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In this paper, the multivariate well-conditioned asymptotic waveform evaluation (MWCAWE)
algorithm is presented. It is based on a univariate version of the algorithm, previously 
introduced for fast frequency sweeps. Taking advantage of the robustness of this univariate 
algorithm, the MWCAWE enables to effectively generate multi-parameter reduced-order 
models. Additionally, a residue-based contour following approach is introduced for a two-
stage generation of a projection basis, here applied on bi-variate acoustic problems where 
frequency and a material parameter are in focus. The effectiveness of the proposed method 
is demonstrated on two poro-acoustic problems, highlighting both the good convergence 
property of the algorithm and the potential of the multi-patch strategy for parametric 
applications.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Many problems in optimisation, design, and control require the evaluation of numerical models depending on multi-
ple parameters during the early design stage and operation. Such parameters may include the driving frequency, material 
properties, or geometric features, among others. For example, dynamical systems are often evaluated using frequency sweep 
methods requiring the repeated evaluation of a typically large system of equations for a changing driving frequency. To 
allow an efficient simulation process, surrogate models, approximating the input-output behaviour of the original system 
while retaining the dependency on certain model parameters, are required. For this purpose, component-wise expansion 
techniques allowing to target selected degrees of freedom of interest, for example based on rational polynomial expansion 
in the form of Padé approximants, may be implemented; see [1,2] for univariate examples and [3,4] for a multivariate ex-
tension. Alternatively, projection-based parametric model order reduction (pMOR) has been intensely investigated and is 
now a well-established approach to obtain such surrogates [5]. Here, the high dimensional original system is projected onto 
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a lower dimensional subspace containing the desired solution while being several orders of magnitude smaller than the 
original solution space.

Among the projection-based methods, which are of specific interest in the present contribution, two main approaches 
for pMOR are typically distinguished: global and local approaches. To obtain a global basis, individual reduction matrices 
for some combinations of parameters are collected in global reduction matrices. As the individual bases might contain re-
dundant information, a truncation is applied to obtain the final global reduction matrix. The size of this resulting matrix 
and thus the reduced-order model can grow rapidly if a large number of parameters is to be considered. In case an inter-
polatory method has been used to construct the individual bases, the resulting reduced model interpolates the full solution 
at all combinations of the parameter values which were used for the sampling process. pMOR procedures following this 
global approach have been presented, e.g., in [6–8]. Local pMOR methods compute reduction matrices by interpolating be-
tween the matrices obtained from other parameter combinations, respectively on a manifold of their subspaces, rather than 
concatenating them in a single reduction matrix [9–11]. A local method thus results in a reduced model whose size is in-
dependent of the number of local bases used. Alternatively, data-driven methods address the surrogate modelling question 
by computing parametric reduced-order models without requiring access to the discretisation of the original system. Such 
methods rely on a database of input, output, and possibly state data to compute a surrogate model depicting the behaviour 
of the original system. Examples for data-driven pMOR include the gappy proper orthogonal decomposition (POD) [12], the 
parametric Loewner framework [13], and the parametric AAA algorithm [14], among others.

In the present contribution, we present the Multivariate Well-Conditioned Asymptotic Waveform Evaluation (MWCAWE). 
It is a projection-based global pMOR approach extending the established Well-Conditioned Asymptotic Waveform Evaluation 
(WCAWE) method [15,16], which has proved to be an efficient approach for frequency sweep problems [17,18]. Contrary 
to many MOR approaches considering no derivatives in the parameter domain, WCAWE ensures rational interpolation up 
to an arbitrary order at certain expansion points. The gist of extending WCAWE to MWCAWE is to consider derivatives 
of the system regarding the parameters which should be retained in the reduced space. The MWCAWE basis computa-
tion involves combinations of these derivatives at each expansion point in the considered parameter space. A following 
recombination and truncation step ensures an appropriate size of the reduction bases corresponding to each expansion 
point. Multiple local bases are combined in the global pMOR approach to increase the accuracy for the complete pa-
rameter space. Although a global pMOR method may lead to larger reduced models, accuracy of the approximation and 
computational cost associated with the projection basis generation can justify the choice of a global method over a local 
approach.

In particular, the choice of parameter combinations used as expansion points for the projection basis has a major influ-
ence on the approximation quality and efficiency of the reduced-order model. A priori schemes, such as full grid, uniform, 
random, or Latin hypercube sampling are classical choices for systems with a small or medium number of parameters [19], 
but the computational cost rapidly grows with increasing dimensionality. Additionally, a priori sampling techniques are only 
efficient for problems with a relatively smooth parameter dependence [20]. For rougher parameter-dependence, adaptive 
schemes and techniques based on local sensitivity analysis may be employed to find reasonable parameter combinations as 
expansion points for the interpolation of the full-order model. Such methods rely on techniques estimating the approxima-
tion error of the reduced model and finding suitable locations in the parameter space for the next expansion point by, for 
example, a greedy algorithm; see, e.g. [21–24] and the references therein. Their associated performance relies largely on an 
accurate and cost-effective estimation of the approximation error, and it should be noted that these heuristic methods do 
not necessarily yield optimal reduced-order models. As an alternative to these sampling techniques, methods not depending 
on an a priori sampling of parameters have been proposed. Here, the original parameter-dependent system is reformulated 
to a non-parametric system where the parameter influence is modelled as additional inputs to the system [25–27]. Finally, 
data-driven approaches can be used to compute parametric reduced-order models; see, e.g., [28,29]. In the following, we 
introduce a greedy algorithm to find appropriate expansion points as a subsequent step to the MWCAWE. Thus, the original 
system does not have to be reformulated in any way and the approach is applicable to a wide range of dynamical sys-
tems. Contrary to most data-driven approaches MWCAWE preserves the matrix structure of the original problem and can 
be employed without the need for computationally intensive presampling. Targeting the bivariate case, i.e., frequency and 
an arbitrary parameter, the method aims at computing local reduction bases at appropriate parameter samples, such that 
recombinations of these bases into a global basis allow an approximation of the full-order model in the entire parametric 
space of interest. The algorithm relies on a combination of a contour-following algorithm and a residue-based error esti-
mator, which is a reliable trade-off between accurately reflecting the approximation error and the involved computational 
cost.

The article is structured as follows: In Section 2, the univariate WCAWE and its multivariate extension, MWCAWE, are 
summarised. The fundamental principles of the Nested Padé Approximants, a multivariate, component-wise expansion ap-
proach based on the use of Padé Approximants are recalled in Section 3 to compare this classic approach to MWCAWE. 
In Section 4, the greedy multi-point scheme adopted for the sampling strategy of the bivariate case is introduced, includ-
ing: the choice of the error estimator, a contour-following algorithm, and the resulting multi-patch approach. The proposed 
MWCAWE method and the multi-point approach detailed for the bivariate case, are then tested on two applications of in-
creasing complexity in Section 5. A simple poro-acoustic absorption problem allows first to illustrate the potential in terms
of convergence of the proposed MWCAWE, compared here to the Nested Padé Approximants on a case introduced in a pre-
2
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vious contribution. The multi-patch, bivariate approach is then tested on a complex interior poro-acoustic problem, before 
concluding remarks in Section 6.

2. From the WCAWE to the MWCAWE

In this Section, the key steps from the WCAWE moment-matching approach to its multivariate extension with the MW-
CAWE, initially introduced in [30], are restated, in particular adapting the formalism in view of its implementation for 
multi-patch approximation, detailed in Section 4.

2.1. WCAWE, a projection-based model order reduction

The starting point of the WCAWE-based parametric sweep is given by a linear system,

Z(x)u(x) = f(x), (1)

where x is a vector of Nx independent variables corresponding to the parametric problem of interest including, e.g. the 
driving frequency ω, material parameters, etc. For the original univariate case discussed in [15], this vector reduces to a 
scalar such that x = x1. In a finite element (FE) problem, Z(x) ∈ CNn×Nn represents the system matrix of the discretised 
problem and u(x), f(x) ∈CNn the solution vector and the vector of externally applied loads, respectively.

As Nn is typically large, the computational cost of solving (1) can be reduced by finding a system

Zsn (x)αsn (x) = fsn (x), (2)

of much smaller dimension NV whose solution vector approximates the solution to the original system in a subspace 
spanned by a matrix Vsn ∈CNn×NV , such that

u(x) ≈ ûsn (x) = Vsnαsn (x). (3)

This projection-based approach, allowing the solution of a reduced set of equations in order to obtain an approximation 
for (1), relies on the efficient construction of the reduction matrix Vsn . A proper choice of Vsn emerges from successive 
derivatives of the solution vector in (1) at a specific point in the parameter space x = sn , sn = (

x1n, · · · , xNxn
)

being fur-
ther referred to as the n-indexed reference point of Vsn . For the original univariate case, i.e. associated with the WCAWE 
algorithm, Nx = 1 and this reference point reduces to the scalar sn = x1n . The WCAWE algorithm [15,16] provides a robust 
generation of this sequence of successive derivatives, overcoming the inherent ill-conditioning of the direct approach which 
is, e.g., used in the computation of the component-wise Padé approximants [2,18,31] and in the generation of Nested Padé 
approximants [3,4]. The resulting well-conditioned reduction matrix Vsn , consisting of NV orthonormalised basis vectors, 
allows for a robust, non-stagnating convergence upon increasing the size of the subspace spanned and ensures (3) in the 
vicinity of x = sn . This projection

VH
sn

Z(x)Vsnαsn (x) = VH
sn

f(x), (4)

with Zsn (x) = VH
sn

Z(x)Vsn and fsn (x) = VH
sn

f(x) leads to the reduced system (2). The superscript (·)H denotes a Hermite 
transpose. Obviously, in the context of an FE solution, (4) is advantageously solved if the system matrix involved in the 
transformation, Z(x), is not reevaluated after an assembly procedure for each set of parametric vectors x, but rather broken 
down in a linear combination of x-independent global matrices.

2.2. A multivariate WCAWE basis generation procedure: the MWCAWE

A generic expression of the multivariate WCAWE algorithm (referred to as the MWCAWE in the following), as proposed 
in this contribution, may be given in x = sn by the following recursive, multiple right-hand-side (RHS) procedure adapted 
from the univariate case in [15,16,32],
3



R. Rumpler and Q. Aumann Journal of Computational Physics 490 (2023) 112319
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(0)v1 = F(0)

Normalisation v1 −→ v1

Z(0)v2 = F(1)eT
1PQ1 (2,1)e1 − Z(1)v1

Orthonormalisation v2 −→ v2

.

.

.

Z(0)vn =
⎛⎝(n−1)∑

j=1

(
F( j)eT

1PQ1 (n, j)en− j

)
− Z(1)vn−1

−
(n−1)∑

j=2

(
Z( j)vn− jPQ2 (n, j)en− j

)⎞⎠
Orthonormalisation vn −→ vn

.

.

.

Z(0)vNV =
⎛⎝(NV−1)∑

j=1

(
F( j)eT

1PQ1 (NV, j)eNV− j

)
− Z(1)vNV−1

−
(NV−1)∑

j=2

(
Z( j)vNV− jPQ2 (NV, j)eNV− j

)⎞⎠
Orthonormalisation vNV −→ vNV

(5)

where a modified Gram-Schmidt orthonormalisation step is performed between each vector generation by the multiple RHS 
systems in (5). Furthermore

• Z(k) stands for the differentiation of the system matrix Z, in x = sn , to the “cumulative” multivariate order k, regardless 
of the distribution of these partial derivatives between the independent variables x j , j = 1, . . . , Nx . In other words, given 
the notation ∂ i j

x j
(·) for the partial derivative with respect to x j at order i j , and the convention ∂0

x j
(·) = (·), then Z(k)

results from the summed partial derivative orders such that

Z

⎛⎝ Nx∑
j=1

i j

⎞⎠
=

⎛⎝ Nx∏
j=1

∂
i j
x j

⎞⎠ Z, (6)

with the aforementioned convention implying that Z(0) = Z (dependency on x omitted).
• ek is a unitary standard basis vector associated with the kth component of the solution vector.
• vk is the non-orthonormalised vector generated in the kth iteration of the procedure.
• vk is the basis vector orthonormalised against v1, . . . , vk−1, generated after the kth iteration of the procedure.
• PQω (α, β), ω = 1, 2, corresponds to the RHS correction terms, chosen to be associated with the modified Gram-Schmidt 

orthonormalisation process [15].

The resulting orthonormalised and non-orthonormalised bases, Vsn = [
v1 · · ·vNV

]
and Vsn = [

v1 · · ·vNV

]
respectively, are 

related by

Vsn = Vsn Q−1, (7)

where Q is an NV × NV upper triangular, non-singular matrix containing the modified Gram-Schmidt coefficients. More 
precisely, column k of Q contains the successive coefficients resulting from the projection of the partially orthonormalised 
vk on the orthonormalised vectors v j , j < k, and Q kk corresponds to the norm of vk before its normalisation. The correction 
terms PQω (α, β), ω = 1, 2, are given by the following product of block matrices extracted from Q,

PQω (α,β) =
β∏

t=ω

Q−1
[t:α−β+t−1,t:α−β+t−1]. (8)

Further discussions on the choice of the RHS correction coefficients other than associated with the Gram-Schmidt coef-
ficients, may be found in [15]. The approximated solution may be evaluated at all degrees of freedom (DOFs) from the 
generalised coordinates vector αsn (x) following (3).
4
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If during the sequence (5) the orthonormalised vector vn would be linearly dependent to the previous vector vn−1, 
numerical breakdown occurs. In this case the algorithm stops prematurely, similar to the closely related Arnoldi pro-
cesses [33,34]. A breakdown in this setting implies that the subspace already contains the information which would be 
added by computing further moments. However, the orthogonality of the basis vectors is imposed by the correction terms 
PQ1 and PQ2 in (5) and the basis vectors are thus well-conditioned [35,36].

Adapting the WCAWE algorithm from univariate to multivariate problems involves the generation of sequences of RHS 
vectors emerging from sequences of iteratively differentiated matrices Z(k) . The choice adopted here is to generate such 
sequences independently, thus generating a set of N� bases

{
V1

sn
, · · · ,VN�

sn

}
associated with N� sequences of iteratively 

differentiated matrices Z(k) . This procedure is illustrated in Fig. 1. These bases, in principle all of the same size NV,1 each 
consist of orthonormalised basis vectors. However, these are naturally not mutually orthonormalised from one basis to the 
next. Additionally, it is not guaranteed that the N�-sequences produce linearly independent subsets of vectors upon merging 
the resulting bases. A simple way to ensure this, as well as to reduce the basis to a minimum number of basis vectors, is 
to proceed with a compression, or a component selection, via a Singular Value Decomposition (SVD) of the merged set of 
bases [37,38]. Either way, the initial step consists in an SVD of the merged basis after concatenation, Vmer

sn
=

[
V1

sn
· · ·VN�

sn

]
, 

resulting in

Vmer
sn

=
NVmer∑

i=1

σiw
l
iw

r
i
T
, (9)

where NVmer � NVN� corresponds to the total number of basis vectors in Vmer
sn

and σi , wl
i , and wr

i correspond to the singular 
values and left and right singular vectors, respectively. Vmer

sn
is expected to have a moderate number of columns, such that 

this additional SVD may be performed with relatively low computational effort compared to the matrix decompositions 
required in the WCAWE.

From the SVD, the (left) singular vectors associated with the highest singular values are selected as the components of 
the final local reduction matrix, such that assuming a descending-ordered sequence of singular values

(
σ1 · · ·σNVmer

)
, the 

reduced, merged basis V∗
sn

is

V∗
sn

=
{

wl
i | i ∈ {1, . . . ,NVmer} ∧ σi � σthresh

}
, (10)

where σthresh corresponds to the empirically chosen threshold value for the selection of the singular values resulting from 
the decomposition in (9).

The resulting local projection basis V∗
sn

, consisting of NV∗ vectors, is then introduced in place of the generic, univariate 
transformation corresponding to (3), such that

û∗
sn

(x) = V∗
sn

α∗
sn

(x), (11)

leading to a reduced system associated with the initial problem in (1), such that(
V∗

sn

)H Z(x)V∗
sn
α∗

sn
(x) = (

V∗
sn

)H f(x), (12)

involving NV∗ � NVmer generalised coordinates in α∗
sn

(x).

2.3. Sequences of multivariate differentiation

The MWCAWE procedure above depends on the generation of sequences of differentiated system matrices to successive 
“cumulated” multivariate partial derivative orders k, denoted Z(k) , k = 0, . . . , NV − 1. The choice of these sequences is ad-
dressed empirically in this contribution, and illustrated for the case of bivariate problems. For the bivariate case, provided 
orders of partial derivatives Nx1 and Nx2 with respect to x1 and x2, respectively, such that Nx1 + Nx2 = NV − 1, the result-
ing cumulated order of partial derivatives and the associated differentiation paths may be represented in a matrix form, see 
Fig. 1. The matrix sequences obtained from these differentiation paths of the system matrix subsequently feed the procedure 
presented in (5), ultimately resulting in the sequence of bases concatenated into Vmer

sn
, see (9).

Rather than computing all possible differentiation paths for a given set of maximum orders Nx1 and Nx2 , only a sub-
set of these is computed. Preliminary tests based on the methodology introduced in the previous section rapidly confirm 
the emergence of quasi-linearly dependent basis vectors associated with different partial derivative orders from distinct 
sequences. In practice, it is estimated that a number of sequences of the order of the dimensionality of the multivariate 

1 Strictly speaking, the size of the bases in this N�-sequence decreases by a dimensionality-dependent number of vectors for each basis added to the 
sequence, due to the partial overlap of consecutive sequences, see, e.g., Section 2.3 and Fig. 1. This point is however marginally relevant here given the SVD 
step involved in the subsequent processing of these bases, see (9) and (10).
5
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Fig. 1. Illustration of three possible bivariate derivation paths for the system matrix Z up to the “cumulated” order of partial derivatives (Nx1 + Nx2 ).

Fig. 2. Illustration of alternative derivation paths involving univariate sequences.

problem may be sufficient in order to provide good convergence properties of the ROM, i.e., N� = Nx . For instance, N� = 2, 
i.e. two sequences of differentiation, may be sufficient for a bivariate problem. This point was preliminarily tested in [30], 
where a comparison between merging bases from a two-sequence and a three-sequence approach was reported, with the 
following observations:

• When introducing a three-sequence approach, only a few of the vectors are discarded by the SVD step in (10) for a 
threshold σthresh = 10−15 · σmax, where σmax corresponds to the largest singular value in the decomposition of (10);

• Conversely, a two-sequence approach for the same truncation criterion, and based on the two outermost sequences in 
Fig. 1, was observed not to discard any of the singular values and associated vectors;

• A comparison between the error for the approximation resulting from a two-sequence and a three-sequence approach 
showed no significant improvement of convergence and accuracy, thus indicating only minor contribution from the basis 
vectors emerging from the additional sequence.

Note that this result addresses in part the issue of dimensionality and the associated efficiency of the approach: the number 
of necessary successive partial derivatives grows linearly with the dimensionality as opposed to an exponential growth if all 
cross-derivatives are calculated in a fully multivariate approach.

Among the several alternative derivation paths involving two sequences, two special cases may be interesting to highlight 
in view of the choice of truncation of these sequences. Fig. 2 illustrates configurations where, based on the previously 
introduced orders Nx1 and Nx2 , only univariate derivation sequences are considered: first considering shorter derivation 
paths where the cross derivatives are removed from the paths in Fig. 1, obviously leading to a reduced set of NVmer = Nx1 +
Nx2 + 1 basis vectors, see Fig. 2a; second, keeping a similar size of reduction basis to the one associated with the suggestion 
in Fig. 1, the “cumulated” order of partial derivatives (Nx1 + Nx2 ) is reallocated to sequences of univariate derivatives, see 
Fig. 2b. These three alternatives are considered further in the application Section 5.

3. A comparison to Padé-based expansion methods: the Nested Padé Approximants

In a previous contribution of one of the authors, a multivariate rational expansion method based on Padé Approxi-
mants was implemented in order to address problems of the form of (1), together with a multi-patch strategy for bivariate 
problems [4]. This approach is briefly outlined in the following to highlight the convergence improvements offered by an 
approach such as the MWCAWE, as further detailed in the applications, see Section 5. Although the Nested Padé Approxi-
mants have the benefit of providing piecewise analytical expressions of the solution for each DOF, the ill-conditioned nature 
of the associated iterative process leads to the same limitations in convergence as for the underlying univariate case. This 
6
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contrast of convergence between the component-wise Padé-based univariate expansion and the WCAWE was, for example, 
evaluated in [18].

In concise terms, the approximation of a multivariate problem, (1), may be performed by expanding the solution for 
each DOF in the form of nested univariate Padé Approximants. For a bivariate problem where x = (x1, x2), the expansion 
û(�x1, �x2) of a component u(x1, x2) of the solution vector u(x1, x2) around the reference point sn = (x1n, x2n), is given by

û(�x1,�x2) =

m1∑
i=0

m2∑
j=0

ti j�x2
j

1 +
n2∑
j=1

ti(m2+ j)�x2
j

�x1
i

1 +
n1∑

i=1

m2∑
j=0

t(m1+i) j�x2
j

1 +
n2∑
j=1

t(m1+i)(m2+ j)�x2
j

�x1
i

, (13)

where 
[
�x1 �x2

] = [
x1 x2

] − [
x1n x2n

]
; mk and nk , k = 1, 2, correspond to the orders of expansion, distributed be-

tween the numerator and denominator of the nested Padé Approximants, where Nxk = mk +nk; ti j are the 
(
Nx1 + 1

) (
Nx2 + 1

)
nested Padé coefficients determined recursively from linear systems of equations obtained from a Taylor expansion of 
u(x1, x2) around the reference point sn = (x1n, x2n); see [3,4] for further details. The extension to higher dimensionality may 
be illustrated, e.g., for x = (x1, x2, x3), adopting similar conventions and notations, as

û(�x1,�x2,�x3) = P (�x1,�x2,�x3)

Q (�x1,�x2,�x3)
(14)

with

P (�x1,�x2,�x3) =
m1∑
i=0

m2∑
j=0

m3∑
k=0

ti jk�x3
k

1 +
n3∑

k=1

ti j(m3+k)�x3
k

�x2
j

1 +
n2∑
j=1

m3∑
k=0

ti(m2+ j)k�x3
k

1 +
n3∑

k=1

ti(m2+ j)(m3+k)�x3
k

�x2
j

�x1
i,

Q (�x1,�x2,�x3) = 1 +
n1∑

i=1

m2∑
j=0

m3∑
k=0

t(m1+i) jk�x3
k

1 +
n3∑

k=1

t(m1+i) j(m3+k)�x3
k

�x2
j

1 +
n2∑
j=1

m3∑
k=0

t(m1+i)(m2+ j)k�x3
k

1 +
n3∑

k=1

t(m1+i)(m2+ j)(m3+k)�x3
k

�x2
j

�x1
i,

highlighting the nested nature of the expansion. This structure is the primary limiting factor for applying the approach to 
problems with higher dimensional parameter dependence as the associated recursive procedure propagates numerical errors 
due to ill-conditioned systems of equations.
7
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4. Multi-patch, MWCAWE approach

In practice, a reduced-order model computed from a single reference point sn may not be able to efficiently approximate 
the full-order model in the desired range of parameters. Introducing multiple expansion points sn potentially increases the 
accuracy of the reduced-order model for wider parameter ranges, but each new expansion point requires the decomposition 
of the full order system matrix. Increasing the order of approximation is typically less computationally expensive, but the 
approximation quality may not significantly benefit from the higher orders and eventually stagnate. This implies a trade-off 
between increasing the order of approximation, reflected in the size of the basis NV for a given reference point sn , and a 
multi-patch strategy involving several such reference points. In contrast, a multi-patch approximation strategy was mostly 
driven by convergence limitations for the Nested Padé Approximants approach [4].

Regardless of the motivation for a multi-patch approximation, an assessment of the approximation error is a necessary 
prior step for an efficient, automated sampling of the parametric space, and discussed in the following section.

4.1. Error estimator

A residue-based error estimator is used to identify bounds of the patches of the approximated solution with a satisfying 
degree of accuracy. Such residual-based estimators have shown to be both efficient and accurate ways of tracking the 
approximation error [4,39–45]. Several contributions in the past have chosen a Cauchy-type of convergence, where two or 
more approximations of different orders or with different expansion points are evaluated and compared [19,46–48]. Patches 
of acceptable approximation are subsequently defined within the bounds where these solutions agree to a satisfying degree 
of accuracy. Although this approach has proved to be both easy to implement and reasonably accurate, it entails limitations 
in the scope of the multi-patch, multivariate approach proposed here.

First, this Cauchy-type of convergence is particularly convenient for monotonic sequences, as a reasonably good cor-
relation may be found between the bounds generated from the comparison of two sequential approximations and those 
associated with the actual approximation error. However, the WCAWE was highlighted, e.g. in [18], to have an occasional, 
punctual increase of the error in the convergence sequence, or stagnation of the error. Such occurrences may require a 
special implementation of the error estimation, e.g., relying on more than two sequential evaluations. Although the compu-
tational cost associated with these reduced models is in principle only a fraction of the cost associated with the full-sized 
model, the potential need to evaluate several sequential approximations may become increasingly impractical as dimension-
ality increases.

Second, beyond the cost associated with the evaluation of several approximations, such an approach may not align 
naturally with the need to limit the number of evaluations of the approximation error to be performed in the context of 
multivariate problems. In fact, for univariate or low-dimensional problems, the error is in most cases evaluated in all points 
of the parametric sweep. But doing so for multivariate problems is both unnecessary and rapidly overly time-consuming.

In view of these conditions, the residue-based error estimator approach proposed here seeks to be relying on a unique 
set of local bases merged into V∗

sn
, see (10), and a single evaluation of the error limited to a subset of necessary points in 

the parametric space. The residue is evaluated on the basis of the residual vector r∗
sn

(x) associated with the approximated 
solution û∗

sn
(x), see (11) and (12), following a transformation with the merged local bases V∗

sn
of (10). This residual vector 

is given by

r∗
sn

(x) = Z (x) û∗
sn

(x) − f (x) , (15)

for a generic problem of the form of (1). It may subsequently be used as an error indicator based on its 	2 norm, such that,

ε∗
sn

(x) = ||r∗
sn

(x) ||
2

min
y∈�\{sn}

(||r∗
sn (y) ||2

) , (16)

which is normalised with respect to the minimum residual norm evaluated, assuming � to be a set of all vectors x in 
the parametric space to be evaluated. This minimum residual norm is thus logically corresponding to an x in the closest 
vicinity of sn , given that an evaluation in sn is excluded. This error estimator enables the search for bounds of convergence 
associated with each pair of basis and reference point, as further detailed in the next section.

4.2. The bivariate case: contour-following algorithm

In order to establish a multi-patch strategy, i.e. defining a set of points {s1, . . . , sn, . . . , sN} at which local bases are to 
be calculated, the bounds of accuracy associated with each of these bases have to be estimated. This is here proposed to 
be done assuming a monotonic or at least smooth increase of the approximation error as the distance to the reference 
parametric point sn increases. This assumption, in principle verified given the limit of relatively small approximation errors, 
as is the case for the considered applications where a high degree of accuracy is sought, leads to seeking patches of 
convergence in the form of simply-connected domains. A Moore-Neighbour contour tracing algorithm is implemented for 
this purpose, which follows an error estimator isocontour corresponding to the predetermined tolerance εmax. Note that 
8
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Fig. 3. Illustration of the Moore-Neighbour contour tracing algorithm for a single patch. Light orange: domain to be uncovered where ε∗
sn

(x) � εmax; light 
blue: domain outside the contour to be uncovered where ε∗

sn
(x) > εmax; dark grey: arbitrary reference point; light grey: uncovered contour points. (a) Ref-

erence parametric point sn = [x1n x2n]; (b) initial contour point in an arbitrary direction; (c) first three contour points; (d) completed Moore-Neighbour 
contour tracing sequence. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

in the case where the resulting patches would not satisfy the assumption of obtaining simply-connected domains, the 
inexpensive introduction of the error estimator for all the points in the domain would allow to detect such an anomaly.

The contour-following algorithm operates as follows: Starting from a parametric point among the closest to s1 =
(x11, x21), for a bivariate problem, the algorithm seeks the first contour point in an arbitrarily chosen direction, e.g., in 
the direction of increasing x2 for a set value of x1 (see Figs. 3a and 3b), by estimating the error ε∗

s1
according to (16). As-

suming a structured-grid point distribution such that two-dimensional square lattices may be defined for the bivariate case 
of interest, and thus also defining Moore neighbourhoods, the subsequent contour points are sequentially determined with 
the contour-following algorithm (see Figs. 3c and 3d). This approach enables the computation of the error estimator at a 
reduced number of points only, which lie closest to the estimated bound of convergence for the reduced system associated 
with the basis V∗

s1
.

The estimation of such bounds of convergence subsequently allows to choose sequentially locations for new reference 
points sn = (x1n, x2n), n = 2, . . . , N, for the calculation of additional local bases. This opens the way for a multi-patch solution 
strategy, gradually filling the entire bivariate range of interest with sub-domains of satisfactory approximation. An algorithm 
computing automatically such a multi-patch solution is presented in the following.

4.3. The bivariate case: a multi-patch algorithm

As introduced in connection with (16), let � be a set of all vectors x where the solution to (1) is sought to be ap-
proximated, and ∂� its outer boundary set. A sequential approach is considered in order to establish N local merged bases 
associated with a sequence of N reference points 〈sn|sn ∈ � ∧ n ∈ {1, . . . ,N}〉. It aims at gradually filling the parametric do-
main of interest with converged sub-patches. Each patch is bounded by a contour where the accuracy of the reduced-order 
model associated with the corresponding reference point is estimated to be sufficient. The number of local merged bases 
necessary to approximate the solution in the complete domain of interest � is iteratively determined given a tolerance 
for the error estimator εmax, the bounds of the parametric space of interest ∂�, as well as a gap-tolerance �gap_max, in 
9



R. Rumpler and Q. Aumann Journal of Computational Physics 490 (2023) 112319
terms of the maximum allowable distance between two neighbour domains of convergence. In this region none of the local 
merged bases V∗

sn
fulfils the convergence criterion ε∗

sn
(x) � εmax. Since the introduction of a residual-based error estimator 

alleviates the need for multiple reduced-order models resulting from complementary approximations of the original model, 
the dimensions of the reduction bases are fixed a priori and set to be equal for all local bases.

Further, the set �conv is introduced, comprising the parameter combinations for which at least one of the merged local 
bases fulfils the convergence criterion,

�conv = {
x | ε∗

sn
(x) � εmax ∧ n ∈ {1, . . . ,N}} . (17)

∂�conv is subsequently introduced as its boundary set, while its relative complement, where no local basis allows to reach 
an acceptable approximation, is denoted �gap = � \ �conv. Additionally, associated with each of the reference points sn , 
the local merged basis denoted V∗

sn
allows to approximate the solution for a subset �sn ⊆ �conv. This local basis V∗

sn
is 

obtained according to the details introduced in Section 2.2, leading to (10), whose procedure is referred to in Algorithm 1
as the function GetBasis(). For each local basis, the isocontour associated with the error estimator tolerance εmax is ob-
tained according to the details of the contour-following procedure introduced in Section 4.2, and referred to as the function
GetContour(). The closure associated with the boundary set ∂�sn is obtained via a function referred to as Fill(). Finally, 
the function d() refers to the signed distance function, returning the distance of a parameter combination x to a boundary 
∂� or ∂�conv, assuming here a convention of negative values inside �conv and positive outside. A conceptual pseudocode 
of the multi-patch generation of these N local bases is presented in Algorithm 1.

Algorithm 1: Calculation of the multi-patch sub-bases.
Result: A set of sub-bases with their estimated bounds of convergence

// Initialisation
1 εmax ← Max error tolerance
2 �gap_max ← Max allowable gap distance to any patch
3 Define �, ∂�, �conv = ∅ // Domain and boundary sets
4 �gap ← � \ �conv

// Starting basis from initial reference point s1

5 s1 ← (x11 x21)

6 V∗
s1

← GetBasis(s1, NV, N�)
7 ∂�s1 ← GetContour(s1, V∗

s1
, εmax)

8 �s1 ← Fill(∂�s1 )
// Update convergence and gap sets

9 �conv ← �conv ∪ �s1

10 �gap ← � \ �conv

11 Gap ← Max

{
d(x, ∂�conv ∪ ∂�) | x ∈ �gap

}
12 n ← 1

// Calculation of subsequent sub-bases
13 while Gap > �gap_max do
14 n ← n + 1
15 sn ← Argmax

{
d(x, ∂�conv ∪ ∂�) | x ∈ �gap

}
16 V∗

sn
← GetBasis(sn, NV, N�)

17 ∂�sn ← GetContour(sn, V∗
sn

, εmax)
18 �sn ← Fill(∂�sn )

// Update convergence and gap sets
19 �conv ← �conv ∪ �sn

20 �gap ← � \ �conv

21 Gap ← Max

{
d(x, ∂�conv ∪ ∂�) | x ∈ �gap

}
22 end

Algorithm 1 leads to a set of N local bases V∗
sn

associated with the reference points sn , n = 1, . . . , N. It is illustrated 
for a case consisting of four reference points in Fig. 4. Depending on the choice of tolerance �gap_max, the domains of 
convergence associated with these local bases are not necessarily overlapping, which may lead to gaps in the domain 
where the approximation of the original solution is not fulfilling the sought degree of accuracy. It is, however, noteworthy 
that by construction, these bases are not expected to be consisting of vectors mutually linearly independent. According 
to the nature of the dependence of the response with respect to the set of variables in x, neighbouring local bases may 
contribute to enriching the subspace spanned by each basis V∗

sn
, n = 1, . . . , N. These local bases may thus be advantageously 

recombined into a global basis, in particular in order to improve the accuracy of the approximation in the gaps, where 
no specific local basis is initially assigned. This recombination is in the following examples applied to form a single global 
basis, which may however be easily adapted to only subsets of neighbouring local bases in cases of very large parametric 
domains. A natural way to recombine these is via an SVD, as already introduced for the sequences of local bases emerging 
from the partial differentiation process in Section 2.2, implicitly performed in function GetBasis() of Algorithm 1. Similarly 
to (9), the merged basis matrix V∗mer = [

V∗
s · · ·V∗

s

]
is decomposed following an SVD such that
1 N

10
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Fig. 4. Illustration of Algorithm 1. The domain of interest � is depicted in light blue, the converged contours �sn in light orange.

V∗mer =
NV∗mer∑

i=1

σ ∗
i wl∗

i wr∗
i

T
, (18)

where NV∗mer corresponds to the total number of basis vectors in V∗mer; σ ∗
i , wl∗

i , and wr∗
i correspond to the singular values 

and left and right singular vectors respectively. From the SVD, the left singular vectors associated with the highest singular 
values are selected as the components of the reduced merged basis V∗∗ , such that assuming a descending-ordered sequence 
of singular values

[
σ ∗

1 · · ·σ ∗
NV∗mer

]
, the reduced, merged basis is given by

V∗∗ =
{

wl∗
i | i ∈ { 1, . . . ,NV∗mer} ∧ σ ∗

i � σthresh

}
, (19)

where σthresh corresponds to an empirically chosen threshold value for the selection of the singular values resulting from 
the decomposition in (18).

The resulting global reduction matrix V∗∗ , consisting of NV∗∗ vectors, is then introduced in place of the single-patch 
transformation corresponding to (11), such that,

û∗∗(x) = V∗∗α∗∗(x). (20)

This leads to a reduced system associated with the initial problem in (1), such that,(
V∗∗)T Z(x)V∗∗α∗∗(x) = (

V∗∗)T f(x), (21)

involving NV∗∗ � NV∗mer generalised coordinates in α∗∗(x).
It is worth noting that Algorithm 1 may easily be modified to be applicable to problems with more than two parameters: 

The underlying model order reduction via MWCAWE is applicable to problems with an arbitrary number of parameters and 
11
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Fig. 5. Poroelastic layer sound absorption test case.

can therefore be employed directly. As the Moore-Neighbour contour tracing algorithm is only valid in a two dimensional 
context, the routine GetContour() needs to be modified according to the dimensionality of the problem. Computing the 
contour of an (unstructured) point cloud, i.e. samples in the parameter domain, is a complex problem [49,50] and the 
sampling effort to detect reasonable patches is likely to grow fast if the parameter dimension is increased. Choosing a 
parameter sampling method not relying on a Cartesian grid can leverage this additional computational effort to some extent 
[51,52].

5. Application to bivariate problems

In order to evaluate the potential of the proposed MWCAWE approach, it is applied to two poroacoustic test cases in the 
following. It is first compared to the Nested Padé Approximants reviewed in Section 3, and then tested in the scope of the 
multi-patch approach presented in Section 2.2. The implementations in FreeFem++ and Matlab of these examples can be 
made available upon request. The code and data for the application in Section 5.2 is freely available for download [53].

5.1. Single-patch comparison of the bivariate Nested Padé Approximants and the MWCAWE

The convergence potentials of the bivariate nested Padé Approximants implemented in [4] and the MWCAWE proposed 
are compared in the following. These are evaluated for the approximation of an academic 1d acoustic absorption problem, 
already introduced as a test case for nested Padé Approximants in [54]. It consists in a single 2.5 cm-thick poroelastic layer 
of infinite lateral dimensions, backed by a rigid wall, and is excited by an incident plane wave with normal incidence, see 
Fig. 5. Assuming a poroelastic material where the motion of the skeleton may be neglected, the Delany-Bazley-Miki empirical 
model [55,56] is used in order to describe the behaviour of the porous layer as an equivalent fluid. The acoustic response 
of the porous layer is thus dependent on two independent variables: the frequency f and the static airflow resistivity �. 
The problem, modelled using finite elements, is thus governed by the Helmholtz equation where the density ρ̃eq( f , �) and 
bulk modulus K̃eq( f , �) are complex-valued and frequency-dependent according to the following algebraic expressions,

ρ̃eq( f ,�) = ρ0

[
1 + (

5.5 − 8.43i
)(

1000
f

�

)−0.632 ]
[

1 + (
7.81 − 11.41i

)(
1000

f

�

)−0.618 ]
,

(22a)

K̃eq( f ,�) = ρ0c2
0

1 + (
5.5 − 8.43i

)(
1000

f

�

)−0.632

1 + (
7.81 − 11.41i

)(
1000

f

�

)−0.618
, (22b)

where i is the complex unit, ˜(·) denotes a complex-valued quantity, ρ0 = 1.21 kg m−3 is the ambient density of the air 
saturating the pores, and c0 = 343 m s−1 is the speed of sound in the air.

Proceeding with standard arguments in the FE framework leads to a discretised problem of the form[
1

4π2 f 2ρ̃eq( f ,�)
Kp − 1

K̃eq( f ,�)
Mp

]
u = f, (23)

where Kp and Mp are the FE matrices, u the solution vector containing the pressure fluctuations, and f the excitation vector. 
This bivariate problem is thus of the form

Zp ( f ,�)u ( f ,�) = f, (24)
12
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Fig. 6. Nested Padé approximation of the absorption coefficient of a porous material with expansion orders Nf = N� = 9: (a) Surface plot of the absorption 
coefficient. (b) Relative error in the ( f , �)-plane view; isocontour of 10−13, 10−5, and 1% relative error plotted in white.

Fig. 7. MWCAWE approximation of the absorption coefficient of a porous material, relative error in the ( f ,�)-plane view.

which corresponds to the generic form of problems introduced in (1). Given that this 1d problem has an analytical solu-
tion [54,57], for instance in terms of the absorption coefficient of the poroelastic layer, a comparison of the relative error to 
this analytical solution is presented in Fig. 6, together with the reference surface response. Nested Padé Approximants, (13), 
with expansion orders Nx1 = Nf = 9 and Nx2 = N� = 9 for the frequency and flow resistivity, respectively, are considered. 
Only one patch is evaluated in this case, with a reference point for expansion at s1 = ( f1, �1) = (2500,25000), a frequency 
range of f = [300,6000] Hz and a flow resistivity range of � = [3000,60000] N s m−4. Fig. 6b highlights a relative error to 
the analytical solution much lower than 1% (isocontour of highest value among the three plotted: 10−13, 10−5, and 1% rel-
ative error) in the almost entire domain of approximation, except at very low values of flow resistivity and low frequencies, 
where the relative error is more sensitive to small fluctuations due to the low values of the absorption coefficient.

Fig. 7 shows the equivalent to Fig. 6b for the same problem, same expansion point and same domain of approxi-
mation, using the MWCAWE approach proposed in Section 2. Although the Nested Padé approach offers the possibility 
for a component-wise expansion of the solution associated with a single DOF, while projection-based approaches ap-
proximate the full solution vector, the improved performance in terms of convergence of the MWCAWE is evident in 
Fig. 7, as could be expected from, e.g., the comparison of univariate Padé expansions and WCAWE projection-based ap-
proach in [18]. Already with expansion orders of Nf = N� = 4 in Fig. 7a, i.e. a truncation at less than half the expansion 
orders associated with Fig. 6b, the relative error does not exceed 10−7 over the entire domain of interest. The accu-
racy of the reduced-order model is further improved by at least two orders magnitude if the expansion orders of the 
MWCAWE basis are increased to Nf = N� = 8 in Fig. 7b. This highlights the good convergence properties associated 
with the MWCAWE approach. Note, that the two-sequence bases associated with the results in Fig. 7 are of dimensions 
NV + (NV − 2) = (Nf + N� + 1) + (Nf + N� − 1) = 2(Nf + N�), taking into account the fact that the second sequence has 
the same starting and end basis vectors as the former. This is particularly useful in view of the evaluations in the coming 
sections.
13
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Fig. 8. Sound pressure level of the damped solution at f = 63 Hz, � = 25000 N s m−4, scale 40 − 110dB.

5.2. The MWCAWE applied to a large poroacoustic problem

5.2.1. Problem and reference solution
In order to evaluate further the proposed MWCAWE approach and the associated sampling strategy, it is implemented 

for the approximation of a more complex bivariate poroacoustic problem, adapted from the model introduced in [58]. 
This problem models the interior cavity of a passenger train equipped with a 15 cm layer of sound absorbing porous 
material on the top surface. A time-harmonic point source is defined at a lower-back corner of the passenger cavity and 
parametric sweeps with respect to both the frequency and the static airflow resistivity of the porous layer are performed. 
All boundary walls are considered as rigid walls, except from the porous boundary. The discretised problem consists of 
around Nn ≈ 300 000 DOFs. Similarly to the previous example, the porous boundary is modelled by an equivalent fluid 
formulation, consisting of a modified Helmholtz equation where the equivalent speed of sound c̃p is complex-valued and 
frequency-dependent, and may be expressed as

c̃p =
√

K̃eq

ρ̃eq
, (25)

adopting the same conventions and notations as for (22).
Proceeding with standard arguments in the FE framework, for two coupled domains governed by the Helmholtz equation 

(one with a fluid assumed to be inviscid, compressible, homogeneous, and the other with the equivalent fluid model for the 
fibrous material with high porosity aforementioned), the discretised FE problem may be presented in the following form,(

Ka − ω2

c2
0

Ma + Kp − ω2

c̃p
2

Mp

)
u = f, (26)

where (·)a denote air cavity global matrices and (·)p porous global matrices. u is the vector of nodal unknowns (acoustic 
pressure fluctuation here). The right-hand-side vector f, associated with the time-harmonic acoustic excitation is in practice 
only non-zero at a few DOFs. The FE problem in (26) can again be expressed in the generic form of (1)

Zpa ( f ,�)u ( f ,�) = f, (27)

and is thus suitable for the proposed multivariate approach.
Fig. 8 illustrates the geometry of the cavity as well as the solution at a given point of the parametric sweep, for a 

frequency of f = 63 Hz and a flow resistivity of � = 25000 N s m−4. The reference solution for the bivariate parametric 
sweep, where f ∈ [50,150] Hz and � ∈ [3000,50000] N s m−4, at a point in the lower-middle part of a cross-section at 
the front of the passenger cavity, is plotted in Fig. 9. The solution is evaluated for a uniform distribution of frequency and 
flow resistivity in these ranges, with increments of 1 Hz and 1000 N s m−4, respectively, leading to a grid of 4848 sampling 
points to be evaluated for the domain of interest. The non-damped cavity problem consists of 52 eigenfrequencies in the 
frequency ranged considered, see [58]. This solution is evidently more complex than the response associated with the 1d 
absorption problem of Section 5.1, hence a larger reduced model is required to obtain an appropriate accuracy. This reduced 
model may be sought either in the form of a single point approach with the generation of a large number of basis vectors, 
or via the multi-point approach proposed in Section 2.2. Both possibilities are considered in the following.

5.2.2. Convergence from a single expansion point
The performance of an MWCAWE basis computed from a single expansion point, i.e. calculating a single local, merged, 

reduced basis V∗
s according to the steps leading to (10), is presented in the following. As mentioned in Section 2.3, as few 
1
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Fig. 9. Reference solution. Sound pressure level at a point in the lower-middle part of a cross-section at the front of the passenger cavity, parametric 
solution, in dB.

as two sequences are sufficient for a bivariate problem. When introducing a three-sequence approach, only a few of the 
vectors are discarded by the SVD step in (10) for a threshold σthresh = 10−15 · σmax, where σmax corresponds to the largest 
singular value in the decomposition of (10). In the present case, the two sequences associated with the outer differentiation 
paths in Fig. 1 are chosen, and the SVD step associated with (9) and (10) subsequently serves the purpose of both merging 
the bases associated with these sequences and ensuring linearly independent basis vectors.

This two-sequence local basis convergence is tested on an approximation of the reference solution of Fig. 9, with a single 
approximation patch associated with a reference point arbitrarily chosen at f = 88 Hz and � = 25000 N s m−4. Given the 
smoother variations of the sound pressure level (SPL) with respect to flow resistivity when compared to the frequency, it is 
expected that lower maximum orders of partial derivatives will be required with respect to the flow resistivity than with 
respect to the frequency. For the sake of illustration of the convergence on this problem, only orders associated with the 
frequency are increased, while keeping a fixed maximum partial derivative order N� = 8 for the flow resistivity. Three of 
these convergence steps are shown in Fig. 10 for maximum partial derivative orders N f = 19 (Fig. 10, first row), N f = 31
(Fig. 10, second row), and N f = 55 (Fig. 10, third row) for the frequency. For each truncation order, the approximate SPL 
solution over the entire domain is plotted together with the difference (in dB) to the reference solution. The increase 
from order 19 to order 31 shows a significant improvement of the approximation quality, with a relative difference to the 
reference solution below 1 dB for more than half the domain of approximation, and only failing to capture the behaviour of 
the full-order model in the higher end of the spectrum. Increasing this maximum partial derivative order to 55 in frequency 
brings further improvements in the accuracy, particularly obvious towards the higher frequencies in the spectrum.

As introduced in Section 2.3, alternative derivative pathways, e.g. involving univariate sequences (see Fig. 1 and Fig. 2), 
offer the potential of further reducing the basis sizes for given orders of expansion. Considering the same reference solu-
tion, an illustration of the three alternatives introduced in Section 2.3 is plotted in Fig. 11. First Fig. 11a-Fig. 11d allow to 
compare, for fixed partial derivative orders, the use of bivariate partial derivative sequences (Fig. 1) vs univariate sequences 
(Fig. 2a) for the same orders. As could be expected, the use of univariate sequences in place of the bivariate alternatives 
proposed here, without changing the highest orders in each variable, leads to a reduced order of accuracy which echoes the 
smaller dimension of the projection bases: compare Fig. 11b with its univariate alternative in Fig. 11a, with resulting bases 
of 20 and 11 vectors, respectively; compare Fig. 11d with its univariate alternative in Fig. 11c, with resulting bases of 36 
and 19 vectors, respectively. Of greater interest is the comparison of the approximation resulting from the use of bivariate 
sequences and univariate alternatives of the type of Fig. 2b, where the overall number of basis vectors is maintained, never-
theless resulting in marginal changes in the approximation: compare Fig. 11d with its univariate alternative in Fig. 11e, with 
resulting bases of 36 and 37 vectors, respectively. Finally, an additional comparison is presented, where the distribution of 
the maximum orders of partial derivatives is only redistributed on the most demanding dimension when considering a uni-
variate alternative, where the overall number of basis vectors is maintained. This alternative here leads to improvements in 
the approximation, increasing the maximum order of partial derivative with respect to frequency from N f = 9 (Fig. 11d) to 
N f = 26 (Fig. 11f), with resulting bases of 36 vectors in both cases. Note however that, despite the potential improvements 
in accuracy, as observed here, this alternative calls for substantially increased maximum partial derivative orders in one 
variable, which may not be advantageous in cases where higher order derivatives may need to be symbolically or numer-
ically evaluated, potentially putting a limit on the highest orders available (typically the case here with the expressions of 
the equivalent density and bulk modulus of the Delany-Bazley-Miki model in (22)).

In view of the single-point convergence tests illustrated here, and in particular due to the fact that the accuracy even-
tually stagnates with high orders, for which the computational cost associated with the procedure in (5) also grows faster 
with the number of basis vectors, a multi-point strategy where a trade-off between order of differentiation and number of 
reference points is required. This trade-off is partly problem-specific, such that in the following, a fixed maximum partial 
derivative order is chosen to be set a priori, and the multi-point approximation proposed in Section 2.2 is applied to the 
same train cavity test case.
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Fig. 10. Convergence, MWCAWE-approximated solution. Reference expansion point: f = 88 Hz and � = 25000 N s m−4. Different maximum partial derivative 
orders in frequency/flow resistivity; SPL approximation at the evaluation point (dB, left) and difference to the reference solution (dB, right).

5.2.3. Multi-point approximation
In order to illustrate the behaviour of the multi-point procedure introduced in Section 2.2 combined with the residue-

based contour-following approach outlined in Section 4.2, fixed orders of maximum partial derivatives are set a priori for 
all local bases. These are arbitrarily set to orders Nx1 = Nf = 11 for the frequency and Nx2 = N� = 5 for the flow resistivity, 
thus anticipating the fact that the solution is more sensitive to variations in frequency than flow resistivity in the bounds of 
interest. As reported for the two-sequence approach, this leads to local merged bases consisting of 2 (Nf + N�) = 32 basis 
vectors, cf. Sections 2.2 and 2.3 and Fig. 1. The starting reference point is chosen to be the same as for the single-patch 
convergence test at f = 88 Hz and � = 25000 N s m−4. For the contour following algorithm, the residual error tolerance is 
set to εmax = 107, in practice involving a normalisation with respect to the residual error at the reference point for each 
patch. Finally, the gap tolerance for the iterative introduction of new reference points is set such that the maximum distance 
between two contours of convergence, �gap_max, is of 10 units in the sense of the Chebyshev distance, or of 5 units for the 
distance between a contour and a boundary of the domain. These units correspond, for the considered bivariate problem, 
to the previously introduced uniform grid associated with frequency and flow resistivity increments. Thus, the domain of 
interest contains 4848 sampling points. Obviously, the choices of Nx1 , Nx2 , εmax and �gap_max are not entirely independent in 
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Fig. 11. Comparison of the accuracy with alternative derivation paths, see Fig. 1 and Fig. 2, expansion point: f = 88 Hz, � = 25000 N s m−4. Difference to 
the reference solution (dB). Resulting bases of sizes NV∗ (= NVmer ): (a) 11, (b) 20, (c) 19, (d) 36, (e) 37, (f) 36.

relation to the accuracy-efficiency tradeoff, which is a problem-dependent question. However, without any prior knowledge 
of the problem, it is always possible to set the parameter �gap_max to a minimum such that accuracy would be set to highest 
priority.

Fig. 12 shows four key steps associated with Algorithm 1. The sequence of Fig. 12a to Fig. 12d depicts an increasing 
number of convergence isocontours associated with local bases independently calculated from the reference points intro-
duced at each iteration of Algorithm 1. The darker contours correspond to the latest addition in the successive iterations of 
the algorithm. Given the input parameters described above, the sequence ends after nine local bases in Fig. 12d. Note a few 
gaps remaining between the convergence contours, such as for low values of the flow resistivity in the ranges [80,88] Hz
or [112,130] Hz. The gaps are in agreement with the introduced gap tolerance �gap_max. These nine local bases are how-
ever recombined in an SVD step, into a single projection basis, see (18). This recombination is further intended to improve 
the accuracy of the approximation in the gaps where all the neighbour local bases may contribute. In order both to ensure 
a well-conditioned reduced system of equations and to reduce the number of DOFs, the basis vectors associated with the 
lowest singular values are discarded, according to (19), such that σthresh = 10−8 · σmax, where σmax is the largest singular 
value. In the present case, this truncation results in downsizing the merged basis from NV∗mer = 288 to NV∗∗ = 275 basis 
vectors. This minor reduction of the size of the basis shows the close-to-maximum dimension of the vector space spanned 
by the independently calculated and merged local bases.
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Fig. 12. Contour-following, multi-patch calculation of local bases for the MWCAWE. Starting expansion point: f = 88 Hz and � = 25000 N s m−4. Fixed 
partial derivative orders in frequency/flow resistivity: 11/5. Contours of convergence associated with the first 2, 5, 7, and 9 local bases. The regions with 
darker contours correspond to the latest calculated local bases.

Fig. 13. Error of the approximate solution from the merged bases associated with the contour of Fig. 12. Fixed partial derivative orders in frequency/flow 
resistivity: 11/5, and 275 final basis vectors from 9 merged local bases.

In Fig. 13 the resulting approximation error associated with the multi-point MWCAWE approach is plotted: the estimated 
error in Fig. 13a and the actual difference to the reference solution in Fig. 13b. A qualitative comparison between the plots 
shows the good correlation between the error estimator and the actual approximation error. Thus, the error estimator 
enables a fast evaluation of the bounds of convergence and the actual resulting approximation error associated with the 
MWCAWE. It is also noteworthy that, as anticipated in Section 4.3, the error levels in the resulting gaps illustrated in 
18



R. Rumpler and Q. Aumann Journal of Computational Physics 490 (2023) 112319
Fig. 14. Evaluation of the distribution of CPU time for the different steps in Algorithm 1.

Fig. 12d, after all nine local bases are taken into consideration and merged into a single global reduced basis, remain very 
low; for the most parts comparable to the levels within the bounds of convergence determined in Fig. 12. Furthermore, 
the error levels within these bounds are also several orders lower than the levels reported in Fig. 10, thus highlighting 
the viability of the multi-point approach in finding a trade-off between size of the resulting reduction basis, computational 
resources required to establish it, and associated degree of accuracy of the approximation.

In order to illustrate the distribution of the computational time associated with the different steps of the multi-patch 
approximation, Fig. 14 plots this distribution across four categories:

• “Factorization”: the step prior to the start of the MWCAWE recursive basis-vector procedure, (5), where the system matrix 
at each reference point sn is first factorized;

• “Basis vectors”: the recursive generation of the vectors of the local bases, as detailed in (5);
• “Contour”: the calculation of the boundaries of the patches with the contour-following algorithm, corresponding to the 

functions GetContour() and Fill() in Algorithm 1;
• “Sweep”: the deployment of the recombined set of local bases in order to calculate the low fidelity solution.

The two phases “Factorization” and “Basis vectors” combined may be associated with the computational time of the function
GetBasis() in Algorithm 1. These four phases may be grouped into two groupings: first related to the calculation of the 
projection bases (Factorization, Basis vectors and Contour), and then the calculation of the low fidelity solution (Sweep). The 
relative computational cost between these phases and groupings may be better observed on the aggregated plot of the 
estimated distribution of computational cost in Fig. 14. One may conclude that for this specific application, about 10% of 
the computational time is allocated to the contour retrieving of the patches associated with the nine local bases, while the 
remaining 90% are about equally distributed between the generation of the nine local bases, and the actual calculation of 
the low fidelity solution at the 4848 sampling points (Sweep phase). Since the Sweep phase may be arbitrarily inflated by the 
actual number of sampling points chosen, a more insightful outcome may be highlighted in the speedup factor per sampling 
point with respect to the high-fidelity solution, here estimated to be over 600. Note however that this speedup factor is 
provided solely for reference purposes and may vary significantly based on specific implementation and hardware factors. 
When considering the grouping of Factorization, Basis vectors and Contour, associated with the preparation of the low-fidelity 
model, one may highlight for instance that the Contour phase corresponds to less than 20% of the overall computational 
time of this grouping, while almost 50% of that computational time is allocated to the nine factorizations of the system 
matrix at the reference points. With the fixed orders of expansion chosen here, more resources are thus allocated to the 
factorization step than to the recursive generation of the basis vectors.

6. Conclusions

The MWCAWE, a multivariate model order reduction method relying on the WCAWE algorithm, is presented. It consists 
in a two-stage generation of local bases, subsequently recombined for a projection-based approach to approximate the full-
order parametric model. At the heart of the method, a reduced set of partial derivation pathways of the parametric system 
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matrices allows to generate these local bases using the original WCAWE algorithm. The number of partial derivation path-
ways is in principle linearly increasing with the parametric dimensionality, translating into a quadratic increase in terms of 
the number of basis vectors. Additionally, in order both to limit the maximum partial derivative orders, associated with a 
rapid increase of operations associated with the WCAWE algorithm, and to improve the accuracy of the approximation in a 
given parametric domain, a sampling strategy is proposed. Here presented for the case of bivariate problems, it relies on a 
residue-based estimation of the approximation error combined with a contour-following algorithm, enabling to sequentially 
select new points outside the domain of convergence. The MWCAWE approach is shown to have good convergence prop-
erties, here compared to a multivariate Padé-based expansion approach on an academic poroacoustic absorption problem. 
The multi-point strategy is applied to a larger poroacoustic, light train cavity problem, enabling to approximate the entire 
parametric domain of interest with nine recombined local bases. The associated residue-based estimator is shown to cap-
ture the main features of the approximation error. Specific ongoing perspectives to this contribution consist in combining 
the contour-following approach with an adaptive parameter sampling approach to better leverage the computational effort 
required to compute patches in the parameter domain where the reduced-order model is considered accurate. This is a 
prerequisite to make this method applicable to problems with a higher parameter dimension.
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