Downloaded viaFRITZ HABER INST DER MPI on August 11, 2023 at 09:22:08 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

THE JOURNAL OF

PHYSICAL CHEMISTRY

LETTERS Dee

A JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JPCL

First-Principles Simulations of Tip Enhanced Raman Scattering
Reveal Active Role of Substrate on High-Resolution Images

Yair Litman,*! Franco P. Bonafé,! Alaa Akkoush, Heiko Appel, and Mariana Rossi*

Cite This: J. Phys. Chem. Lett. 2023, 14, 6850—-6859 I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information

ABSTRACT: Tip-enhanced Raman scattering (TERS) has emerged as a powerful tool to
obtain subnanometer spatial resolution fingerprints of atomic motion. Theoretical calculations
that can simulate the Raman scattering process and provide an unambiguous interpretation of
TERS images often rely on crude approximations of the local electric field. In this work, we
present a novel and first-principles-based method to compute TERS images by combining
Time Dependent Density Functional Theory (TD-DFT) and Density Functional
Perturbation Theory (DFPT) to calculate Raman cross sections with realistic local fields.
We present TERS results on free-standing benzene and C4, molecules, and on the TCNE
molecule adsorbed on Ag(100). We demonstrate that chemical effects on chemisorbed
molecules, often ignored in TERS simulations of larger systems, dramatically change the
TERS images. This observation calls for the inclusion of chemical effects for predictive theory-
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experiment comparisons and an understanding of molecular motion at the nanoscale. . Dectrom, Enhanc. 7, Blectrom. Enhanc.
he atomic motion in materials and molecules drives vibrational modes of a single molecule, reported a few years
structural changes and chemical reactions, thus, being of ago.2
fundamental importance in areas as diverse as nanotechnology Regarding the physical processes underlying single-molecule
and biochemistry. Usually, vibrational modes are characterized TERS and the associated simulation protocols, there are still
indirectly through vibrational spectroscopy techniques that are many points that need clarification. Besides the enhancement
incapable of resolving the motion of individual nuclei. due to the strong localization of plasmonic electromagnetic
Visualizing such motions with high spatial and temporal fields (EM), there are three other possible enhancement
resolution is a long-sought goal that would allow an mechanisms normally discussed in the literature and referred
unambiguous understanding of certain physical and chemical to as “chemical mechanisms”:"® (i) the enhancement due to
processes.1 For individual molecules adsorbed on certain the chemical interaction (e.g, orbital hybridization) between
substrates, this visualization has been recently addressed by tip- molecule and substrate or molecule and tip in the electronic
enhanced Raman scattering (TERS).” ground state (chem-GS); (ii) the enhancement due to a
TERS spectroscopy is a powerful technique developed in the resonance of the external field with a molecular electronic
last two decades that seamlessly integrates the chemical transition (chem-R); and (iii) the enhancement due to a
specificity provided by Raman spectroscopy with the spatial charge transfer caused by the excitation-induced charge

reorganization between the molecule and substrate or tip
(chem-CT). While the EM mechanism is believed to be
dominant in most cases, its relative importance is still under
debate.'” ™' For example, when the distance between a tip and
a molecule is small enough to form a molecular point contact, a
dramatic enhancement likely caused by chem-CT has been
reported.”* ™

Several methods to simulate TERS spectroscopy have
recently been developed, with the aim of helping to interpret

sensitivity of scanning probe microscopy (SPM).*® Similar to
other surface-enhanced techniques, the working principle of
TERS relies on using the strongly localized plasmonic field
produced at the tip apex by an external electromagnetic field,
which enhances the Raman signal by several orders of
magnitude.” Unlike conventional spectroscopic techniques,
where the spatial resolution is limited by the Rayleigh
diffraction limit, near-field-enhanced techniques do not present
this optical restriction. Indeed, depending on the shape of the
tip apex and other experimental parameters, TERS setups can

lead to subnanometer spatial resolution.” TERS has been used Received: May 5, 2023
to monitor catalytic processes at the nanoscale,'’ study Accepted: July 14, 2023
plasmon-driven chemical reactions,'"'” characterize 2D Published: July 24, 2023

materials, > "> and probe redox reactions at the solid/liquid
1o17 Arguably, the most impressive achievement
obtained with TERS is the real space visualization of the

interface.

© 2023 The Authors. Published b
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Figure 1. Schematic depiction of the proposed method. The full system and its corresponding full Hamiltonian, H (left), are approximated by that
of the substrate—molecule subsystem, H (center), which includes the perturbative terms associated with the external far field, F, and the local
field generated by the tip plasmonic oscillations, @', obtained from TD-DFT calculations. The calculation of TERS spectra proceeds through
density-functional perturbation theory for the calculation of polarizability tensors.

the increasing amount of experimental observations. There are
methods based on phenomenological assumptions, which
describe the localization of the near field by a bell-shaped
function with a predefined width****” or which describe the
local field by an oscillating dipole.”**” These methods are
relatively easy to implement and computationally inexpensive,
but they are not ab initio and, thus, have limited predictive
power. Other methods incorporate a realistic (classical)
description of the near field,”"~** but the computational cost
becomes prohibitively expensive for medium-sized systems,
and a quantum description is restricted to a small region. All of
these methods have provided valuable insights in specific
situations. However, it is known that the exact atomistic
structure of the tip influences the near field in nanoplasmonic
junctions® > and that considering the electronic quantum
effects in the description of nanoplasmonic fields is mandatory
in certain conditions.””*’

In this work, we present a methodology that bridges the gap
between some of the existing approaches. Our methodology
incorporates a realistic description of the near field and retains
a modest computational cost, making it applicable to adsorbed
and large molecules. To achieve this, we employ density
functional perturbation theory (DFPT) to compute the
electric-field response of the electronic density that defines
the nonresonant vibrational Raman cross sections but
incorporate a realistic near-field distribution which we obtain
from time-dependent density functional theory (TD-DFT)
calculations of different atomistic tip geometries. In this way,
we can capture the chem-GS and EM Raman enhancement
mechanisms in our calculations at a cost comparable to
phenomenological methods for medium and large systems but
within a first-principles framework.

We consider a system composed of a molecule placed
between a substrate and a metallic tip that lies at some position
above the molecule (see Figure 1). If the distance between the
tip and the substrate is larger than a few angstroms, there is no
overlap of the corresponding charge densities, and therefore
the interaction between the two components is dictated
essentially by classical electrostatics.”® We study the effect
induced on this system by a time-dependent transverse
electromagnetic field, hereafter termed the external far field.
Within the dipole approximation, this field is homogeneous. By
formally separating the tip Hamiltonian from that of the rest of
the system, we can write

—FRE () + V™)
(1)
where the labels “sm”, “tip”, and “int” refer to the substrate plus

molecule subsystem, the tip subsystem, and the interaction
between subsystems, respectively. H, refers to the unperturbed

A = A" - 7B (1) +

» «

Hamiltonians, /i are the corresponding dipole operators, and
F() = (A, + A, + M) cos(wot), where A, . are the
electromagnetic field strengths, @, is the electromagnetic field
frequency, and . are unit vectors along each Cartesian
direction. In the expression above, it is implicit that we work in
a Coulomb gauge.

To move forward, we make further assumptions. The first
assumption is that the tip is not influenced by the presence of
the molecule and substrate (justified by the previously assumed
long distance between these components and a neutral
molecule—substrate subsystem). This allows the calculation
of the time-dependent electronic density py, by the real-time
propagation of the Kohn—Sham states of the isolated tip under
the influence of an external field in TD-DFT, assuming a
dipolar light—matter coupling. Then, the (electrostatic)
interaction between the tip and the rest of the system can be
computed as

Ptip("; t; Rﬁp)
in t( fonr £ Rtip) = /drﬁ = tlp( sms b5 Rtip)
()

sm

where r,, refers to the positions of the electrons belonging to
the substrate—molecule subsystem and Ry, refers to the
position of nuclei of the tip subsystem. In eq 2, we defined the
time-dependent electrostatic potential of the tip, <I>np (often

called Hartree potential), which is a central quantity for the
current method. Indeed, under the current assumptions, the
effect exerted on the substrate by the tip can be described by
its Hartree potential. The ‘;’ symbol in eq 2 has been used to
emphasize the parametric dependence of @, on the position
and spatial arrangement of the nuclei in the tip, Ry,

The second assumption is that the strength of the external
far field is small, such that the response of the tip lies in the
linear regime; i.e., one can perform a Taylor expansion of d)up
around zero-field strength (A = 0) and truncate it at first order.
The linear response regime was confirmed for the calculations
presented throughout the paper (see Figure S4) and can be
also verified in experimental setups. Then, considering that the

https://doi.org/10.1021/acs.jpclett.3c01216
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Figure 2. Energy and spatial dependence of the tip Hartree potential from TD-DFT simulations. Panel (a) shows the structure of the tip-A model.
Panel (b) shows the normalized @ along the (x = 0, y = 0, z) line. Panels (c) and (d) show normalized two-dimensional cuts at 3.22 eV and z
equal to 4 and 6 A below the tip apex. Panels (e)—(h) are analogous to panels (a)—(d) for the tip-B model. In all plots the origin is defined at the

center of the tip apex position.

system is at the ground state before an excitation by the laser
field, ®"P(t = 0) = DX, and that responses are local in the
frequency domain in the linear regime,37 we can write the
substrate—molecule Hamiltonian in a particular Cartesian
direction a as,

+ aq)tip(a)o; Rtip)
04,

“ 1, =0

©)

where dNDﬁP(a)O; Rﬂp) denotes a time Fourier transform of Ci)tip(t;
Rﬁp) evaluated at w,. In the last line, a perturbation of the
substrate—molecule subsystem is neatly defined. The first term
inside the square brackets describes the dipole interaction
between the substrate with the homogeneous far field, while
the second term describes the interaction with the local field
generated by the tip. The latter term gives rise to the EM
enhancement mechanism and the modified selection rules
present in TERS spectroscopy. See a more detailed derivation
of eq 3 in Section I of the Supporting Information (SI).
Equation 3 is suitable to be treated within the time-independent
DFPT in order to find the static polarizability of the molecule
and substrate, a, which enables the calculation of the
nonresonant Raman signal.38 In this work we calculate

harmonic nonresonant Raman intensities, "™ ag
) 2
o
IRaman( Cl)) & 2z
1 aQ
i (4)

where a, is the zz component of the polarizability tensor and
Q; and w; represent the eigenmode and eigenfrequency of the i-
th vibrational normal mode, respectively. In this work, we
consider exclusively the @, component since it is the direction
normallzf regarded as the most relevant in TERS experi-
ments” and allows us to compare with previously reported
spectra.”®”’ However, the method can be used to describe any
polarization dependence of the incoming and detected light by
including other components of the polarizability tensor in the
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calculation of the Raman signal.zs‘”’40 Furthermore, it is
possible to combine this approach with more sophisticated
approximations of the Raman signal that can capture the
anharmonicity of the vibrational modes, which could be
relevant for more flexible molecules.*"**

In Figure 1, we show a schematic depiction of the proposed
method. The electronic oscillations created by the external
field generate an oscillating Hartree potential, P, whose
gradient is the so-called local (longitudinal) electric field, and
its maximum intensity is situated a few angstroms below the tip
apex.’ The advantage of centering the approach on ®" rather
than the local field and its gradient is, besides its mathematical
simplicity, the fact that all the terms in the multipolar
expansion are automatically incorporated and no origin-
dependence problems arise. All magnetic contributions are
ignored as usually done for nonmagnetic materials.** We note
that the enhancement of the incident field is included, while
the enhancement of the scattered field is ignored. To obtain
the correct dependence of the enhanced Raman intensity with
respect to the local field, the incorporation of dipole
reradiation effects are recluil'ed.3l’45 Approximate corrections,
based on the dressed tensor formalism, can be incorporated by
choosing a coordinate origin and performinég a Taylor
expansion with respect to the incident fields.***® Within the
formalism presented in this paper, a modified version of the
latter approach would lead to an unphysical origin dependence.
Thus, and similarly to most of the existing methods to simulate
TERS images,z’zo’zg’47 the predicted signal intensity reported in
this work follows a |E/* dependence instead of the expected IEI*
for large tip-molecule distances.'®*"*"

We start by analyzing the local Hartree potential generated
by different Ag tip geometries. We considered tetrahedral tips
with a one-atom apex (tip-A) and a three-atom apex (tip-B) as
shown in Figure 2aje, respectively.”” The fields @ were
calculated using the Octopus code*”*” with the LDA
exchange-correlation functional (see simulations details in
Section II in the SI). The use of an arguably small model tip
structure to study plasmonic near-field distributions from an
atomistic first-principles perspective is justified by the fact that

https://doi.org/10.1021/acs.jpclett.3c01216
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Figure 3. TERS simulation of gas-phase benzene from local-field DFPT calculations. (a) Sketch of the simulation setup. (b) Simulated harmonic
TERS spectrum of the benzene molecule for different tip—molecule distances, d, compared to the homogeneous-field case. Only the signal coming
from the a,, component is shown for all cases. The observed enhancement is nonlinear with the molecule—tip distance since higher-order
derivatives of the local potential start to contribute to the signal at the shortest distances.”* (c—e) Normal mode eigenvectors of selected vibrational
modes with their respective symmetries and frequencies. (f—h) TERS images of the selected vibrational modes for a molecule—tip apex distance of

4 A. See Figure S12 in the SI for the TERS image of the 1015 cm™ peak.

the plasmon peak of Ag clusters is well separated from the
interband transitions even for small clusters.”' ™ Figure 2b,f
shows the magnitude of @ as a function of the laser energy
and distance from the tip apex. In both cases, the maximum
@ is found at 1.4 A below the tip apex and at 3.22 eV. The
intensity of the potential decays to its half-value at 4 and at S A
below the tip apex for tip-A and tip-B, respectively. We
analyzed larger tip sizes and verified that the overall shape of
®% is not significantly altered and the plasmonic peak
approaches the visible range in agreement with previous
studies”’ (Figure S3 in the SI). The two-dimensional cuts of
@' for tip-A and tip-B, presented in the remaining panels of
Figure 2, show that the field maximum is found exactly below
the apex of tip-A and below the three atoms that constitute the
tip apex for tip-B. Interestingly, at 6 A below the tip apex, the
shape of ® of the two models becomes indistinguishable,
which suggests that, for substrate—tip distance greater than 6
A, the fine details of the apex should be negligible in TERS
imaging experiments. In passing, we note that at 4 A below the
tip apex the distribution of the local field resembles that of a
2D Gaussian function to some extent. However, a Gaussian
profile can neither adequately describe the rapid change of
intensity at the center of the distribution nor capture any radial
asymmetry (see Section III in the SI).

We proceeded by computing TERS spectra for the free-
standing benzene molecule. Benzene has been investigated
several times as a proof-of-concept molecule***” and it allows
us to compare the current method with others proposed in the
literature. We calculated Raman intensities with the FHI-
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aims®* code and the LDA functional, where the DFPT
implementation® has been extended to include the local field
as prescribed by eq 3 and to account for plasmonic terms in
the electronic-density response of metallic clusters.”® We
consider a benzene molecule in a flat orientation, as depicted
in Figure 3a, and compute the TERS spectra for different tip—
molecule distances, d, as shown in Figure 3b. In these
calculations, tip-A was used, and its apex was aligned to the
center of the benzene molecule. We remark that only the signal
coming from the a_, component of the polarizability tensor is
shown. By analyzing the projected density of states of the
benzene—tip system (see Section III in the SI) we concluded
that, for distances larger than 3 A, the assumption that there is
no chemical interaction between the two subsystems is valid.
Moreover, by analyzing the molecularly induced dipole at
different tip—molecule relative positions, we verified that we
are within the applicability realm of first-order perturbation
theory at these molecule—tip distances (see Section II in the
SI).

The inhomogeneity of the local field induces changes in the
TERS spectra in two distinctive ways compared to the
standard (homogeneous field) Raman spectrum. On one
hand, the intensity of the peaks at 1015 and 3121 cm™ (alg) is
enhanced with respect to the homogeneous field case. On the
other hand, the a,, mode at 654 cm™" which is Raman inactive
becomes active in the TERS spectrum, which denotes a new
selection rule arising from the spatial variation of the local field.
In Figure 3 panels (c)—(e), we show the normal mode
eigenvectors of selected vibrational modes, and in panels (f)—

https://doi.org/10.1021/acs.jpclett.3c01216
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Figure 4. (a) Depiction of Cg, molecular orientations. Pentagon (green), hexagon (red), and vertex (blue) refer to the molecular geometries with
the corresponding face closest to the tip. (b) TERS spectra of the C¢, molecule with the tip apex placed at 4 A above the “X” mark in (a). The
intensities of the spectra are normalized with respect to the intensity of the Ag(2) peak. (c) TERS images for the Ag(2), Gg(S), and Hg(2)
vibrational modes. In all cases, the intensities are normalized to the corresponding spectrum maximum.

(h), their corresponding TERS images. The images were
obtained by computing the TERS spectra at different lateral
positions of the tip with respect to the molecule at a constant
height of 4 A. The intensities of the corresponding vibrational
mode were then plotted in a 2D heat map. While the images of
the modes located at 828 and 3121 cm™ show distinctive
patterns that are comparable to the ones obtained by other
methods, the results for the mode located at 654 cm™
obtained by our approach differs significantly.”**’ Although
all of the methods would agree if the local field would be
modeled by a given set of parameters, this example
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demonstrates the advantage of employing a parameter-free
method, with easy-to-verify assumptions.

An interesting application of TERS spectroscopy is the
determination of relative molecular orientations.”***” Here,
we evaluated the possibility of identifying the orientation of the
Cgo molecule using the current framework. In Figure 4, we
report the TERS spectra of Cg, in three different orientations.
While we observe that the local field causes a nonuniform
enhancement of peak intensities, the peaks that are active in
the calculations with a homogeneous field, i.e., the H, and
modes, are not sensitive to the specific molecular orientation.

https://doi.org/10.1021/acs.jpclett.3c01216
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Figure S. (a) Sketch of simulation setup of TCNE adsorbed on a Ag(100) cluster. (b) Simulated TERS image of TCNE in isolation (TCNEgas,
black), of TCNE in isolation but at the adsorbed geometry (TCNEads, orange), and of TCNE at the Ag(100) cluster discussed in the text
(TCNE@Ag(100), red). Tip apex was placed on the molecular center of mass at a distance of 4 A. (c, f, i, and 1) Normal mode displacement
vectors of selected vibrational modes of TCNE@Ag(100). The surface has been deleted for clarity. (d, g, j, and m) TERS images of the depicted
normal modes for TCNEads. (e, h, k, and n) TERS images of the depicted normal modes for TCNE@Ag(100). In all cases a molecule—apex
distance of 4 A was employed. Frequency within square brackets in panel (m) denotes the lack of an equivalent normal mode eigenvector in the

TCNEads calculation.

Conversely, some of the new peaks that emerge due to the
local field, such as G (5) and Hg(2), present a more
pronounced orientation dependence. Indeed, the correspond-
ing TERS images, depicted in Figure 4, display characteristic
patterns that could be used to identify the molecular
orientation in sufficiently sensitive TERS experiments.
Finally, we consider the tetracyanoethylene (TCNE)
molecule as a representative of strong interaction with metallic
substrates.”® TCNE is a strong electron acceptor due to the
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four cyano-group low-energy orbitals conjugated to the central
C—C bond”” and has been investigated as a room temperature
molecular magnet.”” To study the impact of chem-GS
enhancements on TERS spectra, we consider three scenarios:
(i) The TCNE molecule with its optimized geometry in the
gas phase (TCNEgas), (ii) the molecule adsorbed on Ag(100)
(TCNE@Ag(100)), and (iii) the molecule in the gas-phase
but fixed at the adsorbed geometry (TCNEads). The Ag(100)
surface was modeled by a 3-layer 4 X 4 cluster, and we
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employed the PBE functional in our DFPT calculations (see
more details and convergence tests in Section II of the SI). The
size limitation of the cluster models employed here is dictated
only by technical issues regarding the implementation of
DEPT for systems with fractional occupations, which can be
easily overcome in the near future. In fact, we have recently
computed TERS images of semiconducting systems containing
nearly 200 atoms." Still, a few algorithmic hurdles need to be
overcome to further increase the applicability of the method, as
implemented in the FHI-aims code. For instance, the
formulation of the DFPT response in real space and with
the presence of a local field under periodic boundary
conditions needs to be addressed.

TCNE is a planar molecule in the gas-phase. Upon
adsorption with a flat orientation, the TCNE molecule arcs
with the CN groups pointing toward the Ag atoms, and the
nitrogen atoms coordinate Ag atoms that form a 3 X 3 square,
as depicted in Figure Sa. The TCNE molecule becomes
negatively charged upon adsorption, exhibiting an elongated
central C—C bond.’” We estimated the molecular charge to be
0.6 e using a procedure described elsewhere.”” The TCNEgas,
TCNEads, and TCNE@Ag(100) TERS spectra, calculated
according to eq 4, are presented in Figure Sb with black,
orange, and red curves, respectively. The TCNEgas spectrum
presents three main peaks. The ones at 144 and 557 cm™
correspond to out-of-plane modes, while the vibrations at 2239
cm™" correspond to the in-plane CN stretching mode. The
TCNEads spectrum also presents three major peaks at 207,
555, and 2119 cm™!, which correspond to analogous
vibrational modes. However, due to the deformation of the
molecular geometry, some of the vibrational frequencies are
considerably red or blue-shifted. In addition, this spectrum
presents several satellite peaks of relatively low intensity. The
TCNE@Ag(100) spectrum is around 2 orders of magnitude
more intense than the other spectra due to chem-GS
enhancement. While the peak at 2127 cm™ preserves the
CN stretch character and is considerably enhanced, the modes
at around 200 and 550 cm™' mix with other normal modes and
show a relatively smaller intensity enhancement. A new high-
intensity peak appears at 1235 cm™' and corresponds to the
central C—C stretching mode.

In the remaining panels in Figure 5, we present TERS
images for selected vibrational modes. To make a legit
comparison and to isolate the effect caused by chem-GS
enhancement, we only compare TCNEads with TCNE@
Ag(100) (same molecular geometry), and in the evaluation of
eq 4, we use the normal modes associated with the TCNE@
Ag(100) structure. The TERS images of the central C—C
stretching mode are shown in panels (d) and (e) and present
comparable shapes with most of the Raman signal localized in
the vicinity of the molecular center. However, the TCNEads
image shows two clearly separated spots with the highest
intensity at each side of the molecule along the central C—C
bond axis. The intensity at the center of the molecule is
relatively small, as shown in the 1D spectra. In panels (g), (h),
(j), (k), (m), and (n) we present other vibrational modes that
show TERS activity, including out-of-plane and in-plane
molecular motions. The TERS images when including the
Ag atoms are remarkably different even though we are
considering the same geometry and nuclear displacements in
the calculations. This observation proves that the symmetry of
the normal modes does not exclusively determine TERS
images and chem-GS effects can play a decisive role in
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determining the shape and intensity of the image. Moreover,
neither a normal-mode analysis, a simple symmetry argument,
nor a frequency comparison between TCNEads and TCNE@
Ag(100) calculations seems to be able to predict, a priori, the
impact of the chem-GS enhancement on the shape of the
TERS images. We also verified that adding a negative charge to
the TCNEads calculations does not reproduce the TCNE@
Ag(100) results (see Figure S14 in the SI). This highlights
once again the necessity of a first-principles calculation
including the substrate.

In summary, we have presented a new first-principles
method to compute TERS spectra and images that retains
computational efficiency. The method does not rely on
simplistic models for the tip geometry and its generated field
and is able to capture EM and chem-GS types of Raman signal
enhancement. It enables the calculation of TERS spectra and
images at a substantially reduced computational cost. In fact, as
shown in SI, Section V, we estimate a 4 orders of magnitude
reduction in computational cost with respect to full real-time
TD-DFT simulations.””®* We presented results for three
molecules: Two that physisorb on metallic substrates (benzene
and Cg,) and one that chemisorbs (TCNE). For the former
cases, we showed that the predicted TERS images differ from
simplified approaches unless specific parameters are calibrated
and confirmed that TERS spectroscopy can be used determine
molecular orientations, even for highly symmetric molecules.
For the latter, we showed that the chemical interaction
between the molecule and the substrate leads to drastic
changes in the TERS images, which reveal that the chemical
enhancement shows atomic-scale variation.

The method proposed in this paper can be seamlessly
coupled to ab initio (path integral) molecular dynamics
simulations, to capture anharmonic and finite temperature
(quantum) anharmonic effects.*”*>°° A calculation of the
Raman intensities from a TD-DFT evaluation of the
frequency-dependent polarizability tensors is also possible
and would give access to resonant Raman scattering, thus
capturing the chem-R enhancement mechanism.”>®” More-
over, by using methods with lower computational cost, such as
density functional tight-binding,°® one could in principle
converge the calculations with respect to the tip size.

The accuracy of the method we propose remains to be fully
benchmarked, since a reference theoretical TERS calculation
including all effects of light—matter coupling in the semi-
classical 1imit®””® has not yet been reported in the literature.
Nevertheless, this method bridges an important gap in terms of
accuracy and computational cost among existing approaches to
TERS simulations, facilitating the interpretation of TERS
experiments for realistic complex systems. We hope that the
reported results motivate new single-molecule TERS experi-
ments on inorganic—organic interfaces composed of chem-
isorbed molecules relevant to electronic and light-harvesting
applications.”' ~"*
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