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Abstract: We study a class of nonlinear hyperbolic partial differential equations with
boundary control. This class describes chemical reactions of the type “A → product”
carried out in a plug flow reactor (PFR) in the presence of an inert component. An
isoperimetric optimal control problem with periodic boundary conditions and input
constraints is formulated for the considered mathematical model in order to maximize
the mean amount of product over the period. For the single-input system, the opti-
mality of a bang-bang control strategy is proved in the class of bounded measurable
inputs. The case of controlled flow rate input is also analyzed by exploiting the method
of characteristics. A case study is performed to illustrate the performance of the reac-
tion model under different control strategies.

Keywords: isoperimetric optimal control problem, hyperbolic system, plug flow reac-
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Novelty statement: The key contributions of our work are the following:

• an analytic representation of the cost functional is derived for the PFR model
in the cases of one- and two-dimensional inputs by using the method of charac-
teristics;

• local conditions are obtained in the general class of measurable control functions;

• the optimal controls are not unique, and a parameterization with one switching
only can be used to achieve the optimality condition.
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1 Introduction

It has been known for several decades that periodic control strategies can improve the performance
of nonlinear chemical reactions in comparison to their steady-state operations [4, 10, 15]. On the
one hand, lumped parameter reaction models with harmonic inputs have been extensively studied
in the literature with the use of frequency-domain methods (see, e.g., [5,8] and references therein),
On the other hand, it follows from the Pontryagin maximum principle that the optimal controls
are bang-bang for the maximization of the average reaction product within the considered class of
models [11,15,16]. An analytical design of periodic bang-bang controllers has been proposed in [2]
for the isoperimetric optimization problem. The above optimal control techniques, developed for
model systems or ordinary differential equations, are not directly applicable to infinite-dimensional
reaction models.
An important class of distributed parameter control systems is represented by mathematical

models of plug flow reactors (PFR) governed by hyperbolic systems of partial differential equa-
tions [1]. Even though there is a comprehensive engineering literature on PFR models (cf. [10]
and references therein), the periodic optimal control problems require a rigorous analysis from
the mathematical viewpoint. Just a few results, dealing with non-optimality of steady state so-
lutions and comparison of different control strategies [6, 12] as well as the Π-test and properness
condition [9], are available in this area.
In this paper, we will study the nonlinear hyperbolic control systems that describe chemical

reactions of the type “A → product” carried out in a PFR in the presence of an additional inert
component (dilutant or solvent). The key contributions of our work are summarized below:

• an analytic representation of the cost functional is derived for the PFR model in the cases of
one- and two-dimensional inputs by using the method of characteristics;

• local optimality conditions are obtained in the general class of measurable control functions;

• the optimal controls are not unique, and a parameterization with one switching only can be
used to achieve the local optimality condition.

The rest of this paper is organized as follows. A single-input nonlinear control system will
be considered in Section 2 as a PFR model with boundary injection. The isoperimetric optimal
control problem will be solved for this model in order to maximize the conversion of the input
reactant (A) into the product. An extension of these results to the PFR with time-varying flow-
rate will be presented in Section 3. A comparative analysis of different control strategies will be
performed in Section 4 under a specific choice of reaction parameters. Finally, Section 5 contains
some concluding remarks.

2 Plug flow reactor model

Consider an isothermal reaction of the type “A → product” in a plug flow reactor (PFR) model [10,
p. 394]:

∂CA(x, t)

∂t
+ v

∂CA(x, t)

∂x
= −kCn

A(x, t), (x, t) ∈ Ω = [0, L]× R, (2.1)

CA(0, t) = CA0
(t), (2.2)

where CA(x, t) is the reactant A concentration inside the reactor at the distance x from the inlet
and time t, L is the length of the reactor tube, CA0

(t) is the concentration of A in the inlet stream
that contains also another inert component, n > 0 is the reaction order, v > 0 is the flow-rate
of the reaction stream, and k > 0 is the kinetic constant. The function CA0

(t) ∈ [Cmin, Cmax] is
treated as the control input and assumed to be bounded by some constants Cmax > Cmin > 0.

The boundary value problem (2.1), (2.2) can be solved by the method of characteristics [6]:

CA(x, t) =

(
CA0

(
t− x

v

)−(n−1)

+
k(n− 1)

v
x

)− 1
n−1

, n ̸= 1. (2.3)
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For the case n = 1, the solution has the following form:

CA(x, t) = CA0

(
t− x

v

)
e−

k
v x. (2.4)

If the function CA0
(t) is continuously differentiable on R, then expressions (2.3)–(2.4) define the

classical solution of the problem (2.1)–(2.2). It is easy to see that, in order to define C(x, s) for all
x ∈ [0, L] at a given s, the information about CA0(t) on the closed interval t ∈ [s− L

v , s] is needed.
We are interested in studying an optimal control problem for system (2.1)–(2.2) with τ -periodic
controls CA0

(t). In this case, it suffices to define the control CA0
(t) on an interval t ∈ [0, τ) and

extend it to t ∈ R by τ -periodicity. For the subsequent formal analysis, we allow the functions
CA0

(t) to be discontinuous and introduce the class of admissible controls Uτ as follows.

Definition 2.1. Let τ > 0, Cmax > Cmin > 0, and C ∈ [Cmin, Cmax] be given. The class of
admissible controls U τ consists of all locally measurable functions CA0 : R → [Cmin, Cmax] such
that CA0

(t) is τ -periodic and
1

τ

∫ τ

0

CA0
(t)dt = C. (2.5)

Formulas (2.3)–(2.4) correctly define the function C : Ω → R for any CA0 ∈ Uτ . We will refer
to these functions C(x, t) as weak solutions of the problem (2.1)–(2.2) (see, e.g., [3]). Indeed, the
above defined C(x, t) satisfies the integral identity∫

Ω

(
CA

∂φ

∂t
+ vCA

∂φ

∂x
+ kCn

Aφ

)
dx dt = 0, (2.6)

for each smooth test function φ ∈ C∞
0 (Ω) with compact support.

Our goal is to optimize the conversion of A to the product by using time-varying inputs CA0
(t)

under the isoperimetric constraint (2.5) over a given period τ as follows.

Problem 2.1. Given τ > 0 and C ∈ [Cmin, Cmax], find a control ĈA0(·) ∈ U τ that minimizes the
cost

J [CA0
] =

1

τ

∫ τ

0

CA(L, t) v dt (2.7)

among all admissible controls CA0
(·) ∈ U τ . This cost function evaluates the mean molar flux of

component A that leaves the reactor divided by the cross section area of the tube (in [mol s−1 m−2]).
Here, the right-hand side of (2.7) contains the (weak) solution CA(x, t) of the problem (2.1),
(2.2) corresponding to the control CA0(t), so J [CA0 ] is well-defined in terms of CA0 by formu-
las (2.3), (2.4).

In order to describe the optimal controls for Problem 2.1, we use the following notations. For a
function u : [0, τ) → R, its τ -periodic extension is denoted by uτ : R → R, so that uτ (t) ≡ u(t) for
t ∈ [0, τ), and the function uτ (t) is τ -periodic. The Lebesgue measure of a set A ⊂ R is denoted
by µ(A). Now we formulate the main result of this section.

Theorem 2.1. Let τ > 0, Cmax > Cmin > 0, and C ∈ [Cmin, Cmax] be given.

1) If n = 1, then all control functions CA0
∈ U τ give the same value for the cost functional J .

2) If n < 1 and Cmin >
(

v
kL(1−n)

)− 1
1−n

, then the steady-state control CA0
(t) = C is optimal

for Problem 2.1.

3) If n > 1, then the piecewise constant control CA0
(t) = uτ (t) is optimal for Problem 2.1,

where

u(t) =

{
Cmin, if t ∈ A−,

Cmax, if t ∈ A+ = [0, τ) \A−,
(2.8)

and A− ⊂ [0, τ) is any Lebesgue-measurable set such that

µ(A−) =
Cmax − C

Cmax − Cmin
τ.
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Note that, as each admissible control CA0
∈ Uτ is periodic, the corresponding function CA(x, t)

in (2.3) and (2.4) is also τ -periodic. For the case n ̸= 1, we modify the cost functional due to
periodicity as follows:

J = J [CA0 ] =
v

τ

∫ τ

0

(
CA0

(
t− Lv−1

)−(n−1)
+

kL(n− 1)

v

)− 1
n−1

dt

=
v

τ

∫ τ

0

(
CA0

(t)−(n−1) +
kL(n− 1)

v

)− 1
n−1

dt =:
v

τ

∫ τ

0

Φ(CA0
(t))dt. (2.9)

It is easy to see that the function Φ is increasing and concave if n > 1. Indeed,

Φ′(ξ) =

[
1 +

kL(n− 1)

v
ξn−1

]− n
n−1

> 0 if n > 1, (2.10)

Φ′′(ξ) = −kL(n− 1)n

v

[
1 +

kL(n− 1)

v
ξn−1

]− 2n−1
n−1

ξn−2 < 0 if n > 1. (2.11)

To prove Theorem 2.1, we need to define a special class of control functions for Problem 2.1.

Definition 2.2. A function c : R → [Cmin, Cmax] belongs to the class A C̃ for a given constant

C̃ ∈ [Cmin, Cmax], if c(·) ∈ Uτ and there exist Lebesgue-measurable sets A+ ⊂ [0, τ), A− ⊂ [0, τ)
such that:

1) ess inft∈A+ c(t) ⩾ C̃;

2) ess supt∈A− c(t) ⩽ C̃;

3) µ(A+ ∩A−) = 0, µ(A+ ∪A−) = τ ;

4) µ(A−) = Cmax−C
Cmax−Cmin

τ .

In the paper [7], it was reported that the sinusoidal inputs ensure a better performance of the
PFR reactor (with respect to the cost J) in comparison to the steady-state input CA0

(t) ≡ C
if n > 1. We will show in the lemma below that the bang-bang strategies have even better
performance than the sinusoidal ones. It is easy to see that AC̃ contains the sinusoidal functions.
For instance, assuming that C − Cmin = Cmax − C, one can show that the function

C(t) = C + (C − Cmin) sin

(
2π

τ
t

)
belongs to the class AC . Indeed, setting A+ = [0, τ/2) and A− = [τ/2, τ), we meet all the
requirements of Definition 2.2.

Lemma 2.2. Let n > 1 and let CA(·) ∈ A C̃ for some C̃ ∈ (Cmin, Cmax). Then there exists a
control Cb(·) ∈ Uτ such that

J [Cb] ⩽ J [CA],

where the cost J is defined in Problem 2.1.

Proof. Consider an arbitrary function CA(t) from the class A C̃ with a fixed C̃ ∈ (Cmin, Cmax)
and define now the corresponding bang-bang control cb : [0, τ) → [Cmin, Cmax]:

cb(t) =

{
Cmin, if t ∈ A−,

Cmax, if t ∈ A+,
(2.12)

where the sets A+, A− correspond to the class AC̃ . Using condition 4) from Definition 2.2, we
conclude that the isoperimetric condition (2.5) holds for the function Cb = cτb (the τ -periodic
extension of cb), so Cb ∈ U τ .
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Now using the isoperimetric condition (2.5) and the property of concave functions:

Φ(x)− Φ(y) ⩽ Φ′(y)(x− y) ∀x, y ∈ [Cmin, Cmax],

we investigate the difference of costs J [Cb]− J [CA]:

J [Cb]− J [CA] =
v

τ

∫ τ

0

(Φ(Cb(t))− Φ(CA(t))) dt

⩽
v

τ

∫ τ

0

Φ′(CA(t)) (Cb(t)− CA(t)) dt

=
v

τ

∫
A+

Φ′(CA(t)) (Cmax − CA(t)) dt+
v

τ

∫
A−

Φ′(CA(t)) (Cmin − CA(t)) dt

⩽
v

τ

∫
A+

Φ′(C̃) (Cmax − CA(t)) dt+
v

τ

∫
A−

Φ′(C̃) (Cmin − CA(t)) dt

=
v

τ
Φ′(C̃)

∫ τ

0

(Cb(t)− CA(t)) dt = 0.

The obtained estimate proves Lemma 2.2.

Lemma 2.3. For any function u(·) ∈ U τ , there exists a constant

C̃ ∈ (Cmin, Cmax) such that u(·) ∈ A C̃ .

Proof. Denote the values

µ+ :=
C − Cmin

Cmax − Cmin
τ, µ− :=

Cmax − C

Cmax − Cmin
τ.

It is clear that µ+ + µ− = τ .
Assume that there exists a function u ∈ U τ which does not belong to any class A C̃ . Due to

Definition 2.2, this means that, for any C̃ ∈ (Cmin, Cmax), either

µ({t ∈ [0, τ) : u(t) > C̃}) > µ+, (2.13)

or
µ({t ∈ [0, τ) : u(t) < C̃}) > µ−. (2.14)

Consider the case (2.13) and rewrite this statement in the following way. For any arbitrary small
δ > 0, the following inequality always holds:

µ(A+
δ ) > µ+, where A+

δ := {t ∈ [0, τ) : u(t) ⩾ Cmax − δ}. (2.15)

It is easy to prove that the only function which can satisfy the above statement is constant, namely,
u(t) = Cmax for µ-a.a. t ∈ A+

δ . Now we calculate the mean value of the function u:

1

τ

∫ τ

0

u(t) dt =
1

τ

∫
A+

δ

u(t) dt+
1

τ

∫
[0,τ)\A+

δ

u(t) dt

⩾ Cmax
|A+

δ |
τ

+ Cmin
τ − |A+

δ |
τ

= (Cmax − Cmin)
|A+

δ |
τ

+ Cmin

> (Cmax − Cmin)
µ+

τ
+ Cmin = C.

Thus we get that the isoperimetric constraint (2.5) is violated, so u /∈ U τ , which contradicts our
assumption.
Using the same arguments, one can prove that 1

τ

∫ τ

0
u(t) dt < C in the case (2.14).

Proof of Theorem 2.1. For the case n = 1, evaluating directly the value of the cost functional for
solution (2.4), we get:

J =
v

τ

∫ τ

0

CA(L, t)dt =
v

τ

∫ τ

0

CA0

(
t− L

v

)
e−

k
vLdt

= e−
k
vL v

τ

∫ τ

0

CA0(t)dt =
v

τ
e−

kL
v C
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for any admissible τ -periodic control function CA0
(t).

In the case n < 1, it follows from (2.11) that Φ is a convex function, provided that Cmin >(
v

kL(1−n)

)− 1
1−n

. Using Jensen’s inequality for convex functions, we get

Φ(C) <
1

τ

∫ τ

0

Φ(CA0
(t))dt

for each non-negative Lebesgue-integrable function CA0
, which proves the second statement of the

theorem.
For the case n > 1, we have the opposite Jensen’s inequality which means that any non-negative

Lebesgue–integrable periodic function CA0
, which satisfied the constraints of Problem 2.1, ensures

a better performance in the sense of the functional J in comparison with the steady-state control
C (see also [6]). Due to Lemmas 2.2, 2.3, the bang-bang strategy is the optimal control in terms
of Problem 2.1.

Remark 2.1. We note that the number of switchings of control function (2.8) is not important
in the case n > 1, as the function Φ does not depend on time t explicitly. So, there is a class
of bang-bang controls which are equivalent in the sense of minimizing the cost functional J [CA0

].
A simple representative of this class is CA0

= cτ ∈ Uτ – the τ -periodic extension of the control
c : [0, τ) → [Cmin, Cmax] with one switching of the following form:

c(t) =

{
Cmin, if t ∈ [0, τ∗),

Cmax, if t ∈ [τ∗, τ),

where τ∗ = Cmax−C
Cmax−Cmin

τ .

3 Plug flow reactor model considering a controlled flow-rate

In this section, we investigate the mathematical model of PFR with a time-varying flow-rate v(t):

∂CA

∂t
+ v(t)

∂CA

∂x
+ kCn

A = 0, (x, t) ∈ Ω = [0, L]× R, (3.1)

CA(0, t) = CA0
(t). (3.2)

For this model, we are interested in the following optimal control problem:

Problem 3.1. Given positive constants τ , Cmin < Cmax, vmin < vmax, C ∈ [Cmin, Cmax], and v ∈
[vmin, vmax], find τ -periodic measurable controls ĈA0

: R → [Cmin, Cmax] and v̂ : R → [vmin, vmax]
that minimize the cost

J =
1

τ

∫ τ

0

CA(L, t) v(t) dt (3.3)

among all solutions CA(x, t) of the problem (3.1), (3.2) corresponding to the class of admissible
controls, i.e. τ -periodic measurable functions CA0

: R → [Cmin, Cmax] and v : R → [vmin, vmax]
that satisfy the isoperimetric constraint

1

τ

∫ τ

0

CA0(t)v(t)dt = C v. (3.4)

We will also consider the additional assumption:∫ τ

0

v(t)dt = L, (3.5)

which means that the residence time of the reaction is equal to τ . To ensure the isoperimetric
condition (3.4), we will assume that

Cmin ⩽
C v τ

L
⩽ Cmax. (3.6)
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We solve the problem (3.1), (3.2) using the method of characteristics. Namely, we write the
Lagrange equations to find the characteristics curves:

dt

ds
= 1, t(0, r) = r, (3.7)

dx

ds
= v(t), x(0, r) = 0, (3.8)

dz

ds
= −kzn, z(0, r) = CA0

(r). (3.9)

Here t = t(s, r), x = x(s, r) define the characteristic curve. Solving equations (3.7) and (3.8), we
get:

t(s, r) = s+ r,

x(s, r) = V (s+ r)− V (r),

where V (t) :=
∫ t

0
v(ξ)dξ is a strictly increasing function due to the positivity of v. Thus, we can

express s and r in terms of x and t:

s(x, t) = t− V −1(V (t)− x),

r(x, t) = V −1(V (t)− x),

where the function V −1 denotes the inverse to V . Solving equation (3.9) in the case n ̸= 1, we get
the solution of the problem (3.1), (3.2):

z(s, r) =
[
CA0

(r)−(n−1) + k(n− 1)s
]− 1

n−1

,

CA(x, t) =
[
CA0

(
V −1(V (t)− x)

)−(n−1)
+ k(n− 1)

(
t− V −1(V (t)− x)

)]− 1
n−1

.

(3.10)

For the case n = 1, the solution has the following form:

z(s, r) = CA0(r)e
−ks,

CA(x, t) = CA0

(
V −1(V (t)− x)

)
e−k(t−V −1(V (t)−x)).

(3.11)

Similarly to the previous study in Section 2, we consider the obtained solutions as weak solutions of
the problem (3.1), (3.2) from the class of measurable functions in the sense of the integral identity:∫

Ω

(
CA

∂φ

∂t
+ vCA

∂φ

∂x
+ kCn

Aφ

)
dx dt = 0,

for each smooth test function φ ∈ C∞
0 (Ω) with compact support.

Now we give definitions of classes of admissible controls.

Definition 3.1. Let τ > 0, Cmax > Cmin > 0, vmax > vmin > 0, L ∈ [vminτ, vmaxτ ] and
C ∈ [Cmin, Cmax], v ∈ [vmin, vmax] be given. The class of admissible controls V τ consists of all
locally measurable vector-functions (c, v) : R → [Cmin, Cmax]× [vmin, vmax] such that (c(t), v(t)) is
τ -periodic and the isoperimetric conditions (3.4), (3.5) hold.

In solving the optimal control problem 3.1, we need the following definition of the class of
bang-bang controls.

Definition 3.2. The class Bτ with given τ > 0 is a class of control vector-functions (c, v) ∈ V τ

which define the bang-bang strategy with respect to the constraints of Problem 3.1. Namely, the
function v has the following form:

v(t) =

{
vmin, if t ∈ B−,

vmax if t ∈ B+, for t ∈ [0, τ),
(3.12)
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where B−, B+ ⊂ [0, τ), µ(B+ ∩ B−) = 0, µ(B+ ∪ B−) = τ , and µ(B+) = µ+
v := L−τvmin

vmax−vmin
,

µ(B−) = µ−
v := τvmax−L

vmax−vmin
are defined by assumption (3.5). Moreover, function c is defined by the

relation:

c(t) =

{
Cmax, if t ∈ A+,

Cmin, if t ∈ A−,
(3.13)

where A+, A− ⊂ [0, τ), µ(A+∩A−) = 0, µ(A+∪A−) = τ , and A+∩B− has the maximum measure
among all cases which are consisent with the isoperimetric constraint (3.4). The measure of sets
A± depends on the relation between the parameters of the problem. Namely, there are two possible
cases:

(i) If

κ := τvmax(Cv − Cmaxvmin) + τvmin(Cminvmax − Cv) + L(Cmaxvmin − Cminvmax) ⩽ 0

then µ(A+) ⩽ µ(B−) and A+ ∩B+ = ∅ (see Fig.1(a)). In this case, the measures of sets A±

are as follows:

µ(A+) = µ+
c :=

τCv − LCmin

vmin(Cmax − Cmin)
, µ(A−) = µ−

c := τ − µ+
c . (3.14)

(ii) If κ > 0 then µ(A−) ≤ µ(B+) and A− ∩ B− = ∅ (see Fig.1(b)). In this case, the measures
of sets A± are as follows:

µ(A−) = µ−
c :=

LCmax − τCv

vmax(Cmax − Cmin)
µ(A+) = µ+

c := τ − µ−
c . (3.15)

0

0

0

(a) Case (i)

0

0

0

(b) Case (ii)

Figure 1: Illustration of possible cases described in Definition 3.2.

Note that all admissible controls from the class Bτ are equivalent in the sense of Problem 3.1,
namely, the cost functional J takes the same value for all controls (c, v) ∈ Bτ .

The result of solving the isoperimetric optimal control problem (Problem 3.1) is presented in
the following theorem.

Theorem 3.1. Let assumptions (3.5) and (3.6) be satisfied.

1) If n = 1, then controls CA0
and v have no impact on the value of the cost functional J ,

namely,
J [CA0 , v] = C ve−kτ ∀ (CA0 , v) ∈ Vτ .
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2) If n > 1, then the class of controls Bτ is the optimal strategy for Problem 3.1.

To prove this theorem we need auxiliary lemmas.

Lemma 3.2. If the functions (CA0 , v) ∈ Vτ , then the corresponding solution C(x, t) of the prob-
lem (3.1), (3.2) is also τ -periodic with respect to t.

Proof. Since v is a τ -periodic function, we get for any s ∈ [0, τ ]:

V (τ) =

∫ τ

0

v(ξ)dξ =

∫ τ−s

−s

v(ξ)dξ = −V (−s) + V (τ − s).

Under assumption (3.5) and the monotonicity of V , for each x ∈ [0, L] one can find an s ∈ [0, τ ]
such that x = −V (−s). Using this fact and the τ–periodicity of the functions CA0 and v, we get:

CA(x, τ) =
[
CA0

(
V −1(V (τ)− x)

)−(n−1)
+ k(n− 1)

(
τ − V −1(V (τ)− x)

)]− 1
n−1

=
[
CA0

(
V −1(V (τ − s))

)−(n−1)
+ k(n− 1)

(
τ − V −1(V (τ − s))

)]− 1
n−1

=
[
CA0

(τ − s)−(n−1) + k(n− 1)s
]− 1

n−1

=
[
CA0

(
−V −1(−x)

)−(n−1)
+ k(n− 1)

(
−V −1(−x)

)]− 1
n−1

= CA(x, 0).

Lemma 3.3. Let the control functions (CA0
, v) ∈ Vτ then the cost functional (3.3) of Problem 3.1

can be rewritten as follows:

J [CA0
, v] =

1

τ

∫ τ

0

CA0
(t)e−kτv(t)dt, if n = 1, (3.16)

J [CA0
, v] =

1

τ

∫ τ

0

Ψ(CA0
(t))v(t)dt, if n ̸= 1, (3.17)

where Ψ(ξ) :=
(
ξ−(n−1) + k(n− 1)τ

)− 1
n−1 is an increasing concave function in the case n > 1.

Proof. Using assumption (3.5), the τ–periodicity of the function v and the definition of function
V (t), we get

V −1(V (t)− L) = V −1(V (t)− V (τ)) = V −1(V (t− τ)) = t− τ,

which allows us to rewrite the cost functional (3.3) in the case n ̸= 1 as follows:

J [CA0
, v] =

1

τ

∫ τ

0

[
CA0

(t− τ)
−(n−1)

+ k(n− 1) (t− (t− τ)))
]− 1

n−1

v(t)dt

=
1

τ

∫ τ

0

[
CA0

(t)−(n−1) + k(n− 1)τ
]− 1

n−1

v(t)dt,

provided that the function CA0 is τ–periodic. Calculating the derivatives of the function Ψ as it
was done in (2.10), (2.11), we conclude that, if n > 1, Ψ is increasing and concave.

Similarly, under the conditions of Lemma 3.3, we obtain (3.16) in the case n = 1.

For further analysis, we introduce an auxiliary class of control functions.

Definition 3.3. A vector-function (c, v) : R → [Cmin, Cmax] × [vmin, vmax] belongs to the class

A C̃, ν for given constants C̃ ∈ [Cmin, Cmax], ν ∈ [0, τ ] if (c, v) ∈ Vτ and there exist Lebesgue-

measurable sets A+ ⊂ [0, τ), A− ⊂ [0, τ) such that:

1) ess inft∈A+ c(t) ⩾ C̃;
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2) ess supt∈A− c(t) ⩽ C̃;

3) µ(A+ ∩A−) = 0, µ(A+ ∪A−) = τ ;

4) µ(A+) = ν.

Lemma 3.4. Let n > 1 and let (CA, v) ∈ A C̃, µ+
c

for some C̃ ∈ (Cmin, Cmax), with µ+
c from

Definition 3.2. Then there exist control functions (Cb, vb) ∈ Bτ such that

J [Cb, vb] ⩽ J [CA, v]

where the cost J is defined in Problem 3.1.

Proof. Consider an arbitrary vector-function (CA(t), v(t)) from the class A C̃, µ+
c
with a fixed C̃ ∈

(Cmin, Cmax) and µ+
c defined in Definition 3.2. Define now the corresponding bang-bang control

cb : [0, τ) → [Cmin], Cmax]:

cb(t) =

{
Cmin, if t ∈ A−,

Cmax, if t ∈ A+,
(3.18)

where the sets A+, A− correspond to the class A C̃, µ+
c
. Set Cb = cτb , the τ -periodic extension of cb.

Due to Definition 3.3, µ(A+) = µ+
c and µ(A−) = µ−

c , so a control function vb can be constructed,
so that (Cb, vb) ∈ Bτ .
Now using the isoperimetric conditions (3.4), (3.5) and the concavity property of the function

Ψ:
Ψ(x)−Ψ(y) ⩽ Ψ′(y)(x− y) ∀x, y ∈ [Cmin, Cmax],

we investigate the difference of costs J [Cb, vb]− J [CA, v]:

J [Cb, vb]− J [CA, v] =
1

τ

∫ τ

0

(Ψ(Cb(t))vb(t)−Ψ(CA(t))v(t)) dt

=
1

τ

∫ τ

0

Ψ(Cb(t))(vb(t)− v(t))dt+
1

τ

∫ τ

0

(Ψ(Cb(t))−Ψ(CA(t))) v(t)dt

=: I1 + I2

Now we estimate the integral I1 in cases (i) and (ii) (see Definition 3.2) separately. In case (i),
due to assumption (3.5), we have:

I1 =
1

τ

∫ τ

0

Ψ(Cb(t))(vb(t)− v(t))dt =
1

τ

∫
A+

Ψ(Cmax)(vmin − v(t))dt

+
1

τ

∫
A−∩B−

Ψ(Cmin)(vmin − v(t))dt+
1

τ

∫
B+

Ψ(Cmin)(vmax − v(t))dt

⩽
1

τ

∫ τ

0

Ψ(Cmin)(vb(t)− v(t))dt = 0

In case (ii), by similar logic, we have:

I1 =
1

τ

∫ τ

0

Ψ(Cb(t))(vb(t)− v(t))dt =
1

τ

∫
A+

Ψ(Cmax)(vmin − v(t))dt

+
1

τ

∫
A+∩B+

Ψ(Cmax)(vmax − v(t))dt+
1

τ

∫
B+

Ψ(Cmin)(vmax − v(t))dt

⩽
1

τ

∫ τ

0

Ψ(Cmax)(vb(t)− v(t))dt = 0

The integral I2 can be estimated similarly as in the proof of Lemma 2.2:

I2 =
1

τ

∫ τ

0

(Ψ(Cb(t))−Ψ(CA(t))) v(t)dt ⩽
1

τ

∫ τ

0

Ψ′(CA(t)) (Cb(t)− CA(t)) v(t)dt

⩽
1

τ
Ψ′(C̃)

∫ τ

0

(Cb(t)− CA(t)) v(t)dt = 0.

The obtained estimates prove Lemma 3.4.
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Lemma 3.5. For any vector-function (u(·), v(·)) ∈ V τ , there exists a constant C̃ ∈ (Cmin, Cmax)
such that (u(·), v(·)) ∈ A C̃,µ+

c
, where µ+

c is from Definition 3.2.

Proof. Assume that there exists a vector-function (u, v) ∈ U τ which does not belong to any class

A C̃,µ+
c
. Due to Definition 3.3, this means that, for any C̃ ∈ (Cmin, Cmax), either

µ({t ∈ [0, τ) : u(t) > C̃}) > µ+
c , (3.19)

or
µ({t ∈ [0, τ) : u(t) < C̃}) > µ−

c . (3.20)

By the same logic as in Lemma 2.3, we obtain that u(t) = Cmax for µ-a.a. t ∈ A+
δ in the case

(3.19). Now we check if the isoperimetric constraint (3.4) holds. We will consider two cases (i)
and (ii) separately. In case (i), we have:

1

τ

∫ τ

0

u(t)v(t) dt =
1

τ

∫
A+

δ

Cmaxv(t) dt+
1

τ

∫
[0,τ)\A+

δ

u(t)v(t) dt

⩾
1

τ

∫
A+

δ

Cmaxv(t) dt+
1

τ

∫
[0,τ)\A+

δ

Cminv(t) dt

⩾
1

τ

∫
A+

δ

(Cmax − Cmin)vmin dt+
1

τ
CminL

>
1

τ
µ+
c (Cmax − Cmin)vmin +

1

τ
CminL = Cv.

In case (ii), we have:

1

τ

∫ τ

0

u(t)v(t) dt =
1

τ

∫
A+

δ

Cmaxv(t) dt+
1

τ

∫
[0,τ)\A+

δ

u(t)v(t) dt

⩾
1

τ

∫
A+

δ

Cmaxv(t) dt+
1

τ

∫
[0,τ)\A+

δ

Cminv(t) dt

⩾
1

τ
CmaxL− 1

τ

∫
[0,τ)\A+

δ

(Cmax − Cmin)vmax dt

>
1

τ
CmaxL− 1

τ
µ−
c (Cmax − Cmin)vmax = C v.

Thus we get that the isoperimetric constraint (3.4) is violated in both cases, so (u, v) /∈ V τ ,
which contradicts our assumption.
Using the same arguments, one can prove that 1

τ

∫ τ

0
u(t)v(t) dt < C v in the case (3.20).

Proof of Theorem 3.1. To solve Problem 3.1 under assumptions (3.5), (3.6) in the case n = 1, we
minimize the cost functional (3.16) because of Lemma 3.3. Computing the cost value directly, we
obtain

J [CA0 , v] =
1

τ

∫ τ

0

CA0(t)e
−kτv(t)dt = C ve−kτ ,

which proves the first assertion of the theorem.
For the case n > 1, due to Lemmas 3.2, 3.3, 3.4, 3.5, we conclude that the control functions from

Bτ have the best performance in terms of Problem 3.1, so the bang-bang strategy is optimal.

Remark 3.1. Considering the proposed bang-bang control strategy, we note that the number of
switchings of v(t) and CA0

(t) is not crucial due to the fact that the integrand in (3.17) does not
depend on t explicitly. So, from the theoretical viewpoint, the switching frequency can be chosen
in an arbitrary way that preserves the established measures of A± and B±. However, it may not
be desirable to switch too often from a practical point of view. Thus, the simplest optimal control
strategy is parameterized by the sets A± and B± in the form of intervals, so that each control C(t)
and v(t) has one switching per period τ as depicted in Fig. 1.
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4 Case study

4.1 Comparison of different control strategies

In this section, we consider the system (2.1), (2.2) under the following choice of model parameters
(cf. [7]):

C = 1 molm−3; n = 2; k = 0.001 s−1mol−1;

Cmax = 1.5 molm−3; L = 1 m; v = 0.01 ms−1;

Cmin = 0.5 molm−3; τ = 100 s;

(4.1)

We define the sinusoidal function

Csin(t) = C + (C − Cmin) sin

(
2π

τ
t

)
= 1 + 0.5 sin

πt

50

and compare it with the bang-bang control function Cb(t):

Cb(t) =

{
1.5, if t ∈ [0, 50),

0.5, if t ∈ [50, 100),
and Cb(t+ 100) = Cb(t) for all t ∈ R.

Now we compute directly the cost functional for both functions:

J [Csin] =
1

τ

∫ τ

0

Φ(Csin(t)) v dt = 10−4

∫ 100

0

10C1(t)

10 + C1(t)
dt = 10−4

∫ 100

0

10 + 5 sin
(
πt
50

)
11 + 0.5 sin

(
πt
50

)dt
≈ 8.9968 · 10−3

(
mol

m2 s

)
,

J [Cb] =
v

τ

∫ τ

0

Φ(Cb(t))dt = 10−4

∫ 50

0

10Cmax

10 + Cmax
dt+ 10−4

∫ 100

50

10Cmin

10 + Cmin
dt

≈ 8.9027 · 10−3

(
mol

m2 s

)
.

So, the difference between these costs is approximately 9.416 · 10−5 molm−2s−1, which illustrates
that the bang-bang strategy has more A consumed and thus the performance is about 1.05% better
than for the sinusoidal one.
Calculating for comparison the cost function for the conventional steady-state operation

J [C] =
1

τ

∫ τ

0

Φ(C) v dt = 10−2

∫ 100

0

10C

10 + C
dt ≈ 9.0909 · 10−3

(
mol

m2 s

)
,

we see that the bang-bang strategy is 2.07% better than the steady-state control.
Now we also evaluate the performance of the case with controlled flow-rate and compare it with

the above results. Consider the following control function which allows flow-rate modulations also
deviating by 50% from the steady state values:

v(t) =

{
0.005, if t ∈ [0, 50) ∪ {100},
0.015, if t ∈ [50, 100),

and v(t+ 100) = v(t) for all t ∈ R.

and calculate the cost functional (3.17) for the parameters (4.1):

J [Cb, v] =
1

τ

∫ τ

0

[
Cb(t)

−(n−1) + k(n− 1)τ
]− 1

n−1

v(t)dt

= 10−2

∫ 50

0

10Cmax

10 + Cmax
vmin dt+ 10−2

∫ 100

50

10Cmin

10 + Cmin
vmax dt ≈ 6.8323 · 10−3

(
mol

m2 s

)
.

Thus, the predicted performance of the two-input control strategy for this scenario is 23.26% better
than the single-input bang-bang strategy, and is 24.84% better than the steady-state.
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4.2 The impact of “forcing parameters”

In this subsection, we investigate the role of control design parameters that could impact the
performance of the reaction model. Usually, authors investigate the frequency of switching, the
phase shift with two controls, and the amplitude as “forcing parameters” (see, e.g., [5]).
Once the period of operation τ is fixed, the frequency of the switching for the bang-bang strat-

egy does not impact the performance (see Remarks 2.1, 3.1). So, the number and the frequency of
switchings can be chosen arbitrarily, provided that the measure of appropriate sets in Theorems 2.1
and 3.1 is preserved.
It has been noted in the proof of Theorem 3.1 that the main principle of optimizing the phase

shift (as the difference between switching times of the two controls) is that the minimum concentra-
tion should be at the same time when the maximum flow-rate is applied. So, if C−Cmin = Cmax−C
and v − vmin = vmax − v, then the switching point(-s) should be the same for both controls, and
the values should be opposite.

Now we study the amplitude impact. We call α := C−Cmin

C
the concentration amplitude under

the assumption C − Cmin = Cmax − C. Similarly, we define the flow-rate amplitude as the value
β := v−vmin

v under the assumption v− vmin = vmax − v. It is obvious that these amplitude values
are considered in the range (0, 1).
For the single-input case from Section 2, we consider the cost function for bang-bang controls

as a function of the concentration amplitude α. If the parameters are given by (4.1) with varying
concentration amplitude α, then the cost functional (2.9) takes the form

J [Cb] = Jα[Cb] =
v

τ

∫ τ

0

Φ(Cb(t)) dt = 5 · 10−3
(
Φ
(
C(1 + α)

)
+Φ

(
C(1− α)

))
= 5 · 10−3

(
10(1 + α)

11 + α
+

10(1− α)

11− α

)
=

α2 − 11

10α2 − 1210
.

(4.2)

The amplitude dependence is illustrated in Fig.2(a). One can see that the larger the amplitude,
the better the performance is. Now we investigate the potential for improvement. For this purpose,
we define the following function which shows the percentage of improvement in comparison with
the steady-state:

PCb,C
(α) = 100

(
1− Jα[Cb]

J [C]

)
=

1000α2

121− α2
. (4.3)

The graph of the function PCb,C
(α) is shown in Fig.2(b). As one can see, the performance can

be improved up to 8.26% in comparison with the steady-state. But it should be taken into account
that, in the limiting case α = 1, the concentration is zero for half of the time period (and thus
there is no chemical reaction at all).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1
·10−3

α, concentration amplitude

J
,
co
st

fu
n
ct
io
n
al
,
m
ol
s−

1
m

−
2

(a) J , Cost functional

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

α, concentration amplitude

P
,
im

p
ro
ve
m
en
t
p
er
ce
n
ta
ge
,
%

(b) P , Percentage function

Figure 2: The graphs of the cost functional J from (4.2) and the percentage function P from (4.3)
as functions of the concentration amplitude α under the choice of parameters (4.1).
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Considering the case with two control functions from Section 3, we can investigate the same
dependencies. Namely, the cost functional has the following form:

J [Cb, vb] = Jα,β [Cb, vb] =
1

τ

∫ τ

0

Ψ(Cb(t)) vb(t) dt =
v

2

(
Ψ
(
C(1 + α)

)
(1− β) + Ψ

(
C(1− α)

)
(1 + β)

)
= 5 · 10−3

(
10(1 + α)(1− β)

11 + α
+

10(1− α)(1 + β)

11− α

)
=

α2 + 10αβ − 11

10α2 − 1210
.

(4.4)
Thus, the percentage function takes the form:

PCb,C
(α, β) = 100

(
1− Jα,β [Cb, vb]

J [C, v]

)
=

1000α (α+ 11β)

121− α2
. (4.5)

The graphs of the cost and the percentage function are presented in Fig.3(a) and Fig.3(b),
respectively. In this case, the performance could be improved theoretically up to 100% (in the
case of maximum concentration and flow-rate amplitudes) in comparison with the steady-state.
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Figure 3: The cost J from (4.4) and the percentage function P from (4.5) depending on the con-
centration amplitude α and flow-rate amplitude β. The levels with specified values are
marked with color lines.

Remark 4.1. In the limiting cases α = 1 or β = 1, there are situations when the flow-rate is
stopped (v = 0) or the inlet concentration vanishes (CA0

= 0), so the reaction is stopped. In these
cases, the investigated mathematical model cannot be used to describe the ongoing process. Such
limiting cases should be treated separately as our analysis is not directly applicable.

5 Conclusion and future work

The optimal control problem for an isothermal PFR model with a single periodic input has been
completely solved in Section 2, and the bang-bang optimal control strategies for periodic chemical
reactions in an isothermal PFR with a controlled flow-rate have been proposed in Section 3.
An open problem is to study the relevant isoperimetric optimal control problem for a more

realistic non-isothermal PFR model (see, e.g., [13, 14]).
The optimization of periodic reactions in a Dispersed Flow Tubular Reactor (DFTR) is also a

challenging task in this direction. Namely, a parabolic DFTR model [10, p. 394] could be considered
in future.
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