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Abstract: This work discusses the model reduction problem for large-scale multi-symplectic
PDEs with cubic invariants. For this, we present a linearly implicit global energy preserving
method to construct reduced-order models. This allows to construct reduced-order models in
the form of Hamiltonian systems suitable for long-time integration. Furthermore, We prove
that the constructed reduced-order models preserve global energy, and the spatially discrete
equations also preserve the spatially-discrete local energy conversation law. We illustrate
the efficiency of the proposed method using three numerical examples, namely a linear wave
equation, the Korteweg–de Vries equation, and the Camassa-Holm equation, and present a
comparison with the classical POD-Galerkin method.

Keywords: Energy preserving integrator, multi-symplectic PDEs, structure-preserving meth-
ods, reduced-order modeling, large-scale models

Novelty statement:

1. A model reduction problem for large-scale multi-symplectic PDEs with cubic invariants
is investigated.

2. Construction of global energy preserving reduced-order models is proposed.

3. Several numerical examples are discussed to support our analysis.

1 Introduction

Partial differential equations (PDEs) are widely used to study the dynamical behavior of various real-
world phenomena such as flow dynamics, weather dynamics, and chemical reactions. In order to capture
fine details of dynamical behavior, we require a high-fidelity spatial discretization of the PDEs. This
leads to large-scale dynamical systems, which makes the engineering design process (e.g., simulations,
optimization, and control) computationally demanding, even sometimes infeasible, particularly when the
system is used for multiple queries during the design process. A remedy to the mentioned obstacle can be
provided by model order reduction (MOR). MOR delivers a tool to construct low-dimensional reduced-
order models (ROMs) that approximately capture the high-fidelity or full-order models (FOMs). As a
result, FOMs can be replaced by ROMs, accelerating numerical simulations; thus, engineering design can
be done at a modest cost.
MOR for linear and nonlinear systems has been studied for several decades and applied to various

science and engineering applications. We refer to the recent handbook [1–3] for overviews of various
concepts and algorithms used to construct ROMs, as well as wide variety of application domains. In
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this work, we focus on the proper orthogonal decomposition (POD) approach—arguably one of the most
popular techniques to construct ROMs for nonlinear systems, which is constructed using a basis computed
using the singular value decomposition of the snapshot or data matrix.
In this work, we focus on PDEs that can be written in multi-symplectic form. There are numerous ex-

amples that fall into this category, e.g., the Korteweg-de Vries (KdV) equation [4,5], the Camassa-Holm
equation [6], and wave equations [7]. Trajectories of multi-symplectic PDEs fulfill various conversation
laws such as local and global energy conservation, local momentum, and multi-symplectic conservation
laws. The conservation of these laws is essential in order to obtain accurate long-time horizon simu-
lations. In the past, several numerical integrators have been proposed that preserve properties such
as symplectic or multi-symplectic structures, which are often referred to as multi-symplectic integrators.
The box/Preissmann scheme [8], the Euler-box scheme [9], the Fourier pseudo-spectral collocation scheme
[10], the wavelet collocation method [11], the average vector field (AVF) method [5] and linearly implicit
integrators [4,12], are a few examples of such integrators that preserve energy and momentum. A direct
application of the POD method often does not yield ROMs that also conserve these physical quantities.
As a result, it is commonly observed that ROMs are not stable, and their long-term horizon simulations
are often failed. Therefore, we aim to obtain ROMs, preserving the desired physical quantities, and in
this paper, we focus on obtaining ROMs that preserve global energy. We also like to highlight some prior
work in this direction. The stability of ROMs has been studied in terms of the Lagrangian structure
preservation of FOMs in [13,14]. For port-Hamiltonian systems, the passivity and stability of the ROMs
are preserved by constructing reduced-order port-Hamiltonian systems in [15, 16]. For Hamiltonian sys-
tems, the symplectic structure-preserving ROM is proposed by symplectic transformations in [17], where
it is shown that the ROM inherits the long-term stability of the full-order Hamiltonian models.
In this paper, we study a MOR technique for Hamiltonian PDEs to construct ROMs that preserve

the multi-symplectic structure. We construct a FOM by discretizing the PDE using its multi-symplectic
form utilizing a finite-difference technique and use Kahan’s method [18] to integrate in time in order to
preserve global energy. We then discuss a structure-preserving technique to construct ROMs using POD
Galerkin projection. We show that if the obtained ROM is integrated using the same Kahan’s method,
it also preserves the physical quantities such as energy. Several numerical experiments also support our
analysis. Recently, the work [19] goes in a similar direction, aiming to construct a global energy preserving
ROM for multisymplectic PDEs. It utilizes the global energy conservation scheme inspired by the AVF
method in [5]. An advantage of this approach is that the global energy is conversed in the ROM, but a
disadvantage of the AVF method that it is an implicit method; hence, it is computationally demanding.
In this study, we consider the linearly implicit global energy conservation scheme [4] to achieve the same
goals but more efficiently.
The remainder of the paper is organized as follows. In Section 2, we provide an overview of the

multi-symplectic FOM in space and time, and the energy-preserving Kahan’s method. In Section 3,
we present the construction of the multi-symplectic structure-preserving ROMs and show that ROMs
converse energy if integrated using Kahan’s method. Section 4 presents several numerical examples and
its comparison with the standard POD approach. In Section 5, we present our conclusions and future
research directions.

2 Multi-symplectic Full-order Model

Let us consider a quadratic ODE system of the form:

ẏ = Q(y) +By + c, y ∈ R
N , (2.1)

where B ∈ R
N×N is a constant symmetric matrix, Q(y) ∈ R

N is a quadratic form, and c ∈ R
N is a

constant vector. As listed in the introduction, there exist several multi-symplectic structures aiming
at preserving desired properties such as energy and/or momentum. In this work, we focus on Kahan’s
methods to integrate the system (2.1) that preserves the global energy of the system. It provides the
vector y at the next time step by solving the following nonlinear system of equations:

yn+1 − yn

∆t
= Q̄(yn, yn+1) +B

(

yn + yn+1

2

)

+ c, (2.2)
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where yn and yn+1 are the vectors at time step n and n + 1, respectively, and the symmetric bilinear
form Q̄(·, ·) corresponds to the polarization of the quadratic form Q [18], which is given by

Q̄(yn, yn+1) =
1

2

(

Q(yn + yn+1)−Q(yn)−Q
(

yn+1
))

.

Next, we consider a one-dimensional multi-symplectic PDEs of the following form:

Kzt + Lzx = ∇zS(z), (x, t) ∈ R× R, (2.3)

where K,L ∈ R
d×d are skew-symmetric constant matrices; z(x, t) = [z1(x, t), . . . , zd(x, t)]

⊤ ∈ R
d is the

vector of state variables, and S(z) : Rd → R is a smooth function. Multi-symplectic PDEs (2.3) preserve
local conservation laws [20], which are as follows:

• the multi-symplectic conservation law:

∂tω + ∂xκ = 0, ω = dz ∧K+dz, κ = dz ∧ L+dz,

• the local energy conservation law:

Et + Fx = 0, E = S(z) + zTx L+z, F = −zTt L+z, and

• the local momentum conservation law:

It +Gx = 0, G = S(z) + zTt K+z, I = −zTxK+z,

where K+ and L+ satisfy
K = K+ −K⊤

+ , L = L+ − L⊤

+,

and ∧ denotes the wedge product.
Let us introduce some notations such as the spatial domain Γ = [a, b], spatial node xj = a+ h(j − 1),

temporal node tn = n∆t, j = 1, . . . , N , n = 0, 1, . . ., where h =
b− a

N
is the spatial step size and ∆t is

the temporal step size. Furthermore, we denote the approximation of the function v(x, t) at the node
(xj , tn) as v

n
j . Furthermore, for temporal and spatial discretizations, let us define the following difference

and averaging operators:

δtv
n
j :=

vn+1
j − vnj

∆t
, δ

1/2
t vnj :=

vn+1
j − vn−1

j

2∆t
, µtv

n
j :=

vn+1
j + vnj

2
,

δxv
n
j :=

vnj+1 − vnj
∆x

, δ1/2x vnj :=
vnj+1 − vnj−1

2∆x
, µxv

n
j :=

vnj+1 + vnj
2

.

The above operators commute [4], i.e.,

δ
1/2
t δxv

n
j = δxδ

1/2
t vnj , δtµxv

n
j = µxδtv

n
j , µtδ

1/2
x vnj = δ1/2x µtv

n
j .

Moreover, the difference and averaging operators satisfy the discrete Leibniz rule [4],

δt(uv)
n
j = (εun+1

j + (1− ε)un
j )δtv

n
j + δtu

n
j ((1− ε)vn+1

j + εvnj ), 0 ≤ ε ≤ 1.

For instance,

δt(uv)
n
j = un

j δtv
n
j + δtu

n
j v

n+1
j , for ε = 0,

δt(uv)
n
j = µtu

n
j δtv

n
j + δtu

n
j µtv

n
j , for ε =

1

2
,

δt(uv)
n
j = un+1

j δtv
n
j + δtu

n
j v

n
j , for ε = 1.

Let us define the spatially discrete state vector as

z(t) = [z1,1(t), . . . , z1,N(t), z2,1(t), . . . , z2,N(t), zd,1(t), . . . , zd,N(t)]⊤,

where zd,j(t) = zd(xj , t), for j = 1, 2, . . . , N . Moreover, let us define the vector zm(t), containing the mth

node of each state as follows:

zm(t) = [z1,m(t), z2,m(t), . . . , zd,m(t)]⊤. (2.4)
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The notation in (2.4) and the discrete Leibniz rules play an essential role in the analysis of the conservation

laws. We discretize the partial derivative ∂x with the central difference operator δ
1/2
x and get the spatially

discrete FOM of (2.3) as follows:

K∂tzm + Lδ1/2x zm = ∇zS(zm), m = 1, . . . , N. (2.5)

Following the study [12], we assume that the scalar-valued function S(z) has the non-homogeneous
form

S(z) = z⊤Q(z)z + z⊤Bz + c⊤z + d, (2.6)

where 6 ·Q(z) is a symmetric matrix that consists of homogeneous linear polynomials, which corresponds
to the linear part of the Hessian ∇2S(z); similarly, 2 ·B is the constant symmetric matrix corresponding
to the constant part of the Hessian ∇2S(y), and c, d are a constant vector and scalar, respectively.
Using the anti-symmetric matrix Dx, the spatially discrete equations (2.5) can be written in a compact

form:
Kż+ LDxz = ∇zS(z), (2.7)

where S(z) : RN ·d → R, K = (K ⊗ IN ) ∈ R
N ·d×N ·d, L = (L ⊗ IN ) ∈ R

N ·d×N ·d, Dx = (Id ⊗ Dx) ∈
R

N ·d×N ·d, IN ∈ R
N×N , Id ∈ R

d×d are identity matrices, and ⊗ denotes the Kronecker product.
Then the fully discrete globally energy preserving model can be written by utilizing the polarisation

of S(z) as follows [4]:

Kδtz
n
m + Lδ1/2x µtz

n
m = 3

∂S̄

∂x

∣

∣

∣

∣

(zn
m
,zn+1

m )

, (2.8)

where the polarized function S̄(x, y, z) has the following form:

S̄(x, y, z) = x⊤Q(y)z +
1

3
(x⊤By + y⊤Bz + z⊤Bx) +

1

3
c⊤(x+ y + z) + d. (2.9)

The polarized function S̄(x, y, z) in (2.9) satisfies the property S̄(x, x, x) = S(x), and it is symmetric with
respect to x, y and z. Moreover, the partial derivative of the polarized function S̄(x, y, z) with respect to
x is

∂S̄(x, y, z)

∂x
= Q(y)z +

B(y + z)

3
+

c

3
.

Notice that the linearly implicit global energy preserving (LIGEP) method is proposed for a general
skew-symmetric differential matrix Dx in [4]. Nevertheless, here we will focus only on the scenario where
Dx is obtained from the central difference operator.
Finally, the fully discrete equations (2.8) can be written in compact form as follows:

Kδtz
n + LµtDxz

n = 3
∂S̄

∂x

∣

∣

∣

∣

(zn,zn+1)

, (2.10)

where zn = z(tn) and S̄(·, ·, ·) : RN ·d × R
N ·d × R

N ·d → R is a symmetric 3-tensor satisfying S̄(x,x,x) =
S(x).

3 Structure-preserving Reduced-order Model

Consider the discrete state vector z(ti) ∈ R
d·N for i = 1, 2, . . . , Nt. Let us define the following snapshot

matrix
S = [z(t1), . . . , z(tNt

)] ∈ Rd·N×Nt. (3.1)

Here, we are interested in the following optimization problem:

min
V

‖S−VV⊤S‖F , subject to V⊤KV = Kr, V⊤LV = Lr, (3.2)

where ‖·‖F denotes the Frobenius norm; Kr = (K ⊗ Ir) ∈ R
r·d×r·d, Lr = (L ⊗ Ir) ∈ R

r·d×r·d with
Ir ∈ R

r×r being the identity matrix.
One possible solution of the optimization problem (3.2) may be derived by using an idea similar to the

cotangent lift in the symplectic MOR [17]. To demonstrate the procedure, let us define global snaphot
matrix of the form

Z = [Z1, . . . ,Zd] ∈ R
N×d·Nt (3.3)
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where Nt is the number of time steps, and

Zi =
[

[zi,1(t1), . . . , zi,N (t1)]
⊤, . . . , [zi,1(tNt

), . . . , zi,N (tNt
)]⊤

]

∈ R
N×Nt , i = 1, . . . , d.

Assuming V ∈ R
N×r is the POD basis of the global snapshot matrix (3.3), we can construct the basis

as V = (Id⊗V ) ∈ R
d·N×d·r, where Id ∈ R

d×d is the identity matrix. Since the matrix V is an orthogonal
matrix, i.e., V⊤V = Id·r, we can easily show that the following properties hold:

V⊤KV = Kr, V⊤LV = Lr, V⊤K = KrV
⊤, V⊤L = LrV

⊤. (3.4)

Using the definition in (3.1), the snapshot matrix S can be written as S =
[

Z⊤
1 , . . . ,Z

⊤

d

]⊤
. Now, let us

consider the objective function of (3.2),

‖S−VV⊤S‖F = ‖S−
(

Id ⊗
(

V V ⊤
))

S‖F

=
∥

∥

[(

IN − V V ⊤
)

Z1, . . . ,
(

IN − V V ⊤
)

Zd

]∥

∥

F

=
∥

∥

(

IN − V V ⊤
)

[Z1, . . . ,Zd]
∥

∥

F

=
∥

∥

(

IN − V V ⊤
)

Z
∥

∥

F
.

(3.5)

Equation (3.5) shows that V is a minimizer of the optimization problem (3.2) . Hence, by the approxi-
mation z ≈ ẑ = Vz̃, we obtain the following:

KV˙̃z+ LDxVz̃ = ∇zS(Vz̃) +R(z̃), (3.6)

where R(z̃) is the residual. Projecting (3.6) from the left-hand side using V ⊤ and assuming R(z̃) is
orthonormal to V , the ROM can be written as follows:

V⊤KV˙̃z+V⊤LDxVz̃ = V⊤∇zS(Vz̃). (3.7)

Using the relations in (3.4), we have

Kr
˙̃z+ LrV

⊤DxVz̃ = V⊤∇zS(Vz̃), (3.8)

which can be written as follow:
Kr

˙̃z+ LrD̃xz̃ = V⊤∇zS(Vz̃), (3.9)

where D̃x = V⊤DxV. Notice that the semi-discrete ROM (3.9) has a similar multi-symplectic structure
as in (2.3). It can be shown that Kr and Lr are skew-symmetric.

Remark 1. Since in this study we focus only on cubic Hamiltonian systems, the resulting Hamiltonian

PDEs possess quadratic nonlinearities. Therefore, the online cost of the LIGEP-ROM (3.9) can be further

reduced by using tensor algebra. Hence, in the online stage, the computational cost of the global energy

preserving ROM depends only on the reduced dimension r. However, in the offline stage, the computation

of the basis becomes more expensive compared to the Galerkin POD model due to the amount of d auxiliary

snapshots needed in (3.3).

In the following, we do a similar analysis as in [7, Proposition 3.8] to show that the spatially discrete
ROM (3.7) satisfies the semi-discrete energy conservation law.

Theorem 1. The spatially-discrete equation (3.7) yields a semi-discrete energy conservation law

∂tEm + δx(Fm) = 0,

with

Em = S(ẑm)−
1

2
〈ẑm, Lδ1/2x ẑm〉

Fm =
1

4

[

〈ẑm, L ˙̂zm−1〉+ 〈ẑm−1, L ˙̂zm〉
]

.

Proof. Consider the semi-discrete equation (3.7)

V⊤KV˙̃z+V⊤LDxVz̃ = V⊤∇zS(ẑ).
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By taking the inner product of both sides with ˙̃z, we obtain

〈 ˙̃z,V⊤KV˙̃z〉+ 〈 ˙̃z,V⊤LDxẑ〉 = 〈 ˙̃z,V⊤∇zS(ẑ)〉,

and by using the notation in (2.4), we can write the above equation as

〈 ˙̂zm,K ˙̂zm〉+ 〈 ˙̂zm, Lδ1/2x ẑm〉 = 〈 ˙̂zm,∇zS(ẑm)〉, m = 1, . . . , N.

From the skew-symmetry property of the matrix K, we have 〈 ˙̂zm,K ˙̂zm〉 = 0. Additionally, using the
identity ∂tS(ẑm) = 〈 ˙̂zm,∇zS(ẑm)〉, we have

∂tS(ẑm) = 〈 ˙̂zm, Lδ1/2x ẑm〉

=
1

2

(

∂t〈ẑm, Lδ1/2x ẑm〉+ 〈 ˙̂zm, Lδ1/2x ẑm〉 − 〈ẑm, Lδ1/2x
˙̂zm〉

)

.

Moreover, we have the following relation:

〈 ˙̂zm, Lδ1/2x ẑm〉 − 〈ẑm, Lδ1/2x
˙̂zm〉

=
1

2h

(

〈 ˙̂zm, L(ẑm+1 − ẑm−1)〉 − 〈ẑm, L( ˙̂zm+1 − ˙̂zm−1)〉
)

=
1

2h

(

−〈ẑm+1, L ˙̂zm〉+ 〈ẑm−1, L ˙̂zm〉 − 〈ẑm, L ˙̂zm+1〉+ 〈ẑm, L ˙̂zm−1〉
)

= −
1

2
δx

(

〈ẑm, L ˙̂zm−1〉+ 〈ẑm−1, L ˙̂zm〉
)

,

which concludes the proof.

Next, we note the fully discrete equations by employing the LIGEP method [4] to (3.9), which can
then be written as

V⊤Kδtẑ
n +V⊤LµtDxẑ

n = 3V⊤
∂S̄

∂x

∣

∣

∣

∣

(ẑn,ẑn+1)

. (3.10)

In the following theorem, we use a some similar analysis with [4, Theorem 4.5] to show that our scheme
satisfies global energy conversation law.

Theorem 2. For periodic boundary conditions z(x + P, t) = z(x, t), the scheme (3.10) satisfies the

discrete global energy conservation law

Ēn+1
r = Ēn

r , Ēn
r := ∆x

N
∑

m=1

Ēn
m, ∆x = P/N, (3.11)

where

Ēn
m = S̄(ẑnm, ẑnm, ẑn+1

m ) +
1

3
((δ1/2x ẑnm)⊤L+ẑ

n
m + (δ1/2x ẑnm)⊤L+ẑ

n+1
m + (δ1/2x ẑn+1

m )⊤L+ẑ
n
m).

Proof. Taking the inner product with 1
3δtz̃

n on both sides of (3.10), we get

1

3
(δtz̃

n)⊤V⊤Kδtẑ
n +

1

3
(δtz̃

n)⊤V⊤LµtDxẑ
n = (δtz̃

n)⊤V⊤
∂S̄

∂x

∣

∣

∣

∣

(ẑn,ẑn+1)

(3.12)

which by using the skew-symmetry property of the matrix K can be written as

1

3
(δtẑ

n
m)⊤Lµtδ

1/2
x ẑnm = (δtẑ

n
m)⊤

∂S̄

∂x

∣

∣

∣

∣

(ẑn
m
,ẑn+1

m )

. (3.13)

Similarly, taking the inner product with 1
3δtz̃

n+1 on both sides of (3.10), we get

1

3
(δtẑ

n+1
m )⊤Kδtẑ

n
m +

1

3
(δtẑ

n+1
m )⊤Lµtδ

1/2
x ẑnm = (δtẑ

n+1
m )⊤

∂S̄

∂x

∣

∣

∣

∣

(ẑn
m
,ẑn+1

m )

. (3.14)
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Furthermore, taking the inner product with 1
3δtz̃

n on both sides of (3.10) for the next time step, we have

1

3
(δtẑ

n
m)⊤Kδtẑ

n+1
m +

1

3
(δtẑ

n
m)⊤Lµtδ

1/2
x ẑn+1

m = (δtẑ
n
m)⊤

∂S̄

∂x

∣

∣

∣

∣

(ẑn+1
m ,ẑn+2

m )

. (3.15)

Adding equations (3.13), (3.14) and (3.15), we get

1

3
((δtẑ

n
m)⊤Lµtδ

1/2
x ẑnm + (δtẑ

n+1
m )⊤Lµtδ

1/2
x ẑnm

+(δtẑ
n
m)⊤Lµtδ

1/2
x ẑn+1

m ) = δtS̄(ẑ
n
m, ẑnm, ẑn+1

m ),
(3.16)

and by using the commutative laws and discrete Leibniz rules, we have

δt((δ
1/2
x ẑnm)⊤L+ẑ

n
m) = (δ1/2x δtẑ

n
m)⊤L+µtẑ

n
m + (δ1/2x µtẑ

n
m)⊤L+δtẑ

n
m,

δt((δ
1/2
x ẑnm)⊤L+ẑ

n+1
m ) = (δ1/2x δtẑ

n
m)⊤L+µtẑ

n+1
m + (δ1/2x µtẑ

n
m)⊤L+δtẑ

n+1
m ,

δt((δ
1/2
x ẑn+1

m )⊤L+ẑ
n
m) = (δ1/2x δtẑ

n+1
m )⊤L+µtẑ

n
m + (δ1/2x µtẑ

n+1
m )⊤L+δtẑ

n
m.

(3.17)

Based on the above equations (3.16) and (3.17), we obtain

δtĒ
n
m = δtS̄(ẑ

n
m, ẑnm, ẑn+1

m ) +
1

3
δt(((δ

1/2
x ẑnm)⊤L+ẑ

n
m) + (δ1/2x ẑnm)⊤L+ẑ

n+1
m + (δ1/2x ẑn+1

m )⊤L+ẑ
n
m)

=
1

3
((δtẑ

n
m)⊤L+(δ

1/2
x µtẑ

n
m) + (δ1/2x δtẑ

n
m)⊤L+µtẑ

n
m)

+
1

3
((δtẑ

n+1
m )⊤L+(δ

1/2
x µtẑ

n
m) + (δ1/2x δtẑ

n+1
m )⊤L+µtẑ

n
m)

+
1

3
((δtẑ

n
m)⊤L+(δ

1/2
x µtẑ

n+1
m ) + (δ1/2x δtẑ

n
m)⊤L+µtẑ

n+1
m )

=
1

6h
((δtẑ

n
m)⊤L+(µtẑ

n
m+1 − µtẑ

n
m−1) + (δtẑ

n
m+1 − δtẑ

n
m−1)

⊤L+µtẑ
n
m)

+
1

6h
((δtẑ

n+1
m )⊤L+(µtẑ

n
m+1 − µtẑ

n
m−1) + (δtẑ

n+1
m+1 − δtẑ

n+1
m−1)

⊤L+µtẑ
n
m)

+
1

6h
((δtẑ

n
m)⊤L+(µtẑ

n+1
m+1 − µtẑ

n+1
m−1) + (δtẑ

n
m+1 − δtẑ

n
m−1)

⊤L+µtẑ
n+1
m )

.

which by using periodic boundary conditions implies

N
∑

m=1

δtĒ
n
m =

1

6h

N
∑

m=1

((δtẑ
n
m)⊤L+(µtẑ

n
m+1)− (δtẑ

n
m−1)

⊤L+µtẑ
n
m)

+
1

6h

N
∑

m=1

((δtẑ
n
m+1)

⊤L+µtẑ
n
m − (δtẑ

n
m)⊤L+(µtẑ

n
m−1))

+
1

6h

N
∑

m=1

((δtẑ
n+1
m )⊤L+(µtẑ

n
m+1)− (δtẑ

n+1
m−1)

⊤L+µtẑ
n
m)

+
1

6h

N
∑

m=1

((δtẑ
n+1
m+1)

⊤L+µtẑ
n
m − (δtẑ

n+1
m )⊤L+(µtẑ

n
m−1))

+
1

6h

N
∑

m=1

((δtẑ
n
m)⊤L+(µtẑ

n+1
m+1)− (δtẑ

n
m−1)

⊤L+µtẑ
n+1
m )

+
1

6h

N
∑

m=1

((δtẑ
n
m+1)

⊤L+µtẑ
n+1
m − (δtẑ

n
m)⊤L+(µtẑ

n+1
m−1)) = 0.

Hence, the discrete global energy conservation law Ēn+1
r = Ēn

r is satisfied.

4 Numerical Results

In this section, we demonstrate the performance of the proposed global energy preserving method to
construct ROMs using three examples. We compare the LIGEP-ROM (3.10) with the classical POD-
Galerkin model, see, e.g., [21, 22]. Our first example represents a linear wave equation with a quadratic

Preprint. 2023-08-08



S. Yıldız, P. Goyal, P. Benner: Linearly implicit global energy preserving ROMs 8

Hamiltonian function. Then, we study the Korteweg–de Vries (KdV) equation to validate our results.
Finally, we test our method using the Camassa-Holm (CH) equation. Both KdV and CH equations have
cubic Hamiltonians. We test the accuracy of the models with the following relative state error

‖u(tj)− û(tj)‖2
‖u(tj)‖2

, (4.1)

where u(tj) is the full-order solution, and û(tj) is the approximated solution either obtained using the
LIGEP-ROM or using the POD-Galerkin method.
Let us denote the polarized global energy preserved by FOM (2.10) with Ē . We use two different

global energy error measures to examine the performance of the ROMs. First, we test the global energy
preservation performance of the FOM and ROMs separately using the following absolute error:

|Ē(tj)− Ē(t0)|, (4.2)

where for the ROMs, instead of full-order polarized energy Ē , we use the approximated polarized energy
Ēr. The global energy error (4.2) tests the global energy preservation performance individually. Hence,
preserving the approximated global energy in terms of (4.2) does not necessarily imply the convergence
of the approximated global energies to the full-order global energy, so to check the error between the
approximated global energy Ēr and full-order global energy Ē , we use the following absolute error

|Ē(tn)− Ēr(tn)|. (4.3)

4.1 Linear wave equation

We begin with the simple linear wave equation of the form:

utt = uxx, (4.4)

which is an example of multi-symplectic Hamiltonian PDEs (2.3). Introducing the following variables

v = ut, w = ux,

the wave equation (4.4) can be written as a multi-symplectic PDE with

z =





u
v
w



 , K =





0 −1 0
1 0 0
0 0 0



 , L =





0 0 1
0 0 0
−1 0 0





and the Hamiltonian S(z) = 1
2 (v

2 − w2). The fully-discrete wave equation obtained with the LIGEP
method (2.10) reads as follows:

−δtv
n
j + δ1/2x µtw

n
j = 0,

δtu
n
j = µtv

n
j ,

−δ1/2x µtu
n
j = −µtw

n
j .

(4.5)

After the elimination of the auxiliary variables, fully discrete equations can be equivalently written as
follow:

δ2t u
n
j − µ2

t

(

δ1/2x

)2

un
j = 0, (4.6)

where
(

δ
1/2
x

)2

= δ
1/2
x δ

1/2
x . The polarized discrete energy preserved by the FOM (4.6) is given by

Ē(tn) =
∆x

6

N
∑

j=1

(

2(δ1/2x un
j )(δ

1/2
x un+1

j ) + (δ1/2x un
j )

2 + 2vnj v
n+1
j + (vnj )

2
)

, (4.7)

where vnj = δtu
n
j − ∆t

2 µt(δ
1/2
x )2un

j .
In order to employ the LIGEP-ROM, we construct the following snapshot matrix:

Z = [u(t1), . . . ,u(tNt
),v(t1), . . . ,v(tNt

),w(t1), . . . ,w(tNt
)] ∈ R

N×3Nt ,
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where the states v and w can be obtained from (4.5), which are vnj = δtu
n
j −

∆t
2 µt(δ

1/2
x )2un

j and δ
1/2
x un

j =
wn

j . Therefore, a fully-discrete ROM for the wave equation by the LIGEP-ROM (3.10) method can be
written as follow:

−δtṽ
n + µtD̃xw̃

n = 0,

δtũ
n = µtṽ

n,

−µtD̃xũ
n = −µtw̃

n,

(4.8)

where D̃x = V ⊤DxV . Eliminating the auxiliary variables in (4.8), the fully-discrete LIGEP-ROM can
be written as

δ2t ũ
n − µ2

t D̃
2
xũ

n = 0. (4.9)

The ROM (4.9) preserves the following approximated polarised energy

Ēr(tn) =
∆x

6

N
∑

j=1

(

2(V D̃xũ
n)j(V D̃xũ

n+1)j + (V D̃xũ
n)2j + 2v̂n

j v̂
n+1
j + (v̂n

j )
2
)

, (4.10)

where

v̂n
j = δtû

n
j −

∆t

2
µt

(

(V D̃x)
2ũn

)

j
.

To compare the LIGEP-ROM with the classical POD-Galerkin method, we consider the Hamiltonian
form of the wave equation [17],

∂

∂t

[

u
v

]

=

[

0 1
∂xx 0

] [

u
v

]

, (4.11)

which is obtained by introducing the variable v = ut. After spatial discretization, a semi-discrete Hamil-
tonian ODE system for wave equation reads as

dy

dt
= Jy, (4.12)

where

y =

[

u

v

]

, J =

[

0N IN
Dxx 0N

]

,

Dxx ∈ R
N×N is the three-point central difference approximation of ∂xx and 0N ∈ R

N×N is null matrix.
We obtain the snapshots for the classical POD-Galerkin method by discretizing the Hamiltonian ODE

system (4.12) by Kahan’s method (2.2) in time. The snapshot matrix for the classical POD method
constructed as follows:

S = [y(t1), . . . ,y(tNt
)] ∈ R2N×Nt .

For a clear distinction, let us denote W ∈ R
2N×r as the POD matrix, then the semi-discrete POD-

Galerkin model is computed as follows:
dỹ

dt
= J̃ỹ, (4.13)

where J̃ = W⊤JW ∈ R
r×r. We obtain a fully-discrete POD-Galerkin model by integrating the semi-

discrete POD-Galerkin model (4.13) with Kahan’s method (2.2) in time.
We consider the following initial conditions [23]

ut(x, 0) = 0,

u(x, 0) = sech(x),

on the domain [−10, 10] with periodic boundary conditions. To examine the stability of the ROMs, we
set the final time for basis construction for both ROMs to T = 10, and then we simulate the ROMs up
to T = 40. We set the temporal step-size as ∆t = 0.01 and spatial step-size ∆x = 0.02.
In Figure 4.1, we plot the relative state error (4.1) of the ROMs, which shows that by increasing the

order of the ROMs, POD-Galerkin does not yield a stable surrogate model after time T = 10, whereas
when global energy preservation is enforced to the ROM, the model remains stable. Additionally, we
present the full and reduced-order solutions in Figure 4.2 for reduced-order r = 50, which shows that the
important characteristic of the FOM is captured in the LIGEP-ROM case.
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Figure 4.1: Linear wave equation: relative state errors for ROMs of orders r = 20 and r = 50 are shown
in the left and right, respectively.

Figure 4.2: Linear wave equation: a comparison between the FOM solution and reduced-order solutions
(for order r = 50) obtained using the POD-Galerkin and LIGEP-ROM is shown. The FOM solutions is
plotted in the left, and the solutions obtained using POD-Galerkin and LIGEP-ROM are plotted in the
middle and right, respectively.

Figure 4.3 shows the discrete preserved polarized energies for the FOM (4.7) and the LIGEP-ROM
(4.10). We also plot the discrete polarized energy (4.10) for the POD-Galerkin model in Figure 4.3,
which shows that when the system is stable, the energy remains constant for the POD-Galerkin model;
nevertheless, after T = 10 oscillations in the energy occur, and increasing the order of the POD-Galerkin
model does not change the preservation capability of the method.
In Figure 4.4, we examine the performance of the FOM and ROMs in terms of global energy preservation

accuracy (4.2), which verifies the theoretical findings in Theorem 2. Figure 4.4 confirms that regardless
of the order r of a ROM, the polarized reduced-order global energy is preserved with a machine precision
accuracy. The figure also shows that by increasing the order of the POD-Galerkin model, the global
energy preservation accuracy only increases on the time interval [0, 10] employed for training.
In Figure 4.5, we test the ROMs with FOM in terms of accuracy of the approximated polarized energies

between FOM and ROMs using (4.3). Figure 4.5 shows that by increasing the order of the ROMs, the
approximated reduced global energy (4.10) converges to the polarized global energy (4.7), whereas for the
POD-Galerkin model, increasing the dimension does not affect the convergence much, at least outside of
the training.

4.2 Korteweg–de Vries equation

For the second test case, we consider the one-dimensional KdV equation, which is frequently used in
shallow water waves, internal waves, and plasma physics. The one-dimensional KdV equation has the
following form:

ut + ηuux + γ2uxxx = 0, (4.14)
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Figure 4.3: Linear wave equation: polarized discrete global energies of the FOM and ROMs. In the left,
the ROMs are of order r = 20, and in right, they are of order r = 50.

Figure 4.4: Linear wave equation: polarized discrete global energy errors (4.2) of FOM and ROMs are
shown with reduced-order being r = 20 (left) and r = 50 (right).

where η, γ ∈ R. By defining the potential φx = u, a variable w = γvxφt +
γ2u2

2 , and momenta v = γux,
the KdV equation can be written in the form

1

2
ut + wx = 0, −

1

2
φt − γvx = −w +

η

2
u2,

γux = v, −φx = −u.
(4.15)

Using (4.15), the KdV equation can be written in the multi-symplectic form (2.3) with

K =









0 1
2 0 0

− 1
2 0 0 0
0 0 0 0
0 0 0 0









, L =









0 0 0 1
0 0 −γ 0
0 γ 0 0
−1 0 0 0









,

z = (φ, u, v, w)⊤, and the Hamiltonian S(z) can be defined as S(z) :=
v2

2
− uw +

ηu3

6
. A fully discrete

KdV equation with the LIGEP method (2.10) reads as

1

2
δtu

n
j + δ1/2x µtw

n
j = 0, −

1

2
δtφ

n
j − γδ1/2x µtv

n
j = −µtw

n
j +

η

2
un
j u

n+1
j ,

γδ1/2x µtu
n
j = µtv

n
j , δ1/2x µtφ

n
j = µtu

n
j .

(4.16)

After eliminating the auxiliary variables in (4.16), the fully-discrete KdV equation with the LIGEP
method becomes

δtu
n
j +

η

2
δ1/2x (un

j u
n+1
j ) + γ2µt

(

δ1/2x

)3

un
j = 0. (4.17)
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Figure 4.5: Linear wave equation: polarized discrete global energy errors (4.3) between the FOM and
ROMs are shown with reduced-order being r = 20 (left) and r = 50 (right).

The polarised discrete energy preserved by (4.17) is

Ē(tn) =
∆x

6

N
∑

j=1

(

−γ2(δ1/2x un
j )

2 + 2(δ1/2x un
j )(δ

1/2
x un+1

j ) + η(un
j )

2un+1
j

)

. (4.18)

For the POD-Galerkin model, we consider the following form of the KdV equation:

ut = −ηuux − γ2uxxx.

We obtain the POD basis matrix W ∈ R
N×r for the POD-Galerkin model using the following snapshot

matrix:
S = [u(t1), . . . ,u(tNt

)] ∈ RN×Nt,

where the snaphots are generated using the LIGEP model (4.17). Finally, a semi-discrete POD-Galerkin
model is constructed as follows:

ũt = W⊤
(

−η(W ũ) ◦ (DxW ũ)− γ2DxxxW ũ
)

,

where Dxxx corresponds to a second-order central finite difference discretization of the partial deriva-
tive ∂xxx; Dx corresponds to a second-order central finite difference discretization of the partial derivative
∂x, and ◦ denotes the element-wise multiplication of vectors. Then, a fully-discrete POD-Galerkin model
is obtained by employing Kahan’s method to the semi-discrete POD-Galerkin model.
We obtain the basis for the LIGEP-ROM using the following snapshot matrix:

Z = [φ(t1), . . . ,φ(tNt
),u(t1), . . . ,u(tNt

),v(t1), . . . ,v(tNt
),w(t1), . . . ,w(tNt

)] ∈ R
N×4Nt .

Here, an approximation of state v can easily be obtained by using the equation v = γux. On the other
hand, for the approximation of φ, we are interested in any φ satisfying the equation φx = u. Thus, we
consider following time-discrete problem

d

dx
φ(x, tn) = u(x, tn), φ(x0, tn) = 0,

for obtaining φ. For the solution of the above equation, we consider the trapezoid differentiation rule
to approximate the state φ. Using the equations in (4.15), we obtain the approximation of state w with
following equations

1

2
δtu

n
j + δ1/2x wn

j = 0, −
1

2
δtφ

n
j − γδ1/2x vnj = −wn

j +
η

2
(un

j )
2,

γδ1/2x un
j = vnj , δ1/2x φn

j = un
j .

To obtain approximation of the state wn
j using the above equations, we first substitute un

j = δ
1/2
x φn

j in
1
2δtu

n
j + δ

1/2
x wn

j = 0, and by eliminating the operator δ
1/2
x , we obtain 1

2δtφ
n
j + wn

j = 0.

Preprint. 2023-08-08



S. Yıldız, P. Goyal, P. Benner: Linearly implicit global energy preserving ROMs 13

Figure 4.6: KdV equation: relative state errors for ROMs of order r = 70 and r = 120 are shown in the
left and right, respectively.

Next, substituting
1

2
δtφ

n
j = −wn

j

in

−
1

2
δtφ

n
j − γδ1/2x vnj = −wn

j +
η

2
(un

j )
2,

we obtain wn
j = γ

2 δ
1/2
x vnj +

η
4 (u

n
j )

2.We note that we experimentally observe that to include approximations
of the auxiliary variables is important in obtaining a stable ROM.
The ROM of the KdV equation by the LIGEP-ROM (3.10) method can be written in a compact form

as follow:
δtũ

n +
η

2
D̃xV

⊤(ûn ◦ ûn+1) + γ2µtD̃
3
xũ

n = 0. (4.19)

The ROM (4.19) preserves the following approximated polarised energy:

Ēr(tn) =
∆x

6

N
∑

j=1

(

− γ2(V D̃xũ
n)2j + 2(V D̃xũ

n)j(V D̃xũ
n+1)j + η(ûn)2j û

n+1
j

)

. (4.20)

For the KdV equation, we consider the following initial value [4]:

u0(x) = cos(πx),

and the parameters P = 2, γ = 0.022, η = 1 on the domain [0, P ] with periodic boundary conditions.
We set the spatial step-size to ∆x = 0.001, hence, the full order system of dimension is N = 2000, and
temporal step-size to ∆t = 0.01. We simulate the FOM (4.17) up to the final time T = 3 to construct
the bases for both ROMs.
Figure 4.6 shows the relative state error (4.1) of the ROMs, where the POD-Galerkin model exhibits

unstable behaviour after T = 6 even after increasing the reduced-order r. For both orders of the reduced
model, i.e., r = 70 and r = 120, the LIGEP-ROM (4.19) demonstrates a good performance in terms of
accuracy and stability.
Due to the unstable behavior of the classical POD-Galerkin model, we only show the solutions of the

FOM (4.17) and the LIGEP-ROM (4.19) on the time interval [0, 8] in Figure 4.7. It shows that the
LIGEP-ROM successfully captures the dynamics of the KdV equation with a ROM of order r = 120.
Similar to the analysis done in Subsection 4.1, we test both ROMs and the FOM in terms of preservation

of the discrete polarized energies (4.20) and (4.18), respectively. Figure 4.8 indicates that small drifts
over the global energy accuracy yield an unstable POD-Galerkin model regardless of the reduced order.
On the other hand, the global energy is preserved for both LIGEP-ROMs of order r = 70 and r = 120.
Moreover, we demonstrate the accuracy of the global polarized energy preservation (4.2) of the FOM
and ROMs in Figure 4.9, which shows that the FOM (4.17) and the LIGEP-ROM (4.19) preserve the
polarized energy with machine precision accuracy.
For the KdV example, we lastly examine the error between the approximated polarized energies FOM

(4.18) and the ROMs (4.20) using (4.3). Figure 4.10 shows that by increasing the order of the ROMs from
r = 70 to r = 120, the approximated reduced global energy error (4.3) decreases for the LIGEP-ROM
(4.19), where again the order of the classical POD-Galerkin does not significantly affect the error.
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Figure 4.7: KdV equation: the FOM solution and LIGEP-ROM solution with order r = 120 are shown
in the left and right, respectively.

(a) Reduced order r = 70. (b) Reduced order r = 120.

Figure 4.8: KdV equation: polarized discrete global energies of the FOM and ROMs obtained using
POD-Galerkin and LIGEP-ROM methods.

4.3 Camassa-Holm equation

In the third test example, we consider the Camassa-Holm (CH) equation

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0,

which is another model that can be written in the multi-symplectic form (2.3). Introducing some new
variables, the CH equation can be written as a multi-symplectic Hamiltonian system:

1

2
φt −

1

2
νt − vx = −w −

3

2
u2 −

1

2
ν2,

−
1

2
ut + wx = 0,

φx = u,

−ux = −ν,

−
1

2
ut = uν − v,

(4.21)

which has the form of (2.3) with

z =













u
φ
w
v
ν













, K =













0 1
2 0 0 − 1

2
− 1

2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1
2 0 0 0 0













, L =













0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0













,
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(a) Reduced order r = 70. (b) Reduced order r = 120.

Figure 4.9: KdV equation: polarized discrete global energy errors (4.2) of the FOM and ROMs obtained
using POD-Galerkin and LIGEP-ROM methods.

(a) Reduced order r = 70. (b) Reduced order r = 120.

Figure 4.10: KdV equation: polarized discrete global energy errors (4.3) between the FOM and ROMs
obtained using POD-Galerkin and LIGEP-ROM methods.

and S(z) = −wu − 1
2u

3 − 1
2uν

2 + νv. A fully discrete multi-symplectic CH equation with the LIGEP
(2.10) method can be written as:

1

2
δtφ

n
j −

1

2
δtν

n
j − µtδ

1/2
x vnj = −µtw

n
j −

3

2
un
j u

n+1
j −

1

2
νnj ν

n+1
j ,

−
1

2
δtu

n
j + µtδ

1/2
x wn

j = 0,

µtδ
1/2
x φn

j = µtu
n
j ,

−µtδ
1/2
x un

j = −µtν
n
j ,

−
1

2
δtu

n
j =

1

2
(un+1

j νnj + un
j ν

n+1
j )− µtv

n
j .

Again, after eliminating the additional variables, we obtain the following full-order CH equation of the
form:

δtu
n
j − δt(δ

1/2
x )2un

j −
1

2
(δ1/2x )2((δ1/2x un

j )u
n+1
j )−

1

2
(δ1/2x )2(un

j (δ
1/2
x un+1

j ))

+
3

2
δ1/2x un

j u
n+1
j +

1

2
δ1/2x (δ1/2x un

j )(δ
1/2
x un+1

j ) = 0.

(4.22)

The polarised discrete energy preserved by the fully-discrete model (4.22) is

Ē(tn) =
∆x

6

N
∑

j=1

(

− 3(un
j )

2un+1
j − (δ1/2x un

j )
2un+1

j − 2(δ1/2x un
j )(δ

1/2
x un+1

j )un
j

)

. (4.23)
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We construct the POD-Galerkin model by considering the spatial discretization of the CH equations

(1 − ∂xx)ut = −3uux + 2uxuxx + uuxxx = 0.

The POD basis matrix W ∈ R
N×r for the POD-Galerkin model is obtained from the following snapshot

matrix
S = [u(t1), . . . ,u(tNt

)] ∈ RN×Nt,

where the snapshots are generated using the LIGEP model (4.22).
A semi-discrete POD-Galerkin model is constructed as follows:

(Ir −W⊤DxxW )ũt = W⊤ (−3(W ũ) ◦ (DxW ũ) + 2(DxW ũ) ◦ (DxxW ũ) + (W ũ) ◦ (DxxxW ũ)) ,

where Dx, Dxx and Dxxx are obtained as discussed in Subsections 4.1–4.2 . The fully-discrete equations
for the classical POD-Galerkin model is obtained by employing Kahan’s method (2.2) to the semi-discrete
POD-Galerkin model.
To obtain the basis for the LIGEP-ROM, we consider the following snapshot matrix:

Z = [u(t1), . . . ,u(tNt
),φ(t1), . . . ,φ(tNt

),v(t1), . . . ,v(tNt
),w(t1), . . . ,w(tNt

),ν(t1), . . . ,ν(tNt
)] ∈ R

N×5Nt .

Here, we approximate the auxiliary variable ν using the equation ux = ν. The variable φ is approxi-
mated as in the previous example using a trapezoid rule by utilizing the equation u = φx. Similarly, we
approximate the variable ut by a second-order central difference, followed by employing a trapezoid rule
to equation − 1

2ut + wx = 0 to obtain the discrete variable w. Lastly, we approximate the variable v by
using the equation v = uν + wx.
Consequently, the LIGEP-ROM for the CH equation reads as follows:

δtũ
n − δt(D̃x)

2ũn −
1

2
(D̃x)

2V ⊤

(

(V D̃xũ
n) ◦ ûn+1

)

−
1

2
(D̃x)

2V ⊤

(

ûn ◦ (V D̃xũ
n+1)

)

+
3

2
D̃xV

T
(

ûn ◦ ûn+1
)

+
1

2
D̃xV

T
(

V D̃xũ
n
)

◦
(

V D̃xũ
n+1

)

= 0,

(4.24)

where ûn is the approximation of the state u. The polarised discrete energy preserved by the global
energy preserving ROM (4.24) is

Ēr(tn) =
∆x

6

N
∑

j=1

(

− 3(ûn
j )

2ûn+1
j − (V D̃xũ

n)2j û
n+1
j − 2(V D̃xũ

n)j(V D̃xũ
n+1)j û

n
j

)

. (4.25)

Here, we consider the motion of a periodic peaked traveling wave [12] with an initial condition

u(x, 0) =

{

c
cosh(a/2) cosh(x− x0), |x− x0|≤ a/2,

c
cosh(a/2) cosh(a− (x− x0)), |x− x0|> a/2,

and a periodic boundary condition. We compute the solution with x0 = 0, c = 1 and a = 30 on the
domain [0, a]. We set the spatial ∆x = 0.03, hence, the full dimension N = 1000, and ∆t = 0.005. The
full-order CH model is simulated up to final time T = 6 for obtaining the basis of both ROMs.
We first test the ROMs in terms of accuracy in Figure 4.11 for orders r = 70 and r = 120. It

indicates that the relative state error (4.1) for the POD-Galerkin model exhibits an unstable behavior
after T = 6. Furthermore, we show the solutions of the models in Figure 4.12, where, on the contrary
to the POD-Galerkin model, the LIGEP-ROM (4.24) reflects the FOM (4.22) dynamics accurately for
order r = 120.
In Figure 4.13, we demonstrate the polarized energy (4.25) preserved by FOM and LIGEP-ROMs for

orders r = 70 and r = 120, whereas a dissipative behavior for the POD-Galerkin model is noticed at
least outside the training regime. We have observed that dissipation in energy renders the POD-Galerkin
model inaccurate. Furthermore, we demonstrate the energy preservation accuracy (4.2) of the FOM
(4.22) and ROMs of order r = 70 and r = 120 in Figure 4.14, where the FOM (4.22) and the LIGEP-
ROMs (4.24) preserve the energy with machine precision accuracy, similar to our two previous examples.
Lastly, we show the energy error (4.3) between the FOM (4.22) and ROMs of order r = 70 and r = 120
in Figure 4.15, which shows that the approximated energy (4.25) is converging slowly to the true energy
(4.23).
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Figure 4.11: Camassa-Holm equation: relative state errors between the FOM and ROMs of orders r = 70
and 120 are shown in the left and right, respectively.

Figure 4.12: Camassa-Holm equation: trajectories obtained using the FOM and ROMs are shown. The
order of ROMs is set to r = 120. The FOM, POD-Galerkin ROM, and LIGEP-ROM are shown in the
left, middle, and right figure, respectively.

5 Conclusions

In this paper, we have proposed the construction of linearly implicit global energy preserving reduced-
order models (LIGEP-ROMs) for cubic-Hamiltonian systems, which exploit the multi-symplectic struc-
ture of PDEs. We have proven that the LIGEP-ROMs preserve global energy, which is also illustrated
in our numerical examples. Furthermore, we have shown that the spatially-discrete equations of the
LIGEP-ROMs satisfy a the spatially-discrete local energy conversation law. We have demonstrated the
efficiency of the proposed approach with several numerical examples and have compared it with the clas-
sical POD-Galerkin model. This illustrates that energy-preserving reduced-order models are robust and
suitable for long-time integration and for predictions outside the training data.
In our future work, we would like to investigate how to construct global energy preserving reduced-

order models directly from data. Moreover, in our examples, we have observed a slow decay of singular
values of the snapshot matrix. Therefore, it would be interesting to explore the possibility of using non-
projection methods such as autoencoders to further reduce the intrinsic dimensional of a reduced-order
model.
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(a) Reduced order r = 70. (b) Reduced order r = 120.

Figure 4.13: Camassa-Holm equation: polarized discrete global energies of the FOM and ROMs are
shown.

(a) Reduced order r = 70. (b) Reduced order r = 120.

Figure 4.14: Camassa-Holm equation: polarized discrete global energy errors (4.2) of the FOM and ROMs
obtained using the POD-Galerkin and LIGEP-ROM methods.
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