburg.mpg.de


While there is a common view on the functional role of the two
coenzymes, unbiased quantitative measures are needed that can
explain why redundant redox cofactor pools bring an evolutionary
advantage for the cell. An important contribution in this direction has
been made in a recent work by Goldford et al.3 The authors used
constraint-based modeling to analyze, for example, thermodynamic
feasibility of growth in a metabolic network under single cofactor
swaps as well as kinetic simulations in a small example network to
illustrate that the co-existence of multiple, functionally associated
cofactor pools like NAD(H) and NADP(H)may reduce the total amount
of enzymes needed to catalyze metabolic fluxes due to increased
thermodynamic driving forces. However, there are still several open
questions, in particular, what shapes the cofactor specificity of the
metabolic reactions (and associated enzymes) in a given metabolic
network? For example, due to the low NADH/NAD+ ratio in the cell, the
driving force of a reaction reducing one of the two cofactors would
always benefit if it usedNAD+, however, as alreadymentioned above, at
least some reactions must use NADP+ to replenish the NADPH pool.
The optimal distribution of NAD(P)(H) specificities becomes thus a
problem at the network level. If we were able to freely assign cofactor
specificities to all reactions, which distribution would be optimal (e.g.,
in terms of thermodynamic driving force in the network) and could we
then even predict the required NAD(P)H/NAD(P)+ ratios without fixing
them to predefined (known) values?

In this work, in order to address those and other questions and to
gain insights related to cofactor redundancy, we introduce a frame-
work called TCOSA (Thermodynamics-based COfactor Swapping
Analysis), which enables us to analyze the effect of redox cofactor
swaps on the thermodynamic potential of a given genome-scale
metabolic network. Similar to Goldford et al.3, TCOSA relies on
constraint-based metabolic modeling in combination with thermo-
dynamic constraints (standard Gibbs free energies and metabolite
concentration ranges) but, as a key difference, it uses the notion of the
max–min driving force (MDF)4,5 to assess themaximal thermodynamic
driving force achievable in the network. This approach does not need
kinetic parameters and allows the calculation of various properties
related to thermodynamic effects of cofactor swaps. In particular, it
enables us to predict NAD(P)(H) specificities in metabolic reactions
that maximize the overall thermodynamic driving force, which can
then be compared with the wild-type specificities. We use TCOSA to
analyze the thermodynamic driving forces of different scenarios of
cofactor specificities in a genome-scale metabolic network of E. coli.
We find that the wild-type NAD(P)(H) specificities of the metabolic
reactions in E. coli enable in almost all cases maximal or close to
maximal thermodynamic driving forces and are thus, to a large extent,
governed by network structure and thermodynamics alone. Among
several other important results, we find that providing more than two
redox cofactor pools does not significantly increase the maximal
thermodynamic driving forces unless the redox potential of the third
redox couple is different from that of NAD(P)H. We also discuss pos-
sible applications of the TCOSA framework as a design tool for meta-
bolic engineering, e.g. to increase thermodynamic driving forces for
synthesis of a target product.

Results
Model preparation and NAD(P)(H) specificity scenarios
Our developed TCOSA framework (described in detail in the Methods
section) facilitates a systematic analysis of the effects of altered
NAD(P)(H) specificities of redox reactions on the achievable thermo-
dynamic driving forces in a given metabolic network. Herein we
applied this framework to iML15156, the latest genome-scalemetabolic
model of E. coli, which we initially reconfigured to prime it for TCOSA-
related calculations (see Methods). Essentially, each NAD(H)- and
NADP(H)-containing reaction is duplicated but with the alternative
cofactor (see Methods and Fig. 1a).

As detailed below, this reconfigured model (called
iML1515_TCOSA) is used in several calculations to analyze effects of
different variations of cofactor swaps. Basically, we consider four dis-
tinct scenarios of NAD(P)(H) specificities in the network (Fig. 1b):
1. Wild-type specificity: This scenario assumes the original NAD(P)

(H) specificity of the iML1515model. Hence, if a reaction originally
utilized NAD(H), then its NADP(H) variant is blocked in the
iML1515_TCOSA model (reaction flux fixed to 0). Conversely, if a
reaction originally used NADP(H), its NAD(H) variant is blocked.

2. Single cofactor pool: All NADP(H) variants are blocked, hence, all
redox-cofactor-dependent reactions use NAD(H). To keep the
growth reaction feasible, the amount of NADP+ consumed by this
reaction is provided from the NAD+ pool.

3. Flexible specificity: For all reactions consuming redox cofactors,
both variants (NAD(H) or NADP(H)) are available. Hence, in this
scenario, any optimization procedure can freely choose between
NAD(H) or NADP(H) dependency to maximize its objective func-
tion. However, constraints are used to ensure that either the
NAD(H) or theNADP(H) variant (but not both) of a reaction canbe
active at the same time (see Methods).

4. Random specificity: Here, through a simulated stochastic coin
flip, either the NAD(H) or the NADP(H) variant of a reaction is
active (and the other is blocked), regardless of its original state in
iML1515. In all random simulations performed below, a total of
1000 random specificity distributions was generated and ana-
lyzed, of which 500 have a free and 500 a fixed pool size. In the
fixed pool size, it is ensured that the number of active NAD(H)
and of active NADP(H) reactions equals the respective original
numbers in iML1515. Any random specificity that resulted in
thermodynamic infeasibility or near-infeasibility (MDF< 0.1 kJ/
mol; see Methods) was disregarded from subsequent analyses.

The calculations were performed for growth on glucose (and later
also on acetate) under aerobic as well as anaerobic conditions (oxygen
uptake blocked). Further details on the model can be found in the
Methods section.

Using flux balance analysis7, initially without consideration of
thermodynamic constraints, we determined the maximal growth rate
of iML1515_TCOSAwith the wild type and single-cofactor specificities.
For the wild type, we found μmax = 0.877 h−1 for aerobic and
μmax = 0.375 h−1 for anaerobic conditions, which, as expected, match
exactly the values from the original iML1515 model. Interestingly, the
maximal growth rates for the single-cofactor scenario are slightly
higher for aerobic (0.881 h−1) and even significantly larger for anae-
robic conditions (0.470 h−1), indicating that allowing usage of NAD(H)
in all reactions utilizing NAD(P)H is stoichiometrically more efficient
for growth (but thermodynamically likely infeasible). In all sub-
sequent calculations where maximum growth is demanded, we used
99% of the respective maximum value to avoid numerical issues.

Comparing driving forces for different specificity scenarios
Next, we used the iML1515_TCOSA model to compare maximal ther-
modynamic driving forces achievable with the different cofactor spe-
cificity scenarios. As a global measure for the network-wide
thermodynamic potential we used the notion of max–min driving
force. Generally, driving forces can be defined at different levels
(Fig. 2). The driving force of a single reaction is the negative Gibbs free
energy change (�4rG

0) of this reaction, the driving force of a pathway
is the minimum of all driving forces of the reactions involved, and,
according to Noor et al.4, the max–min driving force (MDF) of a given
pathway is the maximal possible pathway driving force (within given
bounds for metabolite concentrations; see Fig. 2). While this original
MDF definition is useful to quantify the maximal driving force of a
given pathway, a related approach5 (called OptMDFpathway) goes one
step further: it starts with an entire metabolic network and a
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demanded phenotypic behavior (e.g., a given growth rate) and sear-
ches then for a steady-state flux distribution and suitable metabolite
concentrations that maximize the MDF for the predefined phenotypic
behavior (note that all active reactions of the found flux distribution
have a driving force that is at least as high as the foundMDF; Fig. 2). In
the following, we will always refer to this generalized MDF definition,
i.e., when considering the MDF for a given condition, we mean the
maximal achievable MDF together with the associated fluxes and
metabolite concentrations. All these values can be computed via a
mixed-integer linear program (see Methods). Generally, the rationale
to analyze network-wide thermodynamic driving forces is basedon the
fact that low driving forces for certain reactions (indicated by a low
MDF)will limit theirfluxormust becompensatedby very large enzyme
demands and thus enzyme costs8. Hence, by computing and compar-
ing the MDF for the different cofactor specificities we can assess the
potential of thermodynamic limitations associated with the different
specificities.

We computed and compared the MDF values for each of the four
NAD(P)(H) specificity scenarios under aerobic as well as anaerobic
conditions and for different growth rates, starting from the respective
maximal growth rate and then reducing it in steps of 0.05 h−1 until a
growth rate of less than 0.05 h−1 would be reached (0.05 h−1 is the
smallest growth rate considered). This discretization results in 18
analyzed growth rates for aerobic conditions (0.868 h−1…0.05 h−1) and
8 for anaerobic conditions (0.371 h−1 … 0.05 h−1).

The results are summarized in Fig. 3. We started with the flexible
specificity scenario (free choice of NAD(P)(H) specificity) and found a
maximalMDF of ca. 8 kJ/mol for aerobic (Fig. 3a) as well as for anaerobic
(Fig. 3c) conditions. In the aerobic case, this maximum MDF value is

reached for almost all growth rates in this scenario; only for growth rates
close to themaximum it is slightly reduced.Under anaerobic conditions,
the MDF value of the flexible scenario is significantly reduced for high
growth rates (less than 50%) and approaches the maximum value only
for the smallest growth rates. Generally, it is obvious that, for a given
growth rate, theMDFvalueobtainedwith the fullyflexible scenario is the
highest that can be reached in all scenarios since it is the least con-
strained scenario and is even allowed to change cofactor specificities for
different growth rates and conditions (which indeed happens). Impor-
tantly, looking at the MDF achievable with wild-type specificity, we
notice that it reaches, for smaller and medium growth rates, exactly the
MDFvalueof theflexible specificity. Only for growth rates that are closer
to themaximum a small tomoderate difference can be observed, which
is at most pronounced under anaerobic conditions within a smaller
window of growth rates between 0.25 h−1 and 0.3 h−1. Supplementary
Data 1 presents a summary of the properties of two selected MDF-
optimal solutions (one for a high growth rate of aerobic and one for a
highgrowth rate of anaerobic conditions), including a variability analysis
of fluxes and their thermodynamic potentials. We also computed the
feasible ranges of metabolite concentrations for the MDF-optimal solu-
tions and found that almost all of these ranges are compatible with
measured metabolite concentrations provided in Bennett et al. 2.

In the single cofactor pool scenario, where all reactions use
NAD(H) as redox cofactor, the MDF reaches, with a single exception,
for all growth rates under both aerobic and anaerobic conditions sig-
nificantly smaller values than the flexible and the wild-type scenario.
This already indicates that the existence of two cofactor pools
enhances thermodynamic driving forces in the wild-type scenario.
Furthermore, the MDF values of the 1000 random specificities
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Fig. 1 | TCOSA model reconfigurations and definition of specificity scenarios.
a Examples of TCOSA model reconfigurations to enable different redox cofactor
specificities for NAD(P)(H)-dependent reactions (MDH: malate dehydrogenase
reaction; GND: phosphogluconate dehydrogenase reaction; OAA: oxaloacetate;

6PGC: 6-phosphogluconate; RU5P: ribulose-5-phosphate). b Different scenarios of
cofactor specificities analyzed in this work. The generation of random specificities
looks similar to the wild-type specificity, with the difference that the choice of
NAD(H) or NADP(H) specificity is random.
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demonstrate that the wild-type distribution of NAD(P)(H) specificities
behave significantly better than a random choice. Depending on the
growth rate, at most 0.1% (aerobic conditions) or 7.9% (anaerobic
conditions) of the 1000 tested random NAD(P)(H) specificities have a
better MDF than the wild-type specificity (Fig. 3a, c, Table 1).
Depending on the conditions and growth rate, some more random
specificities reach the same MDF value as the one of the wild type,
however, in all cases at least 83% of the random specificities perform
worse. Notably, at some growth rates, there are also random specifi-
cities whosemaximal thermodynamic driving force is even worse than
the one with a single cofactor pool. This can happen, for example, if in
a random NAD(P)(H) specificity only very few and thermodynamically
unfavorable pathways exist for synthesizing the required amounts
of NADPH.

By definition, the MDF demands that the driving forces of all
active reactions of a flux distribution are at least as high as the MDF.
We here introduce the relaxed notion of SubMDF (see Methods and
Fig. 2): it demands that only a selected subset of all active reactions

in the flux distribution (in our application the active NAD(P)(H)-
depending reactions) must reach the respective MDF value, while
for all other reactions it is only demanded that their driving force is
above 0.1 kJ/mol. In this way, we can exclude thermodynamic bot-
tlenecks from our considerations that have no relation to NAD(P)
(H)-using reactions and focus our analysis instead on the effects of
varying NAD(P)(H) specificities on thermodynamic driving forces in
redox reactions. As expected, the SubMDF values are generally
higher in the different scenarios than the corresponding MDF
values, since now only the driving forces of a subset of the active
reactions need to reach theMDF value (Fig. 3b, d; Table 1). While the
SubMDF results look qualitatively similar to the MDF version, the
absolute differences between the different NAD(P)(H) specificity
scenarios are partially more pronounced. Formaximal growth rates,
the relative gap between the SubMDF of the wild type vs. the flexible
specificity is now somewhat larger. For aerobic conditions, we see
again that, with smaller growth rates, this difference shrinks until
the wild-type specificity reaches the theoretical optimum of the
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flexible specificity. Moreover, not a single random specificity
reaches the SubMDF of the wild-type specificity for any of the
growth rates. For anaerobic conditions, the SubMDF value of
the wild type coincides with the flexible scenario for one growth
rate while amoderate difference remains for the other growth rates.
For the maximum growth rate, 13.8% of the random specificities
perform better or equal than the one of the wild type but for
medium or small growth rates all random specificities have a lower
SubMDF value compared to the wild type. Generally, for small and
medium growth rates, the relative gap between the SubMDF values
of the flexible/wild-type specificity scenarios on the one side and
the best random and single cofactor pool scenarios on the other
side is larger than for the MDF values.

Taken together, the results presented in Fig. 3 and Table 1 clearly
indicate that (a) the network with two cofactor pools reaches much
higher potential driving forces than with a single cofactor pool and
that (b) the cofactor specificities of the wild type enable driving forces
that either coincideor are relatively close to theoptimum(represented
by the flexible scenario) and are with very high probability larger than
randomly chosen specificities.

Cofactor swaps needed in the wild type to reach maximal MDF
To analyze how far the wild-type specificity differs from the thermo-
dynamically optimal (flexible) specificity, we determined the number
of necessary cofactor swaps in the wild-type specificity model needed
to reach the maximal (Sub)MDF values of the flexible scenario (see
Methods). Over all tested conditions and growth rates, we found that
in 47 out of the 52 considered cases only three or less reaction cofactor
swaps are necessary in the wild type to reach the respective (Sub)MDF
of the flexible scenario (Table 1). Moreover, consistent with Fig. 3, in 38
cases even no swap was required because the (Sub)MDF value of the
wild type reaches the one of the flexible specificities. A singularity is
observed for anaerobic growth at growth rate 0.271 h−1 where larger
numbers (9 and 14, respectively) of swaps are required to reach the
theoretically maximal MDF and SubMDF value of the flexible scenario.

Several cofactor swaps occurred in higher frequencies. One
example is the NAD+-dependent pyruvate dehydrogenase (PDH) with
the reaction formula

CoA+pyruvate +NAD+ ! acetyl�CoA+CO2 +NADH:

Fig. 3 | Maximal thermodynamic driving forces (MDF and SubMDF) achievable
with different NAD(P)(H) specificities. a Aerobic conditions with MDF as opti-
mization target. b Aerobic conditions with SubMDF as target. c Anaerobic

conditions with MDF as target. d Anaerobic conditions with SubMDF as target.
Source data are provided as a Source Data file.
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At first sight, switching from NAD+ to NADP+ specificity will most
likely lead to a reduced driving force of this single reaction as the
NADH/NAD+ ratio adjusted by themodel is typicallymuch smaller than
NADPH/NADP+ (reflecting the in vivo situation; see also below).
However, in the considered cases, this has no negative effect on the
(Sub)MDF, whichmaximizes the minimal driving forces of all involved
reactions. The 4rG

0� of PDH is markedly negative (−34.37 kJ/mol)
allowing for a thermodynamically less favorable cofactor usage of
NADP+ without becoming a bottleneck for the MDF. In this way, a new
route for the thermodynamically efficient production of NADPH
becomes possible which in turn abolishes the necessity to use an
NADPH-producing reaction with less MDF-favorable thermodynamic
parameters eventually improving the MDF. Hence, this cofactor
change cannot be explained at the reaction but at the network level.

Another example for a frequently found cofactor swap is the
NADP+-dependent isocitrate dehydrogenase catalyzing the reaction

isocitrate +NADP+ ! 2�oxoglutarate +CO2 +NADPH:

A straightforward explanation for the suggested swap is that
switching to NAD+ is thermodynamically more favorable due to the
established low NADH/NAD+ ratio, which helps to overcome the
positive 4rG

0� (+5.12 kJ/mol) of this reaction. Interestingly, NAD-
dependent isocitrate dehydrogenases are well-known from other
organisms and are assumed to be the ancestor of bacterial NADP+-
dependent dehydrogenases. However, in E. coli, experimental studies
showed that the use of NADPH seems to be especially favorable with
acetate as sole substrate, since a switch from NADP(H) to NAD(H)
dependency impairs growth under these conditions9 (see also below).
This shows that some wild-type NAD(P)(H) specificities, which appear
unfavorable in our study, could become explainable under other
growth regimes. A potential mechanism for the cell to adapt the
cofactor specificity of a reaction to varying growth conditions would
be to use enzymes with different NAD(P)(H) specificities and to adjust

their expression depending on the conditions. In the iML1515 model,
we found 33 reaction pairs that can operate with both types of redox
cofactors, of which 22 are promiscuous activities of the same enzyme
and only 11 are catalyzed by isoforms with different cofactor specifi-
city. However, there is onlyone such reactionpair in the central carbon
metabolism, which is catalyzed by the malic enzyme decarboxylating
malate to pyruvate. E. coli possesses two variants of the malic enzyme
(SfcA and MaeB), one (SfcA) preferring NAD+ and one (MaeB) working
exclusively with NADP+, which are differently regulated10. Hence, the
mechanism of switching between both cofactor specificities via iso-
forms of enzymes seems to be of lower relevance in E. coli, at least for
central metabolic pathways.

Effects of single cofactor swaps
To further analyze how good the wild-type specificities are in terms of
network-wide thermodynamic driving forces we introduced, sepa-
rately for each NAD(P)(H)-dependent reaction, a cofactor swap such
that the original reaction is deactivated while the reaction variant with
the alternative cofactor is activated, and tested then the effect of this
swap on the achievable (Sub)MDFvalues at the evaluated growth rates.
Swaps resulting in a stoichiometrically infeasible solution were dis-
regarded in further calculations.

For a better interpretation of the results, from the set of 238
NAD(P)(H)-dependent reactions we first determined the number of
reactions that are involved (active) in any of the (Sub)MDF-optimal
flux distributions under any of the investigated conditions (here we
also accounted for multiplicity of solutions). We found that 161 of
the 238 reactions can contribute to at least one (Sub)MDF-related
solution under wild-type specificity. Next, we calculated the number
of reactions that had an effect on the (Sub)MDF for at least one of
the conditions, if their cofactor specificity is swapped, and found
71 such reactions (44% of the 161 reactions). Table 2 shows the
breakdown (and sign) of the effects with respect to (an)aerobiosis
and chosen MDF value. It turns out that the great majority of

Table 1 | Relative (Sub)MDF performance of random specificities compared to the wild-type specificity and number of
necessary cofactor swaps (starting from the wild-type specificity) to reach the theoretically optimal (Sub)MDF obtained with
the flexible specificity

Oxygen availability Growth rate [h−1] Percentage of random specificities with higher/
equal/lower (Sub)MDF compared to the wild-
type specificity

Number of necessary
swaps in wild type to reach
(Sub)MDF of flexible
specificity

MDF SubMDF MDF SubMDF

Aerobic 0.868 0.1%/0%/99.9% 0%/0%/100% 6 2

Aerobic 0.818 0%/0.4%/ 99.6% 0%/0%/100% 0 3

Aerobic 0.768 0%/2.3%/ 97.7% 0%/0%/100% 0 2

Aerobic 0.718 0%/5.6%/ 94.4% 0%/0%/100% 0 2

Aerobic 0.668 0%/11.8%/ 88.2% 0%/0%/100% 0 0

Aerobic 0.618 0%/14.1%/ 85.9% 0%/0%/100% 0 0

Aerobic 0.568…0.518 0%/14.9%/ 85.1% 0%/0%/100% 0 0

Aerobic 0.468…0.118 0%/15.0%/ 85.0% 0%/0%/100% 0 0

Aerobic 0.068 0%/17.0%/ 83.0% 0%/0%/100% 0 0

Aerobic 0.05 0%/17.0%/ 83.0% 0%/0%/100% 0 0

Anaerobic 0.371 7.9%/0.3%/ 91.8% 13.4%/0.4%/86.2% 1 1

Anaerobic 0.321 0%/8.7%/ 91.3% 0%/7.1%/92.9% 0 0

Anaerobic 0.271 3.7%/0.4%/ 95.9% 1.8%/0.3%/97.9% 9 14

Anaerobic 0.221 0%/0.6%/ 99.4% 0%/0%/100% 0 2

Anaerobic 0.171 0%/0.6%/ 99.4% 0%/0%/100% 0 5

Anaerobic 0.121 0%/0.6%/ 99.4% 0%/0%/100% 0 4

Anaerobic 0.071 0%/2.3%/ 97.7% 0%/0%/100% 0 3

Anaerobic 0.05 0%/2.3%/ 97.7% 0%/0%/100% 0 3

The total number of random specificities tested was 1000.
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cofactor swaps having an effect on the (Sub)MDF lead to a decrease
of the latter indicating that the wild-type NAD(P)(H) specificities are
beneficial with respect to the overall thermodynamic driving force
and some single cofactor swaps may profoundly reduce the MDF
(up to −5.9 kJ/mol) or SubMDF (up to −18.4 kJ/mol; Table 2). Even
though few single cofactor swaps in the wild-type specificity may
partially have positive effects on achievable (Sub)MDF values, a
single cofactor swap is, in most cases, not enough to reach the
optimal (Sub)MDF of the flexible specificity as already shown in the
previous section (Table 1).

Trends of the redox state of cofactors can be predicted
Next, we investigated whether our model can also be used to predict
known trends regarding the degree of reduction of the NAD(H) and
the NADP(H) pool. Given that the NAD(H) pool in E. coli is usually
muchmore oxidized than the NADP(H) pool2, one would expect that
the model with wild-type specificity predicts a lower [NADH]/[NAD+]
ratio compared to [NADPH]/[NADP+]. To verify this, we computed the

possible ranges of the quotient of the two ratios (i.e. the feasible

range of NADH½ �=½NAD+ �
NADPH½ �=½NADP + �) for the different growth regimes when

demanding the respective (Sub)MDF value (see alsoMethods). As can
be seen in Fig. 4, the well-known in vivo trend ([NADH]/

[NAD+] < [NADPH]/[NADP+], i.e. NADH½ �=½NAD + �
NADPH½ �=½NADP + � < 1) is indeed predicted

with this approach for all scenarios with wild-type specificity. In fact,
in the great majority of cases, the ratio of reduced to oxidized
cofactor is more than 1000 times higher for the NADP(H) pool
compared to NAD(H), which agrees well with measurements (~1500
measured for E. coli in Bennett et al.2). The largest possible ratio
(~0.85) was computed for the highest growth rate under anaerobic
conditions (for SubMDF). Here it shouldbe noted again that the (Sub)
MDF values formaximal growth rates are generally the lowest (Fig. 3)
implying that the thermodynamic constraints on the redox cofactor
pools may become less restrictive because other thermodynamic
bottlenecks (involved in the growth-rate optimal pathways) are
dominating.

Table 2 | Number of reactions (and their percentage with respect to all 161 iML1515 reactions involved in any (Sub)MDF-
optimal solution), where a single cofactor swap affects the (Sub)MDF at any of the tested growth rates and conditions. The
maximal and average (Sub)MDF increases and decreases are also provided for each condition

Oxygenavailability Number of reactions for which a cofactor swap influences the (Sub)MDF of the wild-type NAD(P)(H) specificity

MDF SubMDF

Increase Decrease Increase Decrease

Aerobic 1 (0.6%) 0.3 kJ/mol 16 (9.9%) up to −5.9 kJ/mol,
average: −2.6 kJ/mol

7 (4.3%) up to +3.3 kJ/mol,
average: +1.1 kJ/mol

51 (31.7%) up to −18.4 kJ/mol,
average: −6.5 kJ/mol

Anaerobic 3 (1.9%) up to +1.6 kJ/mol,
average: +0.6 kJ/mol

25 (15.5%) up to −5.9 kJ/mol,
average: −1.7 kJ/mol

9 (5.6%) up to +4.9 kJ/mol,
average: +1.7 kJ/mol

36 (22.4%) up to −16.3 kJ/mol,
average: −3.6 kJ/mol

Fig. 4 | Maximal and minimal possible ½NADH�=½NAD + �
½NADPH �=½NADP + � ratio to reach the respec-

tive growth-rate-associated (Sub)MDF value (for wild-type specificity).
a Aerobic conditions under MDF. b Aerobic conditions under SubMDF.
c Anaerobic conditions under MDF. d Anaerobic conditions under SubMDF. Note

that if a blue dot (minimal ratio) is not seen then it largely overlaps with the red dot
(maximal ratio) and is thus very close to this value. In all these cases, themaximum
value of the NADH½ �=½NAD + �

NADPH½ �=½NADP + � ratio is below 0.001. Source data are provided as a
Source Data file.
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Achievable MDF with a third cofactor pool
Next we investigated whether the metabolic network of E. coli equip-
ped with three (instead of two) redox cofactor pools could further
enhance the thermodynamic driving forces in the network. Accord-
ingly, with a fully flexible specificity for the redox cofactors, we com-
pared the (Sub)MDFvalues achievable in the two-cofactormodel vs. an
expanded model with three possible redox cofactor pools (see Meth-
ods). An important aspect when introducing the third hypothetical
cofactor is the choice of its standard redox potential (4E 0�). For the
two redox couples NADH/NAD+ and NADPH/ NADP+, the redox
potential is identical at −320mV (corresponding to a standard for-
mation energy (4f G

0�) difference of 61.75 kJ/mol between reduced and
oxidized cofactor variant).We considered three different scenarios for
the redox potential of the third cofactor: (1) identical to NAD(P)H/
NAD(P)+ ð4E 0� = � 320mVÞ, which mimics the situation where the
additional redox cofactor has very similar properties as NAD(P)(H); (2)
4E 0� = � 165mV (redox potential increased by 155mV relative to
NAD(P)H/NAD(P)+; and (3)4E 0� = � 475mV (redoxpotential decreased
by 155mV relative to NAD(P)H/NAD(P)+; see also Methods).

The results are shown in Fig. 5. It can clearly be seen that the
additional cofactor pool provides only very limited advantages if the
same redox potential is used. In particular, not a singleMDF advantage
over the two-cofactormodel can be found and onlyminor benefits can
be observed for SubMDF for a few growth rates under anaerobic and
for a single growth rate under aerobic conditions. A similar result is
achieved if the redox potential of the third cofactor is increased by
155mV to −165 mV, relative to NAD(H) and NADP(H): only marginal
SubMDFadvantages canbeobserved for aerobic conditions compared
to the case with the two cofactors NAD(H) and NADP(H).

In contrast, if the redox potential of the third redox couple is
decreased by 155mV to −475 mV, the SubMDF increases significantly
compared to the two-cofactormodel by roughly 15 kJ/mol (aerobically)
and 7 kJ/mol (anaerobically). In addition,minorMDF advantages occur
at some growth rates for both conditions.

Robustness of the results
Although our described investigations required only few inputs, namely
network stoichiometry, standard Gibbs free energies and feasible

metabolite concentration ranges, the results of our computations may
be affected by uncertainties, especially in the used concentration ranges
and the 4rG

0� values retrieved from the eQuilibrator API11. Some work-
arounds had to be used for 4rG

0� values that were not available (see
Methods). Furthermore, thermodynamic driving forces cannot take into
account mechanisms that can mitigate thermodynamic bottlenecks,
such as the binding of a great amount of NAD(H) or NADP(H) to
enzymes12 or metabolite channeling13. To analyze the uncertainty of our
findings with respect to altered 4rG

0� values, we performed most com-
putations againwith4rG

0� values sampled around their initial values in a
thermodynamically consistent manner (see Supplementary Note 2).
From the results of 100 samples, we could conclude that the major
findings of this work still hold. In particular, the difference between the
maximal driving forces of the wild type and the flexible specificity still
remain low in the majority of cases while random specificities have, on
average, significantly reduced (Sub)MDF values (Supplementary Fig. 1).

Another uncertainty of thermodynamic-based analyses in stoi-
chiometric models as used herein are the broad ranges of metabolite
concentrations typically allowed in the calculations. We therefore also
tested the effects of tighter metabolites concentration ranges using
measurements reported in Bennett et al.2 Again, as shown in Supple-
mentary Fig. 2 and discussed in Supplementary Note 3, key results also
hold if we use these significantly tighter constraints on concentration
ranges. This, together with the results from the sampled 4rG

0� values,
demonstrates the robustness of our results and provides confidence
about their significance.

Results with acetate as substrate
So far, glucose was used as substrate in all calculations. In order to
check if themainfindings alsohold truewith a different carbon source,
we repeated several analyses with acetate as sole substrate. Acetate
enters the central metabolism at a rather distant node relative to glu-
cose and requires for growth gluconeogenesis instead of glycolysis.
For these calculations, glucose uptake was blocked and the maximum
acetate uptake rate was set to 10 mmol

gDW �h, resulting in a maximal growth
rate of ca. 0.21 h−1. We considered only aerobic growth, since E. coli
cannot grow on acetate under anaerobic conditions. All other settings
remained the same as with glucose.

Fig. 5 | Comparison of a model with two and of a model with three redox
cofactor pools with regard to their reachable (Sub)MDF values (fully flexible
specificity scenario). For the third redox cofactor, three different scenarios
regarding its redox potential were considered (see text). a Aerobic conditions.

b Anaerobic conditions. Note that all red lines (associated with MDFs) coincide at
least partially or even completely with the dark red line and, likewise, some blue
lines (associated with SubMDFs) with the dark blue line. Source data are provided
as a Source Data file.
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The resulting (Sub)MDF values for the different specificity sce-
narios (Fig. 6a, c) as well as the feasible ranges of the respective
NADH½ �=½NAD + �

NADPH½ �=½NADP + � ratios (Fig. 6b, d) lead to the same main conclusions as

with glucose as substrate. In particular, for almost all growth rates
analyzed, the wild-type specificity reaches higher (Sub)MDF values
than all randomspecificities. The only exceptionoccurs at themaximal
growth rate where just 25 (SubMDF) or just one (MDF) of the 1000
random specificities enable higher thermodynamic potentials.

Regarding the feasible ranges of the NADH½ �=½NAD + �
NADPH½ �=½NADP + � ratio, they again stay

always far below 1, as expected.

In addition, we found that the wild-type specificity is
always at most a single cofactor swap away from reaching the
respective (Sub)MDF value of the flexible specificity. Inmost cases, the
affected reaction is the reverse (gluconeogenic) direction
of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reaction

1,3�bisphospho�D�glycerate +H+ +NADH

! glyceraldehyde�3�phosphate +NAD+ +Pi:

The switch towards NADP(H) could significantly increase the
thermodynamic driving force of this reaction, because the ratio of
NADPH (a substrate of the reaction) and NADP+ (product) is sig-
nificantly higher than the ratio of NADH and NAD+ (see also Fig. 6b, d).
This, in turn, can enhance the (Sub)MDF of the entire flux distribution.
This finding is also consistent with the fact that the metabolism of
many other organisms operating the GAPDH reaction in the reducing
direction (e.g. in the Calvin cycle of photosynthetic organisms) prefers
NADPH as cofactor. It would therefore be interesting to investigate
whether a cofactor swap for this reaction in E. coli can enhance growth
on acetate.

We also reconsidered the reactions of the PDH and the iso-
citrate dehydrogenase regarding the effects of altered NAD(P)(H)
specificity. Regarding PDH, a SubMDF advantage can be found in
one growth rate, while a cofactor swap of the isocitrate dehy-
drogenase would not provide any (Sub)MDF advantage with acetate
as substrate, in fact, it would reduce the (Sub)MDF for some
growth rates. This example indicates again that understanding the
preferred redox cofactor specificity in the wild type may, at least
partially, require the consideration of all relevant growth
conditions.

Fig. 6 | Maximal thermodynamic driving forces (MDF and SubMDF) achievable
with different NAD(P)(H) specificities and feasible ranges of the ½NADH�=½NAD+ �

½NADPH�=½NADP + �
ratio to reach the respective (Sub)MDF value of wild-type specificity (all with
acetate as carbon source under aerobic conditions). a MDF results. b Ratio

results withMDFas target. c SubMDF results.dRatio resultswith SubMDFas target.
Note that if a blue dot (minimal ratio) is not seen then it largely overlaps with the
reddot (maximal ratio) and is thus very close to this value. Sourcedata are provided
as a Source Data file.
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Discussion
In the present study, we developed and employed the TCOSA frame-
work to study key aspects of redox cofactor redundancy in metabolic
networks. TCOSA uses an unbiased approach, solely based on a stoi-
chiometric model, thermodynamic constraints (Gibbs free energies)
and metabolite concentration ranges. It attempts to relate NAD(P)(H)
reaction specificity distributions to network-wide thermodynamic
driving forces. Our main findings, obtained in a genome-scale meta-
bolic model of E. coli for varying growth rates under aerobic as well as
anaerobic conditions, can be summarized as follows: (1) A redundant
set of two redox cofactor pools is clearly beneficial for maximizing the
thermodynamic driving force in the network, while a third redox
cofactor would bring a significant advantage only if it has a different
redox potential than NAD(P)H. (2) With TCOSA we can show that
evolved NAD(P)(H) coenzyme specificities of metabolic reactions in
E. coli are likely the consequence of a global (network-wide) max-
imization of thermodynamic driving forces since the maximal ther-
modynamic potential (quantified as MDF) achievable with the wild-
type specificities lies often close to or even equals the theoretical
optimum. (3) Trends in optimal redox-cofactor concentration ratios
can be predicted by our approach reflecting the in vivo situation. (4)
Theobtained results are robust against variations ofmodel parameters
(standard Gibbs free energies and metabolite concentration ranges).

The most striking result of our analysis is that the wild-type dis-
tribution of NAD(P)(H) specificities of redox reactions in E. coli enables
higher overall thermodynamicdriving forces than almost all generated
random specificities (Fig. 3). In fact, in the majority of the cases, the
wild-type specificities even reach the maximum (Sub)MDF values
achievable with a (hypothetical) fully flexible specificity. This result is
remarkable and indicates that redox cofactor specificities are likely an
evolutionary result of an optimization principle that maximizes the
global thermodynamic driving force as represented by (Sub)MDF. The
evolutionary advantage of higher (Sub)MDF values lies in the fact that
low driving forces possibly limiting the flux of certain essential reac-
tions become less likely. The relevance of the thermodynamic driving
force for the reactionflux canbe seen if the typical kinetic function of a
reaction flux is decomposed14. Moreover, reactions operating closer to
thermodynamic equilibrium increase the demand of enzymes to reach
required flux levels3. Since high MDF values indicate potentially high
thermodynamic driving forces for all reactions, high enzyme demands
due to thermodynamic limitations become less likely as well. In addi-
tion to thermodynamic effects, the NAD(P)(H) distribution can also
affect the possible stoichiometric balances of NAD(H) and NADP(H)
producing and consuming reactions. A change of this distributionmay
require the activation of newpathwayswith potentially lower or higher
thermodynamic driving forces. These effects are directly taken into
account in our TCOSA approach.

The fact that the wild-type specificity does not always reach the
theoretically maximal (Sub)MDF does not necessarily contradict our
main conclusion. First of all, it should be emphasized again that under
the flexible specificity scenario, where the maximal (Sub)MDF values
are reached, the specificities can change under different growth rates
and conditions, which is obviously not possible in a fixed (wild-type)
distribution. Therefore, since we found that the flexible specificities
change under varying conditions, any fixed specificity must perform
worse than the fully flexible scenario. Furthermore, other constraints
that cannot be considered by our framework may affect the optimal
NAD(P(H) specificity and the achievable MDF. For example, certain
metabolite levels required forMDF-optimalflux distributionsmight be
very high and thus possibly toxic confining the feasible ranges of
metabolic concentrations to a much narrower region than assumed
herein.Moreover, feasible (ranges of)metabolite concentrations are to
a large extent determined by kinetic properties of the reaction
mechanisms and enzymes including allosteric (and genetic) regulation
of enzymes. Due to those factors, it appears likely that the computed

MDF of the wild-type specificity is not reached in vivo. Nevertheless,
analyzing MDF-optimal solutions is still meaningful in the sense that
the computed MDF indicates the thermodynamic flexibility of the
system: a highMDF value indicates that themetabolite concentrations
can be chosen from a broader range to keep the flux distribution at
higher driving forces or at least thermodynamically feasible (4rG

0<0
for all active reactions)—even if the theoretically feasible MDF itself is
not reached. Indeed, despite the mentioned potential limitations, our
MDF-based modeling framework turned out to be very useful to
address various aspects relevant for cofactor specificity.

Another important finding was that, in order to reach the theo-
retically optimal (Sub)MDF of the flexible specificity, only relatively
few reactions of the wild-type specificity would need to swap their
cofactor usage (Table 1). Interestingly, this analysis suggested, for
example, a cofactor swap for the isocitrate dehydrogenase from
NADP(H) to NAD(H) and thus to a cofactor specificity that is indeed
known for this enzyme from other organisms. The example of growth
on substrate acetate (instead of glucose), where NADP(H) dependency
seems to be advantageous9, demonstrates that other factors not cov-
ered herein may contribute to the manifestation of the cofactor spe-
cificity found in E. coli.

For themajority of cases, our single-swap analysis showed either a
negative or no effect on the respective MDF. The fact that several
single swaps had no effect implies that there are many cofactor spe-
cificity distributions which are as good as the wild-type specificity.
Hence, while the wild-type specificity can, to a large extent, be
explained through thermodynamic favorability, it cannot be precisely
predicted since equally good alternative specificities are possible.
However, the overall likelihood of randomly finding a specificity
enabling the high (Sub)MDF values as in the wild type is very low as
shown by the random specificity sampling. Again, one may also spec-
ulate that many of these alternative specificities may have certain
disadvantages under particular conditions that are not covered by our
approach.

We used our modeling approach to study several further aspects
related to redundant redox cofactor pools. First, we showed that
qualitative trends of redox cofactor ratios can be predicted, i.e. that
the NAD(H) pool is typically much more oxidized than the NADP(H)
pool.We also employed ourmethod to determine the optimal number
of cofactor couples. The results obtained with this analysis clearly
demonstrated that using a single cofactor pool would largely decrease
the thermodynamic driving forces in the network. This confirms again
the postulated advantage of having two cofactor pools3, since this
allows the cell to have one largely oxidized and one largely reduced
cofactor pool and the specificity of each reaction can then be chosen
such that the network-wide driving force is optimized. On the other
hand, analyzing a three-cofactor model, where a hypothetical third
cofactor couple aside of NAD(H) and NADP(H) can be used, revealed
that significant benefits for the (Sub)MDF are only possible if the redox
couple of the third cofactor has a redox potential that is significantly
different from NAD(P)H/NAD(P)+. This may explain the existence of
other redox cofactors in E. coli such as thioredoxins. However, the
latter is involved in much less metabolic reactions than NAD(P)(H)
and it can be speculated that the relevance of electron carriers like
thioredoxin lies more in enabling specialized electron transfer reac-
tions (here: reduction of disulfide bonds of proteins). For organisms
with complicated metabolic lifestyles, a third widely used redox
cofactormay pay off evenmore. For example, carbon-fixing anaerobic
acetogens (representatives of chemolithoautotrophic microorgan-
isms) use, in addition toNAD(H) andNADP(H), ferredoxin (with amore
negative redox potential) as a third major electron carrier in many
redox reactions of the centralmetabolism giving them an extra degree
of freedom to balance their complex redox metabolism15.

Some aspects of our work are related to the study of Goldford
et al.3, where the authors sought to find explanations for the presence
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of cofactor redundancy (with focus on NAD(H) and NADP(H)). For
some of the performed analyses, this study also used a stoichiometric
model of E. coliwith thermodynamic constraints. The key difference to
our TCOSA framework is that they analyzed merely the thermo-
dynamic feasibility of metabolic flux distributions in this network
(partiallywith fixedNAD(P)H/NAD(P)+ ratios)whilewemaximized for a
network-wide thermodynamic driving force (MDF) allowing a broad
interval for the concentrations of all metabolites, including the
cofactors. Nevertheless, there are some overlapping results, which are
largely consistent. The authors in Goldford et al.3 used, in addition to
the stoichiometric model, a minimal (fictive) enzyme-cost model with
sampled kinetic parameters to show that redundant redox cofactor
pools enable higher thermodynamic driving forces eventually low-
ering the enzyme costs. This finding is consistent with our conclusion,
here solely derived from network stoichiometry and basic thermo-
dynamic constraints alone, that two redox couples may increase the
maximal achievable thermodynamic driving forces in the network
(which, in turn, implies reduced enzyme costs). Most importantly, the
key difference andmajor advancement of our approach lies in the fact
that we can determine optimal NAD(P)(H) specificities maximizing the
thermodynamic potential of a given metabolic reaction network and
compare these with the wild-type specificities in E. coli to learn how
thermodynamic constraints have shaped the redox cofactor specifi-
cities in the metabolic network of E. coli. As a more stringent result
compared to the flux-based calculations reported in Goldford et al.3,
our stoichiometric thermodynamic-based approach indicates that a
significant number of individual cofactor swaps, even if they are not
lethal, can still have aneffecton the achievable thermodynamicdriving
force in the E. coli metabolic network and that there is a significant
number of such swaps that would be unfavorable. This suggests again
that the redox cofactor specificity of metabolic reactions in E. coli has
evolved to enable high thermodynamic potentials.

As part of our TCOSA framework, a number of tools and algo-
rithms have been developed, which are available from a public code
repository and can be used to reproduce the results of this work or to
perform similar analyses with other metabolic networks. Moreover,
we envision that these developments can also be useful for several
other applications. One such application, related to the metabolic
engineering of cell factories for bio-based production processes,
could be to find optimal NAD(P)(H) specificities that maximize the
thermodynamic driving force towards a product of interest. Other
theoretical studies have already addressed the computation of
optimal cofactor swaps in order to maximize product yields16–21. Our
approach can extend these techniques with thermodynamic con-
siderations such that targeted changes in cofactor specificities do
not only increase product yields but also enable higher driving forces
along the pathway to the product. A targeted change of redox
cofactor specificities has come into reach by several experimental
techniques, including direct protein structure changes22, and adap-
tive evolution methods23,24.

A thermodynamic optimization strategy related to the TCOSA
approach was recently proposed for the design of microbial commu-
nitieswith improved thermodynamic driving forces for the production
of chemicals25. The basic idea of this approach resembles the existence
of two redox cofactor pools, namely to have different pools of one
metabolite (or of one functional class of metabolites) with different
in vivo thermodynamic potentials caused by different metabolite
abundances. For example, if a product pathway involves a metabolite
in one reaction as substrate and in another as (by)product, it would
be desirable to have this metabolite in the first reaction in high and in
the second reaction in low concentrations. One way to achieve this is
compartmentalization. While it appears difficult to build such com-
partments with desired properties in a cell, specifically designed
microbial co-cultures could be used through which different meta-
bolite concentrations in the involved strains or species would become

possible to maximize the overall thermodynamic driving force along
the product pathway25. In this line, our work may also extend investi-
gations on the evolution of compartmentalization26,27 with respect to
thermodynamic aspects. Another potential application of methods
and tools developed herein is to study thermodynamic aspects of
other cofactor redundancies in the metabolism, e.g. of ATP and GTP3.
Finally, our introduced definition of SubMDF, opposed toMDF, can be
useful for other thermodynamics-based studies ofmetabolic pathways
(or subnetworks), as it ensures global thermodynamic feasibility of
entire flux distributions while maximizing thermodynamic driving
forces only for the actual parts of interest.

Methods
Metabolic model and TCOSA-related reconfigurations
As basis for all calculations in this study, we used iML1515, the latest
genome-scale metabolic model of E. coli6, which uses BiGG IDs28. We
extended and modified this model as described in the following to
prepare it for TCOSA-related analyses (see also Fig. 1A):

• Thermodynamic constraints: For thermodynamic calculations,
we used standard Gibbs free energies of reactions (4rG

0�) cal-
culated using a custom script that accesses the eQuilibrator
Python API11. As settings for this calculation, we used a pMg of
2.5, an ionic strength of 250mM, a cytosolic pH of 7.5 and, for
reactions crossing membranes (multi-compartmental reac-
tions), a standardmembrane potential difference of 150mV and
a ΔpH of +0.5 between cytoplasma and periplasma. For the
growth pseudo-reaction and all (331) exchange pseudo-
reactions with the environment, no 4rG

0� was set (i.e., they are
unconstrained). Out of the remaining 2712–332 = 2380 reactions
in the iML1515 model, a 4rG

0� could be calculated for 1683
reactions. For the remaining 697 reactions where a 4rG

0� could
not be found or determined, a low4rG

0� of −100 kJ/mol was set
to impose at least some minimum constraints on the associated
metabolite concentrations. The same procedure was used for
611 multi-compartmental reactions whose role was solely
classified as transporter (no conversion takes place), to consider
pure transport ofmetabolites or nutrients as thermodynamically
(almost) unlimited. This does not hold for reactions such as of
the ATP synthase or NADH dehydrogenase, where proton
translocation is coupled with ATP synthesis or NADH oxidation,
respectively. Due to their importance for this study, a special
treatment was done for NAD(P)(H)-dependent reactions. For 161
of the 238 original NAD(P)(H)-dependent reactions in iML1515
(68%), a 4rG

0� could be calculated. For the other 77 cases, the
following4rG

0� valueswere used tobetter reflect realistic values:
from the 161 reactions with known4rG

0� we determinedmedian
4rG

0� values of all reactions where NAD+ ( + 15.79 kJ/mol), NADH
(−15.79 kJ/mol), NADP+ ( + 15.33 kJ/mol), or NADPH (−15.33 kJ/
mol) is a substrate, respectively. Depending on cofactor usage,
we then used these values for the NAD(P)(H)-dependent
reactions with unknown 4rG

0�. For an analysis of the effect of
uncertainties in the4rG

0� values see also Supplementary Note 2.
• For themetabolites, a standard concentration range from 10−6 M

to 0.02M was used as in Hädicke et al.5 Concentrations of pro-
tons (H+) andwater were fixed at 1M due to their inclusion in the
4rG

0� calculation. Calculations with tighter constraints for the
metabolite concentrations based on in vivo data2 are discussed
in Supplementary Note 3.

• In principle, with inclusion of thermodynamic constraints, one
could consider all reactions reversible and then let the con-
centration vector and resultingGibbs free energies decidewhich
direction is taken in a given solution. However, especially in
caseswhere the standardGibbs free energies are not known, this
may lead to unrealistic flux directions and we therefore kept the
original reversibilities.
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• The ermodynamic calculations as performedherein canoften be
simplified if all reactions can operate in only one direction.
Therefore, we split all reversible reactions into two irreversible
(forward and backward) reactions (the old ID is changed to
“ID_FWD” and “ID_REV”, respectively). The 4rG

0� values are
negated in the reverse direction except for the mentioned
reactions whose (unknown) 4rG

0� value was set to −100 kJ/mol;
in this case−100 kJ/molwas also used for the reversedirection to
not favor any of the two directions.

• We found that growth is thermodynamically infeasible in the
iML1515 model with the assigned 4rG

0� values and metabolite
concentration ranges. As detailed in the Supplementary Note 1,
we therefore computed theminimal number of reactions whose
4rG

0� values have to be relaxed in order to make growth ther-
modynamically feasible. In total, the thermodynamic constraints
of 9 reactions had to be relaxed, none of which is involved in the
central carbon metabolism.

• Next, as essential part of the TCOSA framework, for each reac-
tion that uses NAD+ (BiGG ID nad_c) and NADH (nadh_c), the
reaction ID was changed to “ID_ORIGINAL_NAD_TCOSA” and a
duplicate reaction named “ID_VARIANT_NADP_TCOSA” was
introduced where NAD+ was replaced with NADP+ (nadp_c) and
NADH with NADPH (nadph_c). Likewise, for each reaction that
involves NADP+ and NADPH, the reaction’s ID was changed to
“ID_ORIGINAL_NADP_TCOSA” and a duplicate reaction named
“ID_VARIANT_NAD_TCOSA” was introduced where NADP+ was
replacedwithNAD+ andNADPHwithNADH. As one exception, in
reactions where both NAD(H) and NADP(H) occur simulta-
neously (such as in the NAD kinase, in the transhydrogenase, or
in the growth pseudo-reaction), no duplication occurs. The
described reconfiguration with two cofactor variants is in
large parts analogous to the model modifications used by the
OptSwap method18, but analyses with OptSwap focused solely
on selected oxidoreductases and did not consider thermo-
dynamic driving forces.

We call the resulting model iML1515_TCOSA. The original
iML1515 model contains 128 reactions involving NADH and NAD+

(thereof 34 reversible), 110 reactions involving NADPH and NADP+

(thereof 27 reversible) as well as 6 irreversible reactions involving
all four cofactor variants (transhydrogenase, growth reaction etc.).
In total, with all split reversible reactions and the introduced
cofactor duplicate reactions, iML1515_TCOSA consists of 3982
reactions and 1881 metabolites, thereof 299 reactions involving
NAD+ and NADH, another 299 reactions involving NADP+ and
NADPH, and (as before) 6 reactions involving NAD(H) and NADP(H)
simultaneously.

We also created an iML1515_TCOSA variant, called
iML1515_3TCOSA, where NAD(P)(H)-containing reactions where not
only duplicated but even triplicated. In this model, the third reaction
copy is called “ID_VARIANT_NADZ”, where NAD(P)+ was replaced by a
new hypothetical cofactor NADZ+ (nadz_c), and NAD(P)H by the new
(reduced) cofactor variant NADZH (nadzh_c). For the cases where the
redox potential of the third cofactor was decreased (increased) by
155mV relative to the redox couples NAD(P)+/NAD(P)H, the4rG

0� of all
reactions with the third cofactor variant was increased (decreased) by
a corresponding value of 30 kJ/mol multiplied with the stoichiometry
of the oxidized cofactor variant.

In all simulations, potential release of (e.g. fermentation) products
via exchange reactions was allowed as in the original iML1515 model
and theminimumATPmaintenance demand (ATPMreaction)waskept
at 6.86 mmol

gDW �h. For growth on glucose we assumed a maximum glucose
uptake rate of 10 mmol

gDW �h for aerobic conditions and 20 mmol
gDW �h for anae-

robic conditions. For growth on acetate (under aerobic conditions) a
maximum acetate uptake rate of 10 mmol

gDW �h was set.

MDF
Most computational analyses performed in this work are based on the
mixed-integer linear program (MILP) OptMDFpathway5, which can be
used to find, in a given metabolic reaction network, the steady-state
flux distribution with maximal thermodynamic driving force obeying
given constraints including flux bounds, metabolite concentrations,
and standard Gibbs free energies. A full description of thismethod can
be found in Hädicke et al.5 Briefly, a metabolic network with m (inter-
nal) metabolites and q reactions is represented by the m×q stoichio-
metric matrix N. The rate vector r contains the q reaction fluxes and
demanding steady state for the metabolite concentrations implies the
mass balance constraint

Nr=0: ð1Þ

The flux of a reaction i is constrained by flux bounds

αi ≤ ri ≤βi: ð2Þ

More complex linear constraints for the fluxes (e.g., enzyme
constraints29) can be included via a suitable pair of a matrix D and a
vector d:

Dr≤d: ð3Þ

Thermodynamic constraints can be incorporated via the reaction-
centric driving forces (f i) defined as the negated Gibbs free energy
(4rG

0
i) of reaction i:

f i = �4rG
0
i = �4rG

0� � RT � ðN̂�, iÞ
T � x: ð4Þ

R is the gas constant, T the temperature (here 298.15 K), x a vector
containing the logarithmized metabolite concentrations and ðN̂�, iÞ

T
is

the transposed i-th column (reaction) of the extended stoichiometric
matrix N̂, which contains, in addition toN, also the externalmetabolites
in its rows for which the steady-state balance (Eq. 1) does not apply. f i
indicatesdirectlywhetheroperationof reaction i in forwarddirection is
thermodynamically feasible ðf i >0Þ or not ðf i ≤0Þ and the value of f i is a
measure for the driving force of the reaction. Note that f i is limited by
the (allowed) ranges of metabolite concentrations specified by vectors
of lower (cmin) and upper (cmax) bounds for the concentrations, which
in turn also constrain the logarithmized concentrations in x:

ln cmin

� �
≤ x≤ ln cmax

� � ð5Þ

Themeasure of thermodynamic driving force (and feasibility) of a
single reaction (f i) can be extended to a pathway by using the concept
of max–min driving force (MDF)4, which is defined as the maximal
value B such that f i ≥B for all reactions of a given pathway (Fig. 2).
While the original MDF definition is useful to quantify the maximal
driving force of a given pathway, the OptMDFpathway approach5

generalizes this concept: for an entire metabolic network and a
demanded phenotypic behavior (e.g., a given growth rate) it searches
for a steady-state flux distribution and suitable metabolite con-
centrations that maximize the MDF for the predefined phenotypic
behavior (Fig. 2). Herein we always refer to this generalized MDF
(associated with a given network and demanded behavior or condi-
tion), which can be determined as follows. For each reaction i, a binary
variable zi 2 f0, 1g is defined, which must become 1 if the reaction
carries a positive flux:

ri ≤ zi � βi: ð6Þ

This formulation requires all reactions to be irreversible (ri ≥0),
which is the reason why all reversible fluxes are split into two
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irreversible ones in a preprocessing step (see above). For theMDF B of
a given flux distribution we have to demand that the driving force of
every active reaction is equal or higher than B:

B≤ f i +M � ð1� ziÞ, ð7Þ

where M is a large number lying above the maximal feasible driving
force of any reaction.

As explained above, in the reconfigured TCOSA model, a
reaction is split if it is reversible or/and it is duplicated with swap-
ped cofactor specificity if it uses NAD(P)(H) (see also Fig. 1). Addi-
tional constraints are added in order to prevent the promiscuous
use of both NAD(H) andNADP(H) reaction variants (only one can be
used at a time): for every reaction k of the original iML1515 model
we built an index set Ak containing the indices of all reaction var-
iants in the TCOSAmodel derived from this original reaction (in the
case of a reversible NAD(P)(H)-using reaction, there can be up to
4 such indices). Then, for each Ak with two or more indices, the
following constraint is added:

X
i2Ak

zi ≤ 1: ð8Þ

Finally, the MDF value (and its associated flux distribution and
metabolite concentrations) for the given network and constraints can
then be found by a linear objective function maximizing the MDF B:

Maximize
x, r, z

s:t: eqs: ð1Þ�ð8Þ

B

ð9Þ

We note that theMILP optimization problem for the computation
of MDF (Eqs. (1)–(9)) overlaps to some extent with the MILP formula-
tions of thermodynamics-based (metabolic) flux analysis (T(M)FA) and
thermodynamics-based flux balance analysis (TFBA), which seek to
analyze thermodynamically consistent flux distributions30. The key
difference is that TFBA and T(M)FA explicitly demand that the Gibbs
free energy of all reactions is negative, hence, that the reactions obey
the second law of thermodynamics. Within these constraints, TFBA is
used to optimize certain fluxes (e.g. growth rate as usual for FBA),
metabolite concentrations or particular Gibbs free energies. In our
MDF formulation, the objective function (9) maximizes the MDF B, i.e.
it maximizes the minimal driving force of all active reactions. The
Gibbs free energies are hidden behind the driving forces f i and the
MDF B (the latter capturing the smallest of all relevant driving forces).
In most calculations, we did not explicitly demand that B>0 (which
would imply 4rG

0
i <0 for all reactions) but one can easily check feasi-

bility of the found solutions by verifying that B>0. If B≤0 then the
absolute value of B indicates the distance of the solution from ther-
modynamic feasibility.

SubMDF
We introduce SubMDF, which represents the MDF achievable within a
certain subset (insteadof all) of the active reactions. In our application,
the relevant subset comprises the NAD(P)(H)-dependent reactions. By
definition, the SubMDF is at least as high as the MDF. The considered
subnetwork is represented by an index set S of its reactions. When
maximizing the MDF in a certain part of the network, we still need to
ensure that all active reactions (also in the rest of the network) remain
feasible. Therefore, in addition to the introduced constraints for MDF,
we first demand

B≥Bmin ð10Þ

with Bmin>0 to ensure thermodynamic feasibility of the found
solution in the entire network. Herein, we used Bmin =0:1 kJ/mol. We
then introduce Bsub denoting the MDF in the subnetwork, which
must obey

Bsub ≤ f j +M � 1� zj
� �

, 8j 2 S: ð11Þ

By maximizing for Bsub we obtain SubMDF:

Maximize
x, r, z,B

s:t: eqs: ð1Þ�ð8Þ,ð10Þ,ð11Þ

Bsub

ð12Þ

Analysis of metabolite concentration ratios
For a relative comparisonof the feasible [NADH]/[NAD+] concentration
ratio (denoted by PNADH) with the [NADPH]/[NADP+] ratio (PNADPH), we
performed variability analyses of the ratio ofPNADH and PNADPH defined
as PNADH

PNADPH
= NADH½ �=½NAD+ �

NADPH½ �=½NADP + �. The logarithmized version of this ratio can be
written as

ρ = ln
NADH½ �=½NAD+ �

NADPH½ �=½NADP + �

� �
= xNADH + xNADP+ � xNADPH � xNAD+ : ð13Þ

In our analyses, the MDF value is fixed to the previously found
maximal MDF (Bmax) or SubMDF (Bsub,max) value by setting:

B=Bmax ð14Þ

or

Bsub =Bsub,max: ð15Þ

We can then determine the maximum and minimum value for ρ
via the two optimization problems

Maximize
x, r, z

s:t: eqs: ð1Þ�ð8Þ, and ð14Þor ð15Þ

ρ

and

Minimize
x, r, z

s:t: eqs: ð1Þ�ð8Þ, and ð14Þor ð15Þ

ρ

and then take eρ,min and eρ,max to obtain the minimal and maximal
value of PNADH

PNADPH
.

Minimal cofactor swap analysis
To determine theminimal number of reactions that have to swap their
(wild-type) NAD(P)(H) specificity in order to reach the calculated MDF
or SubMDF values in the flexible specificity scenario (where arbitrary
cofactor swapping is allowed), we proceed as follows: First, we collect
the indices of all reactionswhich have the complementary NAD(H) and
NADP(H) specificity compared to thewild type in an index set C. For all
these reactions, a new set of binary variables zi,swap 2 0,1f g, i 2 C,
is introduced allowing the reaction in the wild type to change its
specificity:

ri,swap ≤ zi,swap � βi8i 2 C: ð16Þ
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Here, ri,swap is the rate of the reaction iwith alternative specificity,
which is enabled in the TCOSA model if zi,swap = 1. Now, to find the
minimum number of cofactor swaps at previously calculated optimal
(Sub)MDF values, we formulate the MILP optimization problem

Minimize
x, r, z, zswap

X
zi,swap

s.t. eqs. (1)–(8), (16), and (14) or (15).

Implementation
All calculations have been performed via Python scripts under a cus-
tomAnaconda environment. For thehandlingofmetabolicmodels (via
SBML) and for basic flux balance analyses, COBRApy was used31. The
Python library pulp32 was employed for the construction of the MILPs
and a recent version (12.10) of IBM CPLEX was used as MILP solver. All
scripts, generated data and metabolic models (the latter in SBML
format33) can be found, together with a documentation, in the TCOSA
GitHub repository under the link https://www.github.com/klamt-lab/
TCOSA and in Zenodo34.

The calculations were performed on a computer cluster (with a
total of 16 Intel Xeon Silver 4110 CPU cores and 192 GB DDR4 RAM).
Sequentially running all calculations relevant for this work on this
cluster took ca. 6 days.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in GitHub under
the link https://www.github.com/klamt-lab/TCOSA and the relevant
release can also be accessed via Zenodo34. Source data are provided
with this paper.

Code availability
The computer code and metabolic models used for the performed
calculations as well as the subsequently generated data and a doc-
umentation can be found in the TCOSA GitHub repository under the
link https://www.github.com/klamt-lab/TCOSA and the relevant
release can also be accessed via Zenodo34.
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