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Optimal navigation in active matter

Abstract

Motile activematter systems are composed by a collection of agents, each ofwhich extracts
energy from the surrounding environment in order to convert it into self-driven motion. At
the microscopic scale, however, directed motion is hindered by both the presence of stochas-
tic fluctuations. Living microorganisms therefore had to develop simple yet effective propul-
sion and steering mechanisms in order to survive.

Wemay turn the question of how these processes work in nature around and ask how they
should work in order to perform a task in the theoretically optimal way, an issue which falls
under the name of the optimal navigation problem. The first formulation of this problem
dates back to the seminal work of E. Zermelo in 1931, in which he addressed the question of
how to steer a ship in the presence of an external stationarywind so as to reach the destination
in the shortest time.

Despite the considerable progress made over the years in this context, however, there are
still a number of open challenges. In this thesis, we therefore aim to generalize Zermelo’s
solution by adding more and more ingredients in the description of the optimal navigation
problem for microscopic active particles.

First, borrowing theoretical tools from differential geometry, we here show how to extend
the analytical solution of this problem to when motion occurs on curved surfaces and in the
presence of arbitrary flows. Interestingly, we reveal that it can elegantly be solved by finding
the geodesics of an asymmetric metric of general relativity, known as theRanders metric.
Then, we study the case in which navigation happens in the presence of strong external

forces. In this context, route optimization can be crucial as active particles may encounter
trapping regions that would substantially slow-down their progress. Comparing the explo-
ration efficiency of Zermelo’s solution with a more trivial strategy in which the active agent
always points in the same direction, here we highlight the importance of the optimal path
stability, which turns out to be fundamental in the design of the proper navigation strategy
depending on the task at hand.

We then take it a step further and include a key ingredient in the comprehensive study
of optimal navigation in active matter, namely stochastic fluctuations. Although methods
already exist to obtain both analytically and numerically the optimal strategies even in the
presence of noise, their implementation requires the presence of an external interpreter that
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takes away the active agent’s autonomy. Inspired by the tactic behaviours observed in nature,
we here introduce a whole new class of navigation strategies that allows an active particle
to navigate semi-autonomously in a complex and noisy environment. Moreover, our study
reveals that the performance of the theoretical optimal strategy can be reproduced starting
from some simple principles based on symmetry and stability arguments.

Finally, we lay the ground for moving towards a more realistic description of the problem.
In fact, we extend the optimization problem by also considering the energetic costs involved
in navigation and how these depend on the shape of the active particle itself. Remarkably,
our analysis uncovers the existence of an interesting trade-off between the minimization of
the arrival time at a target and the corresponding energetic cost, which in turn determines
the optimal shape of an active particle.
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1
Introduction

1.1 Models of active matter systems

A unifying characteristic of various living organisms is that they can extract and consume en-
ergy in order to move, apply mechanical forces or deform their shape1. Collections of such
self-driven agents fall under the name of active matter systems2. Due to the constant energy
dissipation at the individual level, these systems are continuously driven far from thermal
equilibrium. This characteristic allows them to exhibit a variety of intriguing phenomenons
without any equilibriumequivalent, such as the emergenceof collectivemotion3,4, self-organized
structures5,6,7,8 or activity-induced patterns9,10. A broad class of active matter systems is that
characterised by agents capable of moving autonomously in their environment, hence re-
ferred to asmotile active matter 11 which spans several scales, ranging from bacteria12, molec-
ular motors13,14 or cells15,16, to schools of fish, flocks of birds or even human crowds17,18.
To this day, there are countless open challenges in this field due to the high degree of com-

plexity of these systems, be they living or man-made19. As a result, the study of active matter
has recently brought together a growing number of scientists from various disciplines includ-
ingmaterials science20, robotics21,22,23, chemical24, biological25, softmatter2,26 and statistical
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Chapter 1. Introduction

physics1. Over the years, researchers have thus been devoted to the development of newmin-
imal models aimed at rationalizing, predicting and controlling the properties of motile active
matter systems. These are typically phenomenologicalmodels basedonglobal principles such
as conservation laws and symmetries, which help tominimize the number of parameters con-
trolling the dynamics of the systemwhile alsomaking them simple enough to be numerically
efficient.

Anoutstanding exampleofminimalmodel inspiredby animal behavior27,28 is the renowned
Vicsekmodel 29, whichwas proposed to understand the collectivemotion of a group of agents.
It consists of a set of point-like particles self-propelling in two dimensions and influencing
each other’s orientation through local alignment of their velocities. Despite the simplicity
of this model, it remarkably allows to study collective motion across many scales, spanning
frommicrotubules30 to flocks of birds31. It represents, in fact, one of the simplest of models
showing a transition to collective motion within a population of self-propelling agents and,
in the study of active matter, it certainly plays the role of prototype in a way analogous to
Ising’s model in ferromagnetism.

Similarly, there has been a growing interest in the modeling of microscopic self-propelled
organisms at the individual level, also known as microswimmers or active particles32. The
former term refers to force-free and torque-free organisms featuring a hydrodynamic cou-
pling with the fluid they are immersed into, which occurs via the force fields generated by
their swimming patterns. The latter defines the broader class of objects moving in an inert
medium (typically a viscous fluid) yielding just hydrodynamic drag and a stochastic exchange
of momentum*. In either case, these microorganisms are able to draw energy from their sur-
roundings and then turn it into directedmotion bymeans of a variety ofmechanisms, which
we shall now briefly review.

*Despite this difference, in the followingwewill actually notmake any distinction between these two terms
since their observable behavior –when considered individually– is indistinguishable in a homogeneous environ-
ment32.
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Chapter 1. Introduction

1.1.1 Self-propulsion mechanisms

Directed motion at the microscale is especially problematic because of the combination of
two factors: the absence of inertia and the presence of thermal fluctuations. On those scales,
microorganisms indeed live in a world where fluid friction and viscosity dominate over iner-
tia, also known as the low Reynolds number (or overdamped) regime33,34,35,36. The absence
of inertia has interesting and counter-intuitive implications, as illustrated by the scallop theo-
rem36: a swimmermaking a time-symmetricmovement cannot achieve a net displacement at
low Reynolds numbers. This has therefore led biological microorganisms to evolve propul-
sion mechanisms that break temporal reversibility.

In general, sincemicroswimmersmotion ismomentum-conserving†, the far-field flow they
generate can be well mathematically described by a force dipole34,35. As shown schematically
in Fig. 1.1(a), this characterization splitsmicroswimmers into two classes. Pushers, whomove
the fluid towards them on the sides of their body and away from them at the extremities,
and whose forces forming the dipole point away from them. An emblematic example is the
EscherichiaColi bacterium,which uses rotating flagella at the back of its body to self-propel37

(left panel in Fig. 1.1(b)). In contrast, when the forces forming the dipole point towards the
microswimmer, it is called puller: it draws fluid towards itself in the direction of motion and
pushes it out from the sides. An example is given by theChlamydomonas reinhardtii, an alga
with two flagella that move collecting fluid from the front as in a breaststroke style38 (right
panel in Fig. 1.1(b)).
However, there are many situations in which the presence of the fluid can be neglected

or taken into account effectively through friction forces. This is generally the case when lo-
cal interactions dominate the dynamics like, for e.g, in two-dimensional systems where the
swimmers are in contact with a substrate that acts as a momentum sink and screens hydro-
dynamic effects. Biological examples are gliding bacteria like theMyxococcus xanthus (shown
in Fig. 1.1(c)) whose motility relies on specfic pili39, and also crawling eukaryotic cells which
self-propel using their actin cytoscheleton40.

At the same time, a variety of artificial microswimmers have been experimentally realized

†Due to the absence of inertia at low Reynolds number.

3



Chapter 1. Introduction

Figure 1.1: (a) Schematic representation of two self‐propulsion mechanisms of microswimmers at low Reynolds number.
On the left, pushers generate the propulsion from the rear end due to the rotation of a bundle of flagella. Pullers (on the
right) generate instead the force from the front end thanks to two flagella beating in a breaststroke way. Thanks to these
non‐reciprocal beating patterns they are able to swim in one direction (from left to right in this figure). (b) Left panel: a
colony of E. Coli bacteria observed at the microscope as an example of pusher microswimmer. Source: Wikimedia Com‐
mons, Rocky Mountain Laboratories, NIAID, NIH, public domain. Right panel: Chlamydomonas reinhardtii algae under a
Scanning Electron Microscope (SEM). A paradigmatic example of pullers. Source: Wikimedia Commons, Dartmouth Elec‐
tron Microscope Facility, Dartmouth College, public domain. (c) A swarm ofMyxococcus xanthus under a SEM, an example
of gliding bacteria. Source: ETH Zurich/Gregory J. Velicer. (d) Illustration of the self‐diffusiophoresis mechanism charac‐
terizing the motion of a Janus particle. This colloid is driven by the local concentration gradient of the reaction product
(oxygen,O2) generated by the catalysis of hydrogen peroxide (H2O2) on the platinum‐coated side (blue hemisphere).

in order to reproduce the qualitative behavior of motile biological active matter32,33. One of
the simplest examples is provided by self-propelling liquid droplets41. Theirmotion is caused
by a Marangoni flow42 generated by a self-sustained gradient in the surface tension of the
droplet. Experimentally, this effect has been shown for water droplets containing bromine
in an oil suspension43. Another paradigmatic example is provided by Janus particles44,45,46,
spherical colloids with hemispheres of distinct physicochemical properties. These particles
are typically half-coated with a layer of platinum (Pt) that catalyzes a chemical reaction in an
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aqueous solution. As schematically shown in Fig. 1.1(d), this in turn breaks the symmetry
of the reaction product distribution around the particle, giving rise to phoretic and osmotic
forces47,48: a propulsion mechanism known as self-diffusiophoresis.
All in all, a microswimmer can autonomously accomplish directedmotion in several ways.

We shall now discuss some minimal models that effectively describe the generic features of
the motion of such microscopic active particles regardless of their specific propulsion mech-
anism.

1.1.2 Models of active particles

As anticipated at the beginning of the previous section, a particle immersed in a fluid is sub-
ject to the stochastic forces resulting from collisions with the fluid molecules. The corre-
spondingmotion that these interactions generate is called Brownianmotion, named after the
botanist Robert Brown who first noticed and described this phenomenon in 182749. The
intensity of these fluctuations can be quantified via the so-called translational diffusion coef-
ficientD which depends both on the fluid temperature T and on the particle mobility µ via
the renowned Einstein relation50: D = µkBT , with kB being the Boltzmann constant. At
the same time, the particle also undergoes rotational diffusion over time scales τr given by the
inverse of the corresponding rotational diffusion coefficientDr.
Thus, we can now write down the overdamped equations of motion of a passive particle

immersed in a quiescent fluid in two dimensions as‡:ṙ =
√
2Dξ

θ̇ =
√
2Drξθ ,

(1.1)

where r = x x̂+ y ŷ is the particle position, θ its orientation angle, while ξ and ξθ stand for
independent delta-correlated white noises with unit variance, used tomodel the randomness
of thermal fluctuations. These stochastic dynamics represent a model for what is known as a
passive Brownian particle (PBP)whosemotion is purely diffusive and each degree of freedom

‡The generalization to the three-dimensional case is straightforward, with the particle position represented
by Cartesian coordinates (x, y, z) and the orientation by the azimuthal and polar angles (ϕ, θ).
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Chapter 1. Introduction

is completely decoupled from the others. The overdamped dynamics in Eq. (1.1) moreover
implies that the average particle displacement with respect to its initial position will always
vanish. These random fluctuations therefore hinder the ability of a microswimmer to per-
form an effective directed motion even in a quiescent fluid. It is then quite crucial for an
active particle to find a good steering strategy that can overcome thermal fluctuations.

In this regard, there exists models with various degrees of sophistication to describe active
motion51,52. However, herewewill ignore the specific self-propulsionmechanisms and rather
focus on a generic description. To this end, self-propelling particles can be divided into two
main classes. On the one hand, the so-called active Brownian particles (ABPs). In this case the
microswimmer self-propels at a constant speed v0, but its orientation gradually changes due
to rotational diffusion, which causes a non-trivial coupling between rotation and translation.
The corresponding overdamped equations of motion in 2D areṙ = v0û+

√
2Dξ

θ̇ =
√
2Drξθ ,

(1.2)

where û = cos θ x̂ + sin θ ŷ is the unit vector corresponding to the particle intrinsic di-
rection of motion. Note that for active particles, in general, noise could result from sources
other than thermal. Activity itself can in fact give rise to stochastic fluctuations. A clear
example are the chemical reactions underlying the self-propulsion mechanisms of Janus par-
ticles, whose motion observed in experiments is remarkably well reproduced by this simple
effective model44,53. In Fig. 1.2(a) are shown some sample trajectories of ABPs with different
self-propelling speeds v0 obtained from numerical simulations of (1.2).

On the other hand, we find the so-called run-and-tumble particles (RTPs). As the name
suggests, thesemicroswimmers switch between two states: runs, where theymove at constant
speed v0 in a straight line, and tumbles, when they abruptly and randomly change their ori-
entation. As a result, RTPs differ from ABPs in their orientation dynamics54. Namely, the
tumbling events of a RTP are uncorrelated, occur at an average rate α and their number in a
certain time window has a Poisson distribution, such that the tumbling probability is given

6



Chapter 1. Introduction

Figure 1.2: (a) Four exemplary trajectories of ABPs with different self‐propulsion speeds v0 starting from r0 = 0 and
with an initial orientation θ0 = π/4. The translational and rotational diffusion coefficients are here set toD = 0.01
andDr = 0.1, respectively. (b) Corresponding curves of the mean square displacement (MSD) obtained from numerical
simulations taking an ensemble average over 103 trajectories. You can notice the three different scaling regimes that an
ABP undergoes: diffusive at very short times, ballistic when τ/τr ≈ 1 and again diffusive at times τ/τr � 1. Legend
and parameters as in (a).

by Ptumble = 1− e−α. The orientation dynamics thus becomes55

θ̇ =
∑
i

∆θiδ(t− τi) , (1.3)

where the sum runs over all the tumbling events occurred at times τi, while the angle variation
∆θi is drawn from a uniform distribution between 0 and 2π. This model of active particles
has been developed to describe themotion ofE. Coli bacteria12 andChlamydomonas algae56

whose propulsion mechanisms have been already discussed above.

Although thedynamics at short timesdependon themodel adopted, bothABPs andRTPs
share the same properties at long times. It is possible to quantify this by looking at the mean
square displacement (MSD) of an active particle, which measures how much on average it
departs from its initial position r0 within a time τ , i.e. mathematically defined asMSD(τ) =

〈(r(τ) − r0)
2〉, where 〈...〉 stands for the ensemble average. For an active particle, be it an

ABP or a RTP, it is given by57

MSD(τ) = (4D + v20τr)τ +
v20τ

2
r

2
(e−

2τ
τr − 1) , (1.4)

7



Chapter 1. Introduction

where τr is the typical time scale of rotational diffusion, such that τr = D−1
r or τr =

α−1 for ABPs or RTPs, respectively. Depending on the observed time scale, we can distin-
guish three different regimes, as shown in Fig. 1.2(b). In the limit τ � τr, (1.4) reduces
to MSD(τ) = 4Dτ , which is a purely diffusive motion with diffusion constant D and is
also the exact solution for the MSD of a PBP. However, at slightly longer times, i.e. when
τ ≈ τr, the motion is effectively ballistic since MSD(τ) = 4Dτ + 2v20τ

2 ∝ τ 2. Lastly,
at time scales much larger than the characteristic rotational diffusion, i.e. τ � τr, we get
MSD(τ) = (4D + 2v0L)τ ∝ τ , such that we recover again a diffusive motion with an
enhanced diffusion coefficientDeff = D + v0L/2. We have here defined L ≡ v0τr, known
as the active particle persistence length, i.e. the length scale over which it travels straight on
average before its direction is randomized.

There are, however, limiting regimes in which the impact of noise is negligible. A good
measure is provided by the Péclet number (Pe) of the system. This dimensionless parameter
quantifies the relative importance between directed motion and diffusive effects, and for an
ABP can be defined as32

Pe ∝ v0√
DrD

, (1.5)

up to a constant numerical prefactor. In caseswhere Pe is large, the effects of stochastic fluctu-
ations on themotion of themicroswimmer can be neglected. These essentially correspond to
situations in which the characteristic time scale of diffusion is much larger than the observed
time window. In practice, this is the case when, e.g., active motion occurs in a high-viscosity
fluid, such as honey, oils or long-chain hydrocarbons58,59.

We have thus shown that themotion of an active particle is characterised by both a ballistic
regime at relatively short times and a diffusive one at longer times. Moreover, the transition
between the two regimes turns out to be essentially governed by the swimmer persistence
length, which in turn depends on its intrinsic activity. In practical terms, the ability of tuning
this quantity can thus be crucial for the survival of biological microswimmers navigating in
a complex environment12,60,61.

8



Chapter 1. Introduction

Figure 1.3: Graphical representation of bacterial chemotaxis. By self‐regulating its own motility apparatus, and thereby
its persistence length L, a microswimmer is able to climb up chemical concentration gradients autonomously. Here, the
red arrow represents the swimmers heading direction û while the blue circles stand for the chemical particles, whose
concentration grows from right to left as indicated by the bar gradient underneath. Qualitatively, something similar occurs
in all other types of taxis, the main difference being in the sensory and motility machinery of the active particle at hand.

1.1.3 Smart active particles

Through millions of years of evolution, biological microswimmers had to develop mecha-
nisms to control their own activity in order to accomplish vital tasks. Some examples are the
search strategies displayed by bacteria like E. Coli while looking for their nutrient12,34 or by
spermatozoa trying to locate the egg62. Through the comparison of the chemical concen-
tration levels along their path, these microorganisms are capable of altering their tumbling
rate over time so as to effectively climb up the concentration gradient. This process is called
klinokinesis with adaptation63 and results in a biased random walk known as chemotaxis64,
which is depicted in Fig. 1.3§.

However, these adaptationmechanisms –first observed over 100 years ago66– characterize
only a specific class of microswimmers since they require sophisticated sensory and motility
machinery as well as internal information processing, which in turn involves memory. On
the other hand, behaviors observed in nature have been a source of inspiration for the design
of artificial self-propelled microswimmers capable of performing autonomously specialized
tasks in complex environments67,68 in a much simpler fashion.

An example is provided by chemically active particles like, e.g., synthetic phoretic colloids,

§An analogous behavior has also been observed in photosynthetic biological microorganisms in the pres-
ence of light gradients and is thus called phototaxis 65.
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which can exhibit (anti-)chemotaxis by (anti-)aligning their axis of orientation to the local
gradient of (possibly self-produced) chemicals69,70,71,72. Remarkably, this reproduceswell the
behavior displayed by individual enzymes8,73.

Based on this simple mechanism –known as orthokinesis– it has therefore recently become
possible to design synthetic microswimmers capable of responding to a variety of external
stimuli such as light74,75,76 or viscosity77 gradients or even gravitational78 or magnetic79,80,81

fields.

Currently, a major challenge in active matter is understanding how such processes can be
optimized82,83, both at the collective scale and at the individual active particle level.

1.2 Optimal control theory

Thepropermathematical framework for rigorously studyingoptimizationproblems is known
as optimal control theory84. Building on the pioneering works by Richard Bellman85 and Lev
Pontryagin86 from last century, this theoretical tool has become very popular also outside
the mathematical sciences thanks to its many applications in engineering87,88 and finance89.
Optimal control (OC) is essentially an extension of variational calculus aimed at finding the
control strategy that minimizes/maximizes a given objective functional, also known as cost
function.

Let us nowbriefly illustrate themain ideas that lead to the formal solution90. Consider the
deterministic dynamics of an active agent generally described by the followingn-dimensional
differential equation

q̇ = F [q(t), c(t), t] , (1.6)

where t indicates the time and q represents the state of the agent. The variable c is the so-
called control uponwhich one can act tomanipulate the state q and, in fact, it does not have a
predefined equationofmotion. The system(1.6) is furthermore equippedwith theboundary
conditions q(t0) = q0

qi(tf) = qi,f for i = 1, . . . , k ,

10



Chapter 1. Introduction

where k ≤ n, while t0 and tf are the initial and the final times respectively. In the following,
we will treat the more general case in which tf is not specified.

The optimization problem can actually be addressed with tools similar to those used in
analytical mechanics. Let us therefore consider a cost function of the form

C = ϕ(q(tf), tf) +

∫ tf

t0

L[q(t), c(t), t] dt , (1.7)

where ϕ and L are known as the endpoint cost and the running cost respectively, although
the latter can be identified as a Lagrangian. The goal is now to determine the history of c(t)
that would minimize/maximize C . To this end, we should first adjoin the equations of mo-
tion (1.6) to the Lagrangian introducing a vector of Lagrange multipliers p, whose compo-
nents are the generalized momenta conjugated to the state variable q:

C̃ = ϕ(q(tf), tf) +

∫ tf

t0

{L[q(t), c(t), t] + p(t) · (F [q(t), c(t), t]− q̇)} dt . (1.8)

We may identify the systemHamiltonian as

H[q(t), c(t), t] ≡ L[q(t), c(t), t] + p(t) · F [q(t), c(t), t] , (1.9)

and then integrate by parts the last term in (1.8), yielding

C̃ = ϕ+ [p · q]t0 − [p · q]tf +
∫ tf

t0

(H + ṗ · q) dt ,

where we have dropped the explicit dependencies. Let us now compute the variation in the
cost C̃ , which reads

δC̃ = [(∂tϕ+H)dtf + (∇qϕ− p) · dq]tf +
∫ tf

t0

[(∇qH + ṗ)δq +∇cHδc] dt ,

where we have used the identity δq(tf) = dq(tf)− q̇(tf)dtf and placed δq0 = 0, since q(t0)
is fixed. At optimality, the cost function has to be stationary, i.e. δC̃ = 0. By requiring this to
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hold for arbitrary variations of q, c and tf, we obtain the necessary conditions for optimality,
also known as Pontryagin’s principle86:

ṗ = −∇qH

∇cH = 0

[∂tϕ+H]tf = 0 ,

(1.10)

together with the boundary conditions:
q(t0) = q0

qi(tf) = qi,f (specified); i = 1, . . . , k

pi(tf) = ∂qiϕ ; i = k + 1, . . . , n ,

(1.11)

where n is the dimensionality of the system (1.6). These last two systems, along with the
equation of motion (1.6), make up the two-point boundary-value problem to be solved in
order to obtain the OC strategy¶.

1.2.1 Stochastic optimal control

The formalism presented in the previous section does not take into account the possible pres-
ence of stochastic fluctuations affecting the system’s dynamics. These in fact characterize
motion at the microscopic scale and are therefore a key ingredient to be included in a thor-
ough treatment of optimization problems in active matter. To this end, however, one must
resort to a slightly different approach, which we illustrate in the following.

Let us consider a system governed by the following stochastic differential equations

q̇ = F [q(t), c(t), t] +
√
2Dξ , (1.12)

withD being a diffusion constant andξ an–dimensionalwhite noise delta-correlatedprocess

¶Note that the last condition in system (1.10) is necessary if and only if the final time tf is not specified.
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withunit variance. Wewill hereafter assume that the initial state of the system is fixedq(t0) =
q0 and the final time is unconstrained. The aimhere is to find the controlc(t) thatminimizes

C(q0, c) =

〈
ϕ(q(tf)) +

∫ tf

t0

L[q(t), c(t), t] dt
∣∣∣∣ q(t0) = q0

〉
, (1.13)

which is analogous to the cost function (1.7) with the only difference that here we have to
take an ensemble average over all trajectories starting from q0. We can now formally define
the optimal cost function, also called value function, simply as

C(q, t) = min
c(t→tf)

C[q(t), c(t→ tf)] (1.14)

where c(t → tf) is the control sequence between an intermediate time t and the final time
tf. Then, according to Bellman’s principle of optimality91, this function can be expressed
recursively as

C(q, t) = min
c(t→t+dt)

〈
C(q(t+ dt), t+ dt) +

∫ t+dt

t

L[q(s), c(s), s] ds
∣∣∣∣ q(t) = q

〉
.

(1.15)
The Taylor expansion of the first term on the right reads

〈C(q(t+ dt), t+ dt) | q(t) = q〉 ≈ C(q(t), t) + ∂tCdt+ F ·∇qCdt+D∇2
qCdt ,

up to first order in dt, where we have used Itô’s lemma92 〈dq2〉 = O(dt). Plugging then this
back into (1.15), dividing by dt both sides and taking the limit dt→ 0 gives

∂tC +min
c

[
L+ F ·∇qC +D∇2

qC
]
= 0 , (1.16)

which is the stochastic version of the so-called Hamilton-Jacobi-Bellman (HJB) equation93

with boundary condition C(q, tf) = ϕ(q(tf)). Finally, the minimization with respect to
the control c of the expression in square brackets is carried out by imposing the optimality
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condition94

∇c

[
L+ F ·∇qC +D∇2

qC
]
= 0 . (1.17)

Thus, inserting the expression of the control c obtained from (1.17) into (1.16), we get the
n-dimensional partial differential equation to be solved in order to address the stochastic op-
timal control (SOC) problem.

Note that this approach can also be used to obtain theOC stategy in the deterministic case
by simply setting D = 0. This would therefore be an equivalent alternative to employing
Pontryagin’s principle (1.10) introduced above. There, one needs instead to solve a set of
2n ordinary differential equations with two-point boundary conditions. Depending on the
situation, one shall decide which approach is more convenient on a case-by-case basis.

This equivalence can be readily worked out by identifying the value function gradients,
∇qC, with the generalizedmomentap atD = 0. The systemHamiltonian (1.9) in that case
indeed takes the formH = L+F ·∇qC, such that the first and second necessary conditions
of Pontryagin’s principle (1.10)match exactly with (1.16) and (1.17) respectively‖. The third
condition in (1.10) can insteadbe straightforwardly recovered fromEq. (1.16), namely∂tC =

−H, and then considering the boundary condition C(q, tf) = ϕ(q(tf)).

We will now show the application of both these equivalent approaches in some practical
examples.

1.3 The problem of optimal navigation

Finding the fastest path towards a desired destination can be highly beneficial for living or-
ganisms tracking a food source15,95,96, a potential mate97, or escaping from toxic areas98 or
predators99. Moreover, most often their motion happens in the presence of a fluid flow or
an external force, which can hinder their navigation. The optimal path is therefore distinct
from the shortest one, making this a complex problem in the field of active matter.

At the same time, thanks to the recent theoretical and experimental advances in the design
of artificial microswimmers44,45,48,51,67,100, addressing this issue has important technological

‖Specifically, the first correspondence can be proven by taking the gradients of both sides in (1.16).
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Figure 1.4: Diagrammatic illustration of Zermelo’s problem for a ship navigating under constant wind (black arrow). In
order to reach the destination in the shortest time, the ship must be oriented (red arrow) so as to compensate for the
transversal component of the wind. In this case indeed ZP indicates that θ = θ0 (const), that is, the optimal path is simply
straight (green line).

applications ranging from environmental sustainability and monitoring101,102, route plan-
ning103,104 to targeted cargo delivery at the microscale105,106,107.

Hence, it is of no surprise that this problem is one of the oldest known applications ofOC
theory. Its classical solution can be traced back to Ernst Zermelo’s work in 1931108. There, he
addressed the problem of how to steer a vessel navigating at constant speed v0 in the presence
of a stationarywindf(r) so as tominimize the travel time to reach a given destination. Please
refer to Fig. 1.4 for an illustration of the scenario. In this context, the equations governing
the motion of the ship are

ṙ = v0û+ f(r) , (1.18)

where r = x x̂+ y ŷ is the vessel position and û = cos θ x̂+ sin θ ŷ its heading direction.

The solution to this problem can be readily found applying Pontryagin’s principle (1.10)
from OC theory90. Since the goal here is to minimize the total travel time, we may simply
place L = 1 and ϕ = 0 in the cost function (1.7), such that the system Hamiltonian (1.9)
takes the form

H = 1 + p · [v0û+ f(r)] , (1.19)

where the control variable is the ship’s heading angle θ and the state is given by its position
vector r. In this specific case, the necessary conditions for optimality (1.10) thus translate
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Figure 1.5: Optimal navigation in a shear flow. (a) The ZP solution (green curve) has been obtained by integrating (1.22)
at ζ = 1 for an agent starting from the origin r0 = 0 (green circle) and aiming at another point downstream rT = ℓ x̂
(magenta circle). The colour here codes for the flow intensity and the black arrows indicate its direction. (b) Heat map of
103 stochastic trajectories obtained from numerical simulations of OP in the same setup as in (a) with the diffusivity set
toD = 0.01. The white arrows indicate the corresponding optimal control map ûopt(θ(r)).

into the following system

ṗx = −∂xH = −px∂xfx − py∂xfy

ṗy = −∂yH =− px∂yfx − py∂yfy

0 = ∂θH = v0(−px sin θ + py cos θ) =⇒ tan θ = py
px

H = 1 + p · [v0û+ f(r)] = 0 ,

(1.20)

where the last condition holds at any time since the Hamiltonian does not depend explicitly
on time and is thus a conserved quantity. Wemay then use the third equation to replacep by
θ in this system so to obtain

θ̇ = sin2 θ ∂xfy − cos2 θ ∂yfx + sin θ cos θ(∂xfx − ∂yfy) , (1.21)

which is the sought optimal steering strategy that, solved together with the equation of mo-
tion (1.18), minimizes the travel time. Hereafter, we will refer to it as Zermelo’s Policy (ZP).
One then just has to select** the proper initial orientation θ0 so as to get the minimum time
path that reaches the desired destination, which henceforth will be referred to as Zermelo’s
path.

**This can be achieved using a shooting method109.
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For the sake of illustration, let us now consider the case where a self-propelled agentmoves
in the presence of a shear flow f(r) = κy x̂ with κ > 0. Starting from the origin, the task
is to reach in the shortest time another stationary point rT at distance ℓ along the x−axis, i.e.
rT = ℓ x̂ with ℓ > 0. According to Zermelo’s solution, this simply amounts to solving the
following set of ordinary differential equations (ODEs)

ẋ = ζ cos θ + y

ẏ = ζ sin θ

θ̇ = − cos2 θ .

(1.22)

where we have rescaled space and time as r → ℓr and t → t/κ, such that the dynamics
is characterized by only one non-dimensional parameter, namely ζ ≡ v0/κℓ. This ODE
system can be solved exactly and the corresponding solution reads
x(t) = x0 + y0t+

ζ
2
[arcsinh[(t− tan θ0)λ+ tan θ0ψ(t)] + λt+ (tan θ0 − t)(ψ(t)− λ)]

y(t) = y0 − ζ [ψ(t)− λ]

θ(t) = arctan(tan θ0 − t) ,

(1.23)
where we have defined λ ≡

√
1 + tan2 θ0 and ψ(t) ≡

√
1 + (t− tan θ0)2, with (x0, y0)

and θ0 being the initial position and orientation of the active agent, respectively.

In order to solve the full problem, all that is left to determine are the initial angle θ0 and
the (optimal) arrival time at the target topt. These depend on the relative position of the
target rT and the initial point r0. Since in our case these share the same y-coordinate, i.e.
yT = y(topt) = y0, from (1.23) we obtain

topt = 2 tan θ0 . (1.24)

Moreover, the target position is such that xT − x0 = x(topt)− x0 = 1 (in units of ℓ). This
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condition, together with (1.23) and (1.24), implies

arcsinh(2 tan θ0λ) + 2 tan θ0λ = 2/ζ , (1.25)

which is an implicit equation to be solved for θ0. Hence, the full system of Eqs. ( 1.23- 1.25)
finally represents the complete analytical solution to the optimal navigation problem in a
shear flow. The resulting Zermelo’s path corresponds to the green curve shown in Fig. 1.5(a).
Here, the agent exploits the flow to reach the target faster. Nevertheless, it also has to be
cautious not to go too far in the vertical direction to avoid being carried away by the flow,
making this a non-trivial optimization problem.

Zermelo’s approach, however, does not account for thermal fluctuations, which play a
prominent role at the micro-scale. In such a case, one must therefore reframe the problem
of optimal navigation within the context of SOC theory. To this end, let us consider a self-
propelled particle moving on the plane at fixed speed v0 in presence of a stationary force field
f(r) and translational diffusionwithdiffusivityD. Itsmotionobeys the following stochastic
differential equation

ṙ = v0û+ f(r) +
√
2Dξ , (1.26)

which just corresponds to a particular choice for the dynamics in (1.12).

Since our goal is to minimize the total travel time to reach a target at position rT, we may
identify the particle position with the state variable and simply set ϕ = 0 and L = 1 in the
definition of the cost function (1.13), which will thus take the form C(r) = 〈tf − t0〉r de-
pending only on the initial position r. As a result, the value function (1.14) can be identified
with the mean first-passage time T (r) (MFPT) and the corresponding HJB equation (1.16)
reads

(v0û(θ) + f(r)) ·∇T +D∇2T = −1 , (1.27)

where the gradients are takenwith respect tor. According to the optimality condition (1.17),
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the optimal choice for the heading direction θ (our control variable) is then obtained by

∂θ[1+(v0û+f(r))·∇T +D∇2T ] = 0 =⇒ tan θ =
∂yT
∂xT

⇐⇒ ûopt(θ(r)) = ± ∇T
|∇T |

,

(1.28)
valid at every point in space. As the desired strategy should minimize T (r), we expect the
relevant control to point down its gradient and shall thus retain only the solution with a
negative sign in (1.28). Inserting this into (1.27), we finally get the final expression for the
stochastic HJB equation for the MFPT:

−v0|∇T |+ f(r) ·∇T +D∇2T = −1 , (1.29)

to be solved with the boundary condition T (rT) = 0. The system composed by the last two
equations (1.28) and (1.29) hence provides the strategy which, by design, leads to the fastest
possible trajectories on average. Hereafter, we will thus refer to it as theOptimal Policy (OP).

Figure 1.5(b) shows an example of the vector field corresponding to the OP control map
ûopt(θ(r)) obtained in the same setup used to illustrate the deterministic case (shown in
Fig. 1.5(a)). Simulations of the Brownian dynamics (1.26) carried out with such control re-
veal that the stochastic trajectories tend to be symmetrically spread around Zermelo’s path.
This is consistent with the fact that Zermelo’s solution is indeed recovered from OP in the
limitD → 0, an observation with important implications that will be discussed extensively
in Ch. 4.

1.3.1 An alternative approach: Reinforcement Learning

Living organisms have shaped their behavior, functionality andmorphology over millions of
years in order to find the right balance between costs, risks and benefits. Evolution is there-
fore ultimately an optimisation process occurring as a result of the continuous interaction
between an organism and its surroundings through what is called a feedback loop. This cycle,
shown in Fig. 1.6, is also at the very heart of reinforcement learning (RL), a broad branch
of machine learning algorithms that covers all possible decision-making problems110, with
potential applications ranging from engineering111 and robotics112,113 to biology and active
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Figure 1.6: Schematic representation of the feedback loop at the basis of both evolution of biological systems and RL
algorithms. The agent, be it an artificial active particle, a robot or a living organism, modifies the state of the environment
via its actions; it then receives updated information about the state of the environment together with a certain reward
and, by gathering experience over time, will thus adapt its actions accordingly.

matter23,114,115,116,117.

In a nutshell, RL algorithms formalize the concept of learning how to carry out a task via
trials and error. Let us imagine an agent moving in a certain environment (please refer to
Fig. 1.6). Its actions lead to a change in the state of the environment (e.g. its position), which
are then externally interpreted into rewards and finally fed back into the agent. Through a
number of iterations, this agent tries to maximize the cumulative reward given a sequence
of actions and, based on the experience gathered, it eventually learns the (ideally) optimal
strategy.

In contrast to OC theory, approaches based on RL make it possible to study problems in
which the dynamics of the environment is not exactly known a priori118. Let us imagine a
glider that has to be airborne for as long as possible: it can only measure certain properties of
its surroundings such as local temperature, pressure or wind direction, yet the pilot does not
have enough information to be able to plan an optimal flight. However, a RL algorithm can,
through experience in the field, infer the right manoeuvres to keep the glider in the air111.
Furthermore, RL can help deal with problems in which the task is so complicated that it
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becomes extremely difficult, if not impossible, to determine the optimal strategy via OC.

This is why RL has recently been studied as an alternative numerical approach to tackle
the problem of optimal navigation. These algorithms have indeed proven to be able to de-
termine optimal strategies for navigating in complex environments119,120,121 and even in the
presence of chaotic122 or turbulent flows123,124,125,126. Lastly, some RL-based methods have
also shown the possibility ofmaking smartmicroswimmers learn tactic behaviors127,128,129 or
how to escape from predators at low Reynolds number130,131.

1.3.2 Advantages and drawbacks of either approach

Although a wide class of problems can be solved using either OC theory or RL algorithms,
both these approaches suffer from inherent limitations.

First and foremost, the practical implementation of both requires the presence of an exter-
nal interpreter either to guide (OC) or teach (RL) the agent how tomove in an environment.
Whilst such external control is today possible to perform on artificial microswimmers (e.g.
via feedback loops132,133, hydrodynamic interactions with boundaries46 or electromagnetic
fields134,135,136), it severely limits the microswimmer autonomy and thus potential applica-
tions.

Besides, OC theory requires the knowledge of an accurate model of both the agent dy-
namics and the environment. This is in contrast with RL-based methods which are typi-
cally model-free, even though model-based approaches may provide several benefits like bet-
ter asymptotic performance and faster convergence137. The application of OC strategies is
also especially challenging to extend to more general situations such as active motion in a
time-dependent turbulent flow125 or on curved surfaces where solving the corresponding
HJB equation (1.16) would require advanced computational techniques138.

On the other hand, the navigation strategy obtained fromOC theory is optimal by defini-
tion, which is something that is not guaranteed by the implementation ofRL-basedmethods.
The space of policies may in fact contain several local optima and convergence to the global
optimum is not straightforward or even possible sometimes114. This is why the performance
of RL algorithms should always be benchmarked against other known strategies124,125.
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Moreover, the implementation of RL algorithms may demand a significant numerical ef-
fort. Indeed, it is often necessary to fine-tune the hyperparameters within the RL model in
order to make the learning process converge while avoiding the risk of overfitting. This is to
allow the learned strategies to be applicable also in environments slightly different than the
one in which the learning took place119.

Lastly, RL models with overly complex architectures, such as those based on deep neural
networks112,113, despite allowing for the study of more sophisticated optimisation problems,
have another intrinsic drawback: they act as black boxes that are so far from the physics of
the problem as tomake the interpretation of the resulting strategies rather difficult, with very
few exceptions127.

1.4 Current challenges in optimal navigation: thesis outline

Although the problem of optimal navigation at the microscale has been extensively studied
in recent years, be it via OC or RL, several challenges are still open in this context. On the
one hand, for example, Zermelo’s problem108 has already been extended so to include energy
dissipation and fuel consumptionminimization139 or the role of hydrodynamic interactions
with obstacles140. On the other hand, however, we are still far from a treatment of the prob-
lem which is close enough to reality.

The aim of this work is therefore to extend the current state of the art in the field of opti-
mal navigation in activematter systems. This will be achieved by introducing new theoretical
tools, building bridges with existing techniques and designing new physics-informed heuris-
tic models.

The content of this thesis is summarized in the diagram in Fig. 1.7.
In Ch. 2, we investigate the problem of optimal navigation for microswimmers moving

on curved surfaces and in the presence of arbitrary stationary flows. There, we show that the
solution can bemapped to finding the geodesics of an asymmetric Finsler-typemetric known
as Randers metric, thus providing a first link between microswimmer physics and the field
of general relativity. We illustrate the application of this geometry-based strategy on both
spherical and toroidal surfaces, showing that it always outperforms amore direct policy. The
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Figure 1.7: Diagrammatic representation of the content of this thesis. The scope is to extend the state of the art in optimal
navigation of active systems adding more and more ingredients to its description. The dashed arrows departing from Ch. 2
indicate that we have used the new theoretical tools introduced there also in Chapters 3 and 4.

results contained in this chapter have been published in Piro et al. Phys. Rev. Research, 3
023125 (2021).
In Ch. 3, we study the performance and robustness of navigation strategies when motion

takes place in the regime where the external force overcomes self-propulsion in finite regions.
In particular, there we focus on the efficiency of Zermelo’s classical solution in a periodic
potential landscape. Despite allowing for a thorough exploration of the environment, our
analysis indicates an increased sensitivity to initial conditions of the Zermelo strategy. This
in turn suggests an interesting trade-off between exploration efficiency and stability for the
design of control policies to be applied in actual systems. Lastly, we also investigate the same
dynamical regime when in presence of finite space curvature by borrowing the theoretical
tools introduced in Ch. 2. The content of this chapter has been adapted from Piro et al.
Front. Phys., 10 1034267 (2022).

In Ch. 4, we include stochastic fluctuations in the description of our dynamical system.
There, we address the problem of how microswimmers can optimize their navigation speed
while not relying on the help of an external interpreter. To this end, we design new naviga-
tion strategies that can be implemented in a semi-autonomous fashion, as they do not require
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external real-time control over the microswimmer motion. Even though they rely on simple
principles, these newly introduced strategies show performances strikingly similar to those
obtained from SOC theory, proving also to be robust to environmental changes. Moreover,
they have the advantage to be straightforwardly generalizable to evenmore complex optimiza-
tion problems, like navigation on curved surfaces or even in presence of random flows. We
finally show the existence of a new hierarchy of navigation protocols whose efficiency can be
measured in terms of the enhancement of the effective drift along Zermelo’s path. Part of the
content of this chapter has been published in Piro et al. New J. Phys., 24 093037, (2022).

In Ch. 5, we finally add more ingredients to the model of our microswimmer so as to get
closer to reality. In order to navigate, actual swimmers must in fact spend energy, and it is
thus important to also consider their energetic efficiency in a thorough study of optimal nav-
igation. To this end, we take into account varying self-propulsion speed and the swimmers’
shape, which in turn indeed introduce novel interesting trade-offs between time and the en-
ergetic costs associated with active motion. Since swimmers with a well-defined shape can
make use of the hydrodynamic torque exerted on their body to navigate, we investigate both
the efficiency of dumb swimmers, i.e. whose motion is completely subject to the external
flow, and smart swimmers who instead are capable of applying some control over their own
dynamics. Our analysis thereby further extends Zermelo’s classical solution and paves the
way towards a comprehensive study of microswimmers’ navigation efficiency.
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Geometry is not true, it is advantageous.

Henri Poincaré

2
Optimal navigation strategies for active

particles on curved surfaces

The content of this chapter has been adapted from Piro L., Tang E., Golestanian, R., Phys.
Rev. Research, 3 023125 (2021)141. Copyright ©2022 by the American Physical Society. I
have taken part in the conception of the research and in the redaction of the manuscript. I
have also designed the simulation code and analyzed the data.

Motion on curved surfaces and the role of local geometry have recently gained significant
attention in the field of active matter142 (e.g. in cells and tissues organization143, cell motil-
ity16 or collective motion of active particles144,145). Here, we aim to develop an analytical
formalism for optimal navigation in an over-damped system, which can be used on curved
manifolds and arbitrary stationary flows.

Adopting recent mathematical results from differential geometry146, we show that this
problem can be mapped onto geodesics of a Finsler-type geometry with a Randers metric147.
Finsler spaces are more general than Riemannian spaces since the tangent norms need not be
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induced by inner products148. They have been used to construct geometric descriptions in
many areas of physics, with applications ranging from electron motion in magnetic fields149

to quantum control150 and test theories of relativity151. The particular choice of the asym-
metric Randers metric moreover allows us to characterize the irreversibility of the optimal
trajectory in this non-equilibrium problem.

We start by illustrating the formalism and discussing some general properties of the system.
Then, we apply these concepts to some specific setups and study how following Randers
geodesics can reduce the travel time to reach a target compared to when the microswimmer
heads constantly towards it. Lastly, we analyze the isochrones –curves of equal travel time– to
investigate more generally the shape of optimal paths.

2.1 Geomertry of surfaces

Let us consider a two-dimensional smooth curved surfaceM embedded in a 3D Euclidean
space (x̂, ŷ, ẑ), such that it can formally be defined as a function of two generic parameters
q and p152

r(q, p) = x(q, p)x̂+ y(q, p)ŷ + z(q, p)ẑ .

As shown in Fig. 2.1, we can then identify a (not necessarily orthonormal) basis made up of
two vectors lying in the locally tangent plane TM, namely

t1(q, p) =
∂r

∂q
, t2(q, p) =

∂r

∂p
, (2.1)

together with the corresponding normal vector n, defined as n = t1 × t2. Consequently,
the square of the length of an infinitesimal displacement dr along the surface can be written
as

ds2 = dr · dr = (t1dq + t2dp) · (t1dq + t2dp) = h11(dq)2 + 2h12dqdp+ h22(dp)2 ,
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Chapter 2. Optimal navigation on curved surfaces

Figure 2.1: Illustration of a generic surfaceM embedded in a three‐dimensional Euclidean space. The Cartesian coordi‐
nates (x,y, z) of the points onM depend on the two auxiliary variables q and p. These identify a local reference frame
(t1, t2,n) which allows to unambiguously characterize the surface.

where we have just defined the components of the surface metric tensor*

hij ≡ ti · tj ,with i, j = 1, 2 . (2.2)

A surface equipped with this positive-definite tensor is known as aRiemannianmanifold154.

Themetric tensorh allows todefinedistances and angles onM. Indeed, the scalar product
of any two tangent vectors v,w ∈ TM whose components are expressed in the Cartesian
orthogonal basis (x̂, ŷ, ẑ) can be simply calculated viav ·w ≡ hijv

iwj , where fromnow on
summation over repeated indices is assumed. In the sameway, the normof any tangent vector
w ∈ TM is defined as |w|2h = hijw

iwj . Lastly, hereafter the components of vectors which
live in the tangent space are expressed using upper indices, while the lower index notation is
defined bywi ≡ hijw

j .

At this point, we should just provide a concrete version of the two parameters q and p.
There is some freedom in choosing the parametrization that describes a surface. In some
cases, its symmetries can help to identify a suitable choice. For instance, it is convenient to
choose spherical coordinates to describe a sphere or the cylindrical ones for a cylinder and so

*In differential geometry, it is also known as the first fundamental form153 of the manifoldM.
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on. More generally, a way to describe a surface in 3D is to introduce a constraint between x,
y and z. The most straightforward example is the so-calledMonge representation152, where a
surface is defined locally by its height z(x, y) relative to the xy-plane, i.e:

r(x, y) = x x̂+ y ŷ + z(x, y) ẑ . (2.3)

The two tangent vectors area therefore given by

t1 = x̂+ (∂xz)ẑ, t2 = ŷ + (∂yz)ẑ,

and the metric tensorh(x, y) is then straightforwardly obtained from (2.2):

h(x, y) =

(
1 + (∂xz)

2 (∂xz) (∂yz)

(∂xz) (∂yz) 1 + (∂yz)
2

)
. (2.4)

2.2 Connectionwith Finsler geometry

Let us now consider a microswimmer that is free to move at constant speed v0 on a smooth
RiemannianmanifoldM equippedwith apositive-definitemetrich. Themotion takes place
in the presence of a time-independent force field f(r), which may in general include a con-
tribution to due to advection by the solvent flow velocity (note that the friction coefficient
is set to unity). The overdampedmotion of the microswimmer can therefore be described as
follows

dr
dτ

= v0 + f(r(τ)) , (2.5)

where v0 ≡ v0û corresponds to the swimmer self-propulsion velocity, while τ is the swim-
mer proper time (see Fig. 2.2(a)). We neglect rotational noise and assume full control over
the direction û of microswimmer propulsion. In practice, this means that the direction of
propulsion is steered by a protocol that selects the appropriate active angular velocity tomake
it follow a prescribed path.

To show how Finsler geometry enters the optimal navigation problem on curved mani-
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Figure 2.2: (a)Microswimmer trajectory r(τ) (blue dashed line) on a Riemannian manifoldM. The microswimmer moves
in the tangent space TM under the joint influence of the force f (black arrows) and its self‐propelling velocity v0 which
is markedwith cyan arrows. (b) Fraction of a spherical surface enclosed in the optimal forward‐backward loop as a function
of the force amplitude. The plot is in log‐log scale. There is a jump when the vortex is enclosed in the loop. This introduces
a qualitative differencewhich is reflected in the change from linear to sublinear scaling. There are two exemplar trajectories
for given values of the force amplitude as indicated by dashed black arrows. The forward (blue dashing) and backward
(green dashing) paths connect the following two points: (θ0, ϕ0) = (π2 , 0) ⇄ (θ1, ϕ1) = ( 11π12 , 14π

10 ). The arrows
on top of each trajectory indicate the heading direction of themicroswimmer. The intensity (color) gradient on each sphere
shows the force intensity, while the solid black arrows show the force direction.

folds, we consider the time for a microswimmer to go from one point rA to another rB on
the surface via the trajectory r(s) that is parametrized with s:

T =

∫ rB

rA

dτ =

∫ rB

rA

ds
v

≡
∫ rB

rA

dsL[s, r(s), ṙ(s)] , (2.6)

where v ≡ ds
dτ , ṙ ≡ dr

ds , and the Lagrangian L ≡ v−1 is defined by identifying the traveling
time as an action. In order to find the explicit expression of L, we can start from the equa-
tion of motion (2.5). Let us first isolate the self-propulsion term v0û and then compute the
squared norm of both sides of the equation, which leads to:

(hij ṙ
iṙj)v2 − (2hij ṙ

if j)v + f 2 − v20 = 0 ,

where we have used that hijûiûj = 1 and defined f 2 ≡ hijf
if j . Solving this quadratic

equation for v, we easily obtain:

v =
±
√
hij ṙiṙj(v20 − f 2) + (hij ṙif j)2 + hij ṙ

if j

hij ṙiṙj
. (2.7)
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Here, we now want to consider the most general case in which the intensity of the external
force field can be larger than the self-propulsion. As opposed to the case where f < v0, both
signs in front of the square root satisfy the condition v > 0, ensuring that the particle never
reverse its ownmotion along the path. However, sincewe looking for solutions thatminimize
the total travel time (2.6) we are clearly interested in finding the paths thatmaximize the total
speed v of the active particle. As a result, we must consider the solution with the + sign
in (2.7). We thus now calculate the inverse of v and rationalize the denominator to arrive at
an explicit expression for the Lagrangian:

L =

√
hij ṙiṙj(v20 − f 2) + (hij ṙif j)2 − hij ṙ

if j

v20 − f 2
, (2.8)

which can be further simplified by defining some new quantities: λ−1 ≡ v20 − f 2, aij ≡
hijλ+ fifjλ

2, and bi ≡ −fiλ. This leads us to:

L =
√
aij ṙiṙj + biṙ

i . (2.9)

Since the expression (2.9) is positive definite, despite not being strongly convex†, it can still
be identified as a Finsler metric155,156 of Randers type147,157,158. The only subtlety we need to
consider is that themetric exhibits a singularity at f = v0. However, by appropriately taking
the limit f → v0, it is straightforward to show that the expression (2.8) reduces to

L →
f→v0

hij ṙ
iṙj

2hij ṙif j
, (2.10)

which is still a well-defined positive quantity, also known in the mathematical literature as a
Kropina metric159.

†The strong-convexity condition is fulfilled if and only if |f |h < v0 at any point on the surface and any
time146.
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2.3 Randers spaces and irreversibility

Randers spaces are often referred to as a special class of non-reversible Finsler spaces157. This
is due to the presence of the second term in (2.9), namely biṙi, whichmakes themetric tensor
manifestly asymmetric under time reversal, i.e. L(ṙi) 6= L(−ṙi). Due to this asymmetry, in
presence of an external force the optimal forward path (between rA and rB) will in general
be different from the backward one (rB to rA). In other words, the optimal backward path
is distinct from the the time-reversed forward path, which highlights the out-of-equilibrium
character of the navigation problem we study. In contrast, Riemannian geodesics (in the ab-
sence of any external force) are reversible since the corresponding metric tensorh is symmet-
ric160. This property of Randers metrics is illustrated with a concrete example in Fig. 2.2(b)
and studied in more details below.

We now exploit this geometrical analogy and solve the problem of optimal navigation on
curved surfaces by calculating the Randers metric geodesic equation. To this end, sinceL is a
homogeneous function of degree one with respect to ṙi, we can introduce the fundamental
tensor

gij ≡
1

2

∂2L2

∂ṙi∂ṙj
, (2.11)

For the Randers metric (2.9), we then find

gij =

(
1 +

biṙ
i√

aij ṙiṙj

)
(aij − ℓiℓj) + (bi + ℓi) (bj + ℓj) , (2.12)

where ℓi ≡ aij ṙ
j/
√
aij ṙiṙj . In order to determine the time-minimizing paths, we solve

the Euler-Lagrange equations for the corresponding energy functional E = 1
2
L2 = gij ṙ

iṙj ,
namely d

ds(
∂E
∂ṙm

) = ∂E
∂rm

. The paths minimizing
∫
ds E , which also minimize the travel time

T , satisfy the Randers metric geodesic equation

r̈k + Γk
ij ṙ

iṙj = 0 , (2.13)

where the Christoffel symbolΓk
ij is defined viaΓk

ij ≡ 1
2
gkm(gim,j + gjm,i− gij,m), with gkm
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being the inverse of the fundamental tensor defined in (2.11) and gij,m ≡ ∂mgij .

Thus, the solutions of the geodesic equation (2.13) provide optimal navigation paths for
a microswimmer moving in the presence of the force field f on a generic Riemannian man-
ifoldM. Naturally, in flat spaces Randers geodesics correspond to the Zermelo trajectories
introduced in Sec. 1.3.

It is important to note that the Christoffel symbols Γk
ij generally do not correspond to

those associatedwith themetrich, which are defined similarly asγkij ≡ 1
2
hkm(him,j+hjm,i−

hij,m). As natural geodesics correspond to shortest paths in absence of external force, the
equality Γk

ij = γkij is only satisfied if f = 0 everywhere.

2.4 Performance assessment

We can now analyze the optimal paths obtained by following the Finsler geometry-based ap-
proach, which hereafter we call the Randers Policy (RP), in comparison with a benchmark,
whichwe refer to as the Straight Policy (SP), in which themicroswimmer always points in the
direction of the target, regardless of the force field124.

As a measure of performance, we compute the time T required to reach the target in units
of the time TR it would take in the absence of any external force, as a function of the max-
imum force on the surface. In the following of this chapter, we will focus on the regime in
which the swimmer self-propulsion speed v0 overpowers the external force f everywhere on
the surface, namely v0 > max |f |h.

2.4.1 Optimal navigation on a sphere

Let us first consider a sphere of radius unity embedded inR3. The position of themicroswim-
mer on this surface can be written in spherical coordinates as r = (θ, ϕ). The corresponding
Riemannian metric h in spherical coordinates has the components hθθ = 1, hϕϕ = sin2 θ,
and hθϕ = hϕθ = 0. The force field is then f(r) = f θ(θ, ϕ)êθ + fϕ(θ, ϕ)êϕ.
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Figure 2.3: Comparison between the Randers Policy (RP, blue crosses) and the Straight Policy (SP, red circles) in terms of
the arrival times T in units of TR –the optimal navigation time in the absence of f– as a function of the force amplitude.
For both strategies, the target counts as reached when the microswimmer enters a region of radius ϵ = 0.01. On the
left: analysis of the paths connecting the points (θ0, ϕ0) = (π2 , 0) → (θ1, ϕ1) = ( 11π12 , 14π

10 ). On the right: study
of the paths linking two diametrically opposite points (θ0, ϕ0) = (π8 , 0) → (θ1, ϕ1) = ( 7π8 , π). In either case SP
is sub‐optimal and there is a clear gain in following RP, especially when the force is stronger. In the upper part of the
figure there are three different exemplar trajectories for given values of the force amplitude as indicated by the dashed
black arrow. The dashed lines on every sphere represent the paths for each navigation strategy (RP: blue; SP: red) and
the arrows on top of them show the corresponding heading direction of the microswimmer. The gradient on each sphere
indicates the force intensity, while the solid black arrows represent its direction.

Force field with two vortices

As a first example, we choose f θ(θ, ϕ) = 0 and fϕ(θ, ϕ) = Aθ
π sin θ , whereA sets the amplitude

of the field. This divergence-free force field is characterized by a pair of vortices at the poles of
the sphere and its intensity is maximum (minimum) at the south (north) pole. We can then
write the explicit expression of the Randers metricsL in our case as follows

L =

√
v20 sin2 θϕ̇2 + (v20 − A2θ2/π2)θ̇2 − Aϕ̇θ sin θ/π

v20 − A2θ2/π2
.

It is then possible to determine the fundamental tensor gij , the relative Christoffel symbols
Γk
ij and the corresponding geodesic equations using their definitions in (2.11) and (2.13). We

further choose the following initial conditions: θ(0) = θ0, ϕ(0) = ϕ0, θ̇(0) = − sinφ0 +
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f θ(θ0, ϕ0), and ϕ̇(0) = cosφ0

sin θ0
+ fϕ(θ0, ϕ0). Here, (θ0, ϕ0) is the starting position while φ0

represents the initial heading direction of the microswimmer (measured counterclockwise
with respect to the êϕ direction), which we scan when using the shooting method, selecting
the one that takes the shortest time. Moreover, we parametrize the trajectory using the proper
time of themicroswimmer (i.e. we set s = τ ), which implies thatLwill be a conserved quan-
tity along these paths. A clear advantage of using this parametrization is that it is independent
of the choice of a coordinate system and does not impose any restrictions on the shape of the
trajectories.

Beforemoving to amore detailed analysis of the performance of this new policy, we can di-
rectly compare the forward and backward paths. This can be quantified by showing how the
area of the portion of sphere enclosed in the forward-backward loop varies with the intensity
of the external force,A. In Fig. 2.2(b), we show the results obtained for one choice of initial
and final points. The area enclosed in the loop grows as the intensity of the force increases,
which is expected since both paths deviate more from the Riemannian geodesic (the optimal
path in the absence of external force). Interestingly, the enclosed area undergoes a jumpwhen
the vortex at the south pole is encircled, as beyond a certain threshold in the force intensity
the microswimmer can exploit the vortex to reach the goal more quickly and this causes an
abrupt change in the shape of the optimal forward path. The scalingwithA is affected by this
change, going from being essentially linear (black dashed line) to sublinear with an exponent
∼ 0.6.

In Fig. 2.3 we show the results obtained for two different choices of the initial and final
points. In either case, for small values of the force, the two strategies do not show substantial
differences in terms of performance. However, for the example shown on the left in Fig. 2.3,
two particular situations can be observed. For larger values of the force (yellow and green
regions)RP (blue crosses) exploits the presence of the vortex at the south pole and at the same
time the relative gain with respect to SP (red circles) grows. In fact, following the former
strategy makes it possible for the microswimmer to take up to 40% less time to reach the
target. Moreover, for sufficiently large values of the force intensity (green region), SP also
includes the vortex. This slightly helps the swimmer, although just for a small range of values
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Figure 2.4: Comparison between the arrival times of the Randers Policy (RP, blue crosses) and the Straight Policy (SP,
magenta circles) as a function of the maximum force intensity on the sphere. On the left: analysis of the paths connecting
the points (θ0, ϕ0) = (π2 , 0) → (θ1, ϕ1) = ( 5π6 , 3π

2 ). On the right: study of the paths linking the points (θ0, ϕ0) =
(π2 , 0) → (θ1, ϕ1) = (π2 ,

5π
3 ). In either case SP takes always longer than RP, which gets more advantageous the

stronger the force. In the upper part of the figure there are two examples of how the trajectories look for a given value of
the force as indicated by the dashed black arrow.

(see the local minimum in the green region). In addition, the relative gain following RP is
substantial (up to about 20% in terms of arrival time) evenwhen this strategy does not imply
the exploitation of any specific force field structures (see the plot on the right in Fig. 2.3).

Force field with a sink and a spiral

As a second example, let us consider a more complicated force field described by f θ(θ, ϕ) =
A√
µ
(θ − π) and fϕ(θ, ϕ) = A√

µ
(θ + π), where we have defined µ = maxθ[sin2 θ(θ + π)2 +

(θ − π)2], so that A sets the force amplitude. This force field is characterized by a singular
point (sink) at the north pole and a spiral with null intensity in its center at the south pole.
The expression of the corresponding Randers metricsL (using its definition in (2.9)) is a bit
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more involved:

L =

√
(v20 − θ2π−)s

2
θϕ̇

2 + (v20 − θ2π+
s2θ)θ̇

2 + 2θπ+θπ−s
2
θϕ̇θ̇ − (θπ+s

2
θϕ̇+ θπ− θ̇)

v20 − (θ2π+
s2θ + θ2π−)

,

wherewe have defined θπ± ≡ A√
µ
(θ±π) and sθ ≡ sin θ. Then, once againwe can determine

the fundamental tensor gij , theChristoffel symbolsΓk
ij and the corresponding geodesic equa-

tions simply using their definitions (2.11) and (2.13). Finally, we shall equip the obtained
ODE system with the proper initial conditions and solve the navigation problem.

Notably, also with this choice of the force, we observe that there is always a clear gain
in following the Randers Policy. The comparison with the performance achieved using the
Straight Policy is shown in Fig. 2.4 where the displayed results correspond to two different
choices of the target position.

Concerning the example on the left in Fig. 2.4, the exploitation of the spiral allows the
swimmer following RP to take up to 30% less time to reach the target when compared to SP.

Remarkably, the relative gain achieved by following RP becomes extremely more signifi-
cant (up to about 85% in terms of arrival time) whenRP implies the swimmer tomake a full
turn around the sphere, as shown in the example on the right in Fig. 2.4 (blue region). This
large difference between the two strategies is also due to the fact that following SP entails the
swimmer having to point against the force directionwhere it ismost intense (on the equator),
making this policy highly disadvantageous.

2.4.2 Optimal navigation on a torus

Let us now show how one can use the same formalism to address the problem of optimal
navigation in a different geometry. Themotion takes place on a torus and the position of the
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Figure 2.5: Scheme of the parametrization of a toroidal surface.

microswimmer on its surface can be defined by:
x(θ, ϕ) = (R + r cos θ) cosϕ

y(θ, ϕ) = (R + r cos θ) sinϕ

z(θ, ϕ) = r sin θ ,

in terms of the angles θ and ϕ, respectively the poloidal and toroidal directions (see Fig. 2.5).
Let us fix the two characteristic radii of the torus to be R = 2 and r = 1 without loss of
generality. The corresponding Riemannian metric h has the components hθθ = 1, hϕϕ =

(2+cos θ)2 andhθϕ = hϕθ = 0. The force field is thenf(θ, ϕ) = f θ(θ, ϕ)êθ+f
ϕ(θ, ϕ)êϕ.

For the sake of illustration, we consider a force field described by the following equations:f θ(θ, ϕ) = A√
2
sinϕ

fϕ(θ, ϕ) = A√
2

cos θ
(2+cos θ) ,

(2.14)

whereA sets its amplitude. This force field is characterized by a pair of vortices and another
of saddle points with null intensity in their centers.

We can now write the expression of the Randers metrics L in this new case. Using the
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Figure 2.6: Performance comparison between the Randers Policy (RP, blue crosses) and the Straight Policy (SP, magenta
circles). For both strategies, the target counts as reached when the microswimmer enters a region of radius ϵ = 0.05.
On the left: analysis of the paths connecting the points (θ0, ϕ0) = (0, 3π

2 ) → (θ1, ϕ1) = (π2 ,
π
4 ). On the right:

study of the paths linking the points (θ0, ϕ0) = (0, 3π
2 ) → (θ1, ϕ1) = (π2 ,

3π
4 ). In either case there is a clear gain

in following RP, especially when the force is stronger. In the upper part of the figure there are three different examples
of how the paths look for a given value of the force as indicated by the dashed black arrow. The dashed lines on every
sphere represent the paths for each navigation strategy (RP: blue; SP: magenta) and the arrows on top of them show the
corresponding heading direction of the microswimmer. The gradient on each sphere indicates the force intensity, while
the solid black arrows represent its direction.

definitions in (2.9) and (2.14), we get to:

L =

√
c2θ+2

(v20 − A2

2
s2θ)ϕ̇

2 + (v20 − A2

2
c2θ)θ̇

2 + A2sϕcθcθ+2ϕ̇θ̇ − A√
2
(cθcθ+2ϕ̇+ sϕθ̇)

v20 − A2

2
(c2θ + s2ϕ)

,

where for simplicity we have defined cθ+2 ≡ 2+cos θ, cθ ≡ cos θ, sθ ≡ sin θ and sϕ ≡ sinϕ.
As already done for the sphere, it is then possible to determine the fundamental tensor gij ,
the Christoffel symbolsΓk

ij and the corresponding geodesic equations using their definitions
reported in the previous section.

We further choose the following initial conditions: θ(0) = θ0, ϕ(0) = ϕ0, θ̇(0) =

sinφ0 + f θ(θ0, ϕ0), ϕ̇(0) = cosφ0

(2+cos θ0)
+ fϕ(θ0, ϕ0), where the initial heading direction of

the microswimmer φ0 is measured counterclockwise with respect to the ϕ̂ direction. Once
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Figure 2.7: Analysis of the isochrones starting from the point (θ0, ϕ0) = (π/2, 0) (green circle) in the presence of the
force field characterized by two vortices withA = 1

2v0. The red circle indicates the point diametrically opposite to the
starting point and provides a guide to the eye. The color code on each sphere shows the force intensity from small (blue)
to high (red), while the black arrows represent its direction. The time τ is reported in units of v−1

0 . (a) Isochrones (solid
lines) at six different times. On the left: view of a region of stronger force. On the right: front view with an enlargement of
a cusp highlighted in red, a point with a high density of geodesics. Also, notice the presence of self‐intersections, points
where two optimal paths collide. (b) Representation of 4 specific paths (dashed lines) passing close to the center of the
vortex at the south pole. The arrows on top of them show the corresponding heading direction of the microswimmer
and their color refers to the starting angle (green: φ0 = 4.7122, blue: φ0 = 4.7123, red: φ0 = 4.7124, yellow:
φ0 = 4.7125). In the initial part where they overlap, the path is highlighted in white. This shows a strong dependence
on initial conditions for optimal trajectories passing close to the vortex at the south pole.

again, we find the time-optimal paths by means of a shooting method and parametrize the
microswimmer trajectories using its proper time, i.e. setting s = τ .

We cannowdirectly compare the performance achievedwith theRanders Policy (RP)with
that of the Straight Policy (SP). In Fig. 2.6 we show the analysis of the comparison between
the arrival times obtained for two different choices of the initial and final points on the torus.

In both cases, the swimmer followingRPhas an increasing gain as the intensity of the force
grows, confirming what has already been observed on the sphere. For the example shown on
the left in Fig. 2.6, you can see how exploiting the presence of the vortex allows the swimmer
which follows RP to reach the target faster (yellow and green regions). In fact, following this
strategymakes it possible for the microswimmer to take up to 20% less time when compared
to SP. Moreover, for sufficiently large values of the force intensity (green region), SP also
includes the vortex, slightly helping the swimmer.

In addition, the relative gain achievedby followingRP is evenmore significant (up to about
70% in terms of arrival time) when RP strategy implies the exploitation of the topological
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properties of the surface, as you can see from the example on the right in Fig. 2.6 (blue region).

2.5 Isochrone analysis

To study more generally the behavior and the shape of the optimal trajectories coming from
RP, we analyze the so-called isochrones in the illustrative examples of the sphere introduced
in Sec. 2.4.1. These are curves of equal travel time obtained by fixing the microswimmer
initial position (θ0, ϕ0) and varying the starting angle φ0 from 0 to 2π. They can be seen
as one-dimensional wavefronts of microswimmers that propagate onto the sphere following
the Randers geodesics (2.13).

2.5.1 Force field with two vortices

In Fig. 2.7(a) we show some isochrones (solid lines) corresponding to the optimal paths start-
ing from a point on the equator (green circle), in the presence of the force field introduce in
Sec. 2.4.1 withA = 1

2
v0.

Weobserve that isochrones can feature self-intersections (see the example at τ = 2.9v−1
0 on

the right in Fig. 2.7(a)). These are spots on the sphere for which there are multiple solutions
to the problem of optimal navigation. At the same time, the isochrones can develop cusps, as
highlighted in Fig. 2.7(a), which are points at which neighboring geodesics meet. These cusp
are analogues of conjugate points in general relativity161, and related to the caustics in optics, as
they represent domains on the isochrones with a higher density of geodesics162. Remarkably,
these self-intersections and cusps occur only in the presence of a force field, as otherwise the
isochrones on a sphere form concentric circles, and are a first signature of chaoticity in the
system as we will show in Ch. 3.

Moreover, the isochrones are considerably distorted after they encounter the vortex at the
southpole (see the isochrone at τ = 1.7v−1

0 inFig. 2.7(a)). Themeaningof suchdeformation
canbe understoodby looking at Fig. 2.7(b). Here are shown four optimal trajectories (dashed
lines) starting from a point on the equator (green circle) and ending at time τ = 2.2v−1

0 on
the corresponding isochrone (blue solid line). Their initial angles φ0 differ only by∆φ0 =

10−4. Such paths initially overlap (white dashed line) and separate only once they reach the
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Figure 2.8: Isochrones (solid blue lines) at four different times starting from the point (θ0, ϕ0) = (π/2, 0) (green circle)
in the presence of the force field introduced in Sec.2.4.1 withA = 0.7v0. (a) On the left: front view. On the right: side
view, where the two isochrones display self‐intersections, cusps and a discontinuity due to the presence of the singularity
at the north pole. (b) Representation of two specific paths (dashed lines) passing close to the singularity at the north pole.
The arrows on top of them show the corresponding heading direction of the microswimmer and their color refers to the
starting angle (red: φ0 = 1.5707, blue: φ0 = 1.5708). In the initial part where they overlap, the path is highlighted in
white.

south pole. The observed strong dependence on initial conditions provides an interesting
insight if one thinks of natural extensions of the model, e.g. the introduction of rotational
noise. A direct implication of such abrupt non-linear effects is indeed that, in presence of a
singularity in the force field, noise cannot be perturbatively included in the model and one
must therefore consider alternative approaches163,92.

2.5.2 Force field with a sink and a spiral

In Fig. 2.8 we show the isochrones (solid lines) corresponding to the optimal paths starting
from a point on the equator (green circle), in the presence of the force field introduced in
Sec. 2.4.1 withA = 0.7v0.
Once againwe find that there are spots on the sphere forwhich there aremultiple solutions

to the problem of optimal navigation, self-intersections, and others with a higher density of
geodesics, cusps (see the example at τ = 3v−1

0 on the right in Fig. 2.8a).
However, here we can see a new peculiar feature of isochrones that has not been observed

in the case illustrated above: they can be discontinuous (for e.g., see the isochrones at τ =

2.5v−1
0 and τ = 3v−1

0 ). This is certainly due to the presence of the singularity (sink) at
the north pole and can be better understood by looking at Fig. 2.8b. Here are shown two
optimal trajectories (dashed lines) starting from the point on the equator and ending at time
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τ = 3v−1
0 on the corresponding isochrone (green solid line). Their initial angles φ0 differ

only by ∆φ0 = 10−4. Such paths initially overlap (white dashed line) and separate only
once they reach the north pole. Intuitively, since in its proximity there is an abrupt change
in the force field direction, even a very small difference in the microswimmer position and
orientation can lead to very different future scenarios. This prevents the use of perturbative
methods to introduce noise into the model for trajectories passing in the neighbourhood of
a singularity, as already pointed out above.

2.6 Summary and discussion

In this chapter, we have formulated and discussed a geometric description of the optimal
navigation problem for microswimmers on curved manifolds in the presence of a stationary
force field. We have shown that this problem can be solved by finding the geodesics of a non-
reversible Finsler metric of Randers type, providing a link between microswimmers physics
and generalizations of general relativity. Notably, this formalism has the advantage of being
sufficiently compact and elegant to enable the analysis of complex scenarios as well as possible
generalizations.

Through the study of some illustrative cases, we have looked at how the area enclosed in
the forward-backward loop varies as the force intensity increases, so as to show how the asym-
metry of Randers metrics reflects in the out-of-equilibrium character of the optimal naviga-
tion problem. Then, comparing the performance of the Finsler geometry-based strategy (RP)
with the one in which the swimmer always points towards the target (SP), we have found al-
ways a clear gain in following the former strategy. Moreover, such improvements get more
significant as the force intensity grows.

Furthermore, the study of the shape of isochrones has revealed interesting general features
concerning the optimal paths on curved surfaces. We have shown the presence of points
with multiple solutions (self-intersections) as well as of points of higher density of geodesics
(cusps). Thanks to the isochrones analysis we have also observed a strong dependence on
initial conditions, especially for optimal trajectories passing close to the center of a vortex.

This raises the question of the optimal path stability which may severely limit the robust-
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ness of a strategy, especially when including noise into our model. As we will show in Ch. 3,
isochrones can thus be a new powerful tool to measure the efficiency and stability of naviga-
tion policies in complex environments. At the same time, this novel approach may give us
further insights about their performance in navigation tasks not requiring the presence of a
specific target, such as when microswimmers try to escape from a harmful region98.
Moreover, even though herewe assumed to have full control over themicroswimmer head-

ing direction, our results could still be used to deal with positional and rotational diffusion.
As will be discussed in more detail in Ch. 4, the microswimmer can indeed continuously
adjust its orientation so as to stay close to the optimal path of the noise-free system164.

Lastly, another assumption we made is that of stationary flow. Although this constraint
cannot be relaxed as it is necessary to keep the analogy with Randers spaces and compute the
corresponding geodesic equation, our results still hold true as long as there is a separation of
timescales, with the characteristic timescale of the flowbeingmuch larger than the navigation
time.
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Quelli che s’innamorano di pratica senza scienza son come
il nocchiere, che entra in naviglio senza timone o bussola,
che mai ha certezza dove si vada.

Leonardo da Vinci

3
Efficiency of navigation strategies for active

particles in rugged landscapes

The content of this chapter has been adapted from Piro L., Golestanian, R., Mahault B.,
Front. Phys., 10 1034267 (2022)165. I have taken part in the conception of the research and
in the redaction of themanuscript. I have performed the numerical simulations and analyzed
the corresponding data. I have also participated in the development of the simulation code.

Route optimization becomes especially important for active particles when the external
influence of the environment is sufficiently strong to forbid certain routes or induce trap-
ping. At the same time, the navigation strategies obtained by solving the Zermelo problem
(discussed in Sec. 1.3) and its generalizations have been mostly theoretically studied for sim-
ple configurations and in the regime where the self-propulsion force is always greater than
the external force139,140,141,146,164 (see, however, Ref.124).

Here, we thus revisit the problem of optimal navigation considering self-propelled agents
moving in two-dimensional potential landscapes and evaluate the ability of two different
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strategies to efficiently explore space in presence of a strong force field influencing themotion.
Namely, we focus on the comparison between Zermelo’s Policy (ZP, given by Eq. (1.21)) and
the more trivial one in which the microswimmer picks an initial orientation and keeps it for-
ever. This choice is what defines what we call the Trivial Policy (TP)*.

To thoroughly study the efficiency of these strategies, we heremake an extensive use of the
isochrones, a new powerful tool already introduced in the previous chapter. Indeed, given
a distribution of initial orientations, these curves essentially delimit the potentially explored
region up to some time and therefore provide quantitative information on how the optimal
trajectories will manage to explore the surrounding space on average. Moreover, as already
mentioned in Sec. 2.5, the analysis of the isochrones shape shall provide us with useful in-
sights into the stability of a navigation strategy, which is key to know especially in the pres-
ence of fluctuations.

Performing extensive numerical simulations, our results reveal that, as expected, in a de-
terministic setting ZP systematically performs better than TP over all the available parame-
ter space. The differences between the two policies are moreover particularly striking in the
regime of large external force. Although in this case a significant proportion of trajectories fol-
lowing TP get arrested, thus strongly restricting the amount of space that can be visited, ZP
manages to sustain ergodic exploration so long as there exist available routes. As our analysis
shows, ZP’s good performances follows from its ability to circumvent regions with a strong
force field opposing the motion. On the other hand, we also show that in presence of strong
external forces the dynamics produced by ZP is generally chaotic, which leads to an increased
sensitivity to initial conditions and limits its long-time efficiency. When the dynamics is sub-
ject to fluctuations, ZP then becomes disadvantageous as it leads most of trajectories to be
deflected towards trapping regions. In contrast, TP exhibits performance that are robust to
the presence of fluctuations. Finally, considering a navigation setup on a curved sinusoidal
surface, we show that these conclusions remain valid in presence of finite space curvature.

*This strategy is very similar, but not equivalent, to the Straight Policy (SP) introduced inCh. 2. For SP, the
microswimmer indeed does not maintain a constant bearing since it has to continuously adjust its orientation
so as to point towards a specified target.
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3.1 Optimal navigation in a confining potential landscape

We study the overdampedmotion of a self-propelled particlemoving on the plane at constant
speed v0 in presence of an externally applied stationary force field f . The position r = xx̂+

yŷ of the particle thus obeys Eq. (1.18), which we report here for convenience:

ṙ = v0û(θ) + f(r), (3.1)

where we implicitly set the particle motility to unity and û(θ) denotes the unit vector ori-
ented along the direction defined by the angle θ. In order to study the efficiency of the naviga-
tion protocols under a possiblymotion-limiting force field, wemoreover consider a potential
force f(r) = −∇U(r)with

U(r) =
u

4
[sin(kx) + sin(ky)] , (3.2)

where u and k = π/(2ℓ) are parameters that set the strength and periodicity of the potential.
The potential U consists of a square lattice of local minima and maxima, and the resulting
force field is pictured in Fig. 3.1(a). Rescaling space and time respectively with ℓ and ℓ/v0,
the dynamics (3.1) depends on a single control parameter γ ≡ πu/(8v0) which measures
the relative strength of the force with respect to self-propulsion.

The value of γ defines several dynamical regimes for the self-propelledmotion. Indeed, for
γ < 1/

√
2 the self-propulsion speed overcomes the strength of the external force over all the

space, such that the particles can in principle travel everywhere without restriction. In the
following we refer to this case as theweak force regime. On the contrary, the condition γ > 1

defines a trapping regimewhere the self-propelled particles are not able to escape localminima
of the potential. Lastly, in the intermediate confining regime 1/

√
2 < γ < 1 the strength of

the external drive is larger than self-propulsion only in disconnected regions between which
the particles can travel almost freely.

To fully characterize the dynamics, we must specify an update rule for the self-propulsion
orientation θ. The choice of such a rule amounts to selecting a specific navigation strategy,
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which in our case will be either TP, such that θ̇ = 0, or by ZP as defined by Eq. (1.21), which
we report again here for convenience:

θ̇ = sin2 θ ∂xfy − cos2 θ ∂yfx + sin θ cos θ(∂xfx − ∂yfy) . (3.3)

All results presentedbelowwereobtained fromnumerical simulationsperformedbymeans
of a fourth orderRunge-Kuttamethodwith a time step dt = 10−3. We checked that decreas-
ing the value of dt did not qualitatively affect the results. For all policies, the isochrones were
calculated simulating multiple trajectories with initial orientation θ0 uniformly distributed
on the circle. The corresponding angular resolution δθ0 was taken between 10−4 for TP and
10−6 for ZP. When specified, data fits were performed via the FindFit routine of Mathemat-
ica166.

3.2 Isochrones analysis on the plane

In this section, we analyze the performances of ZP and TP for space exploration in the three
dynamical regimes defined by the value of the parameter γ.

3.2.1 Short-time behavior of the isochrones

Figure 3.1(a) shows typical isochrones obtained in 2D with both ZP and TP. They corre-
spond to relatively short times as their overall surface extends to only a few periods of the
potential. Starting from a local maximum of the potential (upper row in Fig. 3.1(a)), the
isochrones are initially isotropic (pink curves) and at later times deform into a cross-like shape
(blue curves) due to the local structure of the force field. In contrast, taking a saddle point
as initial condition (lower row in Fig. 3.1(a)) the isochrones naturally elongate in the direc-
tions along which the force points away from the initial position. Although the shapes of
the isochrones at later times resemble that of their counterpart originating from the local
maximum, they still carry the signature of the initial anisotropy. Figure 3.1 moreover shows
that, contrary to TP, the ZP isochrones develop self-crossing points in regions of strong and
unfavorable force (i.e. pointing towards the departure position). As pictured in Fig. 3.1(b),
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Figure 3.1: Short‐time isochrones in the confining regime. (a) Each panel shows two exemplary short‐time isochrones at
times t = 1 and t = 9 for a relative force strength γ = 0.79. The top and bottom rows correspond respectively to a
departure point located at a local maximum or a saddle point of the potential (3.2), leading to different symmetries of the
isochrones. Contrary to TP (right column), ZP (left column) exhibits characteristic self‐crossings which allow trajectories
to circumvent otherwise inaccessible regions of space. In all panels the colour map indicates the intensity of the external
force field and the grey arrows indicate its direction. Panel (b) shows zooms of the region indicated by the black square in
(b). These three snapshots at different times show the formation of a self‐intersection and two cusps in the ZP isochrone
starting froma localmaximum. The color code along the curve stands for the initial orientation of the trajectory as indicated
by the color wheel.

these self-crossings form because trajectories starting with neighboring initial orientations
cross each other. As we will discuss below, these crossings are essential for ZP to be able to
explore regions of space which would be unreachable otherwise.

The rest of this section is devoted to the characterization of the long-time isochrones prop-
erties.
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Figure 3.2: The isochrones area analysis in the 2D periodic potential. (a) Isochrones area as function of squared time for ZP
and TP and two values of the relative force strength γ respectively in the weak force and confining regimes. (b) Best fit of
the exponent α (defined in Sec. 3.2) showing different scalings between TP and ZP in the confining regime. (c) Fractional
area covered by the isochrones as function of time, the legend is the same as (a). The insets show the outer boundary
of the isochrones (yellow region) enclosed in the corresponding bounding disk (purple) for both policies at t = 20 and
γ = 0.79.

3.2.2 Isochrones areas and exploration performances

The first quantity of interest to measure the ability of the policies to efficiently explore the
surrounding space is the isochrones areaA. Figure 3.2(a) shows the scaling ofA versus t2. In
absence of external drive (γ = 0), TP andZP are strictly equivalent as the fastest way to travel
between two points is to join them via a straight line. Therefore, in this limit isochrones ex-
pand isotropically along all directions andA ∼ t2 up to a constant prefactor. This behaviour
moreover remains qualitatively valid throughout the weak force regime as the measured ex-
ponent α defined from the long-time scaling A ∼ t2α takes values close to 1 (Fig. 3.2(b)).
To measure the isochrones anisotropy, we moreover define the fractional area ϕ as the ra-
tio between the area A and that of the smallest disk containing the isochrone. For γ = 0,
isochrones are perfect circles such that ϕ = 1. Figure 3.2(c) shows that for γ < 1/

√
2

(in the weak force regime) ϕ oscillates due to the local force field structure, but takes a well-
defined average value< 1. This value is systematically larger for ZP than for TP, indicating
that isochrones associated to the former are more isotropic.

For 1/
√
2 < γ < 1 the dynamics (3.1-3.3) is in the confining regime, meaning that

the amplitude of the force field overcomes that of the self-propulsion in certain regions of
space. As a consequence, for TP the exponent α exhibits a sudden decrease from 1 to≈ 1

2
at
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γ ≈ 1/
√
2 (Fig. 3.2(b)). This behaviour is due to the fact that in this regime only trajectories

starting with θ0 close to a multiple of π
2
manage to progress away from the departure point

after some time, while the others stop as the force created by the potential balances the self-
propulsion. Consequently, the isochrones only grow along the horizontal and vertical axis,
resulting in an increasingly strong anisotropy (see the inset of Fig. 3.2(c)). In this context, it
is natural to expect that the isochrones area grows linearly in time, resulting in an exponent
α = 1

2
. This behavior is reminiscent of that of the initial spreading of the particle distribution

in an infinite-horizon Lorentz gas167. These observations are moreover confirmed by the
behaviour of the fractional area ϕ which is found to approach zero as ϕ ∼ 1/t. Hence, in
confining environments TP generally allows to explore only a limited portion of the space.

For ZP, on the contrary, the situation is remarkably different. Indeed, in this case the area
A keeps growing almost as t2 such that the best fits of the exponents α provide values close
to 1 even for γ ≳ 0.8 (see Figs. 3.2(a),(b)). Similarly to the weak force regime, for ZP ϕ
oscillates† around a well-defined value≳ 0.8 even when the potential strongly constrains the
dynamics (see Fig. 3.2(c).

The fractional area ϕ covered by isochrones is a measure of how robust and efficient the
strategy is at exploring the space isotropically. In the weak force regime, we observed that this
quantity oscillates around a finite value for both ZP and TP. In such a case, it is possible to
define a new performance indicator based on themean value 〈ϕ〉 aroundwhich they oscillate
at long times. Figure 3.3 shows the comparison between the performance of the two policies
in terms of 〈ϕ〉 versus the relative force strength γ. Once again, ZP proves to bemore efficient
in exploring space, with 〈ϕ〉ZP systematically larger than 〈ϕ〉TP.
It is moreover worth noting that 〈ϕ〉 is well-defined in the confining regime only for ZP

where it saturates above 0.8 (see the orange triangles in the yellow region of Fig. 3.3), showing
that this strategy is still able to eventually cover the whole space even in presence of regions
with an external force larger than self-propulsion. On the other hand, ϕTP does not oscillate
around a finite value but rather decays to zero in the confining regime.

Therefore, and contrary to TP, the ZP isochrones manage to explore entirely the space
†The amplitude of fractional area oscillations moreover grows with γ as a result of the increasing influence

of the potential landscape.
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Figure 3.3: Mean fractional area 〈ϕ〉 covered by the isochrones at long times as function of the relative force strength
γ . Both policies exhibit a decreasing trend in the weak force regime. ZP shows a plateau in the confining regime, while
TP is not well‐defined under such conditions (details in the text). Error bars correspond to the standard deviation due to
oscillations of ϕ (see, e.g., Fig. 3.2(c)).

despite the presence of stopping points in the force field (compare in particular the two insets
of Fig. 3.2(c)). This remarkable feature however becomes harder to observe as γ approaches
1. Indeed, as we detail below for ZP the isochrones boundaries become sharper as γ grows,
such that resolving them requires a rapidly increasing resolution. The limit γ → 1 is thus
numerically intractable but we expect the above conclusions to hold qualitatively until the
trapping regime occurring at γ = 1where the particles cannot travel further than a potential
period regardless of the policy employed.

Isochrones area analysis starting from a different point

In Sec. 3.2.1 we pointed out the isochrones anisotropy that arises at short times depending
on the specific choice of the initial position r0, be it for instance a local maximum or a saddle
point of the potential. However, as expected when the isochrones cover many periods of
the potential, these shape differences do not qualitatively affect their long-time properties
regardless of the chosen policy. In order to prove this, in Fig. 3.4(a) we compare the scaling
of the isochrones area A as function of squared time t2 in the confining regime. As can be
observed, the curves corresponding to different starting points (maximum and saddle point
of the 2Dperiodic potential) qualitatively show the same long-time scalingA ∼ t2α for both
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Figure 3.4: Isochrones area analysis in the 2D periodic potential. (a) Isochrones area as function of squared time for ZP
and TP and two different starting points, namely, a maximum and a saddle point of the force field whose relative strength
here is fixed to γ = 0.79 (confining regime). (b) Fractional area covered by the isochrones as function of time, the legend
is the same as (a). This quantity oscillates around a finite value∼ 0.8 for ZP regardless of the starting point, while it goes
to zero as ϕ ∼ 1/t for the TP isochrones.

ZP (α = 1) and TP (α = 1/2).

A similar conclusion can be reached from Fig. 3.4(b) where we report the fractional area
ϕ covered by the isochrones as function of time. After an initial transient where ϕ shows a
sharper decrease when r0 is a saddle point rather than a maximum, the curves show similar
trends at larger times. Convergence seems to be faster when starting from a local maximum
than at a saddle point, which can simply be explained by the fact that the former case leads to
faster trajectories (and thus spreading) initially.

Therefore, despite the quantitative shape differences observed at short times for different
starting points, we have shown that the long-time properties of the isochrones remain qualita-
tively independent of the starting position. We therefore restrict the rest of the analysis to the
case where the isochrones are initialized at a local maximum of the potential, corresponding
to the upper row of Fig. 3.1(a).

3.2.3 Robustness and sensitivity to initial conditions

Interestingly, ZPmanages to sustain ergodic explorationof space even inpresenceof a strongly
confining force field. As we show now, this feat comes at the price of ZP being much more
sensitive to the chosen initial orientation than TP.
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Figure 3.5: Sensitivity of the navigation policies to the initial orientation. (a) Colour maps of the distance from the starting
point as function of the initial angle θ0 and time t for both ZP (left column) and TP (right column) in two different regimes:
weak force (γ = 0.49, top row) and confining potential (γ = 0.79, bottom row). (b) Scaling with time of the mean
angular separation ε defined in Eq. (3.4) for TP (blue circles) and ZP (orange triangles) at γ = 0.79. Opaque and semi‐
transparent symbols respectively correspond to an initial orientation resolution of δθ0 = 10−6 and δθ0 = 10−5. (c)
The number of trajectories located on the outer isochrone as function of time, the legend and parameters are the same
as (b). (d) Best fits of the two sets of exponents obtained from the exponential scalings of ε and Nout (see (b) and (c))
for ZP as function of γ . (e) Example of long‐time isochrones (t = 20) in the confining regime (γ = 0.79) for the two
policies. In both cases the blue curve represents the entire isochrone, while the area highlighted in yellow is the region
enclosed by the outer boundary. The complexity of the ZP isochrone is consistent with its larger sensitivity to the initial
self‐propulsion orientation.

Figure 3.5(a) shows colourmaps of the distance reached by trajectories as function of their
initial orientation θ0 and time. In the weak force regime, isochrones grow nearly isotropi-
cally such that the distance reached by a trajectory after a certain time depends weakly on θ0
(upper row of Fig. 3.5(a)). On the contrary, in the confining regime the potential landscape
draws escape routes – corresponding for the parameters considered here to θ0 being a mul-
tiple of π – along which the self-propelled particles travel significantly faster (lower row of
Fig. 3.5(a)). Surprisingly, although ZP is globally better at exploring space, its escape routes
are substantially narrower than that of TP. Therefore, considering a uniform distribution
of initial orientations ZP counter-intuitively leads to a lower proportion of trajectories that
manage to reach a given distance from the departure point than TP.

We now quantify the sensitivity to the initial orientation with the mean spatial angular
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separation

ε(t) ≡
〈
arccos

[
r(t|θ0) · r(t|θ0 + δθ0)

r(t|θ0)r(t|θ0 + δθ0)

]〉
θ0

, (3.4)

where r(t|θ0) denotes the position at time t of the particle given the initial orientation θ0
(taking the departure point for origin) and r(t|θ0) is the associated distance, while δθ0 in
Eq. (3.4) corresponds to the angular resolution of θ0. Figs. 3.5(b),(d) show that for γ ≳
0.2 the mean separation ε(t) grows exponentially at large t for ZP over a time-range that
increases as δθ0 → 0. In contrast, for TP ε(t) converges to a finite value, such that over
long times the isochrones take a scale invariant form. Based on these observations, we may
define a generalized Lyapunov exponent λε ≡ ln[ε(t)]/t from the long time scaling of ε(t).
While λTPε = 0 over the whole available range of γ, λZPε > 0 for γ ≳ 0.2, indicating that for
sufficiently strong forces the dynamical system formed by Eqs. (3.1-3.3) is chaotic. Similar
chaotic behavior of ZP was actually reported for navigation in turbulent flows124.
We now build further insight from the analysis of outer isochrones, which we define as the

minimal set of points that draw the boundary of the region enclosed by the isochrones (see
e.g. the dashed green lines in Fig. 3.1(a)). We show in Fig. 3.5(c) that the number of trajec-
toriesNout(t) remaining on the outer envelope of the isochrones is found to decay exponen-
tially fast in time for ZP while stays constant for TP. The exponential decay of Nout(t) for
ZP is explained by the increasing number of self-crossings of the isochrones with time (see
Fig. 3.5(e)) which lead a large part of the trajectories to quit the boundary. We thus define
from the long-time regime a second exponentλN ≡ − ln[Nout(t)]/t such that, in agreement
with the analysis of the angular separation ε, λTPN = 0 for all values of γ while λZPN > 0 for γ
large enough. As shown in Fig. 3.5(d),λZPε ≈ λZPN in theweak force regime but the exponents
depart from each other when approaching the confining regime. Namely, although λZPε is
maximal at γ ≈ 0.6 and starts to decay when entering the confining regime, λZPN increases al-
most linearly with γ up to the trapping regime at γ = 1. This difference of behaviours is well
understood from the fact that the average in Eq. (3.4) is taken over all trajectories, including
those that remain inside of the envelope formed by the outer isochrone, whileNout(t) only
gets contributions from the most quickly diverging trajectories.

Themultiple crossings observed on the ZP isochrones allow the trajectories to circumvent

54



Chapter 3. Efficiency of navigation strategies in rugged landscapes

Figure 3.6: (a) Comparison between the noiseless (blue curve) and noise‐averaged (red curve) isochrones at time t = 9.
Colour gradient indicates the intensity of the external force field and the grey arrows its direction. (b) Area enclosed by
the isochrones as function of squared time for both ZP and TP with and without rotational noise. (c) Color maps of the
average distance from the starting point as function of the initial orientation θ0 and time t for both ZP (left column) and
TP (right column) in presence of rotational noise. All data shown in (a)‐(c) are averaged over 102 independent trajectories
with a resolution δθ0 = 10−2. The relative force strength is here set to γ = 0.79 (confining regime) and the rotational
diffusion coefficient is equal toDr = 0.01.

regions which are inaccessible when approached by facing the external force. Therefore, so
long as γ < 1 ZP shall in principle ensure total coverage of space despite the presence of
strong external force, in contrast with TP for which space exploration becomes quickly lim-
ited. However, due to the exponential decrease of the number of trajectories at the isochrones
boundaries with time, the maximum area that can be spanned by ZP grows with the total
number of trajectories N as Amax ∼ ln2N , which limits the numerical exploration of the
long-time regime as γ approaches 1. In practical situations, these results moreover suggest
that for strong forces ZP is less reliable than TP, as its sensitivity to initial conditions can
easily lead trajectories to depart from the predetermined route, which we now illustrate by
including noise in the dynamics.

3.2.4 Effect of fluctuations on the navigation performances

The increased sensitivity of ZP to the initial particle orientation described previously raises
the question of the impact of noise on the exploration performances. Fluctuations are a par-
ticularly important feature of the motion of swimmers evolving at the microscopic scale. As
we have already discussed in Sec. 1.1.2, they can indeed arise due to thermal noise, but also
due to fluctuations in the processes generating self-propulsion.
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Here, wemodel themicroswimmer as anABP (seeEq. (1.2)) and further allow it to actively
steer, such that its position r and self-propulsion orientation angle θ obeyṙ = v0û(θ) + f(r) +

√
2Dξ

θ̇ =M(r, θ) +
√
2Drξθ ,

(3.5)

whereD andDr stand for the translational and rotational diffusivities respectively, while ξ
and ξθ are independent delta-correlated white noises with unit variance. Finally, M(r, θ)

represents the active torque applied by the particle and depends on the chosen policy‡. Our
simulationsmoreover indicate that both sources of noise (translational and rotational) have a
similar effect on the dynamics, such that we focus here on rotational noise, i.e. settingD = 0

hereafter.

Considering the weak force regime, we find that the performances of both policies do not
change significantly with respect to the noiseless case. Conversely, in the confining regime
the presence of rotational noise strongly impairs the ZP ability to explore the surroundings.
This feature appears clearly from the behavior of the noise-averaged isochrone (Fig. 3.6(a))
whose area stops growing as soon as trajectories reach the local minima of the potential (see
the green curve in Fig. 3.6(b)).

We thus conclude that for γ large enough the ZP escape routes identified in Fig. 3.5(a)
are unstable, while the potential local minima act as attractors of the dynamics. Trajectories
initially on the escape routes therefore deviate (on average) because of fluctuations and end
up at the potential minima where they get stuck. This effect is moreover enhanced by the
chaoticity of the ZP dynamics characterized previously, such that we expect it to be present
for arbitrary weak noise. As a consequence, Fig. 3.6(c) shows that the mean distance reached
by ZP trajectories is bounded for all initial orientations, leading to a disappearance of the
escape routes. In contrast, we find that the properties of theTP isochrones are barely affected
by noise, proving it to be amore robust strategy than ZP in presence of strong external forces.

‡For ZP, it is equal to the rhs of Eq. (3.3), whileM(r, θ) = 0 for TP.
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3.3 Navigation on curved surfaces

In a number of situations, self-navigating agents move on non-Euclidean spaces including
planes above the Earth168,169 or migrating cells16,143. As the presence of a nonzero curvature
locally leads to a stretching or compressing of distances, one naturally expects it to affect op-
timal navigation strategies.

In this section, building on the results derived inCh. 2 we consider the optimal navigation
problem on a two-dimensional curved surface in presence of strong external forces.

In contrast with the planar case, following natural geodesics on curved surfaces in pres-
ence of an external force requires for the self-propelled agent to adjust its direction ofmotion
û(θ). Namely, the policy generalizing TP to curved spaces is based on the parallel transport
equation153

˙̂uk + γkij ṙ
iûj = 0 , (3.6)

which is tobe integrated togetherwithEq. (3.1) andwhere the coefficientsγkij are theChristof-
fel symbols associated with the metric tensor of the physical spaceh.

The extension of ZP to motion on curved surfaces has instead already been worked out in
Ch. 2. It essentially amounts to the solution (2.9,2.13) and once again we will hereafter refer
to it as the Randers Policy (RP).

3.3.1 Optimal navigation on awavy surface

As pictured in Fig. 3.7, we consider a one-dimensional wave-like perturbation of the 2D
plane. Such a surface can be locally described, using theMonge representation introduced in
Eq. (2.3), by the height function z(x, y) = ∆ sin(kwx), where the parameters kw and∆ set
the period and amplitude of the wave (both in units of ℓ). FromEq. (2.4), the corresponding
metric tensor then takes the form

h(x, y) =

(
1 + ∆2k2w cos2(kwx) 0

0 1

)
. (3.7)
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Figure 3.7: Schematic representation of the wavy surface used to study the effect of space curvature on the active particle
navigation in the same potential landscape defined by Eq. (3.2). Two short‐time RP isochrones (t = 1 and t = 9
corresponding to the magenta and blue curves, respectively) are shown here for two different starting points (green dots):
(a) a maximum and (b) a saddle point. The relative force strength is here fixed at γ = 0.79, while the wave amplitude
is set to∆ = 0.5. The most immediate effect of space curvature is to break the force field spatial symmetry. This is
apparent by comparing the 2D projection of the isochrone on the surface with its counterpart obtained from the planar
simulations (∆ = 0, red curve). The former is indeed clearly shorter along the direction of the wave. In both panels the
color gradient shows for the intensity of the external force field while the grey arrows indicate its direction.

As our numerical results do not show significant variationswithkw (not shown), we setkw =

k so as to match the period of the wave with that of the potential (3.2).

A feature occurring in presence of nonzero space curvature is that the local force field
strength f =

√
hijf if j depends on the properties of the metric h, namely here f 2 =

fx2
[1 + k2w∆

2 cos2(kwx)] + f y2 . In order to properly distinguish between the effects of
the local curvature and that of the force amplitude, in the following we rescale the force field
components in order to keep f independent of kw and∆. It is straightforward to show that
for a general metric an appropriate rescaling corresponds to the following transformation to
the force field components:

fx 7−→ 1√
hxx

(
fx − f y hxy√

h

)
, f y 7−→ f y

√
hxx
h

,
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Figure 3.8: Long‐time properties of the isochrones in curved space. (a) Area covered by the RP isochrone vs. t2 on the
oscillating surface with∆ = 0.9 (red curve). The green curve shows the corresponding ZP isochrone at∆ = 0. The
inset shows the value of the exponent α defined in Sec. 3.2 as function of the wave amplitude∆ for both TP and RP. (b)
Comparison between the time evolution of the fractional area for RP at∆ = 0.9 and ZP. Both curves oscillate around
similar values≈ .85. (c) Number of trajectoriesNout on the outer isochrone for both RP and ZP (legend is the same as
(b)). The inset shows the variation of the associated exponent with∆. In all panels, the relative force strength is set to
γ = 0.79 (confining regime).

where h stands as a shorthand notation for deth. For the following analysis, we moreover
focus on the most interesting confining regime by fixing γ = 0.79while the performance of
TP and RP will be assessed varying the wave amplitude∆.

3.3.2 Properties of the isochrones in presence of space curvature

Figure 3.7 shows two short-time isochrones obtained from RP trajectories starting from a
local maximum and saddle point of the potential. As shown from their projections on the
plane, the shape of the isochrones is not strongly influenced by the presence of finite curva-
ture. The curves are indeed not modified in the direction transverse to that of the surface
wave, while they appear compressed along the wave direction. Here, the surface curvature
therefore essentially introduces a breaking of the discrete rotational symmetry of the poten-
tial. Despite these quantitative differences with the planar case, the qualitative features of
theRP isochrones such as the presence of self-intersections are unchanged by the presence of
space curvature. As for the planar case, we did not find significant variations in the isochrones
properties with the departure point, thus belowwe fix it to be a local maximum of the poten-
tial.

As shown in Fig. 3.8, the presence of surface oscillations does not qualitatively modify the
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isochrones properties for RP and TP. Indeed, the exponent α ruling the long-time growth
of the isochrones area with time is in both cases constant upon varying ∆, and takes val-
ues αRP ≈ 1 and αTP ≈ 1

2
(Fig. 3.8(a)). Moreover, the fractional area ϕ for RP oscillates

around a well defined value≈ 0.85 (Fig. 3.8(b)) while it decays to zero at long-times for TP
(not shown). Analogously to the planar case and in contrast with TP, the optimized Ran-
ders policy allows the self-propelled particles to make use of the potential landscape in order
to visit otherwise inaccessible regions, thus ensuring ergodic spatial exploration even in the
presence of potential confinement. As the evaluation of geodesic distance is generally com-
putationally demanding, we characterize the sensitivity of the policies via the scaling of the
number of trajectories Nout lying on the outer isochrone. Consistently with the behaviour
of the isochrone area, our results indicate that Nout decays exponentially with time for RP
(Fig. 3.8(c)) and remains constant for TP. The corresponding exponent λN moreover varies
little with∆, highlighting the robustness of the isochrones properties with space curvature.

3.4 Results obtained in a quasi-periodic potential landscape

In this chapter, we have studied an exemplary case for which navigation occurs in the pres-
ence of a sinusoidal potential landscape. Now, we shall provide evidence suggesting that the
results obtained so far do not depend on the specific choice of the potential. In fact, the navi-
gation strategy performances and robustnessmostly rely onwhether the external force field is
confining or not. Therefore, in order to illustrate the generality of our results, let us consider
the following quasi-periodic potential

U(r) = −u
4

[
cos(kx) + cos(

√
3kx)/

√
3 + cos(ky) + cos(

√
3ky)/

√
3
]
, (3.8)

which breaks translational symmetry as shown in the illustration of the corresponding force
field in Fig. 3.9(a). For the results presented below we work in the same units and with the
same definitions γ as those defined in Sec. 3.1.

Figure 3.9 shows exemplary TP and ZP isochrones as well as the associated long-time scal-
ing laws. In the regime where the force field overcomes the self-propulsion in finite regions,
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Figure 3.9: Isochrones analysis in a 2D quasi‐periodic potential landscape. (a) Each panel shows two exemplary short‐time
isochrones corresponding to t = 0.8 and t = 6.4. Here, the grey arrows indicate the external force field direction while
the colour map shows its intensity. (b) Isochrones area as function of squared time for ZP and TP in the confining regime.
(c) Fractional area covered by the isochrones as function of time, the legend is the same as (b). (d) Number of trajectories
located on the outer isochrone as function of time. The initial orientation resolution here is set to δθ0 = 10−5. (e)
Scaling with time of the mean angular separation ε for TP (blue circles) and ZP (orange triangles). Legend and parameters
are the same as (d). In all panels γ = 0.39.

all the findings obtained with the periodic potential landscape still hold. Indeed, ZP proves
to be still able to ergodically explore the space, as evidenced by the presence of self-crossings
(Fig. 3.9(a)), as well as the scalings of the isochrone area A ∼ t2 (Fig. 3.9(b)) and the frac-
tional area ϕ settling around a finite value (Fig. 3.9(c)), as opposed to TP. Lastly, both the
number of trajectoriesNout placed on the outermost part of the isochrones (Fig. 3.9(d)) and
the mean angular separation (Fig. 3.9(e)) show an exponential trend for ZP. This confirms
the strong sensitivity to initial conditions of this strategy and at the same time validates the
robustness of TP for which no chaos is found.
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3.5 Summary and discussion

Wehave shown that the long-time properties of isochrones provide useful information about
the efficiency of navigation strategies for exploration. Our results reveal that for a determinis-
tic dynamics in presence of strongmotion-limiting force the travel timeminimizing strategies
–ZPon theplane andRP in curved space– surprisingly allow for ergodic exploration, contrary
to the Trivial Policy for which only a restricted portion of space is visited. Isochrones of ZP
andRP are indeed nearly isotropic with a fractional area ϕ ≥ 0.80, while those of TP extend
only along specific directions corresponding to escape routes drawn by force field landscape.

However, our results also indicate that ZP and RP lead to chaotic dynamics, which mani-
fests as an exponentially fast divergence of trajectories whose number at the isochrones outer
boundaries also decays exponentially. The resulting sensitivity to initial conditions is more
pronounced in the confining regime, where it becomes increasingly harder to resolve the
isochrones over long times. This complexity is however necessary to ensure full space cover-
age, as the only option for the particles to reach certain regions of space –where the external
force is too strong– is to circumvent them.

More dramatically, ZP was found to be unstable to the presence of fluctuations in the dy-
namics, as those lead to a global trapping of trajectories regardless of the initial condition. If
fluctuations cannot be neglected –as is often the case for the motion of microscopic objects–
ZP, and by extension RP, are thus poor candidates for optimal navigation in presence of
strong external forces.

These results moreover counter-intuitively suggest that, even though they are designed to
maximize the effective speed of the particles, ZP andRPdonot always constitute good escape
strategies. Indeed, compared to ZP orRP, the trivial TP generally leads to a higher fraction of
trajectories reaching a certain distance from the starting point, a difference that is even larger
in presence of noise.

Although most of the results presented in this chapter were obtained with the sinusoidal
potential (3.2), we expect our main conclusions to hold in more general settings. Indeed, so
long as thepotential is locally confining–the resulting external forceovercomes self-propulsion
only in disconnected regions– the ZP isochrones should always exhibit self-crossings. More-
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over, in the long-time regimewhere their area ismuch larger than the scale associatedwith the
potential, it is natural to expect that the behavior of the isochrones will remain qualitatively
independent of the details of the potential. To stress this idea, we have indeed provided in
Sec. 3.4 simulation results obtained with a quasi-periodic potential in the confining regime
which show that all scaling laws and measures of chaos reported for the sinusoidal potential
remain qualitatively unchanged.

In light of the results reported here, notions of stability could be a decisive factor for the
design of navigation strategies for ballistic exploration of rugged landscapes in order to en-
sure reasonable performances. More generally, our results highlight an emergent trade-off
between exploration efficiency and stability, which, depending on the context and desired
task, must be taken into consideration for the design of the corresponding navigation policy.
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The real point of honor [for a scientist] is not to be always
right. It is to dare to propose new ideas, and then to check
them.

Pierre-Gilles de Gennes

4
Optimal navigation in complex and noisy

environments

Part of this chapter (Secs. 4.1-4.3) has been adapted from Piro L., Mahault B., Golestanian
R., New J. Phys., 24 093037, (2022)164. I have taken part in the conception of the research
and in the redaction of the manuscript. I have performed the numerical simulations and an-
alyzed the corresponding data. I have also participated in the development of the simulation
code.

Aswehave already discussed in Sec. 1.2.1 and Sec. 1.3.1, optimal navigation in the presence
of noise falls into the class of problems addressed by stochastic optimal control (SOC) the-
ory85,91,94, while at the same time, reinforcement learning (RL) algorithms can provide conve-
nient and increasingly popular routes to determining the optimal control landscapes23,112,124.
In practice, implementing these policies can be achieved via external feedback loops such as
shown in Fig. 4.1(c) for the actuation of a microswimmer motion132,134,170,171.

On the other hand, a number of natural and artificial microswimmers exhibit tactic be-
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Figure 4.1: Autonomous vs. supervised optimal navigation. (a) An active particle can navigate fully autonomously by
employing its sensing apparatus to collect information about its local environment, process it internally, and update its
motility machinery accordingly. As illustrated in (b), the implementation of semi‐autonomous navigation strategies is based
on a similar feedback cycle, except that now the information about the optimal path is provided by an external operator.
(c) Supervised navigation, on the contrary, requires the intervention of an external interpreter (here represented by the red
color) within the feedback cycle in order to gather the relevant information on the swimmer state and use it to determine
the optimal behavior.

haviour83, i.e. are able to adapt their motility in response to external stimuli such as light74,75,
chemical concentration69,70 or viscosity172 gradients in an autonomous fashion (Fig. 4.1(a)).
Harnessing guidanceprovidedby taxis allowsmicroswimmers toperformcomplex tasks173,174,175

in a semi-autonomous way as it can be carried out without the real-time intervention of an
external operator (Fig. 4.1(b)).

Here, we showhow these ideas canbe applied to the problemof optimal navigation in com-
plex and noisy environments. Considering a minimal but non-trivial optimization problem
in two dimensions, we note that the stochastic trajectories obtained from the optimal control
maps are closely distributed around the path defined by Zermelo’s approach, which is opti-
mal at zero-noise. Building on this observation, we propose novel navigation policies that
consist for the active particle in regulating its relative position to Zermelo’s path. As the lat-
ter can be detected by an active agent if highlighted by a stationary field (e.g. by applying a
light (resp. chemical) gradient for a phototactic (resp. chemotactic) particle), the protocols
we propose can be implemented in a semi-autonomous fashion. Moreover, confining the
particle around Zermelo’s path improves the stability of its motion, which can be crucial for
the particle navigation efficiency and robustness, as pointed out in Ch. 3.
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Using extensive Brownian dynamics simulations, we show that the new policies show ar-
rival time statistics comparable to that obtained from stochastic optimal control, resulting in
excellent performances. The new policies are moreover found to be robust upon changes in
the environment as well as positional and rotational fluctuations, while being easily generaliz-
able to more complex navigation problems such as navigation on curved manifolds or in the
presence of random flows. Lastly, we introduce a toymodel that allows for amore systematic
study of the protocols, thus providing valuable insights into their performance in different
dynamical regimes.

4.1 From supervised to semi-autonomous optimal navigation

We consider an overdamped self-propelled particle moving at a fixed speed v0 in presence of a
stationary force field f(r), which may in general include a contribution due to advection by
the solvent flow velocity, and translational diffusion with diffusivityD. For simplicity, we set
the friction coefficient (and mobility) to unity. The position r of the self-propelled particle
thus obeys Eq. (1.26), which we shall conveniently report here:

ṙ = v0û+ f(r) +
√
2D ξ , (4.1)

where û is the unit vector setting the direction of self-propulsion, and ξ is a Gaussian white
noise vector whose components have unit variance. Within this setting, the only degree of
freedom accessible to the self-propelled particle for navigation is its orientation û. For the
sake of presentation, we will first assume a full control over û, either from external sources or
by the particle itself, while this constraint will be relaxed later.

Wenowwant todetermine the optimal navigationprotocol for theparticle to reach a target
position rT in the shortest time (on average) given a stationary force profile and an initial
positionr. To this end,we can refer to Sec. 1.3wherewehave shown that this canbe obtained
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Figure 4.2: Optimal navigation in a Taylor‐Green flow. (a) The Taylor‐Green flow map, where the colour codes for the
intensity and the black arrows indicate the direction. The green curve indicates Zermelo’s optimal trajectory at vanishing
noise connecting the initial point r0 = −(ℓ/2)êx and the target rT = 0, marked with a green and magenta circle,
respectively. The red and cyan lines show two representative stochastic trajectories following respectively the Optimal
and Straight policies at γ = 0.7 and Pe = 400. (b) The optimal control obtained by solving Eqs. (4.2) and (4.3) for same
parameters as in panel (a). (c) Schematic defining the quantities used for the implementation of the semi‐autonomous
navigation strategies. The red dot indicates the active particle position r and the red arrow its heading direction û. rc
(red cross) marks the closest point to r on the optimal trajectory, while the two vectors n̂ and t̂ are respectively normal
and tangent to the optimal trajectory in rc.

from the stochastic HJB equation for the mean first-passage time T (r) (MFPT), namely−v0|∇T |+ f(r) ·∇T +D∇2T = −1

T (rT) = 0 .
(4.2)

The solution of this partial differential equation indeed allows to determine the optimal con-
trol map via

ûopt(θ(r)) = − ∇T
|∇T |

, (4.3)

which defines what we call the Optimal Policy (OP).

Although in the limit of vanishing diffusivity OP is equivalent to Zermelo’s Policy (ZP),
their implementation requires different amount of knowledge of the environment. Indeed,
Zermelo’s path (optimal atD = 0) can be integrated in an autonomous way assuming the
particle able to measure the local force and its gradients (Fig. 4.1(a)), whereas OP formally
requires full knowledge of the global control map ûopt(θ(r)) obtained from Eqs. (4.2-4.3)
which is generally achieved in a supervised manner (Fig. 4.1(c)).

Wenow illustrateOPby considering a simple but nontrivial setup inwhich a self-propelled
particle navigates in the twodimensional plane spanned by the unit vectors {êx, êy}between
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neighbouring stationary points of a Taylor-Green vortex flow (see the colour map and black
arrows in Fig. 4.2(a)). This configuration corresponds to f(r) = vf[cos(ky) sin(kx) êx −
cos(kx) sin(ky) êy] with k = 2π/ℓ and ℓ being the characteristic length scale of the flow.
Rescaling space and time as r → ℓr and t → ℓt/v0, the dynamics (4.1) is characterized by
only two nondimensional parameters: the ratio between flow intensity and self propulsion
γ ≡ vf/v0, and the Péclet number* Pe = ℓv0/D. Here, we will focus only on cases where
the self-propulsion is always stronger than the flow, namely, 0 ≤ γ ≤ 1.
With the setup shown in Fig. 4.2(a), the most direct route between the departure and

arrival points requires travelling counter-flow all the way. Consequently, the straight path
becomes increasingly disadvantageous as the flow amplitude grows, such that for γ ≳ 0.4

Zermelo’s path makes use of the flow profile and takes a bell-shaped curve (see the green line
in Fig. 4.2(a)). For finite Péclet number (D 6= 0), such a feature is moreover consistent with
the control map provided by OP, since the latter generally orients the self-propulsion away
from the straight path (Fig. 4.2(b)). Simulations of the Brownian dynamics (4.1) with the
control map solving Eqs. (4.3) and (4.2) indeed reveal that theOP trajectories tend to remain
close to Zermelo’s path for a broad range of Péclet number values, provided that the flow
strength and particle self-propulsion dominate over fluctuations (see e.g. the density map in
Fig. 4.3(d) and Appendix A.1 for more details on the stochastic dynamics simulations).

The aboveobservations suggest that optimizednavigation in thefinitePéclet number regime
may be achievable using only the local information of the relative positions of the stochastic
swimmer andZermelo’s path, as opposed to theOPwhich requires the knowledge of a global
control map∼ ∇T (r).

We now explore a number of such local strategies and probe their efficiencies in compari-
sonwithOP. For a given particle position r, we define rc ≡ minr′ |r−r′| as the correspond-
ing closest point on Zermelo’s path. Moreover, we suppose that the latter is smooth and can
be parametrized by the moving frame {t̂, n̂}, of tangent and normal vectors, with t̂ heading
towards the target as shown in Fig. 4.2(c). Assuming that the swimmer is able to measure its
relative position to Zermelo’s path, it can regulate it by steering its self propulsion direction

*This definition of Péclet number differs from the one of an ABP in Eq. (1.5) since we have here used the
flow length scale (in place of the microswimmer size) to non-dimensionalize the system dynamics.
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û via the following rule
û · n̂ = G(∆r,f(r)) , (4.4)

where∆r ≡ (r−rc) · n̂ and the function G ∈ [−1, 1] depends on the amount of informa-
tion available to the swimmer. As the rhs of Eq. (4.4) depends on r solely through∆r and
the external flow f , it defines a class of optimal navigation policies whose implementation
relies only on the swimmer’s local knowledge of its environment.

In the simplest case where the swimmer can only determine the direction n̂ to Zermelo’s
path (from its current position), it can choose to keep a constant angle α between its self-
propulsion direction and n̂. Such Aligning Policy (AP) corresponds to a protocol

GAP = ± cos(α) , (4.5)

where the± sign ensures that û · t̂ ≥ 0. We moreover note that Eq. (4.5) defines a strategy
resembling the constant bearing pursuit176,177 of a target located at position rc.

AlthoughAP allows the swimmer to remain in the vicinity of Zermelo’s path, it also slows
it downas it imposes afinite angle between û and t̂ even for (arbitrarily) small separations. For
swimmers able to evaluate their relative distances to Zermelo’s path, AP can thus be refined
by allowing G to depend on∆r. This defines theAdaptive Aligning Policy (AAP). Here, we
choose, for simplicity, a piecewise linear form for G(∆r), namely

GAAP(∆r) =


+1 if ∆r < −ε

−∆r/ε if |∆r| < ε

−1 if ∆r > ε

, (4.6)

where the parameter ε sets a cut-off scale above which the stochastic particle points normally
to Zermelo’s path.

The parameters α and ε introduced above essentially play the role of sensitivities for AP
and AAP, respectively. Their optimal values (that minimize the mean travel time in this case)
cannot be selected a priori, and need to be determined empirically. However, the existence
of such optimal values can be intuitively understood from the control maps obtained from
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Figure 4.3: The semi‐autonomous navigation policies. (a)‐(c) The control û obtained for the AAP from Eqs. (4.4) and (4.6)
in the Taylor‐Green flow at γ = 0.7 with ε = 0.05(a), 0.2(b) and 1(c). (d,e) Heat maps of 103 stochastic trajectories
obtained from numerical simulations of the OP(d) and AAP(e). The solid green lines in (a)‐(e) represent the D = 0
Zermelo’s path. (f) Example of curves leading to the determination of the optimal sensitivities for the AP andAAP (γ = 0.7
and Pe = 400) with 〈t〉 and topt respectively denoting the mean arrival time and the optimal travel time in absence of
noise. The optimal values of α(AP) and ε(AAP) are indicated by the vertical dashed lines. Note the small range of values
for the normalized mean arrival time, showing the robustness of the two policies. Here, both curves are normalized by
their minimum value.

Eq. (4.6) for various ε values (with the generalization toAPbeing straightforward). As shown
in Figs. 4.3(a-c), exceedingly small ε values force the swimmer to mostly point normally to
Zermelo’s path, while for excessively large ε stochastic trajectories are less efficiently confined
and can visit less favourable flow regions. Therefore, it is natural to expect an intermediate
value of ε providing the optimal trade-off between efficient confinement and tangential mo-
tion along Zermelo’s path.

This heuristic picture is confirmed by numerical simulations showing that the mean ar-
rival time 〈t〉 indeed exhibits a minimum at a value ε = εopt (see Fig. 4.3(f)). We moreover
note that 〈t〉 varies relatively little with ε, such that in practice the policy implementation
does not require a fine tuning of this parameter. The heat map of trajectories obtained from
simulations of AAP at optimal ε shows that they globally follow Zermelo’s path (Fig. 4.3(e)),
similarly to the OP case.

Contrary to OP, however, the stochastic trajectories are not distributed symmetrically
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with respect to the desired path due to a non-zero transverse component of the force (see
Fig. 4.2(a)). Closer agreement with the OP results and improved protocol stability thus re-
quires additional features such as a policy function G in Eq. (4.4) that depends explicitly on
the local force field f(r). In particular, compensating for the transverse drift from the force
could lead to protocols similar to well-established control strategies such as Sliding Mode
Control178. Nevertheless, we focus for the moment on the case where the swimmer is un-
aware of the local flow structure around it and will address such more elaborate policies in
Sec. 4.4.

4.2 Performance assessment of the navigation policies

4.2.1 Arrival time statistics

We now compare the performances of the two policies introduced above (AP andAAP)with
that of OP by simulating Eq. (4.1) with the controls defined by (4.3) and (4.4) in the Taylor-
Green flow setup (Fig. 4.2(a)). To illustrate the relevance of nontrivial policies, we moreover
consider the Straight Policy (SP) –introduced in Sec. 2.4– for which the swimmer always
points towards the direction of the target regardless of its current position (see the cyan curve
in Fig. 4.2(a) for a representative trajectory).

We first work at fixed Pe = 400 and vary the relative flow amplitude γ ∈ [0, 1]. Fig-
ure 4.4(a) shows the arrival time distributions P (τ) with τ ≡ t/〈t〉 for each of the four
policies (OP, AP, AAP, and SP) at γ = 0.7. Remarkable overlap between the OP and AAP
distributions can be observed. We moreover find that they are both well described by a so-
called inverse Gaussian distribution of the form

P (τ) =

√
〈t〉2

2πσ2τ 3
exp
[
− 〈t〉2(τ − 1)2

2σ2τ

]
, (4.7)

with variance σ2. To quantify this correspondence we furthermore calculate the Kullback-
Leibler divergenceDKL = 〈ln[Pnum(τ)/P (τ)]〉Pnum between the numerically obtained distri-
bution Pnum and the prediction of Eq. (4.7), with 〈t〉 and σ determined from the data. As
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Figure 4.4: Comparison of the performances of the different policies. (a) Arrival time distribution as a function of the
normalized time t/〈t〉 for the four navigation strategies: Straight Policy (blue circles), Optimal Policy (yellow triangles),
Adaptive Aligning Policy (green diamonds) and Aligning Policy (red squares). (b) Kullback‐Leibler divergenceDKL between
the numerical and theoretical (Eq. (4.7)) distributions as a function of the relative flow amplitude γ . (c)Mean arrival time
(normalized by the noiseless optimal time topt) as a function of γ . Inset: Zoom‐out showing the larger values taken by SP.
In (a)‐(c) the symbols show the data obtained from Langevin simulations, while in (a) the solid lines indicate the theoretical
prediction (4.7) calculated with 〈t〉 and σ obtained from the numerical data. All data in (a)‐(c) are averaged over 105

independent trajectories.

shown in Fig. 4.4(b), DKL remains almost zero for both OP and AAP over a wide range of
γ values, highlighting the robustness of (4.7). As the inverse Gaussian corresponds to the
First Passage Time distribution of a driven Brownian particle in one dimension179, Eq. (4.7)
is closely related to the confinement of the OP and AAP trajectories along Zermelo’s path
as shown in Figs. 4.3(d-e). In fact, for both OP and AAP the loss of correspondence with
the inverse Gaussian coincides with the regime of strong fluctuations that prevent the swim-
mers from being efficiently guided along Zermelo’s path (details in Sec. 4.2.2). Interestingly,
SP also shows arrival time distributions globally compatible with the inverse Gaussian (4.7),
with only slight deviations at large flow amplitudes (see blue circles in Figs. 4.4(a,b)), indicat-
ing that in this case too trajectories are nearly one dimensional. As SP trajectories are mostly
oriented against the flow, they are characterized by a lower effective drift on average, resulting
in a larger ratio σ/〈t〉.

In contrast, for sufficiently large flow amplitudes the simpler Aligning Policy shows arrival
time distributions that do not follow the inverse Gaussian law (red squares in Figs. 4.4(a,b)).
These distributions indeed exhibit a crossover from inverse Gaussian-like behaviour at τ < 1

to an exponential decay at τ > 1 with a characteristic time τAP that is systematically larger
than the value 2σ2/〈t〉2 predicted by Eq. (4.7) (see Fig. 4.5(b)). Defining τ ∗ ≡ 2σ2/〈t〉2

as the variance to square mean ratio of arrival time for each protocol, its scaling with the
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Figure 4.5: (a) Arrival time variance to square mean ratio as function of the relative flow strength γ at Pe = 400 for
the four policies: Straight Policy (blue circles), Optimal Policy (yellow triangles), Adaptive Aligning Policy (green diamonds)
and Aligning Policy (red squares). The inverted triangles are the values obtained from the fit of the large‐time tails of AP
distribution (vertical axis in log scale). (b) Arrival time probability distributions as function of the normalized time t/〈t〉
corresponding to AP for three different values of the relative flow strength. Solid lines show the exponential fit at large
times, while the dashed lines correspond to the tails predicted by the inverse Gaussian law (4.7) using the values 〈t〉
and σ from the data. (c) Heat map of 103 stochastic trajectories obtained from numerical simulations at γ = 0.7 and
Pe = 400 of AP. The green curve shows the Zermelo path connecting the initial point r0 = −ℓ/2êx (green circle) and
the target rT = 0 (magenta circle). All data in (a) and (b) are averaged over 105 independent trajectories.

flow strength is shown in Fig. 4.5(a) for all policies. As a sign that AAP and OP on average
lead the swimmer to travel faster as the flow strength is increased, τ ∗ decays with γ for these
two policies. Conversely, swimmers following SP always travel counter-flow and are thus get
slower on average as γ increases. They are thus more subject to fluctuations, such that for SP
τ ∗ grows with γ. Lastly, for AP τ ∗ undergoes a crossover from a decay with flow strength at
small γ, to a growth with γ at large flows (red squares in Fig. 4.5(a)).

On the other hand, the value τAP obtained from the large-time tails of the distribution
always grows with γ, similarly to SP (purple inverted triangles in Fig. 4.5(a)). These observa-
tions can be rationalized from the heat map of AP trajectories shown in Fig. 4.5(c). Namely,
it shows that most of the trajectories end at the left of the target, such that the swimmers
have to travel counter-flow and are thus generally slower in the final stretch. This suggests
that, for AP, the events characterized by τ > 1 are dominated by this last part of the swim-
mer’s journey, ultimately caused by the overall pronounced asymmetry with respect to the
Zermelo path.

As customary in this context, we compare the performances of the navigation policies by
measuring the mean arrival time to reach the target 〈t〉, here normalized using the optimal
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value topt at D = 0 obtained from Zermelo’s solution. The corresponding results shown
in Fig. 4.4(c) reveal that, naturally, OP performs the best with the mean arrival times always
remaining higher than topt by only a few percent. Conversely, the trivial SP performances
strongly deteriorate as γ increases. For small flow amplitudes where Zermelo’s path is almost
straight (γ ≲ 0.4) SP performs similarly to OPwith 〈t〉 ≳ topt, whereas for sufficiently large
γ values it exhibitsmean arrival times reaching five to six times topt (see the inset of Fig. 4.4(c)).
Despite the presence of fluctuations, the performances of the policies are thus primarily set
by their ability to make efficient use of the stationary flow profile. This feature is moreover
illustrated by both AP and AAP, which show mean arrival times no more than 10% higher
than that ofOP, regardless of the relative flow amplitude. As expected, in the non-trivial cases
(γ > 0.4) the performances of the different strategies reflect the amount of information they
require for navigation, such that, in the order of increasing efficiency, one finds SP, AP, AAP
and OP.

4.2.2 Robustness of the new protocols

The above analysis shows that AAP displays arrival time statistics similar to that of OP. Both
AP and AAP moreover exhibit performances comparable to OP, despite them relying only
on local information. We now assess the generality of these results, focusing on AAP, by
discussing more general situations with different model parameters and evaluation setups.

Increasing the noise strength

The two colourmaps of Fig. 4.6(a) show how the ratio 〈t〉/topt varies with the Péclet number
and relative flow amplitude γ for OP and AAP. In agreement with previous results, 〈t〉/topt
for OP does not significantly depend on γ while we observe a slight increase with decreasing
Pe. The AAP case, on the other hand, exhibits two distinct regimes. At small flow strengths
(γ ≲ 0.4), 〈t〉/topt remains nearly constant uponvaryingPe such that theAAPperformances
are not significantly altered by the amplitude of noise. Conversely, at larger γ values where
Zermelo’s path is more curved, the mean arrival time is more affected by translational noise.
As shown in Fig 4.6(b) for γ = 0.7, all non-trivial strategies show a slight decrease in per-
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Figure 4.6: Robustness of the navigation policies. (a) Colour maps showing the performances of OP (left) and AAP (right)
as functions of the relative flow amplitude γ and the Péclet number Pe. (b) Normalized mean arrival time as a function of
the Péclet number at γ = 0.7 for the four policies (horizontal axis in log scale). (c) Inverse of the mean arrival time as a
function of the rotational noise strength η2 at Pe = 400 and γ = 0.7 for OP, AAP and SP (caption is the same as in (b)).
Here the data is normalized by the value 〈t〉 measured at η = 0. Solid lines show linear fits in the small η regime. (d), (e)
Heat maps of 103 stochastic trajectories obtained from numerical simulations at γ = 0.7 and Pe = 400 of OP and AAP,
respectively. In both panels the green curve shows Zermelo’s path connecting the initial point r0 = −(3ℓ/2)êx (green
circle) and the targetrT = 0 (magenta circle). (f) Arrival time probability distributions as functions of t/〈t〉 corresponding
to (d,e) as well as for the SP case under similar conditions; the caption is the same as (b). Solid lines show the theoretical
curves obtained similarly to Fig. 4.4(a). All data in (a)‐(c) and (f) are averaged over 105 independent trajectories.

formance as Pe is lowered, whereas SP becomes slightly more favourable upon increasing the
noise, since in this case stronger fluctuations lead the swimmer to visit less unfavourable flow
regions.

Misalignment of self-propulsion

Wehave so far assumed full control over the self-propulsionorientation û. In reality, however,
û is subject to fluctuations—e.g. due to rotational Brownian motion or inaccuracies in the
evaluation of the desired direction—which affect the performances of the policies using it
as a control. To model the effect of rotational noise, we applied random rotations û →
R(β)û to the controls (Eqs. (4.3) and (4.4)), where the angle β was sampled from a uniform
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distribution in (−ηπ, ηπ]; we present the corresponding results in Fig. 4.6(c). For small η
values, we find that the inverse of the mean arrival time normalized by its value at η = 0,
〈t〉/〈t〉η, decays linearly with η2 with a policy-dependent slope. In particular, OP and AAP
show similar trends and appear to bemuchmore robust to the effect of rotational noise than
the SP case, as for the latter the mean arrival time has increased by a factor 10 at η = 1

2
, while

the corresponding drop in performance for OP and AAP is about 40%.
The scaling 〈t〉/〈t〉η − 1 ∼ η2 can be understood from an effective one dimensional

model of driven Brownian motion. Assuming that the particle remains in the vicinity of the
mean path and neglecting effects due to the curvature of the latter, we consider the following
one-dimensional dynamics

ṙ∥ = v∥(r∥) cos θ +
√
2Dξ∥, (4.8)

where the subscript ‖ stands for quantities projected along the mean path. The first term
on the rhs of (4.8) thus accounts for the projection of the total velocity, which includes the
combined effects of flow and self-propulsion. In general, the angle θ obeys a nontrivial and
policy-dependent dynamics. However, in the limit of small η and D where the particle re-
mains close to the mean path, we approximate θ as a Gaussian noise with zero mean and vari-
ance∝ η2. Expanding the cosine and performing an average over the noises therefore leads
to 〈ṙ∥〉 ' v∥(r∥)(1 − κη2) with κ > 0 being a constant that depends on the navigation
details, e.g. the protocol used. In the one-dimensional approximation and assuming that v∥
varies little with r∥, themean travelling time to reach an absorbing barrier at distanceL scales
as 〈t〉η ∼ L/〈ṙ∥〉, such thatwe recover 〈t〉/〈t〉η ' 1−κη2, which corresponds to the scaling
observed in Fig. 4.6(c). This scaling is thus not expected to hold for large noises, as suggested
by the deviations from the linear decay observed for the largest η values in Fig. 4.6(c).

Complex navigation tasks

Increasing the distance between the initial and target points in the Taylor-Green flow allows
us to designmore complex paths. Upon translating the initial swimmer position along êx, as
shown in Figs. 4.6(d) and 4.6(e), both OP and AAP lead to trajectories focused around Zer-
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Figure 4.7: (a) Kullback‐Leibler divergenceDKL between the numerical and theoretical arrival time distributions as func‐
tion of the inverse of the Péclet number at γ = 0.7 (horizontal axis in log scale). (b) Heat maps of 103 stochastic
trajectories obtained from numerical simulations of OP (left), AAP (center) and SP (right) at Pe = 40 and γ = 0.7. The
solid green lines here represent theD = 0 Zermelo’s path connecting the initial point r0 = −ℓ/2êx and the target
rT = 0, marked with a green and magenta circle, respectively. The solid red line is instead the straight path linking the
two points.

melo’s path on average. Consequently, the corresponding arrival time distributions remain
well characterized by the inverse Gaussian law (Fig. 4.6(f)). The performances of AAP and
OP are moreover stable upon increasing the total travel distance, with mean arrival times 〈t〉
not higher than topt by more than a few percent.

Large fluctuations and the inverse Gaussian law

The correspondence observed between the inverse Gaussian law and the arrival time distri-
butions of OP, AAP and SP is due to the fact that, as long as the thermal fluctuations are
reasonably small, these policies guide the particle along a fictional path, thus reducing the
system to an active Brownian particle navigating in a quasi-1D environment. However, this
analogy may break down in the regime of strong fluctuations.

As we have already shown in Sec. 4.2, this can be quantified by computing the Kullback-
Leiber divergenceDKL between the distributions obtained from the direct numerical simu-
lations Pnum and those predicted by the inverse Gaussian law (4.7) with parameters 〈t〉 and
σ extracted from the data. Figure 4.7(a) shows the corresponding results obtained for all the
policies varying the Péclet number. Remarkably, the arrival time distributions of both OP
and AAP turn out to be inverse Gaussian for a wide range of noise amplitudes, with signif-
icant deviations arising only for Pe−1 ≳ 0.01. As shown in the heat maps in Fig. 4.7(b)
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(left and central panels), when fluctuations are strong the stochastic trajectories are in fact
less focused around the optimal path and alsomore asymmetrically distributed around it. As
already discussed in the previous section, this asymmetry leads to larger tails in the probabil-
ity distributions (data not shown) and therefore to the observed deviations from the inverse
Gaussian law.

In this scenario, the shape of SP distribution turns out to be the most robust to fluctua-
tions. This can be better understood by looking at the corresponding heat map in Fig. 4.7(b)
(rightmost panel). Despite beingmore dispersed, the stochastic trajectories still look symmet-
rically distributed around the straight path. This is strictly related to the flow symmetry with
respect to the line connecting the starting point with the target (to this end, please refer to
Fig. 4.2(a)).

4.2.3 An alternative policy performance indicator

Even though in the context of optimal navigation the primary performance indicator is the
mean arrival time at the target 〈t〉, we can define other measures of performances which take
into account additional features of the arrival time distribution. Indeed, from our numer-
ical simulations we may get further insights into the performance of a navigation protocol
by considering additional observables which also take explicitly into account the effect of
fluctuations.

In particular, we shall here consider a new performance indicator which stems from the
following remark: owing to thepresence of thermal fluctuations, the active particlemay reach
the target in less time than at D = 0. The frequency of these events can be quantified by
looking at the probability of arriving before the optimal time topt in the absence of noise
(defined by the Zermelo solution, see Eq. (1.21)): Prob(t < topt) ≡ π<. The latter is a
measure of how the policies manage to optimize the effect of fluctuations bymaximizing the
frequency of small arrival time events. Note that since in general 〈t〉 ≥ topt, π< is bounded
by 1

2
from above.

The new navigation policies introduced in Sec. 4.1 both depend on a free parameter repre-
senting the protocol sensitivity. Figure 4.8 shows the policies performances measured from
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Figure 4.8: Examples of the curves leading to the determination of the optimal sensitivities ε (AAP, left) and α (AP, right)
at Pe = 400 and γ = 0.7. Blue circles: mean arrival time 〈t〉 in units of the optimal time in absence of noise topt.
Orange triangles: probability of getting to the target in a time t < topt. Here, both observables are normalized by their
maximum/minimum value. In both plots the corresponding optimal sensitivity values are indicated by the vertical dashed
lines.

〈t〉 and π< as function of sensitivity for both the adaptive aligning policy (AAP, left) and the
aligning policy (AP, right). Similarly to the mean arrival time, the performance indicator π<
allows to obtain a clear optimal sensitivity value for both AP and AAP. Moreover, the opti-
mal values obtained independently from 〈t〉 and π< generally coincide for AAP while some
small differences are observed for AP. In the latter case, choosing either of the two estimates
does not lead to significant variations of the values of 〈t〉 and π<, and the corresponding
arrival time distributions do not differ significantly.

Performance and robustness assessment

In Fig. 4.9(a) we show the probabilityπ< as a function of the relative flow strength γ. On the
onehand, thepolicies performances showtrends analogous to those reported inSecs. 4.2, 4.2.2
for the analysis of the mean arrival time, with a preserved hierarchy at strong flows. As ex-
pected, in order of increasing performance we also find here SP, AP, AAP and OP. On the
other hand, the differences between the various protocols appear more striking. For example,
the probability that a swimmer following AAP reaches the target in a shorter time than topt
is around 35% lower than that of a swimmer following OP at γ = 1, while the correspond-
ing mean arrival times deviate by only a few percent (see Sec. 4.2). As shown in Fig. 4.9(b),
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Figure 4.9: Probability of reaching the target before the optimal time in absence of noise (topt) as function of (a) the relative
flow strength γ at Pe = 400 and (b) the inverse of the Péclet number at γ = 0.7 (horizontal axis in log scale). (c) Colour
maps showing the performance of OP (left) and AAP (right) as function of both the relative flow strength γ and the Péclet
number Pe. The colour gradient represents the probability of reaching the target faster than in absence of noise from low
(blue) to high (red). All data in (a)‐(c) were averaged over 105 independent trajectories.

similar conclusions can be reached examining the behaviour of π< as function of the Péclet
number. Namely, all OP, AAP and AP show a slight decrease in performance upon increas-
ing the strength of fluctuations, while SP becomes more advantageous at large noises. For
completeness, we also show in Fig. 4.9(c) the heat maps comparing the values of π< for OP
and AAP as function of γ and Pe. Here again, the behaviour of the performance indicator is
similar to that of the mean arrival time.

Overall, the new indicator π< is largely dominated by the mean arrival time, although it
accounts explicitly for the effect of fluctuations and provides amore refined evaluation of the
protocols performances. π< therefore leads to qualitatively analogous conclusions regarding
the policies efficiency.
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Figure 4.10: Optimal navigation on a sphere. (a) Illustration of the chosen setup. The black arrows indicate the direction
of the flow while the solid green curve connecting the points rT = (2π/3)êθ + (3π/2)êϕ (magenta circle) and
r0 = (π/6)êθ (green circle) corresponds to the Randers geodesic at γ = 0.5. Here the colour map shows the
trajectory distribution for AAP. (b) The arrival time distribution as a function of t/〈t〉 for straight (blue circles), Adaptive
Aligning (green diamonds) and Aligning (red squares) policies at γ = 0.5. (c)Mean arrival time as a function of γ for the
three policies; the caption is the same as (b). In (a‐c) the value of the Péclet number is set to Pe = 103. All data in (b,c)
are averaged over 105 independent trajectories.

4.3 Optimal navigation on a manifold

We next show how AP and AAP navigation protocols are applicable to motion on curved
landscapes. Aswehave already extensively discussed inCh. 2, self-propelledmotiononcurved
surfaces has indeed recently earned growing attention both at individual180,181 and collec-
tive182,183 levels. As stochastic motion taking place on a generic Riemannian manifold in-
volvesmultiplicativenoise, solving the correspondingMFPTequation (4.2) requires advanced
computational techniques138, whichwill introduce additional challenges for determining the
stochastic optimal control (4.3). On the other hand, we have shown inCh. 2 that it is possible
to generalize Zermelo’s approach to self-propelled motion on curved surfaces using a map-
ping to Finsler geometry141. The corresponding noiseless optimal path –Randers geodesic–
can then straightforwardly be used to extend AP and AAP policies to non-Euclidean spaces,
while in general SP corresponds to the particle pointing along the shortest geodesic between
its position and the target (details in Appendix A.1).

For the sake of illustration, let us consider the case of active motion on a sphere in the
presence of a unidirectional flow f(θ, ϕ) = vf sin θ êϕ, where θ and ϕ respectively denote
the polar and azimuthal angles in the spherical coordinate system. As shown in Fig. 4.10(a)
(see the black arrows), this flow–which is characterized by a pair of vortices at the poles and is
maximum at the equator– generally leads to non-trivial Randers geodesics (solid green line)
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between two arbitrary points on the sphere.

Simulating the counterpart of the Langevin equation (4.1) on the sphere (details on the
numerical simulations in Appendix A.1) at fixed Pe = 103, we are able to compare the per-
formances of AP, AAP and SP. As in the 2D case, the optimal values of the sensitivities α
(AP) and ε (AAP) have been determined empirically selecting the one minimizing the mean
arrival time. The corresponding arrival time distributions are shown in Fig. 4.10(b).

As for the Taylor-Green flow in flat space, we find that they are all in good agreement with
the inverse Gaussian law (4.7). In the AP case, this result is probably due to the rather large
value of Pe chosen for convenience, which allows all policies to exhibit trajectories well dis-
tributed around a one dimensional path. Figure 4.10(c) moreover shows that at small flow
strengths all policies perform similarly with 〈t〉 ≳ topt, while for larger γ values leading to
more complexRanders geodesics SP becomes increasingly disadvantageous. On the contrary,
both AP and AAP always remain close to optimality, as they exploit the information of the
noiseless optimal path.

4.4 A new hierarchy of navigation protocols

Even though the new policies introduced so far show remarkable performances as compared
to OP, some differences persist. In particular, as shown in Figs. 4.3(d,e), while trajectories
following OP are symmetrically distributed around Zermelo’s path, this is not the case for
AP and AAP.

This symmetry can be better appreciated from the OP heat map of stochastic trajectories
in the reference frame of the noiseless optimal path, as displayed in Fig. 4.11(a). It actually
turns out that their distribution in the normal direction with respect to Zermelo’s path cor-
responds to a Gaussian with zeromean. Indeed, as demonstrated by the three different fits in
Fig. 4.11(b), although the width of this distribution varies at each point along the path, the
agreement with the Gaussian always holds. Building on this observation, we now show how
it is possible to derive in a semi-analytical fashion a new set of navigation strategies that may
lead to further performance improvements.

82



Chapter 4. Optimal navigation in complex and noisy environments

Figure 4.11: Analysis of the stochastic trajectories in Zermelo’s path reference frame. (a) Heat map of stochastic trajec‐
tories obtained from numerical simulations of OP in the reference frame {t̂, n̂} of Zermelo’s path (solid green line). (b)
Distributions of the relative distance r · n̂ from Zermelo’s path at different points as highlighted by the corresponding
dashed lines in (a). Solid curves show the Gaussian fit from the numerical data. (c)Mean square displacement (MSD) over
time obtained from averaging over AAP stochastic trajectories. TheMSD in the normal direction with respect to Zermelo’s
path (blue curve) saturates much earlier than theMSD in the tangential one (orange curve), which proves a clear separation
of time scales in the system dynamics. The numerical simulations leading to (a‐c) have been carried out in the same setup
shown in Fig. 4.2(a) with Pe = 400 and γ = 0.7. All data in (a‐c) are averaged over 103 independent trajectories.

4.4.1 Quasi-1D description of the problem

Let us consider the reference frame {t̂, n̂} of Zermelo’s path and identify the latter with the
x-axis without any loss of generality. The Cartesian (x, y) coordinates from now on will
therefore correspond to the relative position of the swimmer with respect to Zermelo’s path
in the tangential and normal direction, namely x = r · t̂ and y = r · n̂.

Neglecting possible effects due to the curvature of such trajectory, we can readily write
the Fokker-Planck equation92 corresponding to the non-dimensionalized version of the over-
damped dynamics (4.1):∂tP(x, y, t) = −∇ · J

J = (û+ f)P(x, y, t)− Pe−1∇P(x, y, t) ,
(4.9)

whereP(x, y, t) defines the probability of finding the microswimmer at a position (x, y) at
time t.

At the same time, all the navigation protocols studied so far in the presence of noise, in-
cluding OP, essentially amount to making the microswimmer move as fast as possible along
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Zermelo’s path (the x−axis in this simplified scenario) while being confined around it. If the
optimal trajectory is long enough, themotion in the transverse direction y could then reach a
steady state on a time scalemuch smaller than the typical navigation time (topt). This assump-
tion is confirmed by the outcome of our numerical simulations of AAP† in the Taylor-Green
vortex flow (see setup in Fig. 4.2(a)). As shown in Fig. 4.11(c), the MSD of the microswim-
mer along the direction normal toZermelo’s path indeed plateaus contrary to theMSDalong
the tangential direction.

Thanks to this observation,wemay thus impose the stationary condition alongy inEq. (4.9),
which yields

Jy = 0 =⇒ P(x, y, t) = N (x, t) exp
[
Pe
∫ y

0

(ûy(x, z) + fy(x, z)) dz

]
, (4.10)

whereN is a normalization prefactor that depends in general on both x and t. Earlier we ob-
served that the distribution of trajectories following OP is well-fitted by a Gaussian centered
aroundZermelo’s path. This remark gives us an interesting insight aboutwhatOP effectively
does and, at the same time, provides a precise indication about how to design a new efficient
strategy to be adopted by the microswimmer.

More specifically, if we require the distribution P in Eq. (4.10) to be locally Gaussian
around y = 0 for any value of x, we will find the control ûy(x, y) shall be given by

ûy(x, y) =


+1 if y + εfy ≤ −ε

−fy(x, y)− y
ε

if |y + εfy| < ε

−1 if y + εfy ≥ ε

, (4.11)

where ε > 0 is the protocol sensitivity‡. This navigation strategy is essentially a generalisa-
tion of AAP as also in this case the orientation of the microswimmer is linearly dependent

†We have also checked that analogous results are obtained considering other policies like AP.
‡The essential difference between this policy andOP is that while the former is characterized by a constant

sensitivity ε that fixes the variance of the (Gaussian) distributionP , in the latter case ε can vary along Zermelo’s
path. However, the sensitivity cannot be space-dependent since it would break the semi-autonomous nature of
the policies.
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Name Acronym Expression of ûy Description
Optimal Policy OP N/A Solution from SOC theory.
Compensating

Adaptive Aligning
Policy

CAAP −fy(x, y)− y/ε
Compensates for transverse flow
and aligns with Zermelo’s path
depending on the distance.

Compensating
Aligning Policy CAP −fy(x, y) + cosα

Compensates for transverse flow
and bounds swimmer to Zermelo’s
path with a constant angle.

Adaptive Aligning
Policy AAP −y/ε Aligns with Zermelo’s path

depending on the distance.
Compensating

Policy CP −fy(x, y) Compensates for transverse flow.

Aligning Policy AP cosα Bounds swimmer to Zermelo’s
path with a constant angle.

Straight Policy SP sin
(

y−yT
x−xT

)
Points straight to the target.

Table 4.1: Summary of all the protocols we have designed for semi‐autonomous optimal navigation together with the
corresponding acronyms, analytical expression (if applicable), and short description. They are listed in order of decreasing
complexity from OP (top) to SP (bottom).

on its distance from Zermelo’s path. The novelty lies in the fact that now it also exploits
local knowledge of the flow by compensating for its transverse component. It is for these rea-
sons that wewill hereafter refer to this strategy as theCompensating Adaptive Aligning Policy
(CAAP).

The idea of offsetting the transverse flow component unveils a new class of navigation
strategies. These can be designed by gradually simplifying the expression (4.11) of CAAP.
Indeed, if the microswimmer knows the local flow but not its distance from Zermelo’s path,
it has two options:

1. Either re-orient itself so as to just compensate for the transverse component of the flow,
in which case we will say that the swimmer follows the Compensating Policy (CP);

2. Or, in addition to this compensation, keep a fixed anglewith respect to Zermelo’s path.
This could be beneficial since it better confines the microswimmer around it, as in the
AP case. This is why we will refer to this strategy as the Compensating Aligning Policy
(CAP).
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Figure 4.12: Performance comparison among all the policies in the Taylor‐Green flow at Pe = 400. (a)Mean arrival time
–normalized by the noiseless optimal time topt– as a function of the relative flow amplitude γ . All data here are averaged
over 105 independent trajectories. (b) Heat map of 103 stochastic paths obtained from numerical simulations of CAAP.
Note the remarkable resemblance with the OP heat map in Fig. 4.3(d).

Hence, this short analysis has therefore allowed us to define a set of navigation strategies
that add to those studied previously. In Table 4.1, we enumerate all of them together with
their respective analytical expression of the normal component of the control, i.e. ûy, and
a short description. They can all be seen as part of a hierarchy of navigation strategies listed
from top to bottom in order of decreasing complexity –measured in terms of the amount of
information required for their implementation.

At this point, we can readily test all these protocols in the same Taylor-Green flow setup as
the one illustrated in Fig. 4.2(a). We once again quantify their performance bymeasuring the
mean arrival time at the target 〈t〉 as a function of the relative flow amplitude γ. The corre-
sponding results§ shown in Fig. 4.12(a) reveal that, when the flow is strong enough (γ ≳ 0.4),
the performances of the different strategies generally match their complexity, with CAAP ex-
hibiting strikingly close performances to those ofOP (see also the corresponding heatmap in
Fig. 4.12(b)). The only exception in this regard is AP, which outperforms CP. This interest-
ingly suggests that being confined around the noiseless optimal path can be more beneficial
to the microswimmer than compensating for the transverse flow.

We shall now verify the generality of the results presented here. To this end, we will there-

§Note that for each policy we always select the sensitivity value (ε or α) minimizing the mean arrival time
〈t〉.
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foremeasure both the performance and robustness of these protocols by implementing them
in a Gaussian random flow field.

4.4.2 Semi-autonomous optimal navigation in a Gaussian random flow

Let us consider a two-dimensional time-independent flow whose velocity field f(r) is de-
fined as

f(r) =
1√
2
∇× [êzψ(r)] , (4.12)

with êz being the unit-vector in the z-direction and ψ(r) a random stream function with
zero mean and correlation function184

〈ψ(r)ψ(r′)〉 = ℓ2v2f exp
[
−|r − r′|2

2ℓ2

]
, (4.13)

where ℓ and vf are the characteristic length and flow intensity scales. The expressions (4.12-
4.13) define a so-called Gaussian random flow field. More details on its numerical imple-
mentation can be found in Appendix A.2. The corresponding velocity field is shown in
Fig. 4.13(a). There, it is also displayed the new navigation task, which is to go from the green
to the magenta circle in the shortest time in the presence of translational noise.

On the one hand, in order to determine the optimal control map for OP, one would have
to solve the corresponding HJB equation (4.2). However, solving such PDE in this com-
plex setup would arguably demand a greater computational effort than finding Zermelo’s
path, which just requires to solve the corresponding ODE (1.21) by approximating the flow
field gradients via finite differences. Then, one simply has to select the proper initial self-
propulsion orientation by means of a shooting method. This noiseless optimal solution in
our setup is shown in Figs. 4.13(a,c) as a green curve connecting the initial and final points,
and can be used to readily implement all the policies we have designed for semi-autonomous
navigation.

The results obtained fromournumerical simulations are summarized in the table inFig. 4.13(b).
As expected, CAAP is the strategy performing best in terms ofmean arrival time at the target,
with a significant improvement of ∼ 35% with respect to the trivial SP. Remarkably, AP
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Figure 4.13: Performance comparison among all the policies in the Gaussian random flow. (a) Gaussian random flow map
with the black arrows being the flow direction and the colour gradient indicating its intensity. The green curve represents
Zermelo’s path connecting the starting point r0 = 31ℓ/6êx + 9ℓ/2êy and the target rT = 25ℓ/3êx + 35ℓ/3êy ,
indicated with a with a green and magenta circle, respectively. (b) Table containing the mean arrival time –normalized by
the noiseless optimal time topt– and the Kullback‐Leibler divergenceDKL between the numerical and theoretical arrival
time distributions. The results reported here have been obtained from data averaged over 104 independent trajectories
for each policy. The number in parentheses denotes the uncertainty on the last digit. (c)Heat maps of 103 stochastic paths
obtained from numerical simulations of SP, CP, AAP, and CAAP. The white arrows here indicate the flow field direction.
Note the robustness of boht AAP and CAAP, which can guide the microswimmer along Zermelo’s path (green curve) All
the results shown in (a)‐(c) have been obtained from numerical simulations at γ = 0.6 and Pe = 60.

and AAP are both still able to perform quite well, showing respectively mean arrival times
just∼ 2% and∼ 7% higher than the more involved CAAP.
Moreover, the computed Kullback-Leibler divergenceDKL between the numerical arrival

time distribution and the one predicted by the inverse Gaussian law (4.7) (without fitting
parameters) reveals the robustness of the mapping to a 1D driven Brownianmotion. Indeed,
the distributions of the more sophisticated strategies (CAAP, CAP and AAP) are all still in-
verse Gaussian even in this complex scenario, withDKL ≲ 6 · 10−3. In contrast, the more
basic AP, SP and especially CP do not really follow this law, with the distance between the
numerical and theoretical distributions being one or two orders of magnitude larger.
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To this end, it is instructive to look at the heat maps of stochastic trajectories shown in
Fig. 4.13(c). There, one can indeed see how microswimmers following SP are not well fo-
cused around a one-dimensional path since they are likely to get transiently trapped in some
local flow structures (e.g. when close to vortices), which also explains the poor performance
exhibited by such strategy.

This is in contrast to what happens with the other policies, which manage to avoid such
hurdles and thus save time by exploiting the flow via some local knowledge of Zermelo’s path.
Indeed, the CP heat map in Fig. 4.13(c) reveals that even the compensation of the transverse
flow alonemanages to guide the swimmer quitewell to the target, yielding amean arrival time
comparable with AP and 27% lower than SP. In the proximity of the arrival point, however,
the swimmer followingCPmay lose time as it is not strongly focused around Zermelo’s path.
This in turn affects the large time tail of the arrival time distribution and thus causes the
deviations from the Inverse Gaussian law remarked above.

Conversely, the paths obtained from numerical simulations of CAAP are symmetrically
distributed around Zermelo’s path. This is consistent with the increased performance com-
pared to AAP, whose paths are not well centered around the noiseless optimal trajectory,
albeit being focused around it.

Overall, the protocols performances once again seem to correspond to the amount of in-
formation at their disposal, with the only exception of CP, which is still performing slightly
worse than AP because of the greater dispersion of its trajectories. The question, however,
is whether the complexity of such strategies is always a synonym for efficiency. In the next
section, we will address this point by considering a simple yet instructive setting.

4.4.3 A toy model to explain the protocols hierarchy

In order to simplify the problem of optimal navigation, one can observe that typically Zer-
melo’s path consists of making the most of the flow. This is indeed consistent with what we
observe in both the Taylor-Green flow setup shown in Fig. 4.2(a) and the Gaussian random
flow one in Fig. 4.13(a).

Based on this simple argument, we can thus consider a toy model which is an idealized
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version of the optimal navigation problem in the two-dimensional plane. Namely, we first
neglect the curvature of Zermelo’s path and assume it to be a straight line¶. Then, for it
to be optimal, a minimal choice for the flow is given by f(r) = fx(y)êx + fyêy whose
components are fx(y) = γ cos β(1− |y|)Θ(1− |y|)

fy = γ sin β ,
(4.14)

where we have rescaled space and time so as to non-dimensionalize the dynamics of the sys-
tem (4.1). Here,Θ is the Heaviside step function, while the dynamical regime is fully deter-
mined by three dimensionless parameters. Apart from the already introduced Péclet number
Pe and relative flow amplitude γ, we indeed have the new parameter β. As illustrated in
Fig. 4.14(a), it represents the angle between the flow direction and the x−axis. It can thus
essentially be tuned so as to change the flow orientation, going from being parallel to êx at
β = 0 (no transverse component) to being exactly orthogonal to it at β = π/2 (no parallel
component). Thanks to this flow choice, as long as β ∈ [0, π/2] the x−axis indeed corre-
sponds to the noiseless optimal path an active particle shall followwhen starting from a point
r0 = x0êx and aiming for a target placed in rT = xT êx.

Moreover, thanks to the absence of curvature in this simplified setup the correspondence
between the swimmer’s overdamped dynamics (4.1) and the Fokker-Planck equation (4.9)
introduced above is exact. If we now consider the situation in which the target is far from
the starting point, i.e. xT � x0, we can then assume a time scale separation between the êx

and êy directions and thus safely work under the same assumptions as in Sec. 4.4.1. Now,
by imposing the stationary condition along y in Eq. (4.9), i.e. Jy = 0, the expression of the
probability distributionP further simplifies intoP(x, y, t) = Q(x, t)P (y)

P (y) = N exp
[
Pe
∫ y

0
(ûy(z) + fy) dz

]
,

(4.15)

¶This approximation implicitly implies a length scale separation between the curvature of the optimal path
and the width of the distance distributions of the stochastic trajectories.
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Figure 4.14: Construction of a simplified model for optimal navigation. (a) Illustration of the flow, with the grey arrows
representing its direction and the colour coding its intensity. In this setup, the noiseless optimal path linking any pair of
points on the x−axis corresponds to the x−axis itself, as indicated by the green line. The angle β between the flow and
the x−axis is here set to β = π/4. (b) Plot of the effective drift veff along the noiseless optimal path as a function of
the protocol sensitivity (α or ε, depending on the policy). All four curves here show a clear maximum, thus providing a
well‐defined optimal value of this free parameter. (c)Distributions of the distance from Zermelo’s path obtained by setting
the value of the sensitivity to the one that maximises the effective drift for each strategy. Legend as in (c). Parameters in
(c,d) are set to Pe = 100, γ = 0.7, β = π/4.

with alsoQ(x, t) being a properly normalized distribution ‖. However, in unbounded space
the distributions corresponding to SP and CP cannot be normalized. For this reason, here
we will focus our analysis only on the protocols which confine the particle around Zermelo’s
path, namely AP, AAP, CAP and CAAP.

Plugging now (4.15) into the definition of the probability current J in Eq. (4.9) and aver-
aging over y we finally get

∂tQ(x, t) = −∂x[veffQ(x, t)− Pe−1∂xQ(x, t)] .

We have therefore managed to map our problem to a one-dimensional active Brownian mo-
tion, where we have identified

veff ≡
∫ +∞

−∞
(ûx(y) + fx(y))P (y) dy (4.16)

‖This separation of variables is possible thanks to our flow choice. The transverse flow component fy
in (4.14) is indeed constant, making also the flow-compensating protocols (CP, CAP andCAAP) independent
of x.
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with the policy-dependent effective drift along Zermelo’s path, while in this simple model
the diffusion turns out not to be directly affected by the navigation protocols. Thanks to
this 1D mapping, we can then readily argue that the arrival time distribution is an inverse
Gaussian** (4.7) whose mean is given by 〈t〉 = L/veff, with L being the target distance179.
Consequently, since the mean arrival time 〈t〉 scales as ∼ 1/veff, a navigation strategy shall
perform better the greater its effective drift.

Hence, thanks to this simple toy model we can easily assess the policies performance by
measuring the maximum effective drift (4.16) along Zermelo’s path. Remarkably, as shown
inFig. 4.14(b), there is always awell-defined value of the sensitivity for each strategy thatmaxi-
mizes this quantity. The corresponding distributionsP (y) of the distance from the noiseless
optimal path are reported in Fig. 4.14(c). As expected, while the flow-compensating strate-
gies feature distributionswell-centred around y = 0, AP andAAParemanifestly asymmetric
due to the presence of a transverse flow.

In order to assess their performance in different dynamical regimes, we canfirst look at how
the effective drift veff varies for each protocol with the relative flow intensity γ or its angle
β relative to the noiseless optimal path. The resulting curves are shown in Figs. 4.15(a,b)
and reveal that when the transverse flow is sufficiently strong, i.e. for β and γ large enough,
following the simpler AP may lead to a higher effective drift than AAP.

In order to verify this remark and check for other potential hierarchical inversions among
the navigation protocols, we shall now explore thewholeβ−γ parameter space at fixed Péclet
number (Pe = 100)††. To this end, we have thusmeasured the percentage difference between
the effective drifts of each pair of protocols and selected the cases where there exists a regime
in which a simpler strategy performs better than a more sophisticated one.

The corresponding results obtained are summarized in Fig. 4.15(c). From the colour map
on the left, it clearly emerges that when the transverse flow is strong enough AP indeed per-
forms better thanAAP,with an effective drift up to 16% higher. This effect can be intuitively

**Moreover, this further justifies why were able to observe the same analogy in more general contexts such
as, for e.g., the Taylor-Green flow and the Gaussian random flow.

††Here, we restrict our analysis to the regime inwhich the transverse component of the flow is always smaller
than the self-propulsion of the active particle, so that all protocols manage to confine it around Zermelo’s path.
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Figure 4.15: Performance assessment of the navigation policies in different regimes. Plots of the maximum effective drift
veff for each policy as a function of (a) the relative flow amplitude γ at 2β/π = 0.5, and of (b) the flow angle with respect
to Zermelo’s pathβ at γ = 0.9. Remarkably, in both cases the two curves corresponding to AP and AAP cross each other
at one point: a clear proof of the existence of regimes in which AP may actually perform better than AAP. (c) Colour maps
showing the percentage difference between the effective drifts,∆veff%, for two pairs of strategies, namely AP vs AAP
(left) and AAP vs CAP (right), as functions of the relative flow amplitude γ and the flow angle with respect to Zermelo’s
path β in units of π/2. (d) Same colour maps as in (c) with on top the two curves obtained from the computation of the
β and γ values along Zermelo’s path in the Taylor‐Green flow (green curve, setup and parameters as in Fig. 4.2(a)) and the
Gaussian random flow (cyan curve, see Fig. 4.13(a) as a reference). The red curves in (c,d) denote the points where the
difference between the strategies is zero. All data in (a‐d) are obtained at Pe = 100.

understood from the distance distributions P (y) shown in Fig. 4.14(c). There, one can in
fact see how the maximum of the AAP distribution gets shifted due to the transverse flow,
while AP manages to keep it in the centre. As a result, in the presence of a strong enough
transverse flow, the active particle will be better confined around Zermelo’s path if it follows
the latter strategy rather than AAP, thus leading to a larger effective drift.

On the contrary, when the transverse flow component is very small, another hierarchical
inversion among the protocols may occur: in such a case, AAP is in fact almost equivalent
to CAAP and could thus perform better than CAP. However, as shown in the colour map

93



Chapter 4. Optimal navigation in complex and noisy environments

Figure 4.16: Colour maps representing the difference in hitting probability∆πh obtained from two pairs of strategies by
selecting the sensitivity which maximizes the effective drift. Namely, here are shown AP vs AAP (left) and AAP vs CAP
(right), as functions of the relative flow amplitude γ and the flow angle with respect to Zermelo’s path β in units of π/2.
The red curves denote the points where the difference between the strategies is zero. Results here obtained atPe = 100
and with the target size set to δ = 0.05ℓ.

on the right in Fig. 4.15(c), the percentage difference between the respective effective drifts is
quite marginal (up to 0.4%) such that we cannot actually claim an inversion in the hierarchy
in this case as it might even depend on the choice of the flow.

At this point, it is worth discussing which regimes are relevant in actual navigation scenar-
ios. To this end, we have therefore computed the value of γ and β along Zermelo’s path in
both theTaylor-Green flow setup shown in Fig. 4.2(a) and theGaussian randomflowone dis-
played in Fig. 4.13(a). The corresponding curves in the β−γ plane are shown in Fig. 4.15(d).
It turns out that the flow in the Taylor-Green setup (green curve) does not exhibit much vari-
ation in terms of orientation along Zermelo’s path, with 0.5 ≲ β ≲ 0.8. In contrast, in the
random flow case (cyan curve) a much larger region of the parameter space is visited, as one
might expect. In either case, however, these curves largely explore just the portion of space
in which there is no inversion in the hierarchy of protocols. This is indeed consistent with
the performance already measured for each policy via our numerical simulations in the same
setups (see results obtained in Sec. 4.2 and Sec. 4.4.2).

Lastly, to complete the performance assessment of our navigation policies, we shall also
consider their ability to keep the active particle sufficiently close to Zermelo’s path as it is
crucial for it to eventually hit a finite-size target. In this context, such a measure is provided
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by

πh(δ) =

∫ δ

−δ

P (y)dy , (4.17)

which is the probability of the active particle hitting a target of size δ located on the x−axis.
Wehave thus computed this quantity for eachpolicy from thedistributions obtainedwith the
value of the sensitivitymaximizing the effective drift. In Fig. 4.16 are shown two colourmaps
showing the difference between the hitting probabilities ∆πh of the same pairs of policies
studied above. Remarkably, AP here shows a significantly better performance than AAP in
almost the entire parameter space. In contrast, the AAP hitting probability is almost always
smaller than that of CAP, showing only a marginal improvement (up to∆πh = 0.04) when
the transverse flow is small. This is actually consistent with the distance distributions P (y)
displayed in Fig. 4.14(c): the AAP one gets indeed shifted due to the presence of a transverse
flow, while both theAP andCAPmanage to keep themaximumof the distribution at y = 0.

The results obtained here thus confirm and strengthen the general picture already sug-
gested by the study of the effective drift, i.e. that navigation efficiency is often but not always
directly related to the protocol complexity.

4.5 Summary and discussion

Our analysis has shown how the challenging problem of optimal navigation in the presence
of noise can be boiled down to a few simple principles. These essentially aim to stabilize the
swimmer motion around the noiseless optimal trajectory, i.e. Zermelo’s path.

Starting from the observation of the heat maps of stochastic trajectories obtained with the
Optimal Policy (OP) from SOC theory, we indeed first realized how valuable Zermelo’s path
can be in guiding a swimmer towards the desired target. Based on this remark, we have there-
fore designed a new class of policies that allow for semi-autonomous optimal navigation of
microswimmers in complex and noisy environments. Indeed, the implementation of these
policies can be done autonomously by the swimmer using some knowledge of its local envi-
ronment, such as its relative position with respect to Zermelo’s path or the local flow, and
then applying simple alignment rules based on such information.
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In a first stage, we have focused our attention on strategies that don’t make any use of
the local flow, namely the Adaptive Aligning Policy (AAP), for which the self-propulsion
orientation varies with the distance to Zermelo’s path, and the simpler Aligning Policy (AP),
inwhich the swimmer keeps a fixed angle with respect to such path. Despite relying onmuch
simpler principles, they both show performances relatively close to those obtained with OP.

We have then illustrated a way to further improve these results by designing policies based
on the ability of some swimmers to adapt their swimming direction according to the local
flow field70,172. More specifically, by including the compensation for the transverse com-
ponent of the flow with respect to Zermelo’s path we found an additional increase in the
efficiency of our protocols, with the Compensating Adaptive Aligning Policy (a direct exten-
sion of AAP) showing performances and heat maps of the stochastic paths almost identical
to those obtained from simulations of OP.

In order to test the robustness of these protocols, we have then implemented them in
a Gaussian random flow. Remarkably, the newly designed strategies show performances
very close to optimality even in such a complex environment, with arrival time distributions
matching an inverse Gaussian, i.e. the First Passage Time distribution of a one-dimensional
active Brownian motion. Our results thus suggest that the particle confinement around Zer-
melo’s path due to the protocols actually reduces the problem to an effective 1Dmotion.

Thanks to this insight, we then introduced a toy model for the problem of optimal navi-
gation so as to carry out a more systematic analysis of the protocols performance. In this way
we uncovered some dynamic regimes in which, surprisingly enough, the efficiency level of a
policy does not correspond to its degree of complexity. In fact, we have shown that, in the
presence of a flow with a strong transverse component with respect to Zermelo’s path, the
Aligning Policymay perform better than theAdaptive Aligning Policy, despite relying on less
information.

Moreover, the introduced navigation strategies have the additional advantage of being eas-
ily applicable to the problem of optimal navigation on curved surfaces. In an illustrative ex-
ample on spherical geometry, the semi-autonomous navigation strategies were once again
found to perform significantly better than the trivial one consisting of pointing straight to
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the target.
Overall, our analysis shows that the main factor determining the differences among the

policies performance is the presence of a transverse flow, such that the best performing strate-
gies are those that stabilize best the swimmer around Zermelo’s path. Then, it is no sur-
prise that the most efficient policies were also found to be the most robust to environmental
changes, such as stronger translational diffusion and the introduction of rotational noise.

As a final remark, we note that the constraint of imposing a constant sensitivity (repre-
sented by the parameters α and ε) throughout the active particle motion might restrict the
performances of thepolicies. Whilemaking theseparameters explicitly spacedependentwould
break the semi-autonomous nature of the policies, determining the functions α(r) or ε(r)
is certainly a simpler problem than calculating the full optimal control map of the swimmer
orientation.
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It can scarcely be denied that the supreme goal of all theory
is to make the irreducible basic elements as simple and as
few as possible without having to surrender the adequate
representation of a single datum of experience.

Albert Einstein

5
Towards a more realistic description of

optimal navigation

So far, the problem of optimal navigation has essentially been a synonym for minimization
of the time it takes to explore the surroundings or to reach a target. However, when thinking
in practical terms about the efficiency of a microswimmer’s motion, it is natural to ask how
much energy it consumes to accomplish a given task139,185.

Using tools from OC theory, we therefore aim here to extend Zermelo’s classical solution
and determine how the optimal strategy changes when considering more complex cost func-
tions, i.e. which also include the energetic costs associated with navigation. This will be
achieved by relaxing some assumptions of our model.

Firstly, we will study how the optimal navigation policy is modified when allowing the
swimmer to control its own self-propulsion speed as well as its heading direction. On the
one hand, lifting the constraint on the speed indeed naturally introduces a possible trade-off
between theminimization of translational drag dissipation and time. On the other hand, tun-
ing its own self-propulsion may help the swimmer to efficiently explore strong flow regions
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and potentially reduce the chaotic character of optimal trajectories, as already discussed in
Ch. 3.

Furthermore, in our description of the problemwehave so far only considered the effect of
the external flow in the translational dynamics of the swimmer, neglecting possible torques
induced by its presence. This has been possible by approximating the active particle to a
point-like object. However, in practice we aim to describe entities, albeit microscopic, with
a well-defined size and shape.

Therefore, in order tomove towards amore realistic description ofmicroswimmers naviga-
tion, we here introduce this ingredient into our model. Specifically, to investigate the direct
effect that shape has on motion efficiency, we consider microswimmers moving at constant
speed without any active control over their motion, hence referred to as dumb swimmers.
Starting from the similarities between the angular dynamics obtained from Zermelo’s solu-
tion and the hydrodynamic torque exerted on an spheroidal bodywith a disk-like shape, we re-
veal the existence of a natural trade-off between energy dissipation and time depending solely
on the swimmer shape. By studying the exemplary case of self-propelling spheroids in a shear
flow, we indeed show it is always possible to identify an optimal shapeminimizing the overall
cost.

As a final step, we then make these swimmers smart by allowing them to actively steer.
However, in doing so they inevitably consume more energy, thus introducing an extra cost
in the navigation problem. In this context, we thus determine a new set of equations to be
solved in order to find the theoretically optimal strategy based on OC theory. We then study
its performance while varying the swimmer shape and show the relative variation in the to-
tal navigation cost with respect to the dumb swimming case. Finally, we also highlight the
substantial differences between such smart steering strategy and Zermelo’s protocol imple-
mented on swimmers with a well-defined shape.

5.1 Optimal navigation of an active particle with varying speed

As a first extension of Zermelo’s optimal navigation problem introduced in Sec. 1.3, let us
consider an overdamped active particle which can tune both its own self-propulsion speed
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and direction while moving in the presence of a stationary flow. Accordingly, the equations
governing its motion are

ṙ = v + f(r) , (5.1)

where v = vû with û being the particle orientation. Since we are now assuming to have
also full control over the self-propulsion speed v, we can extend the navigation problem by
aiming at minimizing not only the time of arrival at a target, but also the energy required to
reach it*.

We shall therefore change our formulationof the optimal navigationproblemand consider
the following cost function:

Cth =
∫ tf

0

(
γv2

2
+ β

)
dt (5.2)

where γ/2 stands for the translational drag coefficient of the active particle. This cost repre-
sents the sum of two contributions, namely the total energy consumed by the particle and its
travel time, with the free parameter β acting as a weight between these two quantities. More-
over, such parameter has the dimension of a power and can in fact be loosely interpreted as
the acceptable power supplied by the particle to navigate. In any case, this allows us to define
the system Hamiltonian (1.9), which takes the form: H = β + γv2/2 + p · [v + f(r)],
where the state variable is simply the particle position r and the control corresponds to the
self-propulsion vectorv. In order tominimize the cost (5.2), we shall now apply Pontryagin’s
principle (1.10) fromOC theory:

ṗi = −pj∂ifj
∂H
∂vi

= 0 =⇒ vi = −pi/γ

H = β + γv2/2 + p · [v + f(r)] = 0 ,

(5.3)

where∂i ≡ ∂ri and the last condition, valid at any time since theODE system is autonomous,

*Besides, if in this context we only considered time minimization, we would obtain the trivial solution in
which the particle moves in a straight line to the target with infinite speed.
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determines unambiguously the final time tf. We can then use the second equation in (5.3) to
replace p by v in the first one and straightforwardly obtain the dynamical equation for our
control variable

v̇i = −vj∂ifj , (5.4)

which should be solved together with the equation of motion (5.1) and the boundary condi-
tions r(0) = r0, r(tf) = rT, so as to find the trajectories that minimize the total cost (5.2).

Interestingly, since v̇i = v̇ûi + v ˙̂ui we can write the equations for the optimal control of
the self-propulsion speed and steering separatelyv̇ = −v ûTFû

˙̂u = Wû− Sû+ (ûTSû)û ,
(5.5)

where we have decomposed the strain rate tensor F of the external flow field f –with com-
ponents Fij = ∂jfi– into its symmetric and anti-symmetric parts as F = W+ S, with
Sij = (∂jfi+∂ifj)/2being the rate of stretching and shearingwhileWij = (∂jfi−∂ifj)/2
is the rate of rotation. As a first insight from this new navigation strategy, we could note that
the right hand side of the first equation can also be written as −vû · ∇(f · û). Thus, if
f · û > 0, then the speed will increase (respectively decrease) if û points down (respectively
up) the gradient. On the other hand, if f · û < 0, we naturally get the opposite and the
particle will accelerate until it overcomes a barrier. It is also worth noting that the resulting
orientation dynamics in (5.5) is independent of the particle’s speed and, even more remark-
ably, since the expression of the active steering ˙̂u corresponds to Zermelo’s solution (1.21)
in any dimension, we find that the optimal steering policy is not affected by allowing the
self-propulsion speed to vary.

5.1.1 Analytical solution in a shear flow

Wenowwant to show the implementation of this smart throttling policy in a simple scenario.
To this end, we can consider the same setup used to illustrate Zermelo’s protocol in Sec. 1.3,
in which motion takes place in a 2D shear flow f(r) = κy x̂, with κ > 0 being the shear
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rate. The active particle starts from the origin and has to reach another point rT at distance ℓ
along the x−axis, i.e. rT = ℓ x̂with ℓ > 0, while minimizing the total cost (5.2). According
to the solution we have obtained fromOC theory (5.4), we should solve the following set of
ordinary differential equations 

ẋ = vx + y

ẏ = vy

v̇x = 0

v̇y = −vx .

(5.6)

where we have rescaled space and time as r → ℓr and t → t/κ, such that the velocity is in
units of κℓ and we will deal only with non-dimensional quantities. We can then analytically
solve this system and get the parametric equations for the optimal trajectory:

x(t) = −vx0
6
t3 + vy0

2
t2 + (y0 + vx0)t+ x0

y(t) = −vx0
2
t2 + vy0t+ y0

vx(t) = vx0

vy(t) = −vx0t+ vy0 .

(5.7)

where vx0 and vy0 are the initial components of the particle self-propulsion and the vector
r0 = x0x̂ + y0ŷ denotes its initial position. Imposing now the boundary conditions men-
tioned above, we get the expressions of the initial velocity components as function of the
unknown arrival time tf: vx0(tf) =

12
12tf+t3f

vy0(tf) =
6

12+t2f
.

(5.8)

Furthermore, the explicit expression for the total energy dissipated by the swimmer (in units
of γκℓ2) can also be easily obtained from Eqs. (5.7-5.8) as function of tf:

E =
1

2

∫ tf

0

v2 dt =
6

12tf + t3f
. (5.9)
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Figure 5.1: Smart throttling in a shear flow. (a) Three examples of optimal trajectories for different values of ρ. The goal
is to reach the target rT = x̂ (magenta circle) starting from the origin (green circle) while minimizing the total cost Cth.
Large values of this parameter correspond to almost straight paths (see, for e.g., orange curve here for ρ = 100), while
small values of ρ result in more curved shapes since the particle makes greater use of the flow. The black arrows here
indicate the flow direction, while the colour gradient stands for its intensity. (b) Plot as function of ρ of the energetic
(orange curve) and time costs (blue curve) that make up the total cost function Cth (green curve) that is minimized by
the smart throttling policy. Note the two predicted scaling exponents∼ 1/2 (red dashing) and ∼ 3/4 (black dashing)
respectively for large and small values of ρ. (c) Curve showing the energy dissipation E as function of the arrival time at
the target tf. The optimal combination of the two costs depends on ρ, such that large values of this parameter would
correspond to the upper‐left branch of this curve and vice versa. The two scaling exponents∼ −1 (black dashing) and
∼ −3 (red dashing) here simply reflect the analytical expression of the energy (5.9) derived in this setup.

The resulting trajectorieswill thereforeminimize the total cost† given byCth = E+ρtf, where
we have defined a new dimensionless parameter that determines the whole system dynamics,
namely ρ ≡ β

γ(κℓ)2
.

In order to close the system of equations and solve the problem, we just have to determine
the travel time tf. This can be achieved using the conditionH = 0 at time t = 0. In this case,
such expression greatly simplifies since the starting position r0 of the particle is a stationary
point of the force field and therefore reads

H
γ(κℓ)2

= −v20/2 + ρ = 0 =⇒ v2x0(tf) + v2y0(tf) = 2ρ . (5.10)

We have thus obtained an implicit equation to be solved for tf which, together with Eqs. (5.7-
5.9), makes up the analytical solution of the problem.

The optimal paths ultimately depend just on the choice of ρ, which basically stands for
the relative weight between energy consumption and travel time, such that the greater ρ, the

†Here written in units of γκℓ2.
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greater the cost of time and vice versa. This can be readily understood by looking at the tra-
jectories shown in Fig. 5.1(a) corresponding at three different values of ρ. Their shape goes
from being almost straight at large ρ to amore andmore curved one as ρ decreases, since then
the particle is trying to make a greater use of the flow in order to consume less energy at the
expense of taking longer to reach the target‡.

More specifically, we can distinguish two different regimes while varying ρ. When ρ� 1,
fromEqs. (5.8,5.10)wemayobserve that the vertical component of the initial velocityvy0will
dominate, such that the arrival time tf will scale as ρ−1/4. This regime essentially amounts to
large tf, which is consistent with our original guess: for small values of ρ the particle will
indeed try to preferably minimize the energy consumption by exploiting more the flow. As
a result, by also considering Eq. (5.9), we can predict that both the energy E and the time
contribution ρtf to the total cost Cth will scale as ρ3/4 in this regime.

Conversely, when ρ � 1, it is clear from Eqs. (5.8,5.10) that the horizontal component
of the velocity vx0 will prevail instead, and in this case the arrival time will scale as ρ−1/2.
This tells us that, indeed, when ρ becomes large the active particle will favour motion in the
horizontal direction, therefore pointing more and more straight to the target. In this regime,
using the same dimensional argument as above, it can be easily shown that both components
E and ρtf of the total cost Cth scale as ρ1/2.
These two scaling regimes can be clearly observed in Fig. 5.1(b). There, we have plotted

the total navigation cost Cth as function of ρ, showing separately also both the energetic and
time costs which, despite featuring the same trend, differ in magnitude in the two regimes.
This is especially noticeable at small values of ρ where it is the energy component E that is
minimized the most.

We can achieve the same kind of insight by looking at the plot of the energy consumption
E as function of the travel time tf shown in Fig. 5.1(c). In this representation, the optimal
balance between energy and time is a point on this curve that depends on the choice of ρ.
Namely, for ρ � 1 such point will move to the left, with the active particle primarily min-

‡Moreover, this is consistent with the physical interpretation of ρ that we can gain from Eq. (5.10). It
indeed corresponds to the square of the initial speed of the active particle (in units of κℓ), such that for small ρ
it will make more use of the flow and vice versa.
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imizing the arrival time, and the energy thus scaling as E ∼ v2tf ∼ t−1
f . On the contrary,

for ρ � 1 the optimal point will shift to the right along this curve, such that the particle
will take longer to reach the target while saving energy more efficiently. This is reflected in
the observed scaling E ∼ t−3

f , which indeed points out that the self-propulsion speed is no
longer inversely proportional to the travel time.

Allowing for smart throttling, we have therefore gained a first insight into a more general
version of the optimal navigation problem, where we have considered the energetic cost asso-
ciated with active motion. However, in our discussion of the problem so far, we have treated
the drag coefficient γ as a parameter when, in fact, it is set by the shape of the particle. Mov-
ing towards a more realistic description of optimal navigation for microswimmers, we shall
now therefore take into account agents with a well-defined size and shape, which also implies
to consider the effect of the flow-induced torques on the swimmer dynamics. Since these can
have an effect analogous to Zermelo’s steering policy, one can observe non-trivial behaviours
even for microswimmers that do not apply any active control over their motion.

5.2 Smart swimming by dumb swimmers: the effect of shape

5.2.1 Solid bodies in a fluid flow at lowReynolds number

In theoverdamped limit, theorientationdynamics of axisymmetricmicroswimmers immersed
in a fluid flow can be described by186

˙̂u = Wû+ α[Sû− (ûTSû)û] ≡ ωf (r, û) , (5.11)

whereW and S are flow rotation and strain tensors, respectively. Thanks to symmetry argu-
ments, the angular dynamics of these bodies of revolution depends just on a single parameter
α, known as Bretherton’s constant, which is intrinsically related to the swimmers shape.
An effective yet simple way to study the direct effect of shape on navigation efficiency is to

consider spheroidal particles187, whose Bretherton’s constant α is known:

α =
λ2 − 1

λ2 + 1
, (5.12)

105



Chapter 5. Towards a more realistic description of optimal navigation

where the particle’s aspect ratio is here indicated asλ ≡ b/a, with b and a being the semi-axes
of the spheroid along the self-propulsion direction and the equator, respectively. As a result,
negative values of the shape parameter α translate into particles with a > b, thus more flat-
tened at the poles and known as oblate spheroids, positive values of α instead correspond to
more elongated particles known as prolate spheroids, whileα = 0 simply represents a sphere.
In this context, such parameter can only assume values in the interval (−1;+1), with the
lower and upper bounds respectively achieved in the limitsλ→ 0 (flat disk) andλ→ ∞ (in-
finite needle-like particle). Moreover, when specifically discussing the motion of spheroidal
bodies in a flow, their angular dynamics (5.11) is actually known as Jeffery’s equation188,189.

Remarkably, Zermelo’s solution for the orientation dynamics in any dimension, corre-
sponding to the secondequation in system(5.5), is equal to the Jeffery angular velocityωf (r, û)

experienced by a spheroid with shape parameter α = −1, i.e. by a flat disk self-propelling
along its own axis of symmetry (in the case of spheroids). Thanks to this exact correspon-
dence, we have therefore found out that a microswimmer with a disk-like shape moving in
the presence of any stationary flow will always autonomously follow the time-optimal path
without having to actively steer.

However, we shall also take into account that the shape of a swimmer directly impacts the
energy it dissipates during its motion. This information is essentially encoded in both the
translational and rotational drag coefficients, respectively γt and γr, of the swimmer§, whose
values also depend on the boundary conditions on its surface.

In this regard, one could consider the so-called no-slip boundary conditions for which the
fluid velocity on the surface is exactly zero. This is indeed the case for microswimmers being
propelled by external forces, e.g. electromagnetic fields134,135, and the corresponding drag
coefficients γns can be computed exactly for spheroids190,191. In the opposite limit, we would
instead have a body whose shear stress at the boundary is zero and the fluid velocity profile
is therefore unaltered by the surface. These boundary conditions are called perfect-slip and
in such case it is still possible to compute the drag coefficients γps for spheroidal swimmers

§There are actually two pairs of drag coefficients for spheroids (for translations and rotations along and
transverse to the axis of symmetry). However, since here the swimmer is propelling along its axis of symmetry
and is assumed to not rotate around it, there are only two coefficients that enter the total drag dissipation.
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using some analytical approximations192.
However, the real boundary conditions most often lie in between the two limiting cases

just described. Indeed, a common self-propulsion mechanism of biological microorganisms
is the coordinate beatingmotionof cilia193,194, which effectively generate a slip velocity profile
along the surface. Moreover, artificial active particles, e.g. Janus particles47,48, rely on self-
diffusiophoresis and are thus intrinsically driven by a slip velocity.

Hence, to keep our discussion as general as possible, here we quantify the drag power dissi-
pated by amicroswimmer based on the recent work byNasouri et al.195, in which the authors
define a lower bound for the energy dissipated by a surface-driven swimmer of any shape. Re-
markably, the resulting drag coefficients γi (with i = t or r) are a simple combination of the
ones obtained with no-slip γnsi and perfect-slip γpsi boundary conditions, namely:

γi =
γnsiγpsi
γnsi − γpsi

, (5.13)

which is the expression we are going to use throughout this chapter to compute the drag
coefficients of spheroidal swimmers. Here, we will specifically make use of the no-slip γnsi
and perfect-slip γpsi drag coefficients given in Ref.190 and Ref.192, respectively.
Before discussingmore in details their dependence on the spheroid aspect ratio, it is worth

remarking that such coefficients are proportional¶ to the particle size s. More specifically, the
translational drag coefficient γt depends linearly on s, while γr ∼ s3, so that for small swim-
mers we can expect the translational dissipation to dominate the overall cost of navigation.
Nevertheless, in the following we will consider a regime in which the swimmer size is not too
small so that the cost of active steering can potentially be comparable with the translational
drag.

Finally, we can quantitatively show in Fig. 5.2 the relation between the drag coefficients
of spheroidal particles and their shape. As just discussed, the translational drag coefficient
appears to be typically orders of magnitude larger than the corresponding rotational one,
due to the different size prefactor. However, thanks to our choice of the swimmer size, the

¶They are also proportional to the particle mobility. However, hereafter this is set equal to one without
loss of generality.
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Figure 5.2: Translational drag coefficient γt (blue circles) and rotational drag coefficient γr (orange triangles) for spheroids
obtained from Eq. (5.13) as function of the shape parameter α. Here, the volume of the particle is kept constant and
equal to V = 4π

3 s3, with s = 0.1.

two become comparable for needle-like swimmers (α → 1), possibly leading to interesting
trade-offs in the shape when an active steering is in place (see results in Sec. 5.3). Moreover,
γr as function of the shape parameter α does not show a monotonic trend, being maximum
for the two extreme cases of a disk- or needle-like particle, such that more spherical shapes
turn out to be the most favourable in terms of rotational cost. Indeed, a perfectly spherical
body (α = 0) has null cost (γr = 0) associated to active re-orientation.

Furthermore, on the one hand, by simply looking at the translational drag coefficient γt,
a disk-like microswimmer (α → −1) turns out to dissipate a huge amount of energy when
compared tomore elongated shapes (α → 1), which can save up to∼ 103 timesmore (for the
same amount of time and same speed). On the other hand, as a result of the aforementioned
analogy with Zermelo’s solution, a needle-like particle that does not actively steer would in-
evitably take longer to reach any target, such that there can be regimes in which the optimal
shape is somewhere in between a disk and a needle. This emergent trade-offmay thus select a
non-trivial optimal shape even for microswimmers moving in a fluid flow that do not apply
any active control over their own dynamics.
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5.2.2 Spheroids efficiency in a shear flow

We now aim to study more in details the motion efficiency of spheroidal microswimmers.
More specifically, we shall here go back to the case in which the self-propulsion speed is fixed
and then compare the overall cost to reach a specific target among particles with different
aspect ratios. In this way, the swimmer is completely subject to the influence of the external
flow and we can thus focus on the effect of shape alone.

In theusual point-to-pointnavigation setup, theperformanceof a swimmer, self-propelling
at constant speed v0, is measured in terms of the total cost

Cp =
∫ tp

0

[
γtv

2
0 + β

]
dt = tp

[
γtv

2
0 + β

]
(5.14)

which is analogous to the cost function (5.2) introduced above to quantify the smart throt-
tling particle efficiency. However, here both the final time‖ tp and the translational drag coef-
ficient γt are fully determined by the shape parameterα. Moreover, here we also kept the free
parameter β in order to conceptually distinguish between the two possible contributions to
the total cost, namely energy dissipation and arrival time at the target.

In order to systematically study the impact of shape on the navigation efficiency, let us
consider the two-dimensional shear flow setup already introduced in the previous section.
The non-dimensionalized equations of motion now read

ẋ = ζ cos θ + y

ẏ = ζ sin θ

θ̇ = −1
2
(1− α cos 2θ) ,

(5.15)

with boundary conditions r(0) = 0 and r(tp) = x̂, andwhere the dimensionless parameter
ζ ≡ v0/(κℓ) determines the system dynamics.

In Fig. 5.3(a), we show three paths corresponding to microswimmers of different shapes
‖Indicated with tp because it is the arrival time at the target for passive rotation, i.e. for self-propelled

particleswith a given shapewhose orientation dynamics is entirely subject to the hydrodynamic torque (absence
of active steering).
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in such setup. Already from this qualitative picture a key difference emerges: needle-like
swimmerswill tend travel along an almost straight line to the target (orange curve), while disk-
like agents will make a greater use of the flow by moving further along the vertical direction,
resulting in shorter travel times (green curve).

This qualitative insight can be easily verified by looking at the steady-state orientation θs
of an active spheroid, namely imposing θ̇ = 0 in Eq. (5.15). For α = −1, we in fact find
that such swimmer will tend to orient itself orthogonal to the flow (θs = ±π

2
), while a mi-

croswimmer with shape parameter α = 1will tend to align with it (θs = 0, π). For interme-
diate values ofα, however, there is no stationary solution: in such cases, instead, the particles
will perform a periodic tumbling motion, known as Jeffery orbit 188.

More quantitatively, we can thenmeasure how the arrival times tp at the target are affected
by the shape of the swimmer by solving numerically** the corresponding ODE system (5.15)
with the proper boundary conditions while varying α. Throughout our analysis, we will
always compare swimmerswith the same volume, which hereafter will be taken equal toV =
4π
3
s3, with s = 0.1ℓ.

The results obtained for three different values of ζ are reported in Fig. 5.3(b). As analyti-
cally predicted, the arrival time is always minimal at α = −1, and the relative improvement
with respect to a needle-like swimmer (α → 1) becomesmore andmore significant as ζ → 0,
going up to ' 40% for ζ = 0.1. The differences among agents of different shapes are en-
hanced when ζ � 1 because it corresponds to the regime where their motion is overall more
affected by the presence of the external flow, for e.g. due to a small self-propulsion speed v0
or strong shear rate κ.

However, as shown in Fig. 5.2, one observes the opposite trend when looking at the val-
ues of the translational drag coefficients γt for spheroids as function of α. Therefore, if we
consider the overall navigation cost Cp in Eq. (5.14), we have a clear trade-off coming from
their shape. In order to illustrate this, we have therefore selected the optimal shape parameter
αopt minimizing the total cost Cp while varying the free parameter β representing the relative
weight between energy consumption and travel time.

**Exact solutions of this system are only available for α = [−1, 0, 1].
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Figure 5.3: Performance assessment of spheroidal swimmers in a shear flow. (a) Sample trajectories of three spheroids
with different shapes: flat disk (green), sphere (red) and needle (orange). The latter points almost straight to the target
(magenta circle) and does not make use of the flow, thus taking longer to reach it compared to the self‐propelling disk.
Here, the colour gradient represents the flow intensity with the black arrows indicating its direction. (b) Arrival times tp at
the target as function of the shape parameterα normalized with the time taken by a flat disk (corresponding to Zermelo’s
solution) for three different values of ζ . Note the relative increase in the arrival time for values ofα > 0, which gets more
pronounced as ζ → 0. (c) Optimal value of the shape parameter α varying β, i.e. the relative weight between energy
and time in the total cost Cp. Below a threshold the infinitely long needle is the most efficient shape (β ≲ 0.02, shaded
yellow area), while above β ≳ 1400 (shaded blue area) the optimal shape corresponds to a thin torus (r/R = 0.1).
Data shown in (a) and (c) have been obtained at ζ = 0.1.

The corresponding results obtained at ζ = 0.1 are shown in Fig. 5.3(c). On the one hand,
for small values of β, the particle is allowed to use little energy to navigate, such that the
optimal shape is closer to a needle-like swimmer. On the other hand, as β is increased the
optimal α shifts towards negative values††, getting closer and closer to being a flat disk‡‡.

However, there is a way to work around the strong inefficiency issue of a flat disk. We can
indeed consider a toroidal object like the one shown in Fig. 2.5. Remarkably, a microswim-
mer shaped like a thin torus, i.e. when r/R � 1 in this representation, will undergo the same
Jeffery rotation as a flat disk196 (thus reaching the target in the shortest time) while featuring
a significantly smaller translational drag. To compare quantitatively their performance, we
have therefore computed the thin torus drag coefficient for active swimming in the axial di-
rection by locally approximating it to a cylinder. The solution reads

γt,torus = 16π2R , (5.16)
††Note that we do not expect the monotonic trends observed in Figs. 5.3(b,c) to hold in any dynamical

regime. For some values of ζ , as a direct effect of Jeffery orbits there may in fact be swimmers with shape param-
eter−1 < α < 1 that reach the target later than the needle.

‡‡Here, β spans almost 5 decades is also due to the fact that the ratio between the translational drag coeffi-
cients of a flat disk and a needle is of the order∼ 103.
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where the particle mobility is set to unity and the accuracy of our approximation was nu-
merically checked by means of a Boundary Element Method (BEM)197. We have then deter-
mined the corresponding energy dissipation considering a torus with the same volume as the
spheroid and setting r/R = 0.1. As a result, for values of β large enough this alternative
shape turns out to be the most efficient (see shaded blue area in Fig. 5.3(c)).

Conversely, below a certain threshold (β ≲ 0.02 for the selected value of ζ) the infinitely
long needle is the most efficient shape (see shaded yellow area in Fig. 5.3(c)). However, we
can use some simple scaling arguments to show that there exists a small enough value of ζ
for which α = 1 is no longer optimal even for β = 0. On the one hand, since it follows a
straight path to the target, the arrival time for the infinite needle scales as tp(α = 1) ∼ ζ−1.
On the other hand, when ζ → 0 we can readily see from our exact solution at α = −1 (see
Eqs. (1.24-1.25)) that the arrival time scales as tp(α = −1) ∼ ζ−1/2, thus diverging more
slowly than the one for a needle. From Eq. (5.14), this readily implies that the cost vanishes
faster for α = −1 than α = 1 in the small ζ limit. Hence, there exists a dynamical regime
at finite ζ in which the flat disk, or equivalently the thin torus, is energetically more efficient
than any other spheroid.

Overall, we can also get rid of the specific target and achieve a similar insight into the navi-
gation efficiency of spheroidal swimmers by looking at the isochrones. An example is shown
in Fig. 5.4(a) for three different shapes: disk-like swimmers (α = −0.96 here) are indeed
the ones exploring faster the surrounding space, with the respective isochrone (blue curve)
always enclosing the ones corresponding to swimmers of other shapes.

As introduced in Ch. 3, the isochrones area, hereafter indicated with At, provides a mea-
sure of the ability of a swimmer to efficiently explore the surroundings. We have therefore
computed this quantity for all values of−1 ≤ α ≤ 1 as function of time. The correspond-
ing results are summarized in the color map shown in Fig. 5.4(b), where the colour codes the
isochrone area normalized with its value for α = −1, which is optimal by design. Here, we
can distinguish two regimes. At small times (t ≲ 8) the area decreases monotonously with
increasing α, such that the needle is the shape performing the worst. However, at longer
times, some local minima appear for intermediate values of α. This is most likely due to the
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Figure 5.4: Isochrones and isoenergies analysis for spheroids in a shear flow. (a) Exemplary isochrones in a shear flow at
time t = 7 (in units of the shear rate κ) for spheroids of three different shapes: needle‐like (magenta), spherical (green)
and disk‐like (blue). In this panel the color gradient shows for the intensity of the external flow while the black arrows
indicate its direction. (b) Color map of the isochrones area as functions of both time and α. At each time, the area values
have been divided by the area of the isochrone corresponding to α = −1 (optimal by design). (c) Isoenergies area as
function of the shape parameterα. All points are normalizedwith the area of the isoenergy corresponding toα = −0.96.
The triangle here is the isoenergy area for a thin torus with r/R = 0.1 and same volume as the spheroids. Here, the
total amount of energy available to each swimmer is equal to the one dissipated by a spheroid withα = −0.96 in a time
t = 0.1. All data shown in (a)‐(c) have been obtained setting ζ = 0.1.

periodic tumbling experienced by the spheroids. Namely, this is essentially telling us that if
we wait long enough, we will start see the effect of Jeffery’s orbits188.

Lastly, we can use the same idea and compute the area of the so-called isoenergies, i.e.
curves essentially delimiting the potentially explored region with a given amount of energy.
This quantity, which hereafter we will indicate withAE , indeed provides an alternative mea-
sure of the relative difference amongmicroswimmers of different shapes in terms of energetic
efficiency. Therefore, setting β = 0 in (5.14) we can fix the amount of energy the swimmers
can dissipate during their motion and then compute the area they have covered. The corre-
sponding results are shown in Fig. 5.4(c). Not surprisingly, the more elongated particles are
those that, given the same amount of energy available, are better at exploring the surround-
ings, covering an area several orders of magnitude larger than that of a disk. Even considering
a thin torus, despite improving the energy efficiency of a disk, is not enough to compete with
prolate spheroids (see the violet triangle in the plot). However, due to the non-linear effects of
Jeffery’s orbits already observed in the isochrones analysis, the increasing trend of this curve
maynot stay the same for any value of the energy, such that the flat disk and the thin torusmay
improve their efficiency with respect to the other shapes. Moreover, since

√
AE ∼ ℓ ∼ ζ−1,

the large energy (or equivalently long times) limit is equivalent to ζ → 0. As discussed above,
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in this regime the flat disk eventually becomes energeticallymore favourable, such thatwe can
expect the corresponding isoenergy area to become the largest§§.

All in all, our study of navigation efficiency of a swimmer reveals a natural trade-off be-
tween energy consumption and time that emerges as a straightforward effect of accounting
for the microswimmer’s shape.

In this setup the active agents do not have any control over their dynamics and have been
therefore referred to as dumb swimmers. However, in this way the overall efficiency is fully
determined a priori by the flow configuration and the swimmer shape, such that there is no
room for further optimization. To this end, we shall now take our analysis a step further and
see howwe can improve the performance of a swimmer with a well-defined shape by making
it smart, namely by allowing it to actively steer during the navigation.

5.3 Navigation by smart swimmers: the (energetic) cost of steering

Let us now consider an overdamped self-propelled spheroidal particle moving at constant
speed v0 in the presence of an external stationary flow f(r). Such swimmer is capable of
controlling its own orientation dynamics by actively steering while being also subject to the
flow-induced torques. As a result, the equations governing the microswimmer’s motion will
now read ṙ = v0û+ f(r)

˙̂u = ωa + ωf (r, û) ,
(5.17)

with ωf being Jeffery’s angular velocity (5.11) while ωa is the active angular velocity the
swimmer can self-generate. Thanks to the introduction of this new degree of freedom in the
swimmer dynamics, we may now use the tools fromOC theory to study the possible perfor-
mance improvement of the navigation for finite-size swimmers with a well-defined shape.

In this scenario, the task is to reach a specific target while minimizing the arrival time as
well as the total energetic dissipation due to both the translational drag and the active steering.

§§However, this effect would be observed only for very long simulation times.
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Namely, the overall navigation cost becomes

Cs =
∫ tf

0

(
γrω

2
a + γtv

2
0 + β

)
dt . (5.18)

where γr is the rotational drag coefficient for a surface-driven spheroidal swimmer, already
shown inFig. 5.2,whichwasobtainedby combining theno-slip andperfect-slip coefficients190,192

via the same formula (5.13) used to determine the respective translational drag coefficient γt.
The systemHamiltonian here thus takes the form

H = β + γtv
2
0 + γrω

2
a + p · ṙ + pu · ˙̂u+ µ ˙̂u · û , (5.19)

where pu are the momenta associated with the orientation û, which in this context plays
the role of a state variable together with the position vector r. To ensure the vector û has
constant normduring themotion, we have also added a constraint in theHamiltonianwhich
corresponds to the last term in (5.19), with µ being a Lagrange multiplier.

In theOC framework, we can identify the active angular velocityωa as the control variable
and, based on Pontryagin’s minimum principle (1.10), we may now write all the necessary
conditions for optimality

ṗi = −pj∂ifj − (pu,j + µûj)∂iωf,j

ṗu,i = −v0pi − (pu,j + µûj)∂ui
ωf,j − µωa,i

∂H
∂ωa,i

= 0 =⇒ ωa,i = −pu,i+µûi

2γr

H = 0 ,

(5.20)

where ∂i ≡ ∂ri , and with the last condition only necessary if we are not specifying the final
time tf. In the presence of a specific target rT and without constraining the initial and final
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orientation, the boundary conditions to equip this system with are:r(0) = r0 , r(tf) = rT

pu(0) = pu(tf) = 0 .
(5.21)

Note that the boundary conditions on themomenta are there if andonly if the corresponding
state variable is unconstrained at the initial and/or final times. Finally, in order to satisfy the
constraint on the orientation vector û, from the third equation in (5.20) we can see that the
Lagrange multiplier µmust be chosen as

µ = −pu · û . (5.22)

5.3.1 Smart steering in a shear flow

We shall now illustrate the implementation of the smart steering protocol for spheroidal
swimmers in the 2D shear flow setup shown inFig. 5.3(a). As a result, the systemof equations
to be solved simplifies¶¶: 

ẋ = ζ cos θ + y

ẏ = ζ sin θ

θ̇ = ωa − 1
2
(1− α cos 2θ)

ṗx = 0

ṗy = −px

ω̇a =
ζ
Γ
p · û⊥ + ωaα sin 2θ ,

(5.23)

where we have rescaled space, time and the momenta respectively as r → ℓr and t → t/κ

and p → 2γtκℓp. The system dynamics is therefore determined by the two dimensionless
parameters ζ ≡ v0/(κℓ) and Γ ≡ γr/(γtℓ

2). Note that the latter is a quantity essentially
¶¶In 2D there is no need to use the Lagrange multiplier µ as we can directly deal with the orientation angle

θ rather than with the heading direction vector û. Moreover, this simplification allows to directly obtain an
equation for the control variable ωa.
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Figure 5.5: Swimming cost of smart active spheroids in a shear flow. (a) Minimal overall energetic cost Cs of navigation
for smart swimmers of different shapes as function of the arrival time tf at the target. All curves stop at the optimal time
topt = 1.7854 (in units of the inverse shear rate κ−1), below which it is not possible to reach the target (shaded gray
area). (b) Optimal trajectories for a spheroid with shape parameter α = 0.9 corresponding to different arrival times as
indicated by the corresponding symbols in (a). All the paths start from the origin (green circle) and end at the target in
position rT = x̂ (magenta circle). The color gradient here shows the flow intensity, while the black arrows its direction.
All data shown in (a),(b) have been obtained setting ζ = 0.5.

determined by the swimmer shape and size, while we still have freedom in choosing a value
for the former.

As already shown in Fig. 5.3(b), varying ζ amounts to exploring two possible regimes: a
flow dominated one (ζ < 1), where the differences in terms of performance between swim-
mers of different shape are enhanced, and the opposite one dominated by self-propulsion
(ζ > 1), where these effects become negligible. The first regime is thus the most interesting
to explore in terms of optimal navigation. Therefore, in the following we set*** ζ = 0.5 by
effectively halving the swimmer self-propulsion speed v0 while keeping both the shear rate κ
and the target distance ℓ equal to unity.

Our goal is now to determine for each value of the shape parameterα the optimal steering
protocol ωa(t) that minimizes the total cost (5.18), which can also be rewritten in units of
γtκℓ

2 as
Cs = ΓΩa(tf) +

(
ζ2 + ρ

)
tf , (5.24)

where we have concisely definedΩa(tf) ≡
∫ tf
0
ω2
adt and ρ ≡

β
γt(κℓ)2

.

However, in contrast with the smart throttling case illustrated in Sec. 5.1.1 of a point-like
particle moving in the same flow configuration, the dynamical system (5.23) is not solvable

***A value small enough such that we do not expect our results to qualitatively change decreasing further ζ .
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analytically. Therefore, since we do not know a priori what the optimal arrival time tf at
the target is for each value of the shape parameter α, we shall solve the system numerically
by scanning over values of tf, reaching the minimum one allowed, i.e. the arrival time topt
obtained from Zermelo’s solution†††. Furthermore, as this is a boundary value problem, we
must resort to refined numerical shooting methods in order to find the optimal solution for
each combination ofα and tf (details in A.3). Note that, in the following, we compare swim-
mers of different shapes while keeping their volume constant and equal to V = 4π

3
s3, with

s = 0.1ℓ.
The corresponding results obtained fromournumerical simulations are shown inFig. 5.5(a).

There, we show the energetic cost of navigation (in dimensional units), i.e. Cs defined in
Eq. (5.18) with β = 0, as function of the arrival time tf. Thanks to the observed non-
monotonic trends, there exist some crossovers between the curves both at long and short
times, such that we can identify different optimal shapes for a spheroidal swimmer depend-
ing on the desired arrival time tf.

Some exemplary optimal trajectories for a spheroid with α = 0.9 are shown in Fig. 5.5(b).
When the task is to reach the target in a time tf < tp the swimmer will make more and
more use of the flow, thus moving further in the vertical direction (green and red curves).
Conversely, when the arrival time is such that tf > tp, the energetically most convenient
thing to do is to point more straight (orange curve) or even go in the counter-flow region if
necessary (typically at longer times, see blue curve instead).

Thanks to their active rotation, swimmers of any shape can thus now reach the target faster
than in the dumb swimming case studied in Sec. 5.2.2. However, this comes at the cost of
spending some extra energy to steer. Hence, this raises the questionofwhich the relative varia-
tion in the overall cost actually is for amicroswimmer trying to improve its time performance
with respect to the dumb swimming case. This can be quantified as

∆C% ≡
(Cs − Cp)

Cp
· 100 = ∆t% +

Γ

tp
Ωa(tf) · 100 , (5.25)

†††Although in (5.24) we are still expressing the total cost including the explicit contribution from the arrival
time at the target, in the following analysis we shall set β = 0 as it would otherwise just amount to shift all the
cost curves by the same quantity, thus not qualitatively changing our results.
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Figure 5.6: Active steering efficiency of spheroidal swimmers in a shear flow. (a) Relative variation in percentage of the
energetic cost∆C% of navigation as function of the percentage of time∆t% saved to reach the target with respect to
the dumb swimming case, i.e. without active steering, for three exemplary values of α. Inset: Percentage variation in the
energetic cost between dumb swimming and smart navigation, i.e. when themicroswimmer instead actively steers to reach
the target in the shortest time topt as function of the shape parameter α. (b) Active angular velocity ωa implemented by
the smart swimmer with shape parameterα ≈ 0.6 to get as fast as possible to the target while saving energy as function
of time (blue curve). Here, it is compared with the steering protocol ωz (orange curve) to be implemented so as to make
the swimmer exactly follow Zermelo’s path. (c) Comparison between the non‐dimensionalized costs of steering associated
to the optimal active controlωa (blue circles) and Zermelo’s protocolωz (orange triangles) as function ofα. Both of them
make the swimmer reach the target in the shortest time topt, but at a different overall cost. Solid lines here represents the
corresponding quadratic fits. All data shown in (a)‐(c) have been obtained setting ζ = 0.5.

which is the percentage cost variation with respect to the dumb swimming case (setting β =

0), and where we have also defined the percentage improvement of time as∆t% ≡ (tf−tp)

tp
·

100.

The plot in Fig. 5.6(a) shows the corresponding results for three different values of the
shape parameter α. On the one hand, we find that, for small improvements in time, swim-
mers of any shapemanage to save a proportional amount of energy. On the other hand, even
more remarkably, it turns out that some shapes feature a relative gain curve with a mono-
tonic decreasing trend, which means that saving time always translates into spending overall
less energy. This is the case, e.g., for a swimmer with α = 0.6 (green curve), which improves
its time performance by∆t% ' −6% (reaching the target at t = topt), and moreover man-
ages to save relatively circa the same amount of energy. Conversely, swimmers with more
elongated shapes like α = 0.98 (violet curve), need to spend comparatively much more en-
ergy than in thedumb swimming case (∆C% can reach' +200%) in order to reach the target
in the shortest time topt.

This counter-intuitive effect is possible because, even though reducing the navigation time
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tf requires the microswimmer to actively steer and thus spend more rotational energy, by do-
ing so it also lowers the translational drag dissipation which is indeed proportional to tf. We
are thus left with an emerging trade-off purely based on the relative weight between the rota-
tional and translational energy costs, which ultimately depends just on the swimmer shape
and size.

Therefore, it is not surprising that we find an optimal value of the shape parameter α that
maximises the energy savings when willing to reach the target in the shortest time topt. As
shown in the inset in Fig. 5.6(a), the corresponding optimum is here achieved at α ≈ 0.6.

Finally, we can also look at these results from a different perspective. In fact, one could
have naively guessed that the optimal steering strategy that allows the swimmer to reach the
target in the shortest time would essentially amount to

ωz(α) = −ωf (α) + ωf (−1) , (5.26)

which is essentially the generalization ofZermelo’s protocol (second equation in system (5.5))
to particles with a well-defined shape. Here, ωf is indeed the usual Jeffery angular veloc-
ity (5.11) which we know is equal to Zermelo’s solution for α = −1, such that by imple-
menting the policy (5.26) amicroswimmer of any shapewould exactly followZermelo’s path,
thus reaching the target at time topt by definition. However, the smart steering strategy ωa

obtained fromOC theory does not converge to ωz when tf → topt
‡‡‡ for values of the shape

parameter α 6= −1. As shown in Fig. 5.6(b) for an exemplary shape, these two policies are
indeed intrinsically different: ωa is by design equal to zero at the initial and final times, while
ωz cannot be unless α = −1.

We can thus compare the two steering costs associated with each of these two strategies.
Since they both share the same prefactors, it is sufficient to consider just Ωa(topt) ≡ Ωa =∫ topt
0

ω2
adt andΩz ≡

∫ topt
0

ω2
zdt. In the shear flow setup, the latter can be actually computed

‡‡‡In our simulations, for each α we have actually managed to scan arrival times down to values just 0.03%
larger than topt.
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analytically. Starting from the ODE system (5.23) and using Eq. (1.24), we get

Ωz =
(1 + α)2

2

[
tan3 θ0 + 3 tan θ0 − 2θ0(1 + tan2 θ0)

]
, (5.27)

which together with (1.25) makes up the exact solution, where θ0 is the proper initial angle
the swimmer should take so as to get to the target in the shortest time.

The corresponding curves as function of the shape parameter α are shown in Fig. 5.6(c).
They both show a quadratic trend (solid curves stand for the respective fits) and, remarkably,
the smart active steering ωa always leads to less energy consumption, improving the perfor-
mance of Zermelo’s strategy ωz up to a factor 2.

Hence, thanks to our analysis based on the results fromOC theory, we have here effectively
found a way to outperform Zermelo’s solution. In fact, not only can these smart swimmers
reach the target in the theoretically shortest time, but they also manage to reduce the corre-
sponding energetic cost when compared to Zermelo’s policy.

5.4 Summary and discussion

We have here shown some possible extensions to the problem of optimal navigation of mi-
croswimmers.

Firstly, we have considered swimmers which can tune their own self-propulsion speed.
Thus, using tools fromOC theory we have derived the smart throttling protocol whichmini-
mizes the weighted sum of translational drag dissipation and arrival time at the target. More-
over, we have been able to provide an exact solution to this problem when navigation takes
place in the presence of a linear shear flow. Then, depending on the relative weights between
energy consumption and time in the overall cost, we have identified two different regimes in
which the swimmer will preferably tend to minimize one or the other quantity, leading to
more curved or straighter trajectories, respectively.

Wehave then taken into account spheroidalmicroswimmerswith a finite size and therefore
considered for the first time how the external flow affects the swimmers orientation dynamics.
Since in this context they do not have any control over their dynamics, we have called them
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dumb swimmers.

Remarkably, the orientation dynamics corresponding to Zermelo’s solution, i.e. the one
minimizing travel time by design, turns out to be the same as the one of a self-propelling
flat disk in the presence of a stationary flow. On the one hand, an active swimmer with such
shapewill thus always automatically follow the time-optimal pathwithout the need for active
steering. On the other hand, however, a needle-like swimmer typically dissipates much less
energy during its motion, such that we have here revealed a natural trade-off which depends
only on themicroswimmer shape. This is not only relevant for point-to-point navigation, but
also for more generic optimal exploration problems, as it has been confirmed by our analysis
of the isochrones and isoenergies areas in the shear flow setup.

As a result, depending on the relative weight between navigation time and energy con-
sumption in the total cost function, we can always identify an optimal shape for the swim-
mer that maximizes the overall swimming efficiency. Furthermore, we have shown that the
difference in the arrival times between a flat disk and a long needle increases with the relative
flow strength, i.e. smaller self-propulsion speed or larger shear rate, such that there exists a
strong flow regime for which more elongated swimmers would actually be less energetically
efficient than a flat disk.

However, in order to further optimize its own navigation, a microswimmer of any shape
needs to have some control over its motion. To this end, we have therefore generalized the
problemof optimal navigation to particleswith awell-defined shape usingOC theory. In this
way, we could then once again determine the set of equations to be solved in order to find the
optimal steering strategy minimizing the overall cost of navigation, which by then included
also a cost associated with the active re-orientation.

Consequently, we have found out that depending on the desired arrival time at the target,
there is an optimal shape for a swimmer to be considered. Moreover, thanks to the newdegree
of freedom, swimmers of any shape can reach the target in the shortest time. Even more
remarkably, by improving their time performance with respect to the dumb swimming case,
these microswimmers also automatically reduce their energy consumption, such that being
smart turns out to have a double advantage.
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Lastly, our analysis has revealed that the smart steering strategies obtained fromOC theory
do not naively boil down to Zermelo’s policy when the swimmers want to reach the target
in the shortest time. In fact, we have shown that swimmers implementing such steering pro-
tocols manage to save more energy than in the latter case. In other words, by making the
swimmers smart, we have allowed them to perform better than by being forced to follow Zer-
melo’s strategy, which is not explicitly based on energy minimization principles.
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I don’t know anything, but I do know that everything is in-
teresting if you go into it deeply enough.

Richard P. Feynman

6
Concluding remarks

Given the great hope it gives to tackle important challenges in our society across various con-
texts, the problem of optimal navigation has recently attracted increasing interest among
scientists from different communities. The study of the optimization of a self-propelling
agent’s motion in a complex environment is, moreover, relevant not only for the obvious
practical applications, but also from an ethological perspective. The predictive potential of
theories and models coming from all branches of physics may indeed help to decipher the
complex dynamics behind living systems behaviors198,185.

Although considerable progress has beenmadeover the years sinceZermelo’s seminalwork
in 1931, there are still a number of pending issues in this field. Here, we have addressed some
of them by providing new theoretical and numerical tools that allow for a more complete
study of the optimal navigation problem for active particles.

In Chapter 2, we have analytically solved the problem of optimal navigation on curved
surfaces and in thepresence of stationaryflows. By formulating a geometric descriptionof the
problem,wehave shown that theminimal-timepath are essentially geodesics in a Finsler space
described by a Randers metric. Remarkably, this formalism has the additional advantage of
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being coordinate-free and also compact enough so as to greatly simplify the analysis of this
problem and its potential generalizations.

A first extension of the model introduced here would certainly aim to include Brownian
noise into its description, possibly by using the Onsager-Machlup functional163,199. Further-
more, this new bridge between microswimmer physics and general relativity could enrich
both fields in the future. For example, one can consider finite-size swimmers able to sense
curvature by estimating spatial derivatives of the metric200. This would in turn open the
door to the study of the corresponding geodesic deviation equation201, thus potentially pro-
viding new insights into the stability and irreversible character of an optimal path depending
on the geometrical properties of the space. Further research might also use this analytical
approach to benchmark numerical optimization procedures relying on machine learning al-
gorithms23,114.

In Chapter 3, we then studied the efficiency of both Zermelo’s classical solution in flat
space and Randers geodesics on curved surfaces, focusing on the regime where the external
force exceeds self-propulsion in finite regions of a potential landscape. Thanks to the exten-
sive use of isochrones as new powerful tool for analysis, we were there able to characterize in
more detail such navigation strategies. On the one hand, our results show that they indeed al-
low the active particle to comprehensively explore the environment, as opposed to the more
trivial strategy of going straight, whose most trajectories get arrested in some local minima
of the potential. On the other hand, our analysis also indicates an increased sensitivity of
these time-minimizing strategies to initial conditions, a feature which limits their robustness
and long-time efficiency, especially in presence of fluctuations. Hence, these results suggest
an interesting trade-off between exploration efficiency and stability for the design of control
strategies to be implemented in real systems.

Since the chaoticity of Zermelo’s andRanders’ policies turns out to be closely linked to the
presence of isochrone self-crossings occurring in strong force regions, inhibiting these seems
crucial in order to improve the strategies stability and robustness. A possibility could thus be
to include an additional cost in the derivation of such protocols which would lead the agents
to reorient their self-propulsion when entering strong force regions. A further improvement
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could also be achieved allowing for some degree of variation of the particles self-propulsion
speed. Such feature indeed would provide the particles with a mechanism to visit otherwise
inaccessible regions while inhibiting self-crossings at minimal energetic cost.

Despite studying the effect of strong force fields on the active particle navigation, here we
did not discuss the trapping regime where the particles must rely on fluctuations to cross a
potential barrier. It has been argued that in the presence of confinement induced e.g. by
obstacles61,202 or high potential barriers203,204, efficient exploration strategies favor diffusive
over ballistic motion. However, in all these works no optimization policy making use of the
environmental conditions was considered, which makes this still a promising direction for
future research.

In Chapter 4, we have instead addressed the problem of preserving the active agent’s au-
tonomywhen itmoves in a complex environment and in the presence of noise. Starting from
the solution provided by stochastic optimal control (SOC) theory, we were able to identify
some simple general principles on which it relies. Specifically, it turned out that the opti-
mal navigation strategy in the presence of fluctuations essentially amounts to stabilizing the
motion of the active particle around the noiseless optimal path, i.e. the one provided by Zer-
melo’s solution, while maximizing the drift along it. This observation therefore inspired us
to design a new set of navigation strategies that allows the micro-swimmer to navigate semi-
autonomously and, at the same time, efficiently towards a target. While relying onmuch less
information and simple alignment rules with local gradients and flow, these newly-designed
strategies show performances surprisingly similar to those achieved by the optimal policy
from SOC theory. Furthermore, we have shown their robustness to the presence of both
strong translational and rotational fluctuations, and also their great versatility by implement-
ing them on curved surfaces and in random flows.

Although the analysis carried out here focused on the problem of travel time optimization,
the policies we proposed are fully determined by the noiseless optimal path. Therefore, they
are straightforwardly generalizable to a broader class of optimization problems like energy
dissipation or fuel consumption minimization. Moreover, it would be very interesting to
implement reinforcement learning-based algorithms in this context, so as to check whether
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they would reach similar conclusions regarding the core principles underlying an efficient
navigation in the presence of fluctuations. This would in fact further confirm the validity
and generality of our arguments.

In Chapter 5, we have finally further extended Zermelo’s classical problem by relaxing
some assumptions of the model, so as to get closer to real-life systems. To this end, we firstly
allowed the swimmer to control its own self-propulsion speed, which in turn introduced a
trade-off between arrival time at the target and energy consumption. We have then inves-
tigated how navigation in a fluid flow is affected when considering microswimmers with a
well-defined shape. Studying the exemplary case of active spheroids in a shear flow, we have
interestingly revealed an emerging trade-off between time and energy dissipation solely de-
pending on the swimmers shape. Our results indeed show that swimmers without any con-
trol over their motion, hence referred to as dumb, can reach a target faster if their shape is
more flattened, i.e. like a disk, but at a higher energetic cost when compared to needle-like
swimmers. By allowing them to actively steer during their motion, we have then made these
agents smart. Remarkably, our analysis reveals that such swimmers are not only capable of
reaching the target faster with respect to the passive case, but also in doing so they spend over-
all less energy. Furthermore, as the arrival time approaches Zermelo’s solution, the smart
steering strategies do not converge to Zermelo’s policy as naively expected. In fact, it turns
out they outperform it: although reaching the target at the same (optimal) time, such smart
swimmers manage to dissipate systematically less energy, regardless of their shape.

Our aim in the future is to consider even smarter swimmers able to both control their
self-propulsion speed and actively steer, so as to possibly uncover basic navigation principles
which would further help in designing smart artificial swimmers. Moreover, it would be in-
teresting to take into account swimmers with different shapes other than spheroids, which
may enhance their navigation efficiency even further205,206, and also test the robustness of
our results by considering more complex flow configurations.

As a general outlook, although here we have focused on the situation in which navigation
is performed by a single agent, it would be definitely worth studying the optimization of col-
lective processes by including interactions amongmultiple agents207,208. In fact, cooperation
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between agents has alreadybeenproveduseful to improve the overall performance209,210, even
in the presence of just a few leaders211,212 who efficiently manage to guide the group towards
the achievement of common tasks.

The study of collective optimal navigation in activematter additionally raises the challeng-
ing issue of the possible presence of hydrodynamic interactions between the agents213. To
the best of our knowledge, this is a field of research yet to be explored as to date there is only
one example, see Ref.140, where these have been considered in the two-dimensional case of a
microswimmer interacting with simple obstacles.

Another possible future directionwould be the study of non-Markovian navigation strate-
gies. The use ofmemory by an agent certainly constitutes an additional degree of complexity,
yet could allow it to perform increasingly complex tasks214 and even alter its navigation strat-
egy depending on the amount of information it is capable of accumulating over time215.

Overall, it would also be useful to further extend the robustness study regarding the navi-
gation strategies discussed here by including a time delay in the active particle orientation216.
This would indeed help to mimic what happens in actual experiments in which the protocol
actuation takes place via external feedback control132,217.

Moreover, the analysis of the efficiency of the navigation policies can be further refined.
It would indeed be interesting to study what are the thermodynamic costs related to the as-
similation of information218,219 by an active agent during its motion. Since higher complex-
ity translates into higher thermodynamic cost*, the strategies that require more information
from the environment –and typically perform better– would then be penalised. Taking this
new cost into account could therefore significantly reshape our general considerations on the
efficiency of a navigation strategy.

All in all, the advances made in this thesis have both significantly extended the state of
the art in optimal navigation for active matter systems, but also opened up a number of new
possible directions to be pursued in future research.

*The degree of sophistication of a strategy can indeed be formally measured in terms of thermodynamic
quantities220, such as work and entropy.
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A
Numerical methods

A.1 Brownian dynamics simulations

The Brownian dynamics simulations of both Eq. (3.5) and Eq. (4.1) have been performed
using an Euler-Mayurama scheme with a time step dt = 10−3. We have verified that the
selected time step is sufficiently small, such that the results presented therein do not depend
on its value.

A.1.1 Implementation of the semi-autonomous navigation protocols

Belowwe provide details regarding the implementation of the navigation strategies presented
in Secs. 4.1, 4.4.

In all our simulations a given run ends when the active particle is within a distance δr =

0.025ℓ from the target. We have also checked that the choice of the disk radius δr does not
significantly influence the results as long as the thermal fluctuations length scale is kept rela-
tively small, i.e.

√
2Ddt� δr � ℓ.

The MFPT equation (4.2) was numerically solved using the Finite Elements Method im-
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plemented in the NDSolve routine of WolframMathematica 13.1.0166. The Optimal Policy
was then implemented from the corresponding solution (4.3) by discretizing the simulation
domain on a square grid of step l = 0.01, and assigning to each box the optimal control
orientation ûopt(rb), with rb being the position of the centre of the box. In the stochastic
simulations, the swimmer following OP was then aligning its direction of motion with the
orientation associated with its current position on the grid.

All then newly introduced policies, namely AP, AAP, CP, CAP and CAAP, rely on the
evaluation of the point rc on the Zermelo path closest to the particle position r. For numer-
ical efficiency, the Zermelo path was thus discretized and the distance between the particle
and the curve was calculated from the positions of the mid-point of each segments. In all
simulations the initial particle orientation was taken to be equal to the one prescribed by the
Zermelo solution.

A.1.2 Langevin simulations on the sphere

To describe themotion of an overdamped particle on the sphere, the Langevin equation (4.1)
has tobe adjusted to take into account themultiplicative noise inducedby the space curvature.
Namely, it is given by

˙̂r = v0û+ f(r) +
√
2Dr̂ × ξ , (A.1)

where r̂ ≡ r/|r|, while the noise ξ shares the same statistics as in Eq. (4.1) and is interpreted
in the Stratonovich sense. Furthermore, in contrast with the Taylor-Green flow case studied
inCh. 4, for this setup the characteristic length scale of the flow is comparablewith the sphere
radius: ℓ ∼ R, such that the Péclet number is here defined as Pe = Rv0/D.

Lastly, the extension of SP, AP and AAP to the case where motion takes place on a sphere
straightforwardly follows from the presentation in the text, as it only requires us to generalize
the definitions of the distance and relative direction between two points of interest. On a
sphere of radius R, the shortest distance between the points r and rc –also known as great-
circle distance– is defined as

|∆r| ≡ R arccos
(r · rc
R2

)
.
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The direction n̂ from r to rc at the point r is likewise defined from the shortest arc linking
the two points, namely

n̂ ≡ (r × rc)× r

|(r × rc)× r|
.

The desired heading direction û for AP and AAP was then obtained from rotations of n̂
around the axis set by r using Rodrigues rotation formula221:

û = G(∆r)n̂± (r × n̂)
√

1− G2(∆r) + r(r · n̂)(1− G(∆r)) ,

where the protocol functionG(∆r) is defined byEq. (4.4) and the± sign ensures that û· t̂ ≥
0.

A.2 DetailsonthenumericalsimulationsofaGaussianrandomflowfield

The Gaussian random flow presented in Sec. 4.4.2 has been obtained following the power
spectrum realization method222. First of all, we build a 500 × 500 grid containing uncorre-
lated Gaussian random numbers and then Fourier transform the result. In Mathematica166

this can be done via the following commands

WhiteNoise = RandomVariate[NormalDistribution[], {Nsize, Nsize}]

WhiteNoiseFourier = Fourier[WhiteNoise] ,

whereNsize = 500 is the dimension of the grid. We shall thenmultiply the outcomewith the
square root of the power spectrum of the stream functionψ(r) –the Fourier transform of its
correlation function (4.13)– and finally transform back the result using the InverseFourier
routine in Mathematica. In order to determine the corresponding velocity field, one simply
then has to compute the resulting stream function derivatives via finite differences and use
Eq. (4.12).

In our numerical simulations we have set the characteristic length and flow intensity scales
to ℓ = 0.6 and vf = 0.6, respectively. The flow field was computed in a square box of size
L× Lwith L = 25/3ℓ and comes out naturally with periodic boundary conditions.
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A.3 Numerical implementation of a multi-dimensional shooting method

In order to solve the ODE system (5.23), we have to determine the correct value of the un-
known initial conditions for the heading angle θ0 and the momentum components px,0 and
py,0 such that the boundary conditionsr(0) = r0 , r(tf) = rT

ωa(0) = ωa(tf) = 0

are met. To this end, we thus had to perform a multi-dimensional shooting method. This
has been achieved by using the GSL multi-dimensional root-finding routines223 included in
the header file gsl_multiroots.h.
Starting from a random initial condition for θ and p, we therefore first integrate the ODE

system (5.23) up to a certain time tf using a fourth orderRunge-Kuttamethodwith time step
dt = 10−5. We then perform an iteration of the GSL multi-dimensional root-finder which,
while looking for the solution of the systemr(tf)− rT = 0

ωa(tf) = 0 ,
(A.2)

updates the unknown initial conditions. This process is then repeated until convergence, i.e.
when the residual of each equation in (A.2) is below a specified threshold.

Actually, to speed up the convergence of our simulations, for each value of α we have ini-
tially fixed the final time tf = tp, namely equal to the arrival time without active steering. We
could then use our previous knowledge about the correct initial orientation θ0 to be taken
(see results from Sec. 5.2.2). Furthermore, from the equation for ωa in (5.23), we could also
impose the conditionp(0) · û⊥(0) = 0, since in this case we know thatωa should stay equal
to zero throughout the trajectory. Thanks to this refined choice of the initial conditions, the
code converged faster and more robustly, such that we could then start from this solution to
systematically scan times tf > tp or tf < tp for each α.
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