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Abstract: We present a framework for learning Hamiltonian systems using data. This
work is based on the lifting hypothesis, which posits that nonlinear Hamiltonian systems
can be written as nonlinear systems with cubic Hamiltonians. By leveraging this, we obtain
quadratic dynamics that are Hamiltonian in a transformed coordinate system. To that end, for
given generalized position and momentum data, we propose a methodology to learn quadratic
dynamical systems, enforcing the Hamiltonian structure in combination with a symplectic
auto-encoder. The enforced Hamiltonian structure exhibits long-term stability of the system,
while the cubic Hamiltonian function provides relatively low model complexity. For low-
dimensional data, we determine a higher-order transformed coordinate system, whereas for
high-dimensional data, we find a lower-order coordinate system with the desired properties.
We demonstrate the proposed methodology by means of both low-dimensional and high-
dimensional nonlinear Hamiltonian systems.

Keywords: Cubic Hamiltonian, quadratic Hamiltonian systems, lifting principle for dynam-
ical systems, structure-preserving model order reduction, symplectic auto-encoder

Novelty statement:

• Inspired by quadratic lifting, allowing to rewrite nonlinear systems as quadratic systems
in a lifted coordinate system, we discuss a lifting principle for nonlinear Hamiltonian
systems.

• We propose a data-driven approach to learning a quadratic Hamiltonian coordinate
system by means of symplectic auto-encoders so that

– the dynamics in the learned coordinate system can be given by a quadratic system,
and

– the underlying Hamiltonian function is cubic.

• For high-dimensional data, we discuss learning a reduced coordinate system so that the
above goals are achieved. This then aligns with non-intrusive model-order reduction
by nonlinear projection.

• By means of several examples, including high-dimensional ones, we demonstrate the
proposed methodology.
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1. Introduction

Hamiltonian dynamics are ubiquitous as a powerful mathematical tool in modeling complex physical
dynamical systems [1]. Classically, they are used in topics ranging from celestial mechanics [2] over fluid
mechanics [3] to Schrödinger equations in quantum mechanics [4]. The coordinates in which Hamiltonian
systems operate are split into generalized positions and momenta, which need to be identified from given
data in order to fit a physical model to observations.
The construction of models that can accurately capture and predict the dynamics of highly complex

systems has been of interest for several decades if not centuries; see, e.g., [5] and references therein.
Recently, the powerful approximation capabilities of neural networks have brought researchers in many
fields closer to understanding complicated systems. Neural networks have been successfully studied for
predicting complex dynamical systems [6, 7], improving turbulence models [8, 9], classifying time series
[10], and studying differential equations (DEs) [11, 12]. To exploit the long-term stability properties
of Hamiltonian systems, neural networks are used to learn the energy functions [13–16] rather than
dynamical systems.
In this work, we are interested in learning quadratic Hamiltonian systems explaining given trajectory

data from two different perspectives: lifting transformations [17], and nonlinear symplectic model order
reduction [18] with weak enforcement of the transformation to be symplectic. In fact, we learn the
quadratic Hamiltonian systems directly from data, without needing to resort to the orignal dynamical
equations.
In short, given data from a Hamiltonian system, we want to learn the dynamics in a structure-preserving

way, while achieving low model complexity and having the option to reduce the dimension for high-
dimensional data. This is achieved via structure-preserving auto-encoders and modeling of the dynamics
with a quadratic Hamiltonian system.
In [17], a unified approach, namely lifting transformations, is used to approximate general nonlinear

systems. In the case where the dynamical system is known, one can manually design lifted variables.
However, lifting the dynamical system does not necessarily lead to a Hamiltonian system. Therefore,
we weakly force the lifting transformations to be symplectic by exploiting symplectic embeddings and
strictly enforce the Hamiltonian structure of the dynamics equations.
The second application of our approach lies in dimensionality reduction of Hamiltonian systems. Learn-

ing reduced-order models for Hamiltonian systems comes with some practical challenges. Without en-
forcing preservation of the Hamiltonian structure in the reduced-order model, it can quickly lose accu-
racy [19]. One established approach to preserve the symplectic structure is by using linear symplectic
projections, i.e., proper symplectic decomposition [19, 20], but for Hamiltonian systems with slow decay
of the Kolmogorov-n-width, this approach might not be feasible. Furthermore, for non-linear Hamil-
tonian functions, hyperreduction methods like the Symplectic Discrete Empirical Interpolation Method
(SDEIM) [19] are needed for efficient computability of the reduced-order model.
In [18], a reduction by a non-linear structure-preserving auto-encoder is studied, addressing this prob-

lem. We take a similar approach and use a structure-preserving auto-encoder to map data from a Hamilto-
nian system to a learned quadratic Hamiltonian system, thereby reducing model complexity considerably.
The simple quadratic structure allows for the direct learning of the Hamiltonian system, without having
to learn the Hamiltonian function and without the need of calculating its gradient. For the purpose of
learning reduced dynamics, similar as in MOR, we show that this quadratic Hamiltonian system can be
of much lower dimension than the original full order model. Learning the quadratic Hamiltonian system
from data has the further advantage that no hyper-reduction methods are needed for nonlinear systems,
and the reduced-order model can thus be efficiently computed. Furthermore, as our approach learns the
reduced dynamics directly, we do not need to take the gradient through the auto-encoder to simulate the
learned models.
The recent preprint [21] can be seen as a complementary approach to our method for reducing the

order of Hamiltonian systems. While we learn a quadratic Hamiltonian system with a general non-
linear symplectic auto-encoder, in [21] two different versions of quadratic symplectic auto-encoders are
studied, which are then used for model order reduction leading to a general non-linear Hamiltonian
system. Moreover, we learn the reduced dynamics directly from data, while [21] studies model order
reduction, i.e., resorting to the Hamiltonian of the full-order model. In future work, a combination of
both approaches seems worthwhile.
The paper is structured as follows. In Section 2, we introduce the necessary mathematical background

to embed Hamiltonian systems in a structure-preserving way into a higher-dimensional space and define
quadratic Hamiltonian systems. In Section 3 we describe the auto-encoder structure to lift Hamiltonian
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systems. In Section 4 we adapt the theory to learn low-dimensional quadratic representations of high-
dimensonal data in a structure-preserving way. In Section 5 we show the applicability of the approach,
for low-dimensional systems in Subsection 5.1 and for structure preserving reduction of high-dimensional
systems in Subsection 5.2. Section 6 concludes the paper. Implementation details can be found in
Appendix A.

2. Background

In this section, we provide the necessary theoretical background needed for the derivation of our learning
approach for Hamiltonian systems.

2.1. Hamiltonian Systems and Symplectic Embedding

The governing equations of Hamiltonian systems are Hamilton’s equations, namely

ẋ(t) = J2n∇xH(x(t)) ∈ R2n, (2.1)

where x = (q, p) ∈ R2n with q and p being generalized positions and momenta, respectively,

J2n :=

[
0 In

−In 0

]
∈ R2n×2n,

and ∇x denotes the gradient with respect to x. Moreover, we consider an initial condition x(0) = x0 =
(q0, p0) ∈ R2n. The Hamiltonian function H:R2n → R describes the energy of the system and is preserved
along the solution trajectories. Next, we discuss the definition of a symplectic embedding, which plays
an important role in our later discussions.

Definition 1 (Symplectic Embedding for Vector Spaces). A symplectic embedding of R2n into R2N is
a homeomorphism ψ:R2n → ψ(R2n) ⊂ R2N for which the Jacobian dψx ∈ R2N×2n fulfills

(dψx)
TJ2N dψx = J2n (2.2)

at every x ∈ R2n.

It is immediate to see that a symplectic embedding is a smooth embedding in the sense of differential
geometry [22, Section 22, p. 568], as the Jacobian has full rank at every point. The Jacobian is therefore
injective and ψ is an immersion. This furthermore implies N ≥ n. Therefore, a symplectic embedding is
also called a symplectic lifting.

Proposition 1 (Equivalent Embedded System). Let ψ:R2n → R2N be a symplectic embedding and define
z0 := ψ(x0) ∈ R2N . Then, the system (2.1) is equivalent to the embedded system

ż(t) = J2N∇zH(ψ−1(z(t))), (2.3)

i.e., the solution of the differential equation fulfills z(t) = ψ(x(t)) for all t ∈ [0,∞).

Proof. For any z ∈ ψ(R2n), it holds with the chain rule that

J2N∇zH(ψ−1(z)) = J2N (d(H ◦ ψ−1)z(z))
T = J2N (dψ−1

z)
T (dHx(ψ

−1(z)))T

= J2N (dψ−1
z)

T∇xH(ψ−1(z)) = dψxJ2n∇xH(ψ−1(z)).

As z(t) := ψ(x(t)) implies ż(t) = dψx(t)ẋ(t) = dψx(t)J2n∇xH(x(t)), the claim follows.

As ψ is a symplectic lifting, the system for z is called a symplectic lifting of the system for x.

2.2. Quadratic Symplectic Representations

There are many possibilities to construct a symplectic embedding of a nonlinear Hamiltonian system.
However, in this work, we are seeking to identify a particular higher dimensional or lifted space so that a
quadratic system can describe the dynamics in the lifted space. Moreover, the Hamiltonian in the lifted
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space is a cubic polynomial function. To briefly describe the lifting procedure, we consider the system of
ODEs

ẋ = f(x(t)), x ∈ Rn. (2.4)

The quadratic lifting transformation [17, 23–25] can be obtained by defining a transformation z(t) =
ψ(x(t)) ∈ RN for N ≥ n such that the transformed system (2.4) satisfies

ż = A+ Bz + Cz ⊗ z ∈ RN . (2.5)

We illustrate the quadratic lifting for nonlinear systems by means of a nonlinear oscillator example.

Example 1 (Nonlinear Oscillator). Consider the nonlinear (an-harmonic) oscillator [26] with the Hamil-

tonian H(q, p) = p2

2 + q2

2 + q4

4 . The associated governing equations for this oscillator are given by

q̇ = p,

ṗ = −(q + q3).
(2.6)

We demonstrate the lifting transformation by introducing the variables w1 = q, w2 = p, and w3 = q2.
With the new variable w3, the equations of motion for the oscillator (2.6) can be written as

ẇ1 = w2,

ẇ2 = −(w1 + w1w3),

ẇ3 = 2w1w2,

(2.7)

which is a quadratic system. Moreover, one can also define an inverse mapping from (w1, w2, w3) to
(q, p). However, it is easy to note that the system in (2.7) is not a Hamiltonian system in canonical
coordinates since it is odd-dimensional. We further note that even introducing new variables to make the
lifted system (2.7) even dimensional does not necessarily result in a Hamiltonian system.

Notably, the theory of generating functions can be used to construct quadratic Hamiltonian systems. For
a detailed overview of generating functions, we refer to the book [27]. To illustrate this for the nonlinear
oscillator, we suppose p̂ = q2. Then, using a generating function of type 1, one can find F1 = −q̂q2, so
that p = −2q̂q, implying p = −2q̂p̂1/2 and q = p̂1/2. The new Hamiltonian with new variables becomes

Ĥ = 2q̂2p̂+ p̂
2 + p̂2

4 , which is cubic; hence, the underlying dynamics are given by a quadratic system.

Inspired by the above example, in this work, we seek to identify a symplectic space to lift to. The
desired properties can be achieved when the lifted system (2.5) satisfies (2.3) with a symplectic lifting ψ
fulfilling (2.2). For this, we first define quadratic Hamiltonian systems for our reference.

Definition 2 (Quadratic Hamiltonian System). A quadratic Hamiltonian system is a Hamiltonian sys-
tem (2.1) for which the Hamiltonian function is cubic, i.e.,

H(x) = ATx+BT (x⊗ x) + CT (x⊗ x⊗ x),

where A ∈ R2n, B ∈ R(2n)2 , C ∈ R(2n)3 , and ⊗ denotes the Kronecker product.

The simple structure of quadratic Hamiltonian systems allows enforcing the Hamiltonian condition
directly onto the system, without having to compute the gradient of the Hamiltonian function.

Proposition 2. A quadratic system of ODEs

ẋ = A+ Bx+ C(x⊗ x) ∈ R2n, (2.8)

where A ∈ R2n, B ∈ R2n×2n and C ∈ R2n×(2n)2 , is a quadratic Hamiltonian system if and only if JT
2nB

is a symmetric matrix and there is a symmetric tensor T ∈ R2n×2n×2n for which

Tu(x⊗ x) = JT
2nC(x⊗ x)

holds for all x ∈ R2n, where Tu ∈ R2n×(2n)2 is the unfolding of T by frontal slices.

Proof. By definition, (2.8) is a quadratic Hamiltonian system if and only if there is a cubic function
H(x) = ATx+BTx⊗ x+ CTx⊗ x⊗ x such that ẋ = J2n∇xH(x), which is equivalent to

∇xH(x) = ∇x

(
ATx+BT (x⊗ x) + CT (x⊗ x⊗ x)

)
= JT

2n(A+ Bx+ Cx⊗ x).

Since there is a bijection between homogenous polynomials and symmetric tensors [28, p. 6], the claim
follows.
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Symplectic data
⊂ R2n

E
n
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d
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ż = A + Bz + Cz ⊗ z D

e
c
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d
e
r Reconstructed

dynamics
⊂ R2n

Figure 3.1: The auto-encoder structure of the symplectic lifting method. Here, the encoder ψ : R2n → R2N

is weakly enforced to be a symplectic mapping and the quadratic system is enforced to be Hamiltonian.

For many smooth nonlinear systems, there exist guaranteed liftings which allow us to rewrite nonlin-
ear systems as quadratic systems, see, e.g., [23, 24]. However, there is currently no established result
ensuring the existence of a symplectic lifting for nonlinear Hamiltonian systems to higher dimensions
where the dynamics can be represented by quadratic Hamiltonian systems. Exploring this aspect re-
mains an intriguing theoretical endeavor for future research. In this work, however, we hypothesize the
existence of such a system and focus on learning such a symplectic lifting/embedding by means of suitable
optimization problems, which we discuss next.

3. Learning the Lifted Quadratic Symplectic Representation

Here, we describe our methodology to learn a symplectic lifting to map from a given canonical Hamiltonian
system to a quadratic Hamiltonian system, which we visualize in Figure 3.1. The first ingredient to it is
to define lifted coordinates z(t) using a classical auto-encoder loss as follows:

Lencdec = ∥x(t)− ϕ(ψ(x(t)))∥, (3.1)

where ψ(x(t)) = z(t) = (q̂(t), p̂(t)) and ϕ(z(t)) = x̃(t) = (q(q̂(t)), p(p̂(t))) ≈ x(t). However, the mapping
obtained through (3.1) does not necessarily yield a symplectic mapping. To get a symplectic map, we
use (2.2) and define a symplectic loss as follows:

Lsymp = ∥(dψx)
TJ2N dψx − J2n∥. (3.2)

Furthermore, we assume that time derivatives of states are accessible. Thus, we compute the time
derivatives of the lifted space z using the chain-rule. Hence, we add the following term in the loss
function:

Lżẋ =
∥∥dψx(t)ẋ(t)− J2N∇zH(ψ−1(z(t)))

∥∥
= ∥dψx(t)ẋ(t)− (A+ Bz(t) + Cz(t)⊗ z(t))∥ (3.3)

with z = ψ(x). Finally, to obtain a quadratic Hamiltonian system, we combine all these losses defined in
(3.1)–(3.3). Hence we have the total loss as a weighted sum of these loss functions, given by

L = λ1Lencdec + λ2Lsymp + λ3Lżẋ, (3.4)

where λ{1,2,3} are hyper-parameters. The details of the implementation and auto-encoders are given in
Appendix A. Finally, we optimise all parameters in (3.4) at the same time.
We remark that we do not enforce the homeomorphism property, but only enforce (2.2), i.e., the

condition that the encoder is a symplectic immersion and therefore locally invertible, and that the
encoder is invertible on the training data.

4. Low-dimensional Quadratic Symplectic Representation of
High-dimensional Data

Thus far, we have discussed how nonlinear Hamiltonian systems can be lifted to higher dimensional
quadratic symplectic systems and how they can be learned by means of data. However, there are many
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High dimensional
data ⊂ R2N

E
n
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d
e
r Latent space R2n

Learned quadratic model
ż = A + Bz + Cz ⊗ z D

e
c
o
d
e
r

Reconstructed
dynamics ⊂ R2N

Figure 4.1: The auto-encoder structure of the symplectic reduction method. Here, the decoder ϕ :
R2n → R2N is weakly enforced to be a symplectic mapping and the quadratic system is enforced to be
Hamiltonian.

Hamiltonian systems which are high-dimensional, specially coming from partial differential equations.
Furthermore, it is known that high dimensional dynamic data often evolve in a lower-dimensional sub-
space. Therefore, in these cases, we aim to learn lower-dimensional coordinates for high-dimensional data
so that they are not only symplectic but can also be used to describe the dynamics of the high-dimensional
system, as depicted in Figure 4.1.
However, there is a subtlety compared to the method discussed in the previous section. It is worth

noting that (3.2) will weakly enforce symplecticity in the case of symplectic lifting. On the other hand,
for high-dimensional data, the quadratic system is of lower dimension than the original data; thus, we
actually need to enforce that the decoder ϕ, and not the encoder ψ, of the auto-encoder is a symplectic
embedding from the quadratic model to the original high-dimensional system.
Since the high-dimensional data, particularly coming from partial differential equations, have a lot of

spatial coherency, we make use of a deep convolutional auto-encoder (DCA), which is computationally
efficient. Moreover, to enforce the symplecticity condition in the loss function, we use a weakly symplectic
deep convolutional auto-encoder with essentially the same conditions as in [18, Section 3.3]. This means
that in the symplectic reduction, instead of (3.2), we use the following loss terms for symplectic loss:

L̃symp = ∥(dϕz)TJ2N dϕz − J2n∥. (4.1)

As we have switched the role of n and N in the reduction case, (3.3) is replaced by

L̃żẋ =
∥∥dψx(t)ẋ(t)− J2n∇zH(ψ−1(z(t)))

∥∥
= ∥dψx(t)ẋ(t)− (A+ Bz(t) + Cz(t)⊗ z(t))∥.

(4.2)

The loss of the auto-encoder Lencdec is given by (3.1) as in the lifting case. Hence, the total loss is
calculated via

L = λ1Lencdec + λ2L̃+ λ3L̃żẋ, (4.3)

which is then used to learn a suitable embedding.

5. Numerical Experiments

In this section, we examine the performance of the proposed methodology in two scenarios: low-dimen-
sional dynamical systems and high-dimensional dynamical systems. For the low-dimensional case, we
investigate three different examples: the simple pendulum, an an-harmonic oscillator, and the Lotka-
Volterra equations. For the high-dimensional case, we study the linear wave and nonlinear Schrödinger
equations. All the experiments are done using PyTorch on a machine with an Intel© CoreTM i5-12600K

CPU and NVIDIA RTXTM A4000(16GB) GPU. To preserve the symplectic structure after time discretiza-
tion, we have used the implicit midpoint rule as time integrator. In the case of symplectic lifting for
all low-dimensional examples, we set the dimension of the latent space—for which the dynamics are
quadratic and have a constant cubic Hamiltonian—to four. In the case of symplectic reduction we set
the dimension of the latent space of the linear wave equation to four and of the nonlinear Schrödinger
equation to two. All other hyperparameter settings and neural network architectures are listed in detail
in Appendix A for each example.
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(a) Training data. (b) A comparison of the learned model with the
ground truth in phase space.

Figure 5.1: Nonlinear pendulum: the plot (a) shows training data of the pendulum example in phase
space, and the plot (b) shows a comparison of the learned model with the ground truth in phase space
with three random initial conditions.

5.1. Low-dimensional Systems

Here, we discuss learning dynamical systems using low-dimensional data by means of three examples.

5.1.1. Nonlinear Pendulum

Our first example of low-dimensional dynamics is a frictionless pendulum. Pendulums are non-linear
oscillators and Hamiltonian systems, making them challenging to learn solely from data. The Hamiltonian
for the system can be given by

H(q, p) = 2mgl(1− cos(q)) +
l2p2

2m
, (5.1)

where g represents the gravitational constant, l denotes the length of the pendulum, and m denotes
the mass. For simplicity, we set the mass of the pendulum to m = 1.0, its length to l = 1.0, and the
gravitational constant to g = 0.5. Consequently, we can express the governing equations that define the
evolutions of p and q as follows: [

ṗ(t)
q̇(t)

]
=

[
− sin(q(t))

p(t)

]
. (5.2)

To generate the training dataset, we consider initial conditions for variables p and q within the range of
[−2, 2]× [−2, 2], encompassing the transition from linear to nonlinear dynamics in the system. However,
to avoid a complete circle described by the pendulum, we select initial conditions from the range with
energy H(q, p) < 2. We consider 10 random initial conditions and take 50 equidistant data points in the
time interval [0, 10]. We have pictorially shown the training data in Figure 5.1a.

Next, we learn latent variables p̂ and q̂ with our desired objective, which is that the dynamics of the
latent variables can be given by a quadratic system with a cubic Hamiltonian. Moreover, the latent
variables are learned by means of an encoder, and the quantities-of-interes, namely p and q, are identified
using a decoder, which maps the latent variables to p(q̂, p̂) and q(q̂, p̂). With the training configuration
given in Appendix A, we first demonstrate the learned dynamics in the phase space for three random
test initial conditions in Figure 5.1b for the pendulum example, where the figure shows that the learned
system is stable and orbiting at the same energy level as the ground truth model. Furthermore, in
Figure 5.2, we compare time-domain simulations of the identifying model with the ground truth model
for a random initial condition that is different from the training set. Figure 5.2 shows that the learned
model is not only good at capturing the dynamics in a test case but also stable and accurate for long-time
integration, on a time interval larger than the training interval [0, 10].

In Figure 5.3, we plot the learned and canonical Hamiltonians, demonstrating that all Hamiltonians
remain constant over time with minor oscillations. Notably, the learned Hamiltonian closely aligns with
the canonical coordinates, even without the need for additional constraints in the optimization process,
such as weakly enforcing the initial Hamiltonian value.
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(a) Learned model (b) Ground truth (c) Absolute error

Figure 5.2: Nonlinear pendulum: A comparison of the learned model with the ground truth model for a
random test condition.

(a) Ground truth (b) Learned model (c) Absolute error

Figure 5.3: Nonlinear pendulum: A comparison of the Hamiltonian in canonical coordinates for the
ground truth model H(q, p), the learned Hamiltonian Ĥ(q̂, p̂) in the latent space, and the difference
between the ground truth model and the learned model in the original space H(q(q̂, p̂), p(q̂, p̂)) along
time using a random test initial condition.

5.1.2. Lotka–Volterra Equations

Our second example of a low-dimensional system is the Lotka-Volterra system [29]. The Lotka-Volterra
model is a well-known mathematical model used to describe predator-prey populations’ dynamics. This
model has been extensively applied to study the population dynamics of diverse species across various
ecosystems. Moreover, it is an example of a system with an underlying Hamiltonian structure with
Hamiltonian

H(q, p) = p− ep + 2q − eq.

To learn the dynamics of the Lotka-Volterra equations, we constructed a training set with 10 trajec-
tories. These trajectories were simulated up to a time of T = 4, using a time-step size of ∆t = 0.2. For
this experiment, we generated trajectories within the energy range [−4, 4].
After learning a suitable quadratic embedding with the given set-up in Appendix A, we plot the

training data of the Lotka-Volterra equations in phase space in Figure 5.4a. In this example, we focus
on trajectories in phase space that do not complete a full orbit of the energy level. Furthermore, we
demonstrate the learned dynamics in the phase space for a random initial value in Figure 5.4b for the
Lotka-Volterra equations. The figure shows that the learned model is accurate even in terms of predicting
the orbit level of random test initial conditions.
In Figure 5.5, we compare time-domain simulations between the learned and ground truth models

for the Lotka-Volterra equations, along with the corresponding absolute error. The simulations were
conducted using a random initial condition, distinct from the initial trajectories used in the training
set. The results depicted in Figure 5.5 demonstrate a high level of agreement between the dynamics of
the Lotka-Volterra equations and the ground truth model, even after the final training time T = 4. In
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(a) Training data. (b) A comparison of the learned model with the
ground truth in phase space.

Figure 5.4: Lotka–Volterra: plot (a) shows training data in phase space, and plot (b) shows a comparison
of the learned model with the ground truth in phase space with five random initial test conditions.

(a) Learned model (b) Ground truth (c) Absolute error

Figure 5.5: Lotka–Volterra: A comparison of time-domain simulation obtained using the learned model
with the ground truth model for the Lotka-Volterra equations and using a random test initial condition.

Figure 5.6, we present the learned and canonical Hamiltonians for the Lotka-Volterra equation. Evidently,
all Hamiltonians remain constant over time with minor fluctuations. We observe that these fluctuations
primarily arise from errors in the autoencoder component, as the symplecticity condition is (weakly)
applied to the encoder part but not the decoder part. Additionally, the fluctuations in the Hamiltonian
error could be attributed to the training data, which is constructed from trajectories with a shorter time
span compared to the pendulum example. The constant offset of the Hamiltonians corresponds to a
different choice of energy null-level in the original space and the latent space, respectively. Since the
Hamiltonian is a relative quantity, the overall performance of the learned model is linked to the error
plot between the ground truth Hamiltonian and the learned Hamiltonian in the original space, where the
Figure 5.6 shows that they coincide.

5.1.3. Nonlinear Oscillator

Our last low-dimensional example is a nonlinear (an-harmonic) oscillator with Hamiltonian

H(q, p) =
p2

2
+
q2

2
+
q4

4
, (5.3)

where the natural frequency and the mass of the oscillator are considered to be unity.
To learn dynamics from data, we initially generated 20 random trajectories which are simulated up to

final time T = 4 with step-size ∆t = 0.14. The generated trajectories are in the energy range of [−1, 1]
for this task. In Figure 5.7a, we plot the training data of the nonlinear oscillator in phase space.
Having learned the desired embeddings, we next present a comparison of the learned model over three

random initial points in Figure 5.7b, where the model captures the dynamics of the learned model with
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(a) Ground truth (b) Learned model (c) Absolute error

Figure 5.6: Lotka–Volterra: A comparison of the Hamiltonian in canonical coordinates for the ground
truth model H(q, p), the learned Hamiltonian Ĥ(q̂, p̂) in the latent space, and the difference between the
ground truth model and the learned model in the original space H(q(q̂, p̂), p(q̂, p̂)) along time using a
random test initial condition.

(a) Training data. (b) A comparison of the learned model with the
ground truth in phase space.

Figure 5.7: Nonlinear oscillator: Plot (a) shows training data in phase space, and Plot (b) shows a
comparison of the learned model with the ground truth in phase space with three random initial test
conditions.

good accuracy. In Figure 5.8, we demonstrate the temporal evolution of the learned model, the ground
truth model for a nonlinear oscillator, and the corresponding absolute error in the time domain for a
randomly chosen initial condition. The figure shows that dynamics are well captured over a long time
horizon, exceeding the final training time T = 4. Furthermore, in Figure 5.9, we plot the learned and
canonical Hamiltonians for the nonlinear oscillator, which demonstrates that all Hamiltonians remain
constant over time with minor fluctuations, as seen in previous examples.

5.2. High-dimensional Systems

Next, we focus on learning low-dimensional models for high-dimensional data coming from high-dimensional
systems.

5.2.1. Linear Wave Equation

We begin by considering a simple linear wave equation of the form:

utt = cuxx,

u(t0, x) = u0(x), x in Ω,
(5.4)

Preprint. 2023-08-03



S. Yıldız, P. Goyal, T. Bendokat, P. Benner: Identification of Quadratic Symplectic Representations 11

(a) Learned model (b) Ground truth (c) Absolute error

Figure 5.8: Nonlinear oscillator: Comparison of the learned model with the ground truth model for the
harmonic oscillator in the time axis using a random initial condition.

(a) Ground truth (b) Learned model (c) Absolute error

Figure 5.9: Nonlinear oscillator: A comparison of the Hamiltonian in canonical coordinates for the ground
truth model H(q, p), the learned Hamiltonian Ĥ(q̂, p̂) in the latent space, and the difference between the
ground truth model and the learned model in the original space H(q(q̂, p̂), p(q̂, p̂)) along time using a
random test initial condition.

where c is the transport velocity, and boundary conditions are set to be periodic. The wave equation
is an example of a Hamiltonian PDE. By defining the variables p = ut and q = u, we can obtain the
Hamiltonian form of the wave equation [30], which is given by

∂z

∂t
=

[
0 1
−1 0

]
∇zH, z =

[
q
p

]
, (5.5)

where the Hamiltonian is given as

H(u) =
1

2

∫
Ω

cq2x + p2 dx.

Next, we discretize the Hamiltonian form of the wave equation and obtain the following semi-discrete
Hamiltonian ODE systems:

dz

dt
= Kz, (5.6)

where

z =

[
q
p

]
, K =

[
0N IN
cDxx 0N

]
,

Dxx ∈ RN×N is the three-point central difference approximation of ∂xx, 0N ∈ RN×N is a matrix of zeros,
IN ∈ RN×N is the identity matrix, and (q,p) are the discretized (q, p).
In this task, we focus on learning a single wave equation over a single trajectory. For this purpose, we

set the initial condition to u0(x) = sech(x). For training purposes, we have generated data of the wave
equation on the domain Ω = [−5, 5] up to time T = 20 with time-step size ∆t = 0.05. We set the spatial
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(a) A comparison of the position q.

(b) A comparison of the momenta p.

Figure 5.10: Wave equation: Comparisons of the position q and momenta p obtained using the learned
model with the ground truth wave model (5.5).

Figure 5.11: Wave equation: Learned variables in phase space and time domain.

dimension for the ground truth model of wave equation (5.6) to 2N = 1024 and the learned problem
dimension to 2n = 4.

We compare the learned model with the ground truth in Figures 5.10a and 5.10b, for the states q and
p, respectively. The figures show that the obtained model is stable and accurate over a long time horizon.
Next, we examine the learned variables in phase space and time domain in Figure 5.11, which shows that
the learned variables are orbiting on one particular energy level in phase space and are stable in the time
domain as well.

5.2.2. Nonlinear Schrödinger Equation

Finally, we test the ability of our model to learn the nonlinear Schrödinger (NLS) equation in the last
example of a high-dimensional problem. The NLS equation has various use cases, e.g., small-amplitude
gravity waves on the surface of deep water with zero-viscosity, in the study of Bose-Einstein condensation,
and the propagation of light in nonlinear optical fibers. Specifically, we look at the cubic Schrödinger
equation which is given [31] by

i
∂u

∂t
+ αuxx + β|u|2u = 0,

u(t0, x) = u0(x), x in Ω,
(5.7)

with periodic boundary conditions. In the NLS equation (5.7), the parameter α is a non-negative constant
and the constant parameter β is the focusing—with negative—and defocusing—with positive—values.

In this example, we have fixed the parameters to α =
1

2
, β = 1, and the domain is fixed to Ω = [−10, 10].

To obtain the canonical Hamiltonian form of the NLS equation (5.7), we write the complex-valued
solution u in terms of its imaginary and real parts as u = q + ip. Then, the Hamiltonian of the NLS

Preprint. 2023-08-03



S. Yıldız, P. Goyal, T. Bendokat, P. Benner: Identification of Quadratic Symplectic Representations 13

(a) A comparison of the position q.

(b) A comparison of the momenta p.

Figure 5.12: Nonlinear Schrödinger equation: Comparisons of the position q and momenta p obtained
using the learned model with the ground truth wave model (5.7).

Figure 5.13: Nonlinear Schrödinger equation: Learned variables in phase space and time domain.

equations reads as

H(u) =
1

2

∫
Ω

[
α

(
∂q

∂x

)2

+ α

(
∂p

∂x

)2

− β

2
(q2 + p2)2

]
dx.

We used the same discretization as in the linear wave equation. The NLS equation was simulated with
the initial condition u0(x) = sech(x) in the time domain up to final time T = 80 with time-step size
∆t = 0.05. The spatial dimension for the ground truth model was fixed to 2N = 1024. We used half of
the obtained data, i.e., up to Ttrain = 40, to train our model. We set the dimension of the learned model
to 2n = 2.

Having learned the desired embedding, in Figures 5.12a and 5.12b, we present a comparison of the
dynamics of the ground truth model (5.7) and the learned model, as well as the corresponding absolute
error, in the time domain for the states q and p, respectively. The figures show that the learned model
agrees with the ground truth model to a high degree of accuracy and can infer the dynamics of the
nonlinear Schrödinger equation (5.7).
Lastly, we plot the dynamics of the learned phase space and time domain simulation for the ground

truth model (5.7) in Figure 5.13 to present the stability of the learned dynamics. Figure 5.13 shows that
the learned model is suitable for long time integration.

6. Conclusions

In this work, we have discussed the concept of data-driven quadratic symplectic representations of non-
linear Hamiltonian systems. We have defined an embedding as the lifting of original data coming from
nonlinear Hamiltonian systems using a symplectic transformation, resulting in quadratic systems that
describe the dynamics in the lifted space, with a cubic function as the Hamiltonian. The symplectic
structure of the dynamics can be enforced by using symplectic auto-encoders and symmetric tensors.
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This approach enables us to obtain a learned symplectic lifting. Additionally, for high-dimensional
data, we discuss symplectic reduction to achieve a quadratic representation, leading to a low-dimensional
quadratic Hamiltonian system. The advantage of this approach over structure-preserving model order
reduction is that we directly learn the reduced dynamics fitting the data, eliminating the need for hyper
reduction methods or taking gradients through the auto-encoder. We note that the proposed methodology
does not require to know the full-order model in a discretized form.
We have demonstrated the efficiency of the proposed methodology by means of several low-dimensional

and high-dimensional examples, illustrating the preservation of the Hamiltonian, i.e., energy, and long-
term stability in extrapolation settings. In our future work, we investigate the effect of noise on the
performance of the methodology and propose suitable treatments to it, for example, tailoring the approach
proposed in [32]. Additionally, extensions to discrete Hamiltonian systems, and parametric and externally
controlled Hamiltonian systems would be valuable contributions.

A. Implementation Details

Tables A.1 and A.2 contain all the necessary hyper-parameters for our illustrative examples. We set
the hyper-parameters experimentally by monitoring the performance of the learned model on training
data. For the symplectic lifting case, we have set the hyper-parameters (λ1, λ2, λ3) to (10−1, 1, 1) by
monitoring all the losses to obtain a balanced decrease of all the losses simultaneously, while in the
symplectic reduction case, the hyper-parameters (λ1, λ2, λ3) are set to (1, 10−1, 10−1) for the same goal.
In order to deal with the inaccuracy of the reconstruction due to the structure of the auto-encoder, we
have applied the penalisation:

LRec = 0.5∥x(t)− ϕ(ψ(x(t)))∥1, (A.1)

where ∥·∥1 denotes the mean absolute error, averaged over all samples and dimensions. Similarly, we
have penalized the parameters of Lżẋ with the mean absolute error scaled with a hyper-parameter 10−5.
Finally, we used fixed decay in both the symplectic reduction and lifting cases, using the StepLR imple-
mentation in PyTorch. We experimentally fixed both the decay rate and the decay step by monitoring
the decay of the total loss function.
For the symplectic lifting case, we have used a Multi Layer Perceptron (MLP) architecture with skip

connections and three hidden layer.

Parameters
Pendulum

example

Lotka-Volterra

example

Nonlinear oscillator

example

Encoder layers [neurons] [64, 64, 64] [32, 32, 32] [32, 32, 32]

Lifted coordinate

system dimension
4 4 4

Learning rate 3 · 10−3 3 · 10−3 3 · 10−3

Batch size 5 5 20

Activation function selu selu selu

Weight decay 10−5 10−5 10−5

Epochs 5501 4501 3501

Tolerance 5 · 10−2 1 · 10−2 5 · 10−2

Table A.1: The table contains all the hyper-parameters to learn the dynamics of the low-dimensional
examples.

For the symplectic reduction case, we used a similar deep convolutional network (DCA) structure as
the one given in [18]. In Figure A.1, we give the details of the auto-encoder structure.
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Figure A.1: The figure summarises the encoder and decoder architectures. conv1D(k, s, p) denotes a 1D
convolution layer with kernel size k, stride size s, padding size p and similarly, convT1D(k, s, p) is a 1D
transpose convolution layer with transpose kernel size k, stride size s, padding size p. We have used
output padding size 1 to obtain symmetric auto-encoder structure in 1D transpose convolution layers.
We denote the size of the output block below each block.

Parameters
Wave

example

NLS

example

Lifted coordinate

system dimension
4 2

Learning rate 10−3 10−3

Batch size 50 50

Activation function selu selu

Weight decay 10−5 10−5

Epochs 6001 6001

Tolerance 5 · 10−2 1 · 10−2

Table A.2: The table contains all the hyper-parameters to learn the dynamics of the high-dimensional
examples.

Funding Statement
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