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∗Department of Mathematical Engineering, Université catholique de Louvain in Louvain–la–Neuve, Belgium.
Email: paul.vandooren@uclouvain.be, ORCID: 0000-0002-0115-9932

Abstract: We study the tangential interpolation problem for a passive transfer function in
standard state-space form. We derive new interpolation conditions based on the computation
of a deflating subspace associated with a selection of spectral zeros of a parameterized para-
Hermitian transfer function. We show that this technique improves the robustness of the
low order model and that it can also be applied to non-passive systems, provided they have
sufficiently many spectral zeros in the open right half plane. We analyze the accuracy needed
for the computation of the deflating subspace, in order to still have a passive lower order
model and we derive a novel selection procedure of spectral zeros in order to obtain low order
models with a small approximation error.
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Novelty statement:

• We investigate an tangential interpolation problem for passive systems.

• We propose interpolation conditions based on a deflating subspace.

• We discuss a construction of passive low-order models using the deflating subspace
associated with a selection of spectral zeros.

1 Introduction

We consider linear and finite dimensional dynamical systems that are passive. We restrict ourselves to
continuous-time systems that can be represented in standard state-space form with real coefficients and
real inputs, outputs and states :

ẋ(t) = Ax(t) +Bu(t), x(0) = 0,
y(t) = Cx(t) +Du(t).

(1.1)

Denoting real and complex n-vectors (n × m matrices) by Rn, Cn (Rn×m, Cn×m), respectively, then
u : R → Rm, x : R → Rn, and y : R → Rm are vector-valued functions denoting the input, state,
and output of the system, and the coefficient matrices satisfy A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and
D ∈ Rm×m.
Model reduction of such systems has been a major research topic for the last three decades and

led to a wealth of different approaches, as illustrated in several survey volumes [2], [5], [6]. One of
the proposed approaches is based on tangential interpolation [10], [3]. This technique was originally
developed for arbitrary types of rational transfer functions [10], but an important drawback is that some
critical properties – such as stability or passivity – are not easy to satisfy and require a careful selection
of interpolation conditions. It was shown in [3] that when using spectral zeros of a given transfer function
as interpolation conditions, then one does preserve passivity in the reduced-order model, at least for the
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single-input/single-output case. This was extended by Sorensen in [14] to the multi-input/multi-output
case by making use of deflating subspace calculations and the Kalman-Yakubovich–Popov conditions for
passivity. Numerical and structure-preserving algorithms to compute reduced-order models based on this
approach are suggested in [8]. The link between both methods was later on pointed out by Fanizza et al.
[9], who also make the connection to the so-called covariance extension problem. In the present paper,
we further extend the approach of Sorensen by applying it to a class of systems that are parameterized
by a scalar parameter. The new contributions of this paper are threefold :

1. we show that we can apply the deflating subspace idea to a class of parameterized systems, which
improves the robustness of the reduced-order system by increasing its passivity radius,

2. we derive a novel selection technique of the subset of spectral zeros used for model reduction, which
attempts to minimize the approximation error, and

3. we show that the method can be applied to non-passive systems and still constructs passive lower
order models, under certain conditions.

Because of the last property, we give in this paper a new derivation of Sorensen’s results in order to show
that it may apply also to non-passive systems.
The notation used in the paper is as follows. The Hermitian (or conjugate) transpose (transpose) of a

vector or matrix V is denoted by V H (V T) and the identity matrix is denoted by In or I if the dimension
is clear. We require that input and output dimensions are equal to m since we want to interpolate with
passive transfer functions. Throughout this article we will use the following notation. We denote the
set of symmetric matrices in Rn×n by Sn. Positive definiteness (semi-definiteness) of M ∈ Sn is denoted
by M ≻ 0 (M ⪰ 0). In Section 2, we recall the properties of passive and of port-Hamiltonian systems
in order to define the robustness measure known as the passivity radius. In Section 3 we then recall
the results of Sorensen on interpolation in spectral zeros via deflating subspace calculations. This is
then extended in Section 4 to the novel technique of parameterized passive interpolation. The selection
technique to find appropriate spectral zeros to minimize the approximation error is described in Section
5, and the resulting robustness property is briefly described in Section 6. We give numerical experiments
that illustrate our new method and its properties in Section 7 and give come concluding remarks in
Section 8.

2 Passive systems and port-Hamiltonian realizations

Passive systems are well studied in the continuous-time case. We briefly recall some important properties
following [16], and refer to the literature for a more detailed survey. We consider continuous-time systems
with a rational transfer matrix Z(s) and define the following rational matrix function of s ∈ C :

Φ(s) := ZT(−s) + Z(s),

which is said to be para-Hermitian since Φ(−s)T = Φ(s). It therefore coincides with two times the
Hermitian part of Z(s) on the ıω axis:

Φ(ıω) = [Z(ıω)]H + Z(ıω).

Definition 1. The rational transfer function Z(s) is called strictly positive-real if Φ(ıω) ≻ 0 for all
ω ∈ R and it is called positive-real if Φ(ıω) ⪰ 0 for all ω ∈ R.
The transfer function Z(s) is called asymptotically stable if the eigenvalues of A are in the open

left half plane, and it is called stable if the eigenvalues of A are in the closed left half plane, with any
eigenvalues occurring on the imaginary axis being semi-simple.
The transfer function Z(s) is called strictly passive if it is strictly positive-real and asymptotically

stable and it is called passive if it is positive real and stable with polar residues that are Hermitian and
positive semi-definite for every pole on the imaginary axis.

Remark 1. In the classical circuit theory literature the notion of positive realness is phrased differently
and it implies stability. For rational transfer functions it is therefore equivalent to passivity [1]. In this
paper, though, we will use the above modified definition of positive realness.
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In this paper we focus on systems that are strictly passive, which implies that the transfer matrix
has no infinite or imaginary axis poles, and hence is proper. Moreover, Φ(ıω) ≻ 0 at ω = ∞ implies
that DT + D ≻ 0 and that Φ(s) is regular. We will see that this restriction simplifies our discussion
significantly. This is also a reasonable restriction because passive systems can be viewed as limiting cases
of strictly passive systems.
Since the transfer function is proper, we can represent it in standard state-space form Z(s) = C(sIn −

A)−1B +D and we will assume throughout the paper that this realization is minimal (i.e. controllable
and observable). We can associate with Φ(s) a system matrix S(s) which is a generalized state-space
realization of Φ(s) :

S(s) :=

 0 A− sIn B

AT + sIn 0 CT

BT C DT +D

 . (2.1)

If the quadruple M := {A,B,C,D} is a minimal realization of a strictly passive transfer function Z(s)
of McMillan degree n, then S(s) is a minimal realization (in generalized state-space form) of Φ(s). This
transfer function has indeed degree 2n since Z(s) and ZT(−s) have no common poles because of the
assumption that Z(s) is asymptotically stable. Since DT +D is nonsingular, the 2n finite eigenvalues of
the pencil S(s) are then the so-called spectral zeros of the strictly passive transfer function Z(s).

We can apply the following congruence transformation to S(s), using a symmetric matrix X :

SX(s) =

 In 0 0
−X In 0
0 0 Im

S(s)
 In −X 0

0 In 0
0 0 Im



=

 0 A− sIn B

AT + sIn −ATX −XA CT −XB

BT C −BTX DT +D

 (2.2)

without affecting the transfer function Φ(s) of this system matrix. If the following submatrix of SX(s)

W(X,M) :=

[
−ATX −X A CT −X B
C −BTX DT +D

]
(2.3)

is positive semi-definite, then it can be factored as indicated below

W(X,M) =

[
CT

G

DT
G

] [
CG DG

]
,

from which it follows that

SX(s) =

 0 A− sIn B

AT + sIn CT
GCG CT

GDG

BT DT
GCG DT

GDG


and hence G(s) := CG(s In − A)−1B + DG is the right factor of the symmetric factorization Φ(s) =
GT(−s)G(s). This then implies that Φ(s) is positive semi-definite on the ıω axis. Moreover, if A is
assumed to be asymptotically stable, then the matrix X in (2.3) must be positive definite. This discussion
is an intuitive explanation of the following result, a proof of which can be found in [16], [11].

Theorem 1. Let M := {A,B,C,D} be a minimal realization of a proper rational transfer function Z(s)
and let W(X,M) be the associated matrix defined in (2.3). Then Z(s)
(i) is positive real if and only if there exists a real symmetric matrix X ∈ S such that

W(X,M) ⪰ 0, (2.4)

(ii) is passive if and only if there exists a real symmetric matrix X ∈ S such that

W(X,M) ⪰ 0, X ≻ 0, (2.5)

and (iii) is strictly passive if and only if there exists a real symmetric matrix X ∈ S such that

W(X,M) ≻ 0, X ≻ 0. (2.6)
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The Linear Matrix Inequality (LMI) given is (2.5) is also known as the Kalman-Yakubovich-Popov
condition for passivity. In the sequel we will make use of the solution sets of these inequalities :

X>
:= {X ∈ S |W(X,M) ⪰ 0, X ≻ 0} , (2.7a)

X≫
:= {X ∈ S |W(X,M) ≻ 0, X ≻ 0} . (2.7b)

Definition 2. Every solution of the LMI (2.7a) is called a certificate for the passivity of the model M
and every solution of the LMI (2.7b) is called a certificate for the strict passivity of the model M.

If DT +D is invertible, then the solutions in X>
where W(X,M) is of minimum rank, are those for

which rankW(X,M) = rank(DT + D) = m, which is the case if and only if the Schur complement of
DT + D in W(X,M) is zero. This Schur complement is associated with the continuous-time algebraic
Riccati equation (ARE)

Ricc(X) := −XA−ATX − (CT −XB)(DT +D)−1(C −BTX) = 0. (2.8)

Each symmetric solution X to (2.8) yields a spectral factorization Φ(s) = GT(−s)G(s) where G(s) is
m×m and regular. Therefore, the spectral zeros of Φ(s) are the union of the zeros of G(s) and of GT(−s).

The matrix X also corresponds to an invariant subspace spanned by the columns of U :=

[
In
−X

]
that

remains invariant under multiplication with the Hamiltonian matrix

H :=

[
A−B(DT +D)−1C −B(DT +D)−1BT

CT(DT +D)−1C −(A−B(DT +D)−1C)T

]
, (2.9)

i. e. U satisfies HU = UAF for a matrix AF = A−BF with F := (DT +D)−1(C −BTX). We point out
here that the solutions X of the Riccati equations are certificates for the passivity of the model M, but
not for its strict passivity. We will see that this distinction plays an important role in the sequel. It is
also shown in [16] that for a minimal model M, the set of solutions X of the Riccati equation (2.8) has
two extremal solutions X− and X+ such that all other certificates X ∈ X>

satisfy X− ⪯ X ⪯ X+.

We now give a brief introduction to special realizations of passive systems, known as port-Hamiltonian
system models.

Definition 3. A linear time-invariant port-Hamiltonian (pH) system model of a proper transfer function,
has the standard state-space form

ẋ = (J −R)Qx+ (G− P )u,
y = (G+ P )TQx+ (N + S)u,

(2.10)

where the system matrices satisfy the symmetry conditions

V :=

[
−J −G
GT N

]
= −VT, W :=

[
R P
PT S

]
= WT ⪰ 0, Q = QT ⪰ 0. (2.11)

Port-Hamiltonian systems were introduced from a different point of view [15], but they are also known
to be passive. If the model is strictly passive then A and hence also Q are both invertible. We can
then choose X = Q as certificate to show that the model M :=

{
(J −R)Q,G− P, (G+ P )TQ,N + S

}
satisfies the KYP condition. Conversely, let M := {A,B,C,D} be a state-space model satisfying the
KYP condition (2.5) with a given X ≻ 0. Then it can always be put in port-Hamiltonian form, as
indicated in [4]. We can use a symmetric factorization X = TTT , which implies the invertibility of T ,
and define a new realization

{AT , BT , CT , DT } := {TAT−1, TB,CT−1, D}

so that [
T−T 0
0 Im

] [
−ATX −XA CT −XB
C −BTX DT +D

] [
T−1 0
0 Im

]
=

[
−AT −BT

CT DT

]
+

[
−AT

T CT
T

−BT
T DT

T

]
⪰ 0. (2.12)
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We can then use the symmetric and skew-symmetric part of the matrix

S :=

[
−AT −BT

CT DT

]
to define the coefficients of a pH representation via

V :=

[
J G

−GT N

]
:=

S − ST

2
, W :=

[
R P
PT S

]
:=

S + ST

2
⪰ 0.

This construction yields Q = In because of the chosen factorization X = TTT . A system with such
a representation will be called a normalized port-Hamiltonian system. This shows that proper port-
Hamiltonian systems are nothing but passive systems described in an appropriate coordinate system.
On the other hand, the passivity radius of a normalized port-Hamiltonian system has good robustness
properties in terms of its so-called passivity radius, as is shown below.

Definition 4. The passivity radius ρM of a passive model M := {A,B,C,D} is the smallest perturbation
∆M := {∆A,∆B ,∆C ,∆D} which can make the model M+∆M loose its passivity.

Therefore, if the perturbation ∆M is measured by

∥∆M∥:=
∥∥∥∥[ ∆A ∆B

∆C ∆D

]∥∥∥∥
2

, or

∥∥∥∥[ ∆A ∆B

∆C ∆D

]∥∥∥∥
F

,

then, for a given certificate X ∈ X≫
, the passivity condition W(X,M + ∆M) ⪰ 0 for all perturbed

systems M+∆M becomes just a linear matrix inequality in ∆M, and hence yields a computable lower
bound for ρM, which is called the X-passivity radius ρM(X) :

ρM(X) := inf
∆M∈Cn+m,n+m

{∥∆M∥ | detW(X,M+∆M) = 0} ≤ ρM.

It follows (see [13]) that ρM is the supremum of these lower bounds over all certificates X ∈ X≫
:

ρM := sup
X∈X≫

ρM(X). (2.13)

The following theorem, proven in [13], shows that normalized port-Hamiltonian systems have an X-
passivity radius that is at least as good as the corresponding non-normalized system.

Theorem 2. Let M = {A,B,C,D} be a model of a strictly passive transfer function Z(s). Then for
every certificate X ∈ X≫

, we can construct a normalized port-Hamiltonian system

MT := {AT , BT , CT , DT } =
{
J −R,G− P, (G+ P )T, N + S

}
using a factorization X = TTT . The X-passivity radii ρM(X) and ρMT

(I) of these two models satisfy

ρM(X) ≤ ρMT
(I) = λmin(W).

The optimal passivity radius for all possible models for Z(s) must therefore be attained by a nor-
malized port-Hamiltonian model. The following theorem indicates that there is such a normalized port-
Hamiltonian system with optimal passivity radius and that it corresponds to a certificate X for a family
of passive systems, parameterized by the real parameter ξ :

Mξ := {A+
ξ

2
In, B, C,D − ξ

2
Im}, Zξ(s) := C((s− ξ/2)In −A)−1B + (D − ξIm/2). (2.14)

Theorem 3. Let Z(s) be a given strictly passive transfer function, then there exists a port-Hamiltonian
system model M of Z(s) with the largest possible passivity radius, and it corresponds to a common
certificate X for all the transfer functions Zξ(s) that are strictly passive where 0 < ξ < Ξ and Ξ is the
smallest positive number such that ZΞ(s) is passive, but not strictly passive.
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It was shown in [13] that the calculation of Ξ is a two dimensional optimization problem that can
be solved efficiently. Once the value of Ξ is known, one can find a certificate X ≻ 0 for the LMI
W(X,MΞ) ⪰ 0 using a Riccati equation approach or the corresponding generalized eigenvalue problem

SΞ(s) :=

 0 A+ ΞIn/2− sIn B

AT + ΞIn/2 + sIn 0 CT

BT C DT +D − ΞIm

 .

That certificate is then valid for the family of LMIs W(X,Mξ) ≻ 0 for 0 < ξ < Ξ, and indicating that
the transfer functions Zξ(s) := C((s− ξ/2)In−A)−1B+(D− ξIm/2) are all strictly passive. We will use
this fact later on to propose a family of interpolation conditions of low order passive transfer functions
approximating a high order one.

3 Passive interpolation using spectral zeros

We rederive here the technique developed by Sorensen [14] and Antoulas [3] for the construction of a
degree n̂ passive system Ẑ(s) approximating a given passive system Z(s) of McMillan degree n ≥ n̂, via
interpolation in a set of so-called spectral zeros. But we relax the conditions imposed on the transfer
function Z(s), because we will need this in the next section. Our proof is based on Sorenson’s construction,
but it applies also to non-passive systems Z(s).

Theorem 4. Let M := {A,B,C,D} be a minimal model of an m × m transfer function Z(s) and let
S(s) be the system matrix of Φ(s). Assume that D +DT ≻ 0 and that we are then given a basis for an
n̂ dimensional deflating subspace of S(s) satisfying 0 A− sIn B

AT + sIn 0 CT

BT C DT +D


 U

V

W

 =

 V

−U

0

 (R− sIn̂), (3.1)

where the spectrum of R lies in the open right half plane. Then X̂ := −UTV is symmetric. If, moreover,
X̂ is invertible, then the reduced-order transfer function Ẑ(s) of the projected system model

M̂ := {Â, B̂, Ĉ, D̂} = {(UTV )−1UTAV, (UTV )−1UTB,CV,D}

is strictly positive real, and if X̂ is also positive definite, then Ẑ(s) is strictly passive.

Proof. The proof uses several arguments given in [14] for the more restrictive problem of a strictly passive
transfer function Z(s). The symmetry of X̂ := −UTV follows from the following equation, obtained from
multiplying (3.1) on the left with

[
UT V T WT

]
:

[
UT V T WT

] 0 A− sIn B
AT + sIn 0 CT

BT C DT +D

 U
V
W

 = (UTV − V TU)(R− sIn̂).

Since the left hand side is para-Hermitian, the right hand side must also be para-Hermitian, which implies
that

(UTV − V TU)(R− sIn̂) = (RT + sIn̂)(V
TU − UTV ),

and finally,
(UTV − V TU)R+RT(UTV − V TU) = 0.

Since R has all its eigenvalues in the right half plane, the matrix (UTV − V TU) must be zero, which
implies that X̂ := −UTV is symmetric. Using the different rows of (3.1) one obtains

AV +BW = V R (3.2)

ATU + CTW = −UR (3.3)

BTU + CV + (DT +D)W = 0 (3.4)

and from equations (3.2), (3.3) and the symmetry of X̂, it follows that

(UTAV + V TATU) + (UTB + V TC)W = 0. (3.5)
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If X̂ = −UTV is invertible, we can construct the reduced-order system model

M̂ := {Â, B̂, Ĉ, D̂} = {(UTV )−1UTAV, (UTV )−1UTB,CV,D} (3.6)

with transfer function Ẑ(s), and it then follows from (3.4) and (3.5) that

W(X̂,M̂) :=

[
−ÂTX̂ − X̂ Â ĈT − X̂ B̂

Ĉ − B̂TX̂ D̂T + D̂

]
=

[
−WT

Im

]
(D̂T + D̂)

[
−W Im

]
⪰ 0, (3.7)

since W(X̂,M̂)

[
In̂
W

]
= 0 and D̂T + D̂ ≻ 0. It then follows from Theorem 1 that the function

Φ̂(s) = ẐT(−s) + Ẑ(s) is non-negative on the imaginary axis, and hence that Ẑ(s) is positive real.
Moreover, (3.7) implies that

Φ̂(s) = ĜT(−s)(DT +D)Ĝ(s), where G(s) = Im −W (sIn̂ − Â)−1B̂

and has as zeros the eigenvalues of R since (3.2) implies that Â+ B̂W = R. Therefore, Φ̂(s) has no zeros
on the imaginary axis and hence must be strictly positive real. Finally, if X̂ is positive definite, then Â
is also asymptotically stable, which means that Ẑ(s) is strictly passive.

Remark 2. In [14], Sorensen proves that if Z(s) is strictly passive, then Φ(s) has n spectral zeros in the
right half plane and the conditional assumptions of the above theorem always hold true for every choice
of n̂ ≤ n right plane spectral zeros, implying that X̂ is positive definite and Ẑ(s) is strictly passive.

Corollary 3.1. The above equation (3.7) indicates that W(X̂,M̂) has minimum rank, which implies
that its Schur complement is zero, and hence that X̂ solves the Riccati equation

−X̂Â− ÂTX̂ − (ĈT − X̂B̂)(D̂T + D̂)−1(Ĉ − B̂TX) = 0.

Moreover, the corresponding feedback matrix F := (D̂T + D̂)−1(Ĉ − B̂TX) is a stabilizing feedback since
W(X̂,M̂) ⪰ 0.

It was shown in [9] that when Z(s) is strictly passive and R has distinct eigenvalues (which is the generic
case), then the lower order model M̂ := {Â, B̂, Ĉ, D̂} constructed as in (3.6), satisfies the following
tangential interpolation conditions :

Z(λj)Wrj = Ẑ(λj)Wrj , rTj W
TZ(−λj) = rTj W

TẐ(−λj), j = 1, ..., n̂, Z(∞) = Ẑ(∞),

where (λj , rj), j = 1, . . . , n̂, is a set of self-conjugate (eigenvalue, eigenvector) pairs of R. When R has
distinct eigenvalues, this relates the method of Sorenson to the spectral zero interpolation approach of
Antoulas [2,3]. If some of the eigenvalues are repeated, the conditions imply also that derivatives at these
points should match (see [2, 10]).
We give below a more complete (and simpler) proof of this connection, for the case where Z(s) satisfies

the relaxed conditions of Theorem 4.

Theorem 5. Let M := {A,B,C,D} be a minimal model of an m × m transfer function Z(s) and let
S(s) be the system matrix of Φ(s). Assume that D +DT ≻ 0 and that we are then given a basis for an
n̂ dimensional deflating subspace of S(s) satisfying 0 A− sIn B

AT + sIn 0 CT

BT C DT +D


 U

V

W

 =

 V

−U

0

 (R− sIn̂), (3.8)

where the spectrum of R lies in the open right half plane and the matrix X̂ := −UTV is positive definite.
Then the reduced-order transfer function Ẑ(s) of the projected system

M̂ := {Â, B̂, Ĉ, D̂} = {(UTV )−1UTAV, (UTV )−1UTB,CV,D}

is strictly positive real, and it satisfies the following tangential interpolation conditions that define Ẑ(s)
completely :

Z(λj)Wrj = Ẑ(λj)Wrj , rTj W
TZ(−λj) = rTj W

TẐ(−λj), j = 1, ..., n̂, Z(∞) = Ẑ(∞), (3.9)

where (λj , rj), j = 1, . . . , n̂, is a set of self-conjugate (eigenvalue, eigenvector) pairs of R.
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Proof. When multiplying the columns of (3.1) with rj , and evaluating this at λj , we obtain 0 A− λjIn B

AT + λjIn 0 CT

BT C DT +D


 Urj

V rj

Wrj

 = 0,

which implies that Wrj is in the kernel of the Schur complement of the system matrix on the left :

Φ(λj)Wrj =
(
ZT(−λj) + Z(λj)

)
Wrj = 0. (3.10)

It follows also from (3.1) that the projected system matrix 0 Â− sIn B̂

ÂT + sIn 0 ĈT

B̂T Ĉ D̂T + D̂

 :=

 (UTV )−1UT

V T

Im


 0 A− sIn B

AT + sIn 0 CT

BT C DT +D


 U(V TU)−1

V

Im


has Φ̂(s) := ẐT(−s) + Ẑ(s) as Schur complement. Since we have U(V TU)−1

V
Im

 (V TU)rj
rj

Wrj

 =

 Urj
V rj
Wrj


it follows that  0 Â− λjIn B̂

ÂT + λjIn 0 ĈT

B̂T Ĉ D̂T + D̂


 (V TU)rj

rj

Wrj

 = 0

which then in turn implies that

Φ̂(λj)Wrj =
(
ẐT(−λj) + Ẑ(λj)

)
Wrj = 0. (3.11)

This shows that the spectral zeros λj and corresponding zero directions Wrj , j = 1, . . . , n̂, of Φ̂(s) are a
subset of those of the original system Φ(s). To show that this also implies (3.9) we use the same reasoning
as above to obtain the equations[

A− λjIn B
C D

] [
V rj
Wrj

]
=

[
0
yj

]
,

[
Â− λjIn B̂

Ĉ D

] [
rj

Wrj

]
=

[
0
yj

]
,

where yj := (CV +DW )rj . This then implies that yj = Z(λj)Wrj = Ẑ(λj)Wrj , which together with

(3.10), (3.11) and D̂ = D yields (3.9).

Notice that Theorem 4 constructs a reduced-order system and a corresponding certificate X̂ for pas-
sivity, but not for strict passivity, since the matrix W(X̂,M̂) is positive semi-definite and singular, while
we would prefer to construct a lower order model with a certificate for strict passivity.

4 Parameterized interpolants

In this section we combine the results of Sections 2 and 3 to propose a set of parameterized interpolants
that have the property that the interpolants have a realization that is port-Hamiltonian and at the same
time a passivity radius that has a sufficiently large lower bound.
For this, we proceed as follows. Let Z(s) be a strictly passive transfer function of McMillan degree

n, and suppose we are given a minimal model M := {A,B,C,D} of Z(s). We will then construct a
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lower order model via the spectral zeros method explained in Section 3 but applied to a so-called shifted
transfer function :

Zξ(s) := Z(s− ξ

2
)− ξ

2
Im, with model Mξ := {A+

ξ

2
In, B,C,D − ξ

2
Im}, (4.1)

where ξ is chosen in the open interval (0,Ξ) of strictly passive systems Zξ(s) (see Theorem 3). We then

solve the tangential interpolation problem to produce a lower order model Ẑξ(s) of degree n̂ < n using

Ẑξ(∞) = Zξ(∞) = D− ξ
2Im as well as interpolation conditions on a subset of the spectral zeros of Zξ(s) :

Zξ(σj)Wξrj = Ẑξ(σj)Wξrj , rTj W
T
ξ Zξ(−σj) = rTj W

T
ξ Ẑξ(−σj), j = 1, . . . , n̂, (4.2)

where (σj , rj), j = 1, . . . , n̂, are self-conjugate (eigenvalue, eigenvector) pairs of the matrix Rξ, chosen
to have its spectrum in the open right half plane, and which is obtained from the deflating subspace
equation 0 A+ ξ

2In − sIn B

AT + ξ
2In + sIn 0 CT

BT C DT +D − ξIm


 Uξ

Vξ

Wξ

=

 Vξ

−Uξ

0

 (Rξ − sIn̂). (4.3)

It follows that these 2mn̂ + m2 real conditions completely define the reduced-order model Ẑξ(s) and
from Section 3 that a realization of the reduced-order model is given by the quadruple

{(UT
ξ Vξ)

−1UT
ξ (A+

ξ

2
In)Vξ, (U

T
ξ Vξ)

−1UT
ξ B,CVξ, D − ξ

2
Im}

which can also be written as

{(UT
ξ Vξ)

−1UT
ξ AVξ +

ξ

2
In̂, (U

T
ξ Vξ)

−1UT
ξ B,CVξ, D − ξ

2
Im}.

We now rewrite these conditions in terms of the original matrix Z(s) and its approximation Ẑ(s) derived
via this implicit shift technique.

Theorem 6. Let M := {A,B,C,D} be a minimal state-space realization of a strictly passive transfer
function Z(s) of McMillan degree n, and let

Ξ := sup
ξ
{ξ | Zξ(s) is strictly passive}.

Then for any ξ ∈ (0,Ξ), we consider an n̂ dimensional deflating subspace of the shifted pencil (4.3)
corresponding to the spectrum of a real matrix Rξ with eigenvalues in the right half plane. Then the

matrices Uξ and Vξ have full column rank n̂, the matrix X̂ξ := −UT
ξ Vξ is symmetric and positive definite,

and the low order transfer function Ẑ(s) with model parameters

M̂ := {Â, B̂, Ĉ, D̂} = {(UT
ξ Vξ)

−1UT
ξ AVξ, (U

T
ξ Vξ)

−1UT
ξ B,CVξ, D} (4.4)

satisfies the interpolation conditions Z(∞) = Ẑ(∞) = D and for j = 1, ..., n̂ :

Z(σj − ξ/2)Wξrj = Ẑ(σj − ξ/2)Wξrj , rTj W
T
ξ Z(−σj − ξ/2) = rTj W

T
ξ Ẑ(−σj − ξ/2), (4.5)

where (σj , rj), j = 1, ..., n̂, are self-conjugate (eigenvalue, eigenvector) pairs of the matrix Rξ. Moreover,

the matrix X̂ξ is a certificate for the LMI

W(X̂ξ,M̂) :=

[
−X̂ξÂ− ÂTX̂ξ ĈT − X̂ξB̂

Ĉ − B̂TX̂ξ D̂T + D̂

]
⪰ ξ.diag(X̂ξ, Im) ≻ 0

and ξ/2 is a lower bound for the passivity radius of the normalized port-Hamiltonian realization M̂Tξ
:=

{Ĵ − R̂, Ĝ− P̂ , (Ĝ+ P̂ )T, N̂ + Ŝ} obtained using X̂ξ = TT
ξ Tξ via the state-space transformation[

Tξ 0
0 Im

] [
Â B̂

Ĉ D̂

] [
T−1
ξ 0

0 Im

]
=

[
Ĵ − R̂ Ĝ− P̂

(Ĝ+ P̂ )T N̂ + Ŝ

]
. (4.6)
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Proof. It follows from the strict passivity of Zξ(s) for any ξ in the open interval (0,Ξ) that Ẑξ(s)
constructed using (4.3) and (4.4), satisfies the conditions of Theorem 4 and Remark 2. Therefore,
the matrix X̂ξ := −UT

ξ Vξ is symmetric and positive definite. It then follows that the projected system

M̂ξ := {(UT
ξ Vξ)

−1UT
ξ AξVξ, (U

T
ξ Vξ)

−1UT
ξ Bξ, CξVξ, Dξ}

satisfies Theorem 4 with X̂ξ := −UT
ξ Vξ and hence we have

W(X̂ξ,M̂ξ) =

[
−X̂ξÂξ − ÂT

ξ X̂ξ ĈT
ξ − X̂ξB̂ξ

Ĉξ − B̂T
ξ X̂ξ D̂ξ + D̂T

ξ

]
⪰ 0.

By using the relations between M̂ξ = {Âξ, B̂ξ, Ĉξ, D̂ξ} = {Â+ ξ
2In, B̂, Ĉ, D̂− ξ

2Im} and M̂ = {Â, B̂, Ĉ, D̂},
we obtain the LMI

W(X̂ξ,M̂) =

[
−X̂ξÂ− ÂTX̂ξ ĈT − X̂ξB̂

Ĉ − B̂TX̂ξ D̂ + D̂T

]
⪰ ξ

[
X̂ξ 0
0 Im

]
≻ 0 (4.7)

which implies that the transformed port-Hamiltonian system (4.6) has a passivity radius at least as large
as ξ

2 since it follows from (4.7) and X̂ξ = TT
ξ Tξ, that

1

2

[
T−T
ξ 0

0 Im

]
W(X̂ξ,M̂)

[
T−1
ξ 0

0 Im

]
=

[
R̂ P̂

P̂T Ŝ

]
≻ ξ

2
In̂+m.

The translation of interpolation conditions on the shifted system towards similar conditions on the original
system follows directly from the identity (4.1).

It follows from the above theorem and from Theorem 2 that in order to have an optimal passivity
radius for the reduced-order model, one should choose to put it in the normalized port-Hamiltonian form
{TξÂT

−1
ξ , TξB̂, ĈT−1

ξ , D̂}.

Remark 3. It follows from Theorem 4 that when choosing Ξ < ξ < λmin(D
T + D), the pencil Sξ(s)

may still have a deflating subspace (4.3) where X̂ξ is positive definite, and hence yield a strictly passive
reduced-order model. If this is the case, we will be able to increase the passivity radius even further. This
flexibility will be used in the section on numerical examples.

Remark 4. Notice that the interpolation points {σj , j = 1, . . . , n̂} and {−σj , j = 1, . . . , n̂} of the shifted

system Ẑξ(s) are mirror images of each other with respect to the origin, but this is not true anymore
for the interpolation points {σj − ξ/2, j = 1, . . . , n̂} and {−σj − ξ/2, j = 1, . . . , n̂} of the original system

Ẑ(s). Moreover, since the interpolation points {σj , j = 1, . . . , n̂} are still in the open right half plane, the
shifted interpolation conditions have the tendency to approximate better the transfer function in the left
half plane.

5 Choosing the spectral zeros

In this section we look at the selection of zeros and the effect of (near) non-minimality of the transfer
function. If we want to select particular spectral zeros, it is convenient to compute the individual
corresponding eigenvectors : 0 A− λjIn B

AT + λjIn 0 CT

BT C DT +D

 Urj
V rj
Wrj

 = 0, Rrj = λjrj . (5.1)

It follows from the proof of Theorem 5 that the interpolation condition becomes

yj := [CV rj +DWrj ] = Z(λj)Wrj = Ẑ(λj)Wrj . (5.2)

Since yj and Wrj are both bounded quantities, λj can not be a pole of Z(s) unless it is also a decoupling
zero, implying that the system is not minimal. More formally, let N be the unobservable subspace of the
pair (A,C) then

AN ⊂ N , CN = 0.
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This implies that 0⊕N⊕0 is a deflating subspace of S(s) with as spectrum the unobservable modes of the
pair (A,C). Choosing a vector in that deflating subspace yields Urj = 0 and hence also a singular matrix

X̂. Moreover, one then has Wrj = 0 and the interpolation condition (5.2) then vanishes. A similar
reasoning on the dual system implies that the same problem occurs when using an uncontrollable mode
of the pair (A,B). Therefore it is recommended to stay away from nearly uncontrollable or unobservable
modes when selecting spectral zeros as interpolation points. If we make sure that X̂ has large eigenvalues,
then we will stay away from non-minimality in the reduced-order model, and the interpolation conditions
(5.2) will be well defined. Moreover, it makes sense to “maximize” X̂ since it is the Hamiltonian storage
function of the projected system: maximizing X̂ can indeed be viewed as finding the dominant restriction
of the Hamiltonian X.

We used the following procedure to construct a nearly optimal selection of interpolating spectral zeros.
Assume that we computed the full matrix X := −UTV , which is symmetric and positive definite. If we
perform the Cholesky decomposition with pivoting on this matrix, then the leading n̂× n̂ submatrix X̂
corresponds to a subset of n̂ eigenvectors that is nearly optimal (a truly optimal selection would require
to verify all possible symmetric permutations). In practice this “greedy” ordering of the spectral zeros
works reasonably well on the examples we tried. We should point out that if one desires a real lower
order model, then the pivoting strategy should also make sure that the selected spectral zeros form a
self-conjugate set, but that is easy to obtain via a post-processing of the greedy ordering : it amounts to
looking for a leading subset of n̂ self-conjugate spectral zeros in the preliminary ordered complex zeros.
We also point out that this selection procedure can also be implemented on a partial set of computed
eigenvectors and spectral zeros, such as those one would compute using a Krylov-Schur method for large-
scale problems (see e.g. [7]) combined with implicit filtering of undesired spectral zeros. Such large-scale
issues, though, are beyond the scope of this paper.

6 Using the robustness property

It follows from Section 4 that it is indicated to choose ξ ∈ (0,Ξ) as large as possible, since this will yield
an interpolant with a certificate for a larger passivity radius. This means that in that coordinate system
we can allow for larger perturbations and still preserve passivity of the reduced-order model. We can
therefore expect to have more freedom in the numerical implementation of any algorithm computing the
deflating subspace described in Theorem 6 or on the flexibility of its stopping criterion.
We first show that for a strictly passive system, there are many possibilities to construct strictly passive

lower order models and that the corresponding projectors form an open set.

Theorem 7. Let M := {A,B,C,D} be a minimal state-space model for a strictly passive transfer
function Z(s) of McMillan degree n. Let X ≻ 0 be a certificate for the LMI that ensures that Z(s) is
strictly passive :

W(X,M) =

[
−X 0
0 Im

] [
A B
C D

]
+

[
AT CT

BT DT

] [
−X 0
0 Im

]
≻ 0. (6.1)

If we choose any matrix V ∈ Rn×n̂ of full column rank n̂, and compute U := −XV X̂−1, where X̂ :=
V TXV , then UTV = −In̂ and the system

M̂ := {Â, B̂, Ĉ, D̂} = {(UTV )−1UTAV, (UTV )−1UTB,CV,D} (6.2)

is a strictly passive lower order model of degree n̂.

Proof. It follows from (6.1) that[
−V TX 0

0 Im

] [
A B
C D

] [
V 0
0 Im

]
+

[
V T 0
0 Im

] [
AT CT

BT DT

] [
−XV 0

0 Im

]
≻ 0. (6.3)

Using X̂ = V TXV , UX̂ = −XV and UTV = −In̂, we can rewrite this as[
−X̂ 0
0 Im

] [
Â B̂

Ĉ D̂

]
+

[
ÂT ĈT

B̂T D̂T

] [
−X̂ 0
0 Im

]
≻ 0

which proves the strict passivity of the lower order model, since X̂ ≻ 0. Moreover, the matrices U , V ,
X̂ and UTV have full rank n̂ by construction and this is maintained in an open neighborhood of U and
V . Therefore the matrix inequality (6.3) is still valid and the constructed reduced-order models in a
sufficiently small neighborhood of (6.2) are strictly passive.
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Let us suppose now that the deflating subspace described in (4.3) was inaccurate, either due to roundoff,
or due to early termination of an iterative process to compute it. If we denote the computed quantities as
Ũ , Ṽ and W̃ , then we can construct R̃ and residuals ∆U , ∆V and ∆W such that the following equation
holds 

0 A− sIn B

AT + sIn 0 CT

BT C DT +D




Ũ

Ṽ

W̃

 =


Ṽ

−Ũ

0

 (R̃− sIn̂) +


∆U

∆V

∆W

 . (6.4)

Let us also denote the computed projected system as

M̃ := {Ã, B̃, C̃, D̃} := {(ŨTṼ )−1ŨTAṼ , (ŨTṼ )−1ŨTB,CṼ ,D}.

If we define X̃ := −ŨTṼ , then if follows from these equations that

(X̃T − X̃)R̃+ R̃T(X̃T − X̃) = (∆T
U Ũ +∆T

V Ṽ +∆T
W W̃ )− (ŨT∆U + Ṽ T∆V + W̃T∆W ), (6.5)

which implies that X̃ is nearly symmetric, and that the following matrix is nearly positive definite :[
−X̃Ã− ÃTX̃T C̃T − X̃B̃

C̃ − B̃TX̃T D̃T + D̃

]
=

[
ŨTAṼ + Ṽ TATŨ Ṽ TCT + ŨTB

CṼ +BTŨ DT +D

]

=

[
W̃T

−Im

]
(D̃T + D̃)

[
W̃ −Im

]
+

[
∆ ∆W

∆T
W 0

]
⪰ 0,

where ∆ = (X̃T − X̃)R̃+ ŨT∆U + Ṽ T∆V −∆T
W W̃ is symmetric, because of (6.5).

Notice that this is not a valid passivity LMI since X̃ is not symmetric. But if we replace X̃ by its
symmetric part X̃s =

1
2 (X̃ + X̃T) then we obtain, using X̃a = 1

2 (X̃ − X̃T)[
−X̃sÃ− ÃTX̃s C̃T − X̃sB̃

C̃ − B̃TX̃s D̃T + D̃

]
=

[
W̃T

−Im

]
(D̃T + D̃)

[
W̃ −Im

]
+

[
∆11 ∆12

∆T
12 0

]
⪰ 0,

where ∆11 = ∆− X̃aÃ− ÃTX̃a and ∆12 = ∆W − X̃aB̃. Notice that X̃a is a solution of the Lyapunov-like
equation (6.5) and hence that the perturbation of the above passivity LMI is of the order of the residual
in (6.4).
This shows that if we have a robustness margin in the unperturbed system, in the sense that its

passivity radius is bounded away from 0, then strict passivity is maintained for a reasonably large residual
in (6.6). We can thus apply these ideas to the technique of shifted interpolation and guarantee that the
perturbations induced by the numerical algorithm do not destroy the strict passivity of the projected
model. Notice that when using iterative algorithms for large-scale problems, such robustness properties
may come in handy since we may allow for early termination of iterative schemes, provided the resulting
perturbation lies within the robustness bounds.

7 Numerical experiments

In this section, we illustrate the proposed methodology to construct passive reduced-order models by
means of two numerical examples. All the experiments were conducted using MATLAB®2020b.

7.1 RLC circuit:

We first illustrate the results of the parameterized interpolation technique by applying it to the 200th

order single-input/single-output model of a circuit described in [12], where 100 electrical capacitances,
inductors, and resistances are interconnected. The limiting value Ξ ≈ 0.56 for the parameter ξ was
estimated using a mesh of equidistant points in the interval [0,Ξub], where Ξub is a conservative upper
bound computed from the spectrum of A (see [13]). We applied the selection procedure of spectral zeros
described in Section 5 for lower order degrees k = {2, 4, . . . , 20} and for equidistant shifts ξ ∈ [0,Ξ].
In Figure 7.1, we give the results of the low order model of degree 6 for equidistant shifts ξ ∈ [0, 0.56].

The top-left plot shows the original spectral zeros (in blue dots) and the selected right half plane interpo-
lation points in magenta color for different values of ξ. Moreover, low-intensity magenta color ‘+‘ belongs
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Figure 7.1: Degree 6 approximation of 200th order RLC network. Top left: spectral zeros (dots) and
right half plane interpolation sets of points (+). Black and green indicate the interpolation points
corresponding to ξ = 0 and ξ = Ξ, respectively. Top right: relative H∞-error norm as a function of ξ.
Bottom left: singular value plot of the original system (SYS) and its best approximation (sys). Bottom
right: singular value plot of the corresponding error system.

to lower values of ξ; likewise, high-intensity color belongs to larger values of ξ. One can see that the
interpolation points are close to the original spectral zeros but with a shift towards the imaginary axis as
ξ increases. The top right plot gives the relative H∞-error norm as a function of ξ. One can see that the
errors depend in a non-smooth manner on the parameter ξ, which is not so surprising since the selected
interpolation points also depend on ξ. It is to be noted, though, that there is a general decreasing trend
of the relative error as a function of ξ. This is also the case for the other low-order models we constructed.
The bottom two plots give the singular value plot of the original system (SYS) and its best approximation
(sys), and the singular value plot of the corresponding error system (SYS-sys), respectively. In order
to show the effect of the order selection, we give in Figure 7.2 a plot of lower and upper values of the
achieved relative H∞-errors for the different values of ξ, as a function of the order k. In comparison, we
also included provable upper and lower bounds of the relative error for the optimal H∞ approximation
of the given system. Note that the upper bound is computed using the standard balanced truncation
method, see, e.g., [2], and the lower error bound for reduced models of order r can be determined by
σk+1, where σk+1 is the (k + 1)th largest singular value of the original system [17]. It is clear from this
plot that our selection procedure is far from optimal. One should be aware, though, that our procedure
is restricted to lower order systems that are passive and are generated by interpolation of special sets of
points, which is a restrictive constraint.

7.2 Random example:

The second example is a random port-Hamiltonian system M := {J −R,G− P,GT + PT, N + S} with
X-passivity radius ρM(In) = 0.5. The state-space model has state dimension n = 6 and input/output
dimension m = 2. It was generated by constructing a random symmetric matrix W :=

[
R P
PT S

]
with

smallest eigenvalue λmin = 0.5 and a random anti-symmetric matrix V :=
[
−J −G

GT N

]
. We then applied

equidistant shifts ξ ∈ [0,Ξ] and computed reduced-order models of degree n̂ = 4, based on the parame-
terized method explained in Theorem 6. But based on Remark 3, we also took values of the shift ξ > Ξ,
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Figure 7.2: Bounds for the low order error norms. The solid lines lines give upper and lower bounds for
the models constructed for different values of ξ. The dashed lines give provable upper and lower bounds
for the optimal H∞ reduced-order model.

for as long as the construction of a positive definite matrix X̂ξ was possible (which implies that Âξ is

still stable and D̂T
ξ + D̂ξ ≻ 0).

In Figure 7.3, the top-left plot shows the original spectral zeros (in blue dots) and selected right half
plane interpolation points as magenta-colored ‘ + ‘. One can see that as a function of ξ, the choice
of four interpolation points is now much closer to each other than in the previous example. The top
right plot gives the relative H∞-error norm as a function of ξ, and there also, one observes a smoother
behavior since essentially the same interpolation points are being used. We point out here that in this
plot, the blue crosses correspond to the values of ξ ∈ [0,Ξ], whereas the red circles, correspond to the
values of ξ > Ξ. The bottom two plots give the singular value plots of the original system (SYS) and
its best approximation (sys) and the singular value plots of the corresponding error system (SYS-sys),
respectively.
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Figure 7.3: Degree 4 approximation of random 6th order network. Top left: spectral zeros (dots) and
interpolation sets of points (crosses). Black and green indicate the interpolation points corresponding
to ξ = 0 and ξ ≈ 1.60Ξ, respectively. Top right: relative H∞-error norm as a function of ξ. Bottom
left: singular value plots of the original system (SYS) and its best approximation (sys). Bottom right:
singular value plots of the corresponding error system (SYS-sys).
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8 Concluding remarks

In this paper we developed a parameterized model reduction method based on the interpolation of the
transfer function Z(s) in a subset of the so-called spectral zeros of Z(s). The parameterization lies in the
fact that we consider now spectral zeros of shifted systems Zξ(s), rather than the original transfer function
Z(s). Although the method is theoretically based on interpolation techniques, the algorithm itself is based
on the computation of particular deflating subspaces of the “Hamiltonian” pencils associated with the
shifted models Zξ(s). It was also shown that these deflating subspaces do not need to be computed
exactly, since the bounds on the passivity radius of the projected systems, gives a certain flexibility in
the accuracy needed for the eigenspace computation. In this paper, we also proposed a new procedure
for the selection of spectral zeros used as interpolation points for a lower order model that is a good
approximation.
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