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Abstract

Recent advances in laser technology enable to follow electronic motion at its

natural time-scale with ultrafast pulses, leading the way towards atto- and

femtosecond spectroscopic experiments of unprecedented resolution. Under-

standing of these laser-driven processes, which almost inevitably involve non-

linear light–matter interactions and non-equilibrium electron dynamics, is chal-

lenging and requires a common effort of theory and experiment. Real-time

electronic structure methods provide the most straightforward way to simu-

late experiments and to gain insights into non-equilibrium electronic processes.

In this Chapter, we summarize the fundamental theory underlying the rela-

tivistic particle–field interaction Hamiltonian as well as equation-of-motion for

exact-state wave function in terms of the one- and two-electron reduced density

matrix. Further, we discuss the relativistic real-time electron dynamics mean-

field methods with an emphasis on Density-Functional Theory and Gaussian

basis, starting from the four-component (Dirac) picture and continue to the

two-component (Pauli) picture, where we introduce various flavours of modern

exact two-component (X2C) Hamiltonians for real-time electron dynamics. We

also overview several numerical techniques for real-time propagation and sig-
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nal processing in quantum electron dynamics. We close this Chapter by listing

selected applications of real-time electron dynamics to frequency-resolved and

time-resolved spectroscopies.

Keywords: real-time, electron dynamics, Liouville-von Neumann equation,

reduced density matrix, density functional theory, noncollinearity, relativistic

theory, Dirac Hamiltonian, X2C Hamiltonian, Fourier transformation,

absorption, circular dichroism, nonlinear spectroscopy, pump-probe

spectroscopy, time-resolved spectroscopy

1. Objectives box

The principal objectives of this Chapter are:

• Introduction to the fundamental theory leading to the relativistic particle–

field interaction Hamiltonian.

• Discussion of the equations-of-motion for exact-state wave function in

terms of the one-electron and two-electron reduced density matrix.

• Introduction to the relativistic four-component real-time electron dynam-

ics mean-field methods with an emphasis on Density-Functional Theory

and Gaussian basis.

• Detailed overview of various exact two-component (X2C) transformations

towards the relativistic two-component real-time electron dynamics.

• Overview of numerical techniques for real-time propagation and signal

processing in quantum electron dynamics.

• Selected application of real-time electron dynamics to frequency-resolved

and time-resolved spectroscopies.

2. Introduction

The rapid advancement of laser technology in the past decades allows us

to probe matter on spatiotemporal scales that approach the characteristic time
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and length scales of the electron, opening the field of attosecond science [1, 2].

This development has forced quantum chemists to shift their attention from the

time-independent to the time-dependent Schrödinger or Dirac equation. Real-

time electronic structure theory thus describes the explicit time-evolution of the

wave function or the electron density driven by non-equilibrium condition of the

Hamiltonian under external perturbation(s). All physical quantities of a molec-

ular system are then extracted non-perturbatively from the time-varying part

of the wave function or the electron density. Due to non-perturbative nature,

real-time methods represent the most straightforward approach to dynamical

property calculations and enable the use of external perturbations of arbitrary

strength, shape and duration, capturing in general both linear and non-linear

effects within a wide spectral window from a single run [2, 3, 4]. This dis-

tinguishes real-time electronic structure theory from response theory where all

physical quantities are obtained in the frequency domain using perturbation

expansion [5].

Historically, an early work on explicit time-propagation of electronic wave

function dates back to 1990 when Cederbaum and coworkers developed the non-

relativistic multiconfigurational time-dependent Hartree (MCTDH) method [6].

Shortly after, Micha and Runge developed a real-time time-dependent Hartree–

Fock (RT-TDHF) approach that couples electronic and nuclear motions [7],

whereas Theilhaber [8], and Yabana and Bertsch [9], introduced the first-ever

real-time time-dependent density functional theory (RT-TDDFT) combining

the local density approximation with real-space grid methodology. In the con-

densed matter physics community, these pioneering works led to several im-

plementations of the time-propagation formalism using either localized basis

sets [10, 11], plane waves [12, 13, 14], or real-space grids [15]. Advancements

in computing power and numerical algorithms have enabled performing large-

scale RT-TDDFT simulations even on periodic solids [16, 17, 18, 19, 20]. In the

quantum chemistry community, the first nonrelativistic RT-TDDFT implemen-

tation based on popular Gaussian-type atomic orbitals was pioneered by Isborn

and coworkers in 2007 [21] and later adopted by several other groups [22, 23].
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The extension of RT-TDDFT to the relativistic four-component (4c) realm was

presented by Repisky and coworkers in 2015 [24, 25]. As shown by these au-

thors, significant gains in computer time was obtained by transforming the par-

ent 4c RT-TDDFT to an exact two-component (X2C) form [26], although the

accuracy of reference 4c results was achieved only after inclusion of the two-

electron and exchange–correlation picture-change corrections [27, 28]. Beyond

DFT, there has been growing interest in explicit time propagation of correlated

methods such as multiconfigurational self-consistent-field [29, 30, 31, 32], config-

uration interaction [33, 34, 35, 36, 37, 38, 39], algebraic diagrammatic construc-

tion [40, 41, 42, 43, 44, 45, 46], density matrix renormalization group[47], Møller-

Plesset [48], and coupled cluster [4, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]

theories.

At the non-relativistic level of theory, a plethora of applications of real-

time methods has been presented including UV/Vis absorption spectroscopy [9,

62, 22], excited-state absorption [63], photoionization [64, 65], X-ray absorp-

tion [66, 67], chiroptical spectroscopies [68, 69, 70, 71, 72], non-linear optical

properties [73, 74], spin and magnetization dynamics [75, 76], molecular conduc-

tance [77], pump-probe spectroscopy [78], photoinduced electric currents [79],

plasmon resonances [23], singlet–triplet transitions [80], and magnetic circular

dichroism [81]. This list of applications is by no means exhaustive and a reader

interested in a more thorough exploration of the use of non-relativistic real-time

methods is referred to the recent review [3] and references therein.

The advent of soft X-ray free electron laser pulses with subfemtosecond

temporal widths have opened new ways to investigate time-resolved dynam-

ics involving inner-shell electrons. A prerequisite for reliable quantum-chemical

modeling of these processes is the inclusion of relativistic effects, defined as dif-

ferences between the exact Dirac (four-component) description of matter and an

approximate Schrödinger (one-component) description. This requirement stems

from the fact that the inner-shell orbitals involved in X-ray absorption/emission

processes are most affected by relativity, manifestations of which are frequency

shifts of spectral lines due to the scalar (SC) relativistic effects as well as spec-
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tral fine structure splitting arising from the spin-orbit (SO) coupling [25, 28].

The relativistic effects are significant even in light (third row) elements [25] and

increase in importance for heavier elements [28], highlighting the need for rela-

tivistic description across the Periodic Table. Therefore, the most accurate way

to perform real-time simulations is the use of full four-component (4c) Dirac

formalism where both the SC and SO relativistic effects are included variation-

ally. The first 4c extension of the time-propagation formalism was presented by

Repisky and coworkers at the RT-TDDFT level [24, 25], involving the program

package ReSpect [82]. Recently, De Santis and coworkers reported a similar 4c

RT-TDDFT implementation in the BERTHA code [83]. While advancements

in computing power and numerical algorithms have enabled performing fairly

large 4c real-time electron dynamics simulations [24, 25, 26, 27, 84, 83], there

is still interest in developing approximate two-component (2c) methods that

maintain the accuracy of the parent 4c method at a fraction of its computa-

tional cost. In this respect, the X2C Hamiltonian has gained wide popularity in

quantum chemistry community as it reduces the original 4c problem by half at

the expense of only a few simple algebraic manipulations [85, 86, 87, 88, 89]. As

shown independently by Konecny [26] and Goings [90], the central idea of X2C

transformation can be extended to the real-time electron dynamics framework,

provided the X2C decoupling matrix satisfies an adiabatic approximation [26].

However, both real-time X2C implementations utilize a crude one-electron X2C

(1eX2C) Hamiltonian model, which typically leads to absolute errors for core

spinor energies of heavier elements of the order of tens of Hartree [91]. As

shown by Knecht and coworkers [91], accuracy of X2C Hamiltonians severely

depends on the two-electron and exchange-correlation picture-change correc-

tion models employed, and can vary as much as 5-6 orders of magnitude for

core-shell energies. As a remedy, the authors introduced two simple yet compu-

tationally efficient and numerically accurate X2C Hamiltonian models, dubbed

as amfX2C and e(xtended)amfX2C, to correct both SC and SO two-electron

and exchange-correlation picture-change effects using simple atomic mean-field

quantities, achieving a consistent ≈ 10−5 Hartree/atom accuracy [91]. The the-
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oretical extension and numerical assessment of (e)amfX2C Hamiltonian models

was recently performed for conventional and time-resolved TDDFT by Repisky

and coworkers [27, 28]. In addition to the previous works, this Chapter also pro-

vides an in-depth discussion on the transformation of the original 4c equation-of-

motion to its 2c form, particularly focusing on the modern exact two-component

(X2C) formalism.

At the relativistic level, the real-time applications are scarcer due to fewer

computer programs providing such functionality. These programs include Re-

Spect [24, 82], Gaussian [90], Chronus Quantum [92], PyBerthaRT [83], BDF [93],

and FHI-aims [11]. The molecular properties addressed at the relativistic level

include UV/Vis absorption spectroscopy [24, 90], X-ray absorption [25, 94, 93],

non-linear optical properties [26], chiroptical spectroscopies [84], high harmonic

generation [83], and pump-probe spectroscopy [27].

Before closing this Section, let us emphasize that we restrict ourselves to (i)

the Born–Oppenheimer approximation and therefore coupled electron–nuclear

dynamics is not considered here; (ii) the semiclassical approximation where

electronic degrees of freedom are described quantum mechanically, while elec-

tromagnetic fields are treated classically. In next Sections, we introduce the

fundamental theory behind the relativistic particle–field interaction Hamilto-

nian, and discuss the equation-of-motion for exact-state wave function in terms

of the one-electron and two-electron reduced density matrix. Later, we dive into

the relativistic four-component real-time electron dynamics mean-field methods

with an emphasis on Density-Functional Theory and Gaussian basis, followed

by a detailed overview of various exact two-component (X2C) transformation

models within the time domain. Finally, we offer a brief overview of numerical

techniques for real-time propagation and signal processing, and close this Chap-

ter by listing selected applications in relativistic quantum electron dynamics.
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3. Relativistic Particle–Field Interaction Hamiltonians

For the theoretical description of spectroscopic processes, quantum chem-

istry commonly employs a semiclassical theory. In this framework, the molecules

are described quantum-mechanically, whereas the electromagnetic (photon) field

is treated classically. This assumption is justified in the limit of large photon

numbers – to be specific, when the photon density exceeds one per cubic wave-

length (for a discussion, see Ref. [95]). If this is not the case, one may need to

quantize the photon field as well and work within the framework of quantum

electrodynamics [96]. To provide an illustrative example, let us consider a laser

pulse with intensity 1014W/cm2 and wavelength λ = 1064nm. The number

of photons per cubic wavelength is then given by (~ and c denote the reduced

Planck constant and the speed of light, respectively):

energy flux

~ω
V

c
=

1014W/cm2

1.86× 10−19J

1.0643 × 10−12cm3

3× 1010cm/s
≈ 2× 1010, (1)

which is obviously much greater than one. Therefore, this semiclassical theo-

retical framework is appropriate for absorption and emission processes, and we

rely on this framework throughout this Chapter.

Before we actually dive into particle–field interactions, let us first consider

a N -electron system alone, i.e. in the absence of any electromagnetic (pho-

ton) field. In this case, the system is governed by the relativistic electronic

Hamiltonian

Ĥ =

N∑
i

ĥD
i +

1

2

N∑
i 6=j

ĝij . (2)

Here, ĥD
i is the famous relativistic Dirac Hamiltonian of a single electron i, while

ĝij is the interaction Hamiltonian between electrons i and j. A factor one half

in front of ĝ corrects for double counting of the two-electron interactions. ĥD

describes the relativistic kinetic energy of an electron as well as its interaction

energy with the electrostatic scalar potential φ0(r) due to the fixed atomic

nuclei. It bears the 4×4 matrix form [97, 98]

ĥD
i = β′imec

2 + c
(
αi · pi

)
− eφ0(ri)I4. (3)
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Here, ri and pi=−i~∇i refer to the position and canonical momentum of the

ith electron, respectively. I4 is a 4×4 identity matrix, and −e, me and c are

constants referring to the electron charge, electron mass and the speed of light in

vacuum. When compared to the original expression of Dirac [97, 98], ĥD utilizes

the reduced rest mass energy β′mec
2 with β′ ≡ β − I4 to align the relativistic

and non-relativistic energy scales. β is one of four new 4×4 matrix variables

β =

I2 02

02 −I2

 ; α =

02 σ

σ 02

 , (4)

introduced by Dirac to formulate relativistic quantum-mechanical equations of

motion for spin-1/2 particles that are linear in space and time [97, 98]. These

variables fulfill the anti-commutation relations

[αk, β]+ = 04; [αk, αl]+ = 2δklI4; k, l ∈ x, y, z, (5)

and are customarily written in terms of the two-component Pauli spin matrices

σx =

0 1

1 0

 ; σy =

0 −i

i 0

 ; σz =

1 0

0 −1

 . (6)

For further reading on the properties and physical interpretation of the Dirac

Hamiltonian, the reader is referred to several excellent quantum chemistry text-

books [99, 100, 101].

Now, let us subject the N -electron system to a classical electromagnetic

radiation characterized by the fundamental electromagnetic field vectors: the

electric field E ≡ E(r, t) and the magnetic field B ≡ B(r, t). These vectors

satisfy the microscopic Maxwell’s equations, which are the basic equations of

motion of electromagnetism where charged particles appear as sources. Here, we

apply the perturbation theory viewpoint of quantum electrodynamics: to first

order it is assumed that the particles of whose motion is being studied do not

affect the radiation field, which thus appear as a ”driving field” [96]. Therefore,

assuming that the sources of the radiation field are sufficiently remote from a

molecule of interest, the E and B fields are source- and divergence-free, and
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conveniently described in terms of the scalar potential φ ≡ φ(r, t) and the vector

potential A ≡ A(r, t), satisfying [102]:

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
; ∇ ·E(r, t) = 0;

B(r, t) = ∇×A(r, t); ∇ ·B(r, t) = 0.

(7)

In fact, both electromagnetic potentials enter the Dirac Hamiltonian and

describe the coupling of an electron to the classical electromagnetic field as [98]

ĥD
i (t) = β′imec

2 + c
(
αi · pi

)
− eφ0(ri)I4 − eφ(ri, t)I4 + ec

(
αi ·A(ri, t)

)
. (8)

When compared to the field-free Dirac Hamiltonian in Eq. (3), the scalar elec-

trostatic potential due to the nuclei φ0(r) is substituted by the time-dependent

potential: φ0(r)→ φ0(r) +φ(r, t), and the canonical momentum of an electron

p is substituted by the mechanical momentum: p → p + eA(r, t). The latter

substitution is known in literature as the principle of minimal electromagnetic

coupling substitution [103].

To gain insights into the physical interpretation of the matter–field interac-

tion, let us consider the expectation value of the relativistic one-electron inter-

action Hamiltonian given by last two terms in Eq. (8)∫
ψ†(r, t)

[
− eφ(r, t)I4 + ec

(
α ·A(r, t)

)]
ψ(r, t)d3r =

=

∫ [
ρ(r, t)φ(r, t)− j(r, t) ·A(r, t)

]
d3r.

(9)

Assuming multiplicative potentials φ and A, the second equation reveals that

the scalar potential is coupled to the electron charge density ρ – i.e., the charge

of the electron times its probability distribution

ρ(r, t) = −eψ†(r, t)I4ψ(r, t), (10)

whereas the vector potential is coupled to the electron current density j – i.e.

the charge of the electron times its velocity distribution

j(r, t) = −eψ†(r, t)cαψ(r, t). (11)
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In order to write the interaction Hamiltonian in its explicit form, we need

to know analytical expressions for both potentials φ and A. By the use of

Maxwell’s equations for the source-free field, it can be shown that these poten-

tials satisfy [102]

∇2φ+
∂

∂t
(∇ ·A) = 0,

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A+

1

c2
∂φ

∂t

)
= 0.

(12)

However, there exists a certain arbitrariness in the definition of the potentials,

in that it is possible to shift them by the transformation

φ→ φ′ = φ− ∂χ

∂t
; A→ A′ = A+ ∇χ, (13)

where χ ≡ χ(r, t) is an arbitrary scalar function of space and time coordinates

called a gauge function. Since the physics, i.e. the force law and Maxwell’s

equations, is sensitive only to the electric field E and the magnetic field B,

the transformation of potentials, called a gauge transformation, does not affect

it. This is known in physics as gauge invariance and may be readily verified

by inserting two pairs of potentials (φ,A) and (φ′,A′) into the expression in

Eq. (7). In addition, gauge invariance may be exploited to simplify Eq. (12),

and this means also the interaction Hamiltonian.

In quantum chemistry, the gauge freedom is fixed by choosing the so-called

Coulomb gauge defined by the condition [103]

∇ ·A(r, t) = 0. (14)

With this condition and the fact that the electric field is divergence-free in free

space (7), the scalar potential is a constant, i.e. φ(r, t) = φ, and may be taken

as zero to satisfy |φ| → 0 at spatial infinity. In this case, the equations of motion

for electromagnetic potentials (12) simplify to

∇2φ = φ = 0,(
∇2 − 1

c2
∂2

∂t2

)
A(r, t) = 0.

(15)
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The wave equation for the vector potential is identical in form in many problems

of wave motion, with a real solution in the form of a monochromatic, linearly

polarized electromagnetic plane-wave [102]

A(r, t) = A0 cos(k · r − ωt), (16)

where A0 is a constant real vector called amplitude factor. The argument of the

cosine function is called the phase of A and is given in terms of the wave vector

k (characterizing the direction of wave propagation) and the angular frequency

ω. Note that the phase sometimes contains a phase constant, manipulation of

which the cosine function can be converted to a sine function. By substitution

of the solution Eq. (16) back into the wave equation Eq. (15), we find that the

magnitude of k obeys |k| = k = ω/c. In addition, noting that the angular

frequency is ω = 2πν = 2πc/λ with the frequency ν and wavelength λ, we also

find |k| = k = 2π/λ.

To summarize, time evolution of a N -electron system subjected to a classical

electromagnetic field is governed by the electronic Hamiltonian

Ĥ(t) =

N∑
i

ĥD
i (t) +

1

2

N∑
i 6=j

ĝij , (17)

where its one-electron part given in the Dirac’s relativistic formalism as

ĥD
i (t) = β′imec

2 + c
(
αi · pi

)
− eφ0(ri)I4 + ĥ(v)(ri, t), (18)

contains also the electron–field interaction Hamiltonian characterized in the

Coulomb gauge entirely by the vector potential

ĥ(v)(ri, t) = ecαi ·A(ri, t) = ec
(
αi ·A0) cos(k · ri − ωt). (19)

In the literature, ĥ(v) is known as the one-electron interaction Hamiltonian in

velocity representation which we shall label with the superscript (v).

Note that the spatial phase of ĥ(v) can be simplified by considering that

wavelengths of electromagnetic waves in the ultraviolet or visible range are very

large compared with the spatial extent of typical molecular systems under study.
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To provide an illustrative example, let us consider a laser pulse with wavelength

λ = 1064nm applied to a molecule of size |r| = r = 10Å. Hence,

k · r ≤ kr =
2π

1064nm
1nm� 1, (20)

which implies that the spatial phase of an oscillating electromagnetic wave can

be approximated by a constant over the length scale of a molecule (or more

precisely over the mean-value of an electronic position), i.e.

exp [i(k · r)] = 1 + i(k · r)− 1

2
(k · r)2 + ... ≈ 1. (21)

Independence of the electromagnetic wave on a spatial coordinate is known as

dipole (or long-wavelength) approximation, which brings the velocity interaction

Hamiltonian in Eq. (19) into a particularly simple form labelled here as (vd)

ĥ(v)(ri, t) ≈ ĥ(vd)
i (t) = ecαi ·A(t) =

ec

2

(
αi ·A0

)[
exp(−iωt) + exp(iωt)

]
.

(22)

Here, we used cos(x) = [exp(ix) + exp(−ix)]/2. However, special care has to be

taken for short wavelengths used for instance in hard X-ray spectroscopy where

the dipole approximation may not be adequate. In particular, this is true for

heavy-element K-edge X-ray absorption spectroscopy [104, 105]. By including

higher-order powers of k · r in the expansion, one gets multipolar contributions

known as electric-quadrupole, magnetic-dipole, etc., and there exist techniques

to include these contributions into quantum-chemical calculations [104, 105, 106,

107].

Before we close this section, let us mention that there exists a unitary trans-

formation of the wave function which yields an altered form of the interaction

Hamiltonian that may be more useful for practical calculations. Let us start

from the time-dependent Schrödinger/Dirac equation with the electronic Hamil-

tonian Ĥ containing the velocity-dipole interaction Hamiltonian (ĥ(vd)) given

by Eq. (22):(
i~
∂

∂t
− Ĥ

)
Ψ = 0; Ĥ ≡ Ĥ(t) =

N∑
i

[
ĥD
i + ĥ

(vd)
i (t)

]
+

1

2

N∑
i 6=j

ĝij . (23)
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The wave function Ψ≡Ψ(t) can undergo a unitary (gauge) transformation with

a freely chosen function Λ ≡ Λ(t)

Ψ = exp(−iΛ)Ψ′. (24)

The new wave function Ψ′ ≡Ψ′(t) is as physically meaningful as the old one,

provided(
i~
∂

∂t
− Ĥ ′

)
Ψ′ = 0; Ĥ ′ ≡ Ĥ ′(t) = exp(iΛ)Ĥ(t) exp(−iΛ)− ~

∂Λ

∂t
. (25)

Now, by selecting Λ as

Λ(t) =
e

~

N∑
i

I4ri ·A(t), (26)

one replaces the velocity-dipole interaction Hamiltonian in the original electronic

Hamiltonian Ĥ by a new interaction Hamiltonian ĥ(ld) in the so-called length-

dipole representation (ld) in the new electronic Hamiltonian Ĥ ′:

H ′(t) =

N∑
i

[
ĥD
i + ĥ

(ld)
i (t)

]
+

1

2

N∑
i 6=j

ĝij ; ĥ
(ld)
i (t) = eI4ri ·E(t). (27)

Physically, ĥ(ld) couples the classical electric field E(t) defined as

E(t) = − ∂

∂t
A(t), (28)

to the quantum-mechanical system characterized by the sum of the electric

dipole moment operators of individual electrons (µi = −eriI4). This gauge

transformation was first discussed at the nonrelativistic level by Göppert-Mayer

in 1931 [108] and therefore it is often named after her. An additional reading on

quantum-mechanical gauge invariance and general unitary transformations for

atoms and molecules in interactions with radiation can be found in Ref. [109].

4. Equations-of-motion for exact-state wave function

4.1. Time-dependent Schrödinger equation

In the most general case, the time evolution of a quantum-mechanical system

is governed by the time-dependent equation-of-motion

i~
∂Ψ(t)

∂t
= Ĥ(t)Ψ(t), (29)
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where Ĥ(t) is the Hamiltonian operator that is explicitly dependent on time via

external electromagnetic fields. If we are interested in the response of molecules

subjected to ultrafast laser pulses and similar processes occurring at atto- or

femtosecond time scales, we can study electron dynamics decoupled from the

nuclear motion. However, molecular vibrations and nuclear relaxation occur on

a time scale of 10–100 fs, and in principle should be included in the computa-

tion. Nevertheless, performing electron dynamics simulations with fixed nuclear

configuration at this time scale is still beneficial for improving the spectral res-

olution and aids analyzing electron excitations without the effect of nuclear

dynamics. In such a case, Ψ(t) in Eq. (29) is the many-electron wave function

depending on the position ri and spin of all electrons, and the Hamiltonian Ĥ

is the many-electron Hamiltonian defined in Eq. (17) containing the electron

kinetic operator, Coulomb interactions between electrons and nuclei with fixed

positions, and interactions between the system and external electromagnetic

fields discussed in more detail in Section 3.

Eq. (29) also remains valid in relativistic case, provided additional approxi-

mations are assumed. The Hamiltonain Ĥ needs to be treated as a multicompo-

nent operator acting on multicomponent wave functions to reflect the fact that

in relativistic theory, electron spin and orbital degrees of freedom interact with

each other via the spin–orbit coupling terms. However, in a truly relativistic

picture, we would need to consider multiple time variables associated with each

electron’s frame of reference. Such effects arising from the relative time are

always neglected when studying molecular systems, and Eq. (29) thus assumes

the absolute time approximation, which leads to a single time variable t. For

further discussion on the relativistic theory of many electrons, see Ref. [101].

Response of the system to external time-dependent electromagnetic fields

can be studied by solving Eq. (29). This can be achieved by using the formal-

ism of response theory [110, 5], in case the external fields are weak and can be

regarded as small perturbations to the system compared to the intrinsic unper-

turbed Hamiltonian. Alternatively, the equation can be solved numerically by

propagating the wave function in real time, which facilitates studying processes
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that involve arbitrarily strong fields.

4.2. Reduced density matrices

Since the many-electron wave function is a complicated object that depends

on the spatial coordinates of each electron, for the forthcoming discussion, it

will be more convenient to work in the formalism of reduced density matrices

(RDMs) [111]. In the time domain, we can define the one-electron and two-

electron RDMs, respectively, as

D(r1; r′1; t) = N

∫
Ψ(r1, x2, . . . , xN , t)Ψ

†(r′1, x2, . . . , xN , t)dx2 . . . dxN , (30)

and

Γ(r1, r2; r′1, r
′
2; t) = N(N − 1)

∫
Ψ(r1, r2, x3, . . . , xN , t)

×Ψ†(r′1, r
′
2, x3, . . . , xN , t)dx2 . . . dxN , (31)

where N is the number of electrons. We note here, that whereas ri represents

spatial coordinates in three-dimensional space, xi ≡ (ri, τi) denotes both the

position ri and the spin τi of the i-th electron, and the integration symbolically

also labels the summation over the spin degrees of freedom in addition to the

integration over the spatial variables. In the relativistic theory with SOC, it is

convenient to keep the indices associated with r1 and r2 free. As a consequence,

D and Γ are still multicomponent tensors, for instance, in case of the Dirac

theory, D and Γ have the dimensions of 4 × 4 and 4 × 4 × 4 × 4, respectively.

Hence, the scalar electron charge density is obtained as

ρ(r, t) = −eTrD(r; r; , t), (32)

where Tr indicates the trace over the bispinor components. Likewise, for the

four-component current density, it follows that

j(r, t) = −ecTrαD(r; r; , t). (33)

Eqs. (32) and (33) generalize the one-electron definitions of the charge and

current densities in Eqs. (10) and (11) for many-electron wave functions, since
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they are agnostic to the method that was used to calculate the one-electron

RDM.

Exact time propagation determined by Eq. (29) can equivalently be for-

mulated in the language of RDMs, which avoids the use of the cumbersome

many-electron wave function. Let us assume that we have a set of orthonormal

spin-orbitals ϕp(r). The one- and two- RDMs matrices in the spin-orbital basis

then become

Dpq(t) =

∫
d3r1

∫
d3r′1ϕ

†
p(r1)D(r1; r′1; t)ϕq(r

′
1), (34)

and

Γpqrs(t) =

∫
d3r1 . . . d

3r′2ϕ
†
p(r1)ϕ†r(r2)Γ(r1, r2; r′1, r

′
2; t)ϕq(r

′
1)ϕs(r

′
2), (35)

respectively. The time-dependent one-electron RDM can be obtained by solving

the equation of motion of Liouville-von Neumann (LvN) type [112]

i~
∂

∂t
D(t) = [h(t),D(t)] +

1

2
Tr1 [G,Γ(t)] , (36)

where [, ] denotes the commutator, h(t) and G are matrices of one- and anti-

symmetrized two-electron integrals

hpq(t) ≡
∫
ϕ†p(r)ĥD(t)ϕq(r)d3r, (37)

Gpqrs ≡ Ipqrs − Ipsrq; Ipqrs ≡
∫∫

ϕ†p(r1)ϕq(r1)r−1
12 ϕ

†
r(r2)ϕs(r2)d3r1d

3r2,

(38)

and

(GΓ)pqrs ≡ GperfΓeqfs, (39)

(Tr1 X)pq ≡ Xpqrr (40)

for any two-electron matrix X. Upon inspecting Eq. (36), we can see that

the exact time evolution of the one-electron RDM also depends on the two-

electron RDM Γ(t), which is also not known. Likewise, we could proceed by

writing the equation of motion for the two-electron RDM. However, in general,
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the equation of motion for the N -electron RDM will contain the RDM of the

order N + 1, leading to an infinite hierarchy of coupled equations for RDMs,

mirroring the same situation that occurs in the theory of Green’s functions [113].

Solving the resulting system of equations is impractical, hence, approximations

to the higher-order second term that decouple the equations are sought. In

the following sections, we will describe the LvN equation for the one-electron

RDM where the second term containing Γ(t) is approximated in the mean-field

manner using only the one-electron RDM in the framework of time-dependent

Hartree–Fock theory and density functional theory.

4.3. Time-reversal symmetry

One of the most important properties of quantum-mechanical equations of

motion (and all microscopic laws) is their symmetry with respect to the reversal

of time. Let us use the shorthand notation for the many-electron wave function

Ψ(t) ≡ Ψ(x1, . . . , xN , t). Replacing t→ −t in Eq. (29) gives

− i~∂Ψ(−t)
∂t

= Ĥ(−t)Ψ(−t). (41)

This equation differs from the original one in two ways. First, the Hamiltonian

is expressed in the inverted time −t. Second, there is an extra minus sign on the

left hand side of the equation. Let us assume we have an antiunitary operator

K that is unitary (K†K = I) and antilinear

Ki = −iK. (42)

Letting this operator act from the left on the Eq. (41), and denoting

Ψ̄(t) := KΨ(−t), (43)

H̄(t) := KĤ(−t)K†, (44)

we obtain

i~
∂Ψ̄(t)

∂t
= H̄(t)Ψ̄(t). (45)

In principle, this is a new equation of motion with a new solution, however, if

we can assume that the Hamiltonian satisfies H̄(t) = Ĥ(t), i.e.

KĤ(t) = Ĥ(−t)K, (46)
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then Eqs. (29) and (45) represent the same equation, for which we obtained a

pair of solutions Ψ(t) and Ψ̄(t). The condition in Eq. (46) is known as time-

reversal symmetry (TRS).

Due to the requirement in Eq. (42), the operator K must at least contain

complex conjugation. This is a sufficient condition for scalar wave functions

in nonrelativistic theory, where Eq. (46) reduces to Ĥ∗(t) = Ĥ(−t) and ad-

ditionally the condition that the time-independent Hamiltonian is real-valued.

However, for spinor wave functions and multicomponent relativistic theories, K

can have a more complicated matrix form. For instance, in case of the Dirac

four-component one-electron Hamiltonian, the operator K takes the form [100,

114, 115]

K = −i

σy 02

02 σy

K0, (47)

where K0 denotes the complex conjugation, and σy is the y-th 2×2 Pauli matrix.

We conclude this section by noting that the condition in Eq. (46) is sat-

isfied for nonrelativistic as well as relativistic Hamiltonians. Neither internal

electromagnetic interactions nor spin–orbit coupling terms break TRS, i.e. the

Hamiltonain consists of symmetric operators (KÂK† = Â) or bilinear products

of antisymmetric (KÂK† = −Â) operators, such as σ · p, that are again sym-

metric. However, if external fields are introduced, they can break the TRS, for

instance, an electric field with the time dependence given by an odd function of

t. More importantly, it is often discussed in the literature that the presence of

a magnetic field breaks TRS. This is only true if the magnetic field B is con-

sidered as external and does not change its orientation upon time reversal, i.e.

K only acts on the electronic degrees of freedom. In such situations, terms like

B · Ŝ, where S denotes the electron spin, become antisymmetric with respect

to the time reversal, because the operator K only acts on Ŝ (KŜK† = −Ŝ) and

not on B.
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5. Equations-of-motion for approximate-state wave functions

The previous section dealt with exact state theory. In practical calculations,

model quantum chemistries are used to treat systems containing many parti-

cles. The theory presented here focuses on both time-dependent Hartree–Fock

(TDHF) theory and time-dependent density functional theory (TDDFT) in the

time-dependent Kohn–Sham (TDKS) framework. From the practical point of

view, both TDHF and KS TDDFT are mean-field theories solving equations

for one-electron molecular orbitals. Therefore, we use the term time-dependent

self-consistent field (TDSCF) when referring to both methods together. In the

following text, we sketch the derivation of working equations for TDHF and

TDKS theories. Since the final form of the equations is the same for both meth-

ods, the rest of this chapter concerning propagators, evaluation of molecular

properties, and analysis applies equally to both of them.

5.1. Time-dependent Hartree–Fock theory

The main idea of the TDHF method is to approximate the many-electron

time-dependent wave function Ψ(x1, x2, . . . ; t) by a single Slater determinant

built from time-dependent molecular spin-orbitals (MO) ϕi(x, t), where we grouped

the electron’s spatial and spin degrees of freedom into a single variable x ≡ (r, τ).

Hence, the ansatz reads

Ψ(x1, x2, . . . ; t) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1, t) ϕ1(x2, t) · · · ϕ1(xN , t)

ϕ2(x1, t) ϕ2(x2, t) · · · ϕ2(xN , t)
...

...
. . .

...

ϕN (x1, t) ϕN (x2, t) · · · ϕN (xN , t)

∣∣∣∣∣∣∣∣∣∣∣∣
=

1√
N !

∑
{P}

(−1)|P |
∣∣ϕP (1)(x1, t)ϕP (2)(x2, t) . . . ϕP (N)(xN , t)

∣∣ ,
(48)

where P denotes a permutation of indices, P (i) is the new index after per-

mutation, and
∑
{P} is the sum over all possible permutations of MO indices.
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The prefactor (−1)|P | is the sign ±1 of the permutation based on the permu-

tation length |P |. This ansatz uses complex spin-orbitals instead of real scalar

orbitals and facilitates a direct extension of the nonrelativistic HF theory into

the relativistic domain. Furthermore, in the TDHF theory, we assume that

the many-electron wave function retains the form of a single Slater-determinant

during the entire time evolution.

The working equations of TDHF can be derived using the time-dependent

variational principle. Several functionals to be minimized have been formulated,

such as the Dirac–Frenkel functional [116, 5]

IDF =

∫
dt

〈
Ψ(t)

∣∣∣∣ i~ ∂∂t − Ĥ
∣∣∣∣Ψ(t)

〉
, (49)

or the McLachlan functional

IML(t) =

〈(
i~
∂

∂t
− Ĥ

)
Ψ(t)

∣∣∣∣ (i~ ∂∂t − Ĥ
)

Ψ(t)

〉
, (50)

where we used the braket notation 〈. . .〉 to indicate the integration over degrees

of freedom (spin and spatial) of all electrons. These functionals can be used to

derive the final form of the TDHF equations for MOs [117]

i~
∂

∂t
ϕi(r, t) = F̂HF [{ϕj(r, t)}](r, t) ϕi(r, t), (51)

where F̂HF is the Fock operator known from time-independent HF theory. Here,

F̂HF contains the Coulomb interaction of the electron with the mean-field of

other electrons, the Fock exchange operator, and the one-electron Dirac Hamil-

tonian ĥD(t) that includes the interaction with external time-dependent elec-

tromagnetic fields. As a consequence, in the four-component Dirac theory, F̂HF

is a 4× 4 operator acting on bispinor orbitals φi. The presence of the explicitly

time-dependent external fields in the one-electron part of F̂HF and the depen-

dence of the mean-field and exchange terms on the spin-orbitals, which are now

time-dependent, represents the most distinct difference of the Fock operator in

the TDHF theory from its time-independent counterpart.
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5.2. Time-dependent Kohn–Sham DFT

Analogously to the static case, the idea of time-dependent density functional

theory (TDDFT)[118] is to replace the many-electron wave function of 3N spa-

tial variables and time with the simpler object — electron density ρ(r, t). In

the nonrelativistic framework, the theoretical foundations of TDDFT are pro-

vided by two theorems. The first one, the Runge–Gross theorem [119], is a

time-dependent analogue of the Hohenberg–Kohn theorem connecting the time-

dependent external potential and time-dependent density. The second one, the

Van Leeuwen theorem [120], connects the real system with a fictitious system

with different interaction potential. Application of these theorems allows for

introducing a fictitious KS system of non-interacting electrons for which the

many-electron wave function is a single Slater determinant built of one-particle

functions called KS orbitals. The final TDKS equations are similar to Eq. (51),

i~
∂

∂t
ϕi(r, t) = F̂KS [{ϕj(r, t)}](r, t) ϕi(r, t), (52)

except that the Fock operator F̂KS also contains the exchange–correlation (XC)

potential derived from the approximation to the XC energy functional instead

of the exact HF exchange term. This XC term links the fictitious KS system to

the studied real system. In hybrid DFT [121], functionals allow for a fraction

of the HF exchange contribution to also enter F̂KS, bringing the very important

element of (exact) antisymmetry of the many-electron wave function to DFT.

Approximating the XC functional in the time domain is more challeng-

ing than in time-independent theory. In principle, TDDFT requires the de-

velopment and use of special time-dependent XC potentials that may gener-

ally depend on the density in previous times. However, a widespread practice

is to simply use potentials from time-independent DFT, with the time vari-

able only entering via the time-dependence of the density (and its gradient).

This local-in-time approximation is known as the adiabatic approximation in

TDDFT [122, 123]. The term adiabatic approximation is actually used to la-

bel a combination of two approximations: firstly the adiabatic approximation

itself [118] and secondly the approximations that were used in the construction
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of the time independent XC functional [124]. The adiabatic approximation is

valid when a system remains in its instantaneous eigenstate for slowly varying

perturbations that act on it [118] and is widely used in TDDFT due to the lack

of accepted time (memory) dependent functionals. The memory effects were

also shown to be negligible in the context of nonlinear processes and strong-

field excitations studied in non-perturbative electron dynamics [125]. However,

non-adiabatic effects in the XC functional become important for high-frequency

oscillations [125], double and charge-transfer excitations [126]. Extending the

XC potential beyond the adiabatic approximation while still exploiting the local

gradient expansion can be achieved if the current density is used as a central

variable [127, 128]. More general framework for time-dependent functionals with

memory in TDDFT introduces viscoelastic stresses known in hydrodynamics for

the electron liquid [129, 126] or formulates TDDFT in a comoving Lagrangian

reference frame [130].

In a similar manner, the extension of DFT to the relativistic domain [131,

132] also makes use of non-relativistic XC potentials that take relativistic den-

sities as input. Linear-response TDDFT has been extended to the relativis-

tic approximate two-component framework and applied to calculate absorption

spectra of solids [133], however, proper theoretical foundations that incorpo-

rate both effects of time-dependent fields as well as relativity and generalize

the Runge–Gross and Van Leeuwen theorems to the relativistic domain do not

exist. Despite this, the relativistic real-time and linear-response TDDFT has

been applied to study a number of molecular properties, as will be discussed in

more detail in Section 8.

5.3. Liouville–von Neumann equation in four-component framework

As discussed in Section 4.2, it is often more practical to work in the formalism

of density matrices. This is especially the case for theories that express the

many-electron wave function as a single Slater determinant, such as TDHF and

TDKS, where the two-electron RDM is not needed, and the entire information

about the time evolution of a quantum state of the many-electron system is
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encoded in the one-electron RDM.

Let us express the time-dependent spin-orbitals ϕi(r, t) appearing in Eqs. (51)

and (52) using a set of n static orthonormal functions {X(r)}. Then

ϕi(r, t) =

n∑
µ

Xµ(r)Cµi(t), (53)

where Cµi(t) are the complex-valued expansion coefficients. For purposes of this

Chapter, {X(r)} shall refer to orthonormal atomic orbitals (AOs). For cases

where the wave function Ψ(t) is a Slater determinant, the one-electron RDM

from Eq. (30) can be expressed through the occupied (occ) spin orbitals as

D(r; r′; t) =

occ∑
i

ϕi(r, t)ϕ
†
i (r
′, t). (54)

Inserting Eqs. (53) and (56) into Eq. (34) gives the following orthonormal AO

representation of the RDM

Dµν(t) =

occ∑
i

Cµi(t)C
†
νi(t). (55)

Introducing the matrices D(t) and C(t) with elements Dµν(t) and Cµi, respec-

tively, we can write

D(t) = C(t)C†(t). (56)

Taking the time derivative of this equation and using the time-dependent equa-

tions for spin-orbitals (Eqs. (51) or (52)) in combination with the expansion

in Eq. (53), we obtain the Liouville–von Neumann (LvN) equation of motion

(EOM) for the RDM

i~
∂D(t)

∂t
= [F(t),D(t)], (57)

where we dropped the HF and KS labels on the Fock matrix F(t). We note,

that in the HF theory, this equation coincides with the general Eq. (36), since

the two-electron RDM is approximated as

Γµνκλ(t) = Dµν(t)Dκλ(t)−Dµλ(t)Dκν(t). (58)

Using this factorization of the two-electron RDM in Eq. (36) gives rise to both

the mean-field Coulomb as well as the exact exchange terms that complement
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the one-electron Hamiltonian in the Fock matrix of HF theory. The advantage

of solving the LvN equation over the respective equations for spin orbitals is

that the RDM is gauge invariant with respect to orbital rotations ϕ′p → ϕ′qVqp,

i.e. unitary transformations V that do not mix the occupied and virtual spin

orbitals. This gauge freedom of the orbitals was utilized in the work of Jia et

al. [134] to allow for much larger time steps used in real-time simulations based

on solving the EOM for orbitals in the parallel transport gauge.

Real-time methods are based on directly solving Eq. (57) in the time domain

by numerically propagating the RDM (see Section 6). Since the Fock matrix is

Hermitian, the time evolution must be unitary. However, Eq. (57) is sometimes

augmented by an extra term to model the relaxation of the system to the equi-

librium (ground) state Deq with an empirical rate of relaxation matrix γ. The

LvN equation then reads

i~
∂D(t)

∂t
= [F(t),D(t)]− i~γ

(
D(t)−Deq

)
. (59)

At the level of theory presented here, the matrix γ is phenomenological and

is commonly approximated by a single parameter, referred to as a damping

parameter. In this case, the LvN equation can be solved without the damping

parameter and its application is postponed to a post-processing step (see discus-

sion below). We note, that if the damping term is included in the LvN equation,

the time propagation is no longer unitary and the energy of the system is not

conserved even in the absence of external field(s).

Within a finite time window, the solution of the LvN equation Eq. (57)

reduces to the evaluation of the time-dependent Fock matrix at discrete time

steps, and to the propagation of the density matrix in time. Here, we briefly

outline the main features of the Fock matrix evaluation, assuming the full four-

component level of theory. By following the previous discussion, the Fock matrix

in Eq. (57) is given in a set of n orthonormal AOs {X(r)},

Fµν(t) =
〈
Xµ(r)

∣∣∣ F̂ [{ϕ(r, t)}](r, t)
∣∣∣Xν(r)

〉
. (60)

Of particular interest in this Chapter are applications where molecular systems
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are irradiated by classical time-dependent electric field(s). In this case, the

4c Fock matrix can easily be derived from the electronic Hamiltonian in the

length-dipole representation (see Eq. (27) in Section 3) [24, 27]

F 4c
µν(t) = F 4c

µν [E,F ](t) = hD
µν +

n∑
κλ

G4c
µν,κλD

4c
λκ(t,E,F) (61)

+
∑

u∈0,x,y,z

∫
vxcu
[
ρ4c(r, t,E,F)

]
Ω4c
u,µν(r) d3r

−
∑

u∈x,y,z
P 4c
u,µνEu(t)−

∑
u∈x,y,z

P 4c
u,µνFu(t).

The right-hand side includes the matrix representation of the one-electron Dirac

operator, the two-electron (2e) Coulomb interaction operator, the exchange–

correlation (xc) operator, and the particle–field interaction operators. For gen-

erality we involve two time-dependent electric fields E(t) and F(t) which are

coupled to the molecular system via the electric dipole moment operator matrix

(P4c
u ).

Computationally most demanding is the 2e contribution as it requires the

evaluation of generalized anti-symmetrized electron repulsion integrals (ERIs) [82]

G4c
µν,κλ = I4c

µν,κλ − ζI4c
µλ,κν ; I4c

µν,κλ =

∫∫
Ω4c

0,µν(r1)r−1
12 Ω4c

0,κλ(r2)d3r1d
3r2,

(62)

in terms of 4c charge distribution functions

Ω4c
0,µν(r) = X†µ(r)Xν(r). (63)

Here, each 4c basis function Xµ(r) ≡ {XL
µ (r) ⊕ XS

µ(r)} consists of the di-

rect product of the large 2c function XL
µ (r) and the small 2c function XS

µ(r),

related to each other to the lowest order in c−1 by the restricted kinetically

balanced (RKB) relation [135]: XS
µ ' (σ · pXL

µ ). Obvious computational cost

and complexity of 4c ERIs arise from the presence of the canonical momentum

operator (p) as well as the Pauli spin operator (σ) in the expression for the

small-component basis. Therefore, as discussed in Ref. [82], a single 4c ERI

requires even in the most compact formalism of real quaternions the simulta-

neous evaluation and processing of 25 times more real scalar integrals than the
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simpler 1c or 2c cases. This ratio further increases when RKB is substituted by

the restricted magnetically balanced (RMB) relation [136, 137], which is needed

for handling interactions with magnetic fields and requires the ERI evaluation

formalism to be based on complex quaternions [82].

In addition to the charge distribution function Ω4c
0 (r) used in Eq. (62), one

can define three spin distribution functions along the Cartesian directions

Ω4c
k,µν(r) = X†µ(r)ΣkXν(r); Σk =

σk 02

02 σk

 ; k ∈ x, y, z, (64)

in terms of which the 4c electron charge density (ρ4c
0 ) as well as the electron

spin densities (ρ4c
x , ρ

4c
y , ρ

4c
z ) have a particularly simple form

ρ4c
k = ρ4c

k (r, t) =

n∑
µν

Ω4c
k,µν(r)D4c

νµ(t); k ∈ 0, x, y, z, (65)

where Σk is the Dirac spin operator. Note that all current noncollinear exten-

sions of nonrelativistic xc functionals employ those four densities (alongside of

their gradients) as basic variables [138, 139, 140, 141, 142]. In the relativistic

2c and 4c theory, the use of a noncollinear formalism is necessary since the spa-

tial and spin degrees of freedom are no longer independent and are coupled by

the spin-orbit interaction. This coupling results in a lack of rotational invari-

ance of the xc energy if the energy is calculated collinearly through the z spin-

component only [140]. A common way to circumvent this variance problem is

to formulate the nonrelativistic exchange–correlation functionals noncollinearly.

Therefore, we utilize in our real-time TDSCF implementation the noncollinear

variables of Scalmani and Frisch [141] and evaluate the noncollinear xc potential

vxck in Eq. (61) within a generalized gradient approximation as

vxck
[
ρ4c(t)

]
=

∂εxc

∂ρ4c
k (t)

−
(
∇ · ∂εxc

∂∇ρ4c
k (t)

)
; k ∈ 0, x, y, z. (66)

Here, εxc and ρ4c refer to a nonrelativistic xc energy density and an electron

density vector consisting of the electron charge and spin densities (together with

their gradients). For further details on our noncollinearity implementation, the

reader is referred to Refs. [82, 142].
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5.4. Reduction of the Liouville–von Neumann equation to the exact two-component

(X2C) form

While full four-component (4c) relativistic real-time electron dynamics sim-

ulations are nowadays feasible [24, 25, 26, 27, 84, 83], there is interest in devel-

oping approximate methods enabling these simulations to be performed more

efficiently at the two-component (2c) level while maintaining the accuracy of the

parent 4c regime. Therefore, we shall discuss the transformation of the original

4c Liouville-von Neumann (LvN) equation to its 2c form, with a particular focus

on the modern exact two-component (X2C) formalism.

The X2C Hamiltonian model has gained wide popularity in recent years as

it reduces the original 4c problem by half while requiring only a few simple

algebraic manipulations [85, 86, 87, 88, 89]. However, accuracy of this Hamil-

tonian strongly depends on the two-electron (2e) and exchange–correlation (xc)

picture-change correction models employed [91] and can vary as much as 5-6

orders of magnitude for core-shell energies. Since the pioneering X2C RT-

TDDFT implementations [26, 90] utilize a crude one-electron X2C (1eX2C)

Hamiltonian model where the picture-change corrections are entirely neglected,

the inner-shell spinors (and their energies) substantially differ from the refer-

ence 4c results [91]. Therefore, our focus here is to provide theoretical insights

into three numerically accurate X2C Hamiltonian models [91, 27, 28], dubbed

as amfX2C, eamfX2C and mmfX2C that enable accounting for the two-electron

and exchange-correlation picture-change effects.

By following the matrix-algebraic approach of X2C, let us assume that at an

arbitrary time t there exists a unitary transformation matrix U(t) that block-

diagonalizes/decouples the 4c Fock matrix

F4c(t)→ F̃4c(t) = U†(t)F4c(t)U(t) =

 F̃LL(t) 02

02 F̃SS(t)

 . (67)

Note that: (i) we use tildes to indicate all transformed quantities; (ii) F4c(t)

and U(t) also depend on the electric field E(t) and F(t), but for clarity of

presentation this dependence is omitted now. Under the X2C transformation,
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the parent 4c EOM for MO coefficients becomes

i~
∂C̃4c

i (t)

∂t
= F̃4c(t)C̃4c

i (t) + i~
(
∂U†(t)

∂t

)
U(t)C̃4c

i (t), (68)

where

C̃4c
i (t) = U†(t)C4c

i (t). (69)

A similar relation also holds for the X2C transformed LvN equation

i~
∂D̃4c(t)

∂t
=
[
F̃4c(t), D̃4c(t)

]
+ i~

[(
∂U†(t)

∂t

)
U(t), D̃4c(t)

]
, (70)

with the density matrix

D̃4c(t) =

occ∑
i

C̃4c
i (t)

(
C̃4c
i (t)

)†
= U†(t)D4c(t)U(t). (71)

The right hand side of Eqs. (68) and (70) involves the matrix product U̇†(t)U(t)

which has nonzero off-diagonal blocks that prevent expressing these equations

in the complete decoupled (block-diagonal) form. However, as discussed in

Ref. [28] for the case of a single electric field E(t), the matrix values of U̇†(t)

are of the order O(|E|ωc−1), and therefore become negligibly small within a

weak-field limit (|E|�1) and a dipole approximation (rωc−1�1). As a result,

the X2C transformation matrix remains approximately constant in time, i.e.

U(t) ≈ U, and Eqs. (68) and (70) reduce to the simple form

i~
∂C̃4c

i (t)

∂t
= F̃4c(t)C̃4c

i (t); i~
∂D̃4c(t)

∂t
=
[
F̃4c(t), D̃4c(t)

]
. (72)

This time-independence of matrix U is generally denoted as the adiabatic X2C

transformation [26, 28].

The best possible transformation matrix U can be obtained from a so-called

mmfX2C approach [143]. In this approach, U is obtained a posteriori from

converged 4c SCF HF/KS solutions (MO coefficients) applying for instance the

one-step X2C transformation of Ilias and Saue [89]. From the real-time dynamics

point of view, these solutions are associated with the initial simulation time t0.

An important observation is that at t0 the 4c occupied positive-energy MO
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coefficients C4c
i as well as the 4c density matrix D4c can be expressed in terms

of their 2c counterparts,

C4c
i (t0) = UC̃2c

i (t0) ⇒
[
C4c

]X
µi

=
∑
ν

[
U
]XL

µν

[
C̃2c

]
νi

D4c(t0) = UD̃2c(t0)U† ⇒
[
D4c

]XY

µν
=
∑
κλ

[
U
]XL

µκ

[
D̃2c

]
κλ

[
U†
]LY

λν
.

(73)

Here, X and Y refer to the large-component (L) and small-component (S) sub-

set of orthonormal AO basis. Within the adiabatic X2C transformation it is

assumed that the relation (73) remain valid also at an arbitrary future time

t > t0, and therefore 4c real-time dynamic results can be obtained just from the

solution of simple 2c EOMs

i~
∂C̃2c

i (t)

∂t
= F̃2c(t)C̃2c

i (t); i~
∂D̃2c(t)

∂t
=
[
F̃2c(t), D̃2c(t)

]
. (74)

However, as shown by Knecht and coworkers for static SCF case [91], the cor-

rectly transformed 2c Fock matrix F̃2c involves a so-called picture-change trans-

formation of density matrix, overlap distribution matrix, and one- and two-

electron integrals. Repisky and coworkers extended this observation to the time

domain and derive [27, 28]:

F̃ 2c
µν(t) =

[
U†F4c(t)U

]LL

µν
= h̃2c

µν +
∑
κλ

G̃2c
µν,κλD̃

2c
λκ(t,E,F) (75)

+
∑

u∈0,x,y,z

∫
vxcu
[
ρ̃2c(r, t,E,F)

]
Ω̃2c
u,µν(r) d3r

−
∑

u∈x,y,z
P̃ 2c
u,µνEu(t)−

∑
u∈x,y,z

P̃ 2c
u,µνFu(t).

There are two important points to note here: (i) all transformed quantities are

marked with tilde; (ii) the presence of the picture-change transformed charge

distribution matrix (Ω̃2c) in both 2e and xc interaction terms makes the evalua-

tion of F̃2c computationally more demanding than the original 4c Fock matrix.

Therefore, it is desirable to seek for an approximation that enables us to

carry out electron dynamics simulations in 2c mode such that they are compu-

tationally efficient and reproduce the reference 4c results as closely as possible.
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Keeping this in mind, one can compare Eq. (75) with an approximate and com-

putationally efficient form of the Fock matrix built with untransformed (without

the tilde) two-electron integrals G2c and overlap distribution matrix Ω2c; that

is

F 2c
µν(t) = h̃2c

µν +
∑
κλ

G2c
µν,κλD̃

2c
λκ(t,E,F) (76)

+
∑

u∈0,x,y,z

∫
vxcu
[
ρ2c(r, t,E,F)

]
Ω2c
u,µν(r) d3r

−
∑

u∈x,y,z
P̃ 2c
u,µνEu(t)−

∑
u∈x,y,z

P̃ 2c
u,µνFu(t).

Here, it is important to emphasize that ρ2c also remains untransformed in the

sense that an untransformed Ω2c
u is used but with the correctly transformed

density matrix D̃2c. We immediately find that the difference between these

two Fock matrices expresses the picture-change corrections associated with the

two-electron integrals and the xc contribution

∆F̃ 2c
µν(t) = F̃ 2c

µν(t)− F 2c
µν(t) =

∑
κλ

∆G̃2c
µν,κλD̃

2c
λκ(t) + ∆F̃ 2c,xc

µν (t), (77)

where

∆G̃2c
µν,κλ = G̃2c

µν,κλ −G2c
µν,κλ,

∆F̃ 2c,xc
µν (t) =

∫
vxck
[
ρ̃2c(r, t)

]
Ω̃2c
k,µν(r) d3r −

∫
vxck
[
ρ2c(r, t)

]
Ω2c
k,µν(r) d3r.

(78)

Here, we dropped the dependence on E and F for clarity. The central idea of

X2C real-time electron dynamics is the solution of the 2c LvN equation (74)

with the Fock matrix

F̃ 2c
µν(t) = h̃2c

µν + ∆F̃ 2c
µν(t) +

∑
κλ

G2c
µν,κλD̃

2c
λκ(t,E,F) (79)

+
∑

u∈0,x,y,z

∫
vxcu
[
ρ2c(r, t,E,F)

]
Ω2c
u,µν(r) d3r

−
∑

u∈x,y,z
P̃ 2c
u,µνEu(t)−

∑
u∈x,y,z

P̃ 2c
u,µνFu(t),
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where ∆F̃2c(t) accounts for the picture-change corrections associated with the

2e integrals and the xc contribution. Note that F̃2c(t) in Eqs. (75) and (79) are

equal, and all differences between various flavours of X2C are due to approxi-

mations in ∆F̃2c(t).

In the simplest but least accurate case, dubbed one-electron X2C (1eX2C),

∆F̃2c(t) in Eq. (79) is completely discarded, while the decoupling matrix U is

obtained simply from the parent one-electron Dirac Hamiltonian. This approach

was employed in pioneering X2C RT-TDDFT implementations [26, 90]. Due to

its simplicity the 1eX2C Hamiltonian still remains very popular, but caution is

needed when applying this model beyond valence electric properties as shown

for instance in Ref. [28].

In the second model, coined as molecular mean-field X2C (mmfX2C), ∆F̃2c(t)

in Eq. (79) is approximated by a static model ∆F̃2c, which is evaluated according

to Eqs. (77) and (78) only once using the converged 4c molecular self-consistent

field solutions [27, 28]. Similarly, U is determined from the same 4c solutions.

For theoretical and numerical justification of the static approximation used in

the real-time and response mmfX2C theory, readers are referred to the orig-

inal publication [28]. Due to the late X2C transformation (post-SCF), the

mmfX2C approach was found as most accurate among all X2C Hamiltonian

models [28, 91]; though, the price for this accuracy is the implementation and

execution of 4c molecular SCFs.

In line with the idea of Knecht et al. [91] on the amfX2C Hamiltonian for

time-independent Hartree-Fock and Kohn-Sham mean-field theories, one may

exploit the local atomic nature of the static picture-change correction matrix

∆F̃2c discussed in the previous paragraph. In the third model, dubbed as atomic

mean-field X2C (amfX2C) [27, 28, 91], ∆F̃2c(t) in Eq. (79) is approximated

by a static model ∆F̃amfX2C⊕ obtained by a superposition of converged atomic

quantities rather than the converged molecular one, i.e.

∆F̃2c(t) ≈ ∆F̃amfX2C⊕ =

M⊕
K=1

∆F̃2c
K [D̃2c

K ]. (80)

Here, K runs over all atoms in an M -atomic system.
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The main advantage of the amfX2C approach is that it introduces picture-

change corrections to both spin-independent and spin-dependent parts of the

two-electron and xc interaction just from simple atomic quantities. On the

other hand, the fact that ∆F̃2c⊕ has only atomic diagonal blocks means that,

for instance, the off-diagonal electron-nucleus contribution will not cancel out

with the direct electron-electron contribution at long distances from the atomic

centers. This becomes problematic in solid-state calculations, where the exact

cancellation of these contributions is essential at long distances. In fact, this

motivated Knecht and coworkers [91] to introduce our last X2C Hamiltonian

model, called extended amfX2C (eamfX2C). The generalization of eamfX2C to

the time domain was recently discussed by Konecny and coworkers [28], and

it requires to approximate ∆F̃2c(t) in Eq. (79) by a static model ∆F̃eamfX2C⊕
obtained from the time-independent version of equation (77)

∆F̃ eamfX2C⊕
,µν = F̃ 2c⊕

,µν − F
2c⊕
,µν =

∑
κλ

∆G̃2c
µν,κλD̃

2c⊕
,λκ + ∆F̃ 2c,xc⊕

,µν , (81)

with elements on the right hand side given in Eq. (78). The picture-change

corrections associated with the two-electron integrals and the xc contribution

involve the 2c density matrix D̃2c⊕ obtained from a superposition of converged

4c atomic density matrices D4c
K , i.e.

D̃2c⊕ =

M⊕
K=1

[
U†KD4c

KUK

]LL

. (82)

Here, K runs over all atoms in an M -atomic system.

6. Real-time propagation

6.1. Evolution operator

The solution of the TDHF and TDKS equations for an arbitrary time t can

be written in the compact form by defining the evolution operator U(t, t′) that

propagates the state from time t′ to time t as

ϕi(r, t) = U(t, t′)ϕi(r, t
′), (83)
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or, equivalently, in the matrix form

C(t) = U(t, t′)C(t′). (84)

We can also use the same evolution operator to obtain the solution of the LvN

equation in the language of the RDM as

D(t) = U(t, t′)D(t′)U†(t, t′). (85)

It is required that the evolution operator is unitary, i.e. U†(t, t′)U(t, t′) = I, so

that the time evolution preserves the norm of the ϕi as well as the idempotence

and trace of the density matrix. It follows from the definition that

U(t, t) = I, (86)

U(t3, t1) = U(t3, t2)U(t2, t1), (87)

U−1(t1, t2) = U(t2, t1). (88)

The last property is related to the TRS described in Section 4.3 and only holds

when no external magnetic fields are present.

Inserting the definition of U in Eq. (85) into the LvN equation recasts the

problem of time propagation into determining U by solving

i~
∂

∂t
U(t, t′) = F(t)U(t, t′). (89)

It is possible to write a closed-form solution of this equation in the form of the

Dyson series as

U(t, t′) =
∞∑
n=0

(−i/~)n

n!

∫ t

t′
dt1 . . .

∫ t

t′
dtnT

{
F(t1) . . .F(tn)

}
, (90)

where T represents the time-ordering of the product such, that the leftmost term

has the latest time, and each following term is applied at an earlier time than the

one before it. The time-ordering is necessary since [F(t1),F(t2)] 6= 0. Except

for the time-ordering, this series represents the expansion of the exponential

function and thus is often written in the short-hand form

U(t, t′) = T exp

[
− i
~

∫ t

t′
F(τ)dτ

]
. (91)

33



This expression, albeit formally exact, requires truncation of the series in numer-

ical implementations. Such truncation inevitably leads to the loss of the unitary

property of U, and consequently the idempotence and trace of the density ma-

trix, which can result in numerically unstable time propagation [144, 145, 146].

6.2. Magnus expansion

As an alternative to the Dyson expansion, the evolution operator can be

written as a true exponential function that does not require the time ordering,

i.e. in the form of the exponent of the infinite series as

U(t, t′) = eA(t,t′), (92)

where

A(t, t′) =

∞∑
n=1

An(t, t′). (93)

This form was proposed by Magnus in 1954 with the first terms given by [147,

117]

A1(t, t′) =
1

i~

∫ t

t′
dt1F(t1), (94)

A2(t, t′) =− 1

2

(
1

i~

)2 ∫ t

t′
dt2

∫ t2

t′
dt1
[
F(t1),F(t2)

]
, (95)

A3(t, t′) =− 1

6

(
1

i~

)3 ∫ t

t′
dt3

∫ t3

t′
dt2

∫ t2

t′
dt1

([
F(t1),

[
F(t2),F(t3)

]]
+
[[

F(t1),F(t2)
]
,F(t3)

])
. (96)

Both Dyson and Magnus expansions are equivalent if their respective series are

considered in the infinite limit, however, the Magnus expansion has an advan-

tage in the numerical implementations as it retains the unitary property of the

evolution operator even if truncated after any number of terms. Higher-order

propagators based on the Magnus expansion require the evaluation of multiple

commutators of the Hamiltonian (Fock) matrix, e.g. in Eqs. (95) and (96). A

commutator-free version based on the Magnus series can be obtained by writing

the evolution operator as an (infinite) product of exponentials [148, 149, 150]

which leads to a powerful approach for deriving higher order commutator-free

exponential time propagators.
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6.3. Approximate evolution

Real-time simulations typically start from an initial state defined at t = 0 by

D(t=0). This initial state is in most cases obtained from a converged ground-

state optimization procedure, though starting the evolution from approximate

excited states is also possible [151]. Once the evolution operator is determined,

the orbitals and RDM at arbitrary times can be calculated by applying Eqs. (83)

and (85). For instance, D(t) is obtained as follows

D(t) = U(t, 0)D(0)U†(t, 0). (97)

In practice, however, the global propagator U(t, 0) is not known – this is the

case even if the infinite series (Dyson or Magnus) from the previous section are

truncated. Numerical implementations require that the time is discretized into

a finite number of time steps N of size ∆t, and the evolution operator is factored

using Eq. (87) as

U(N∆t, 0) =

N−1∏
i=0

U
(
(i+ 1)∆t, i∆t

)
. (98)

Thus, the propagation over one time step is achieved by the application of

U(t + ∆t, t) on the density matrix or orbitals, where t ≡ i∆t. This short-time

propagation allows us to approximate the integrals in U(t+ ∆t, t)

The most commonly used approximation for U is the midpoint Magnus prop-

agator [144, 152, 153, 154]

U(t+ ∆t, t) ≈ exp

[
1

i~
F

(
t+

∆t

2

)
∆t

]
, (99)

where only the first term A1 in Eq. (94) of the Magnus expansion is considered,

and the integral
∫ t+∆t

t
dt is approximated using the midpoint quadrature. This

integrator is of the second order as it is correct to O(∆t2). Eq. (99) is also the

basis of the modified midpoint unitary transformation (MMUT) method in the

literature [152, 155], where the time step is modified to 2∆t. A fourth-order

Magnus propagator can be constructed by taking the first two terms in the

Magnus series A1 and A2 and approximating the integrals using a two-point
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Gaussian quadrature [144, 93]. A comparison of the performance of the second-

and fourth-order Magnus propagators with the predictor–corrector scheme was

presented in the recent study of Müller, Sharma, and Sierka [156] based on their

efficient implementation of RT-TDDFT. The matrix exponential in Eq. (99)

can be evaluated directly by diagonalizing the Fock matrix and constructing

the exponent from its eigenvalues. However, techniques that circumvent the

expensive diagonalization step by using a series of matrix multiplications, such

as the Baker-Campbell-Hausdorff formula [22] or the Chebyshev expansion [157],

lower the computational cost as well as improve parallelization.

Integrators that are not based on the Magnus series, such as the Runge-Kutta

Method [158, 153] or the Crank–Nicholson propagator [159, 73, 160, 161, 20]

U(t+ ∆t, t) ≈
1 + iF

(
t+ ∆t

2

)
∆t
2~

1− iF
(
t+ ∆t

2

)
∆t
2~
, (100)

can also be used. However, unlike the midpoint Magnus or the Crank–Nicholson,

the Runge-Kutta integrator does not preserve the unitary property of U and

can lead to instabilities in the time evolution, since neither the electron number

nor the total energy are strictly conserved during a time propagation that is not

unitary [144, 162]. On another note, the exponential Runge-Kutta method [163]

was successfully used to solve equations of motion in the time-dependent coupled-

cluster theory [164] which is based on the exponential coupled-cluster parametriza-

tion of the wave function [165, 166].

The issue of stable time propagation requires even more attention in the

TDHF and TDKS theories. Due to the mean-field, XC, and HF exchange

terms, the Fock matrix in the LvN equation depends on the density matrix

D(t) that is not known at the time t. Hence, the LvN equation with this Fock

matrix is nonlinear and must be solved self-consistently, i.e. the Fock matrix is

constructed from the density matrix from the previous iterations (referred to as

microiterations in the context of time domain methodology). Unless the loop

over microiterations is introduced, this implicit time-dependence of the Fock

matrix on the unknown density matrix results in the inability to express the

future time midpoint Fock matrix F
(
t+ ∆t

2

)
that appears in most approxima-
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tions for the evolution operator. This issue is commonly mitigated by using

predictor–corrector or extrapolation–interpolation schemes [77, 22, 24, 160, 20],

where the unknown midpoint Fock matrix is first constructed from the previous

time step using the linear extrapolation

F

(
t+

∆t

2

)
= 2F(t)− F

(
t− ∆t

2

)
. (101)

Once the D(t+ ∆t) is obtained by applying the evolution operator U(t+ ∆t, t),

a new Fock matrix at t+ ∆t is formed. The two Fock matrices at t and t+ ∆t

are then linearly interpolated to create the updated midpoint Fock matrix

F

(
t+

∆t

2

)
=

1

2
F(t) +

1

2
F (t+ ∆t) , (102)

and the time propagation restarts from the initial time t. This process is re-

peated until the self-consistence is reached. A thorough comparison of various

propagation schemes in the context of nonrelativistic TDKS can be found in the

study of Pueyo et al. [167]. A detailed analysis is provided in the chapter by Ye

et al. [93]. Simulations of X-ray absorption spectra are particularly sensitive to

the size of the time step as the core excitations appearing in the high energy

region typically involve rapid oscillations of the wave functions that require a

very small time step to be described properly [25, 94, 168, 93]. For such studies,

Ye et al. [93] presented a relativistic X2C approach based on the fourth-order

commutator-free Magnus propagator that adaptively chooses optimal time step

and simulation time. The discussion of the approximate time evolution is ex-

panded further in this volume in the chapter by L. Ye, H. Wang, Y. Zhang,

Y. Xiao and W. Liu entitled “Real-Time Time-Dependent Density Functional

Theories with Large Time Step and Short Simulation Time”.

7. Signal processing

RT-TDSCF solves the EOM by direct propagation in the time domain.

This allows direct simulation of time-resolved experiments and to obtain the

entire spectral information from a single real-time calculation. On the other
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hand, physical quantities of experimental interest are often defined in the fre-

quency domain, which creates a demand for techniques that efficiently extract

the frequency-domain quantity from the simulations that are carried out with

finite numerical accuracy, time step length, and simulation time.

A time-dependent property f(t) can be translated to the frequency domain

as the Fourier integral

f̃(ω) =

∫ ∞
−∞

f(t)eiωtdt. (103)

However, due to the presence of periodic oscillations in f(t) that originate in the

quantum mechanical evolution containing the excitation energies, the integral

in Eq. (103) leads to δ-functions in the frequency domain. Such stick spectra

are difficult to describe in numerical simulations, hence, the Fourier integral is

replaced with the Laplace transform

f̃(ω) =

∫ ∞
0

f(t)eiωt−γtdt, (104)

where we assumed that there is no response of the studied system before the

perturbation is applied at time t = 0, and we introduced a phenomenological

damping parameter γ > 0. This damping parameter accounts for the fact

that practical real-time simulations are performed with a finite simulation time,

and truncating the periodically oscillating signal that is not damped results in

undesirable features in the spectrum. To this end, γ is empirically set to a value

inversely proportional to the simulation time to ensure that the oscillations

diminish before the simulation is terminated. Analytic evaluation of Eq. (104)

for periodic signals leads to a series of Lorentzian peaks with finite width in the

spectrum.

Signal processing techniques serve as a means to extract the frequency-

dependent molecular properties f̃(ω) from the simulation results f(t), i.e. to

approximate the integrals in Eqs. (103) and (104). In this section we present

an overview of approaches used in the context of RT-TDSCF, starting with

the simplest one, the Discrete Fourier transform, that is instructive in order

to explain the relationship between the time and frequency domains, and then

moving to the more sophisticated methods that achieve better resolution from
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a shorter simulation. In general, spectra with a high density of states pose a

bigger challenge to the signal processing methods.

7.1. Discrete Fourier transform

In practice, RT-TDSCF simulations are performed in a series of discrete time

steps tj for which the induced dipole moment is calculated from a trace of the

dipole moment matrix and the time-dependent density matrix

µind(tj) = Tr[PD(tj)]− µstatic, (105)

where the static dipole moment is calculated as µstatic = Tr[PD0]. The most

straightforward approximation to Eq. (104) is the discrete Fourier transform

f̃k =

n−1∑
j=0

∆t fje
2πi jkn −γj∆t. (106)

Here, k = 0, 1, . . . , n−1 where n is the number of time steps and ωk = 2πk/(n∆t)

is the k-th frequency point. The coefficients fj ≡ µind(tj) and f̃k ≡ µind(ωk)

represent the components of the induced dipole moment in time and frequency

domains, respectively.

7.2. Relationship between the time and frequency domains

The frequency-domain results are obtained by discrete Fourier transform of

the time-domain results. If we perform a time-domain simulation that consists

of n steps of length ∆t, the Fourier transform yields a frequency-domain interval

of length

Ω =
2π

∆t
. (107)

Since the number of points in both domains is the same, the resolution in the

frequency domain is

∆ω =
2π

n∆t
. (108)

This relationship tells us that in order to increase the resolution in calculated

spectra we need to increase the total simulation length n∆t by increasing the

number of time steps (which makes the simulation more time consuming) or
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increasing the size of the time step (which puts extra demands on the solver).

However, because the frequency-domain interval depends inversely on the time-

step length, see Eq. (107), in order to describe high-frequency parts of spectra,

such as in X-ray spectroscopies, shorter time steps are required. Therefore, a

balance between the resolution, frequency range and computational cost has to

be achieved by choosing suitable simulation parameters. Eq. (108) represents

the major limitation for obtaining spectra with high resolution when using the

discrete Fourier transform.

7.3. Padé approximants

The use of the Padé approximation as a signal processing technique [169, 170]

was introduced to RT-TDSCF by Bruner, LaMaster, and Lopata [171] and

quickly gained popularity due to its advantage compared to the widespread

Fourier transform. In the Padé approximants, the expression for the Fourier

components f̃(ω) (e.g. induced dipole moment in frequency domain)

f̃(ω) =

M∑
j=0

f(tj)∆te
iωj∆te−γj∆t, (109)

is understood as a power series

f̃(ω) =

M∑
j=0

cj(zω)j , (110)

where zω = eiω∆t and cj = f(tj)∆te
−γj∆t that can be approximated as a

division of two other power series using the Padé ansatz

f̃(z) =

∑N
k=0 akz

k∑N
k′=0 bk′z

k′
, (111)

where N = M/2. The comparison of Eqs. (110) and (111) leads to a system of

equations, or a matrix equation, for the coefficients b

b = G−1d, (112)

where Gkm = cN−m+k and dk = −cN+k. The system is overdetermined, leading

to a customary choice of setting b0 = 1. The knowledge of the b-coefficients can
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then be used to determine the a-coefficients from ak =
∑k
m=0 bmck−m. The a

and b coefficients are subsequently used to approximate the Fourier transform

f̃(ω) with the advantage that a and b are not functions of frequency. Hence,

the frequency can be chosen at will without the limitation of Eq. (108), which

allows the spectrum to be evaluated with arbitrary frequency resolution. In

practice, the Padé approximation can suffer from numerical instabilities. To

mitigate this, the original work [171] suggested to combine it with a MO-based

decomposition [24], where each occupied–virtual MO pair that contributes to

the net frequency-dependent polarizability is transformed into the frequency

domain using its own Padé approximation, i.e. the coefficients ak and bk become

different for each MO pair. A spectrum constructed from an individual MO

pair is typically sparser and thus less prone to defective behaviour. The final

spectrum is then a sum of spectra over all MO pairs.

7.4. Compressed sensing

Compressed sensing is a technique based on the observation that a small

number of points in time domain is sufficient to sample a frequency domain

signal that is sparse, i.e. when many Fourier-domain coefficients f̃k in Eq. (106)

are near zero. The application of compressed sensing in RT-TDDFT was first

explored by Andrade, Sanders, and Aspuru-Guzik [172] in the context of elec-

tronic and nuclear dynamics for the calculation of vibrational and optical spec-

tra. The compressed sensing method recasts the problem of finding the Fourier

coefficients into solving a system of linear equations

Af̃ = f , (113)

where fj ≡ (f)j and f̃k ≡ (f̃)k are vectors with components in time and

frequency domains, respectively, and A is the matrix containing the complex

phase factors. This system allows for a different number of time and frequency

points j = 0, 1, . . . , nt − 1 and k = 0, 1, . . . , nω − 1. For a small number of time

points nt < nω the system is underdetermined with infinitely many solutions f̃ .

The sparse solution with the largest number of zero coefficients is then obtained
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by finding f̃ that minimize the norm |f̃ | while satisfying∣∣∣Af̃ − f ∣∣∣ < η, (114)

where η � 1 accounts for a certain amount of numerical noise in the signal.

Even though the benefits of compressed sensing are expected to be lower for

dense signals, for systems with low density-of-states, significant savings can be

obtained by reconstructing the spectra from shorter time simulations [172].

7.5. Filter diagonalization

Time signals often take the form of a sum of damped oscillations, i.e.

f(t) =
∑
m

dme
−iωmt, (115)

where the frequencies ωm can be considered complex to account for the damp-

ing factors. In an ideal case (with no numerical noise), this is also the form

obtained from the quantum mechanical time propagation discussed Section 6,

with ωm and dm corresponding to excitation energies and oscillator strengths,

respectively. Determining the values of ωm and dm from the known signal f(t) is

referred to as the harmonic inversion problem [173], and it was the connection

to the quantum mechanical evolution that lead to the formulation of harmonic

inversion as an eigenvalue problem [174, 175, 176]. The signal f(t) in Eq. (115)

can be considered a correlation function

f(t) = 〈ψ0|e−iΩ̂t|ψ0〉 , (116)

some unknown Hamiltonian Ω̂ and an initial state ψ0. The frequencies ωm

are the eigenvalues of Ω̂ and are obtained by solving the generalized eigenvalue

equation

Ubm = umSbm, (117)

where Û = e−iΩ̂∆t, um = e−iωm∆t, and ∆t is the time step. This equation can

be formulated in Krylov basis constructed by a consecutive application of the

operator Û on a reference vector v0 as vj := Û jv0. In such a basis, the matrices
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U and S take simple forms of Ujj′ = fj+j′+1 and Sjj′ = fj+j′ , respectively,

obtained from the time signal as fj ≡ f(j∆t). The coefficients dm are calculated

using the eigenvectors bm as
√
dm = bTmf . Note, that this method assumes

that the time signal has the form of Eq. (115), but it is not necessary that

the signal was generated by an actual propagation with a quantum mechanical

Hamiltonian, nor do we need to know the explicit forms of Ω̂ or ψ0.

Even though Eq. (117) provides a formally exact solution to the harmonic

inversion problem (up to the dimension of the Krylov vector space), it suffers

from the cubic scaling O(n3) of the diagonalization procedure with the number

of time steps compared to O(n log n) scaling of the Discrete Fourier Transform.

The filter diagonalization method circumvents this problem by transforming the

matrices in Eq. (117) from the Krylov basis vj into the Fourier basis

wk =

n−1∑
j=0

eij∆tξkvj , (118)

where the frequencies ξk can be chosen to form an equidistant grid. Since the

basis vectors wk are localized in the frequency domain, the eigenvectors of the

operator Û can be expressed using a small number k = 1, . . . , nwin � n of wk.

Nonnegligible contributions to the m-th eigenvector arise only from basis vectors

for which ξk ≈ ωm. Thus, matrices U and S expressed in this basis exhibit

large diagonal and diminishing off-diagonal terms. This enables defining a small

spectral window [ωmin, ωmax] of nwin frequencies and diagonalizing the matrix

U in Eq. (117) in the Fourier subspace spanned by wk. The main disadvantage

of the filter diagonalization method is the assumption that the time signal takes

the form of Eq. (115). Even though the method can efficiently circumvent the

uncertainty relation in Eq. (108) and provide high resolution spectra of sparsely

distributed dominant peaks, practical real-time simulations are hampered by

numerical noise, which complicates the use of the filter diagonalization method

for extracting spectral information in highly dense regions.
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8. Calculation of molecular properties using real-time methods

In this section we review some of the areas where relativistic RT-TDSCF

methods have been employed to combine the advantages of both the relativistic

and real-time treatments. Moreover, our aim is to explain the physical context

of the molecular properties, to show how to construct a computational proto-

col for obtaining these properties, and what aspects of the calculations to pay

attention to. First we explore the calculation of linear and non-linear response

properties where real-time propagation is an alternative to perturbation theory.

Then we focus on non-equlibrium spectroscopies, for which real-time methods

are the only viable approach. We focus on heavy-element systems and X-ray

spectroscopies, where relativistic effects are paramount. Such applications are

the primary motivation behind the development of relativistic real-time meth-

ods.

8.1. Linear response properties

Linear response properties include some of the most commonly measured

spectroscopies such as electron absorption spectroscopy (EAS), including X-ray

absorption spectroscopy (XAS), and chiroptical spectroscopies such as electron

circular dichroism (ECD) and optical rotatory dispersion (ORD). [177] There-

fore, they are both experimentally relevant as well as provide a good introduction

to the workflow and analysis of real-time simulations.

In this section, we consider a molecular system perturbed by a single external

field E(t) interacting with the molecule within a dipole approximation which

induces a time-dependent dipole response in the molecule. The response is a

physical quantity R(t) calculated as an expectation value of its operator R̂ from

the time-dependent wave function, R(t) = 〈Ψ(t)|R̂|Ψ(t)〉. In cases when R̂ is a

one-electron operator, such as the electric dipole operator, its expectation value

can be calculated as the trace that contains the time-dependent one-electron

RDM R(t) = Tr[D(t)R]. Restricting ourselves to electric and magnetic dipole

moment operators for the perturbation and response, different combinations
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lead to different linear spectroscopies. First, we follow the induced electric

dipole resulting from an electric dipole perturbation, leading to EAS spectrum

and the frequency-dependent index of refraction.

Electron absorption spectroscopy. Electron absorption spectrum at all frequen-

cies from UV/Vis to X-ray is determined by the complex frequency-dependent

polarizability tensor α(ω). The polarizability tensor connects the induced elec-

tric dipole moment to an applied electric field, which in the frequency domain

reads

µind
u (ω) = αuv(ω)Ev(ω) + . . . , (119)

where Ev(ω) is the Fourier transform of the external electric field E(t) = EnF (t)

defined by its amplitude E , directional unit vector n, and time dependence

F (t). The external field couples to the molecular system via the electric dipole

operator, resulting in its appearance in the Fock matrix as the term

V ext(t) = −EF (t)n ·P (120)

where P is a matrix representation of the electric dipole moment operator. By

connecting the molecular induced dipole moment, i.e. the polarization of a bulk

material, to the applied external field, the polarizability tensor determines the

complex index of refraction whose real part is the standard index of refraction

while the imaginary part corresponds to the attenuation coefficient describing

the absorption of light and appearing in the Beer–Lambert law. However, the

more common way of expressing the absorption spectrum is via the photoab-

sorption cross-section tensor

σ(ω) =
4πω

c
= [α(ω)] , (121)

where = denotes the imaginary part, and c is the speed of light. The absorp-

tion spectrum is then the dipole strength function obtained from the rotational

average of the tensor σ

S(ω) =
1

3
[Trσ(ω)] , (122)

where Tr is the trace over the Cartesian components.
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A calculation of the absorption spectrum defined in Eq. 122 from a real-time

simulation then proceeds in the following steps:

1. Obtain the reference ground-state density matrix D0 by solving the time-

independent SCF equation.

2. Perturb the ground state to obtain the initial state D(t0). This is usu-

ally performed by a short “kick” in the time domain that corresponds

to a broadband pulse in the frequency domain, thus exciting all molec-

ular transitions. A pure form of such a pulse is the Dirac δ function

E(t) = Enδ(t− t0) which in practical simulations can be represented nu-

merically by a narrow Gaussian function or rectangle, or by an analytic

expression

D(t0) = eiEn·P/~D0e
−iEn·P/~. (123)

which represents an infinitesimally short time evolution by U(t0 +ε, t0−ε)

driven by the δ(t− t0) field in the limit ε→ 0 [24].

3. Propagate the density matrix D(t0) in time for n time steps of length ∆t

while recording the induced dipole moment µ(t) = Tr[D(t)P] at each time

step.

4. Transform the induced dipole moment to the frequency domain using some

of the techniques discussed in Section 7, i.e. calculate

µ(ω) =

∫ ∞
t0

dtµ(t)eiωt−γt, (124)

where the damping term e−γt is introduced to resolve the problem that

arises when periodic signals are truncated in numerical simulations with

finite time length.

A graphical summary of these steps is shown in Figure 1 for the case of the

EAS spectrum of the mercury atom (SVWN5 functional [178, 179], uncon-

tracted Dyall’s VDZ basis [180]) calculated from a four-component RT-TDDFT

simulation. Besides illustrating the workflow of an EAS calculation from RT-

TDDFT, the figure also demonstrates the importance of including relativistic

effects in such simulations by capturing the formally forbidden singlet–triplet
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Fourier 
transform

Figure 1: Calculated absorption spectrum of the Hg atom using the relativistic four-component

RT-TDDFT. The electronic ground state is perturbed by a δ-type pulse, the induced dipole

moment is recorded in time and transformed to the frequency domain to yield the spectrum.

A formally forbidden singlet–triplet transition is present due to the relativistic level of theory.

Reprinted with permission from Ref. [24]. Copyright 2015, American Chemical Society.

transition. Even though non-relativistic approaches to these transitions have

been presented employing for example a spin-dependent perturbation, [80] it is

only in relativistic theories that include spin–orbit coupling that singlet–triplet

transitions appear in the spectra naturally from first principles and with correct

intensities. Therefore, several works on relativistic RT-TDSCF for electron ab-

sorption spectroscopy have focused on describing singlet–triplet transitions in

the spectra. [24, 90, 83]

X-ray absorption. X-ray absorption spectroscopy (XAS) is a subset of electron

absorption spectroscopy where high-frequency X-ray radiation is absorbed in

molecules while exciting electrons from core orbitals. Therefore, in XAS the

same physical quantities are evaluated. However, relativistic effects, both scalar

relativistic effects manifesting as shifts of spectral lines, as well as spin–orbit

interaction causing the splitting of spectral lines, are more pronounced in XAS

necessitating the use of computational methods based on relativistic Hamiltoni-

ans. These effects are observable even in light (3rd row) elements [25], highlight-

ing the need for a relativistic description also in these cases. The computational

protocol for calculating XAS is the same as presented in the previous paragraph
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for EAS in the UV/Vis frequency range with two important caveats: (i) X-ray

absorption occurs at higher frequencies so that the settings of the simulation

such as time step and the number of time steps have to be adjusted in order to

reach the desired frequencies with sufficient resolution and numerical accuracy;

(ii) in simulations using finite atom-centered basis sets, a broadband δ-type

pulse excites all molecular modes including excitations from valence orbitals to

high-lying above-ionization virtuals that may fall into the XAS frequency range,

but are non-physical relicts of an improper description of continuum states, and

thus have to be eliminated either in post-processing or during the application

of the external field. [25, 168]

Chiroptical spectroscopies. Optical activity and circular dichroism are effects

arising when chiral matter interacts with polarized light. Chiral molecules pos-

sess a different complex index of refraction for right- and left-handed circularly

polarized (CP) light. The real part determines the different refraction of CP

light and also the rotation of the plane of polarization of linearly polarized (LP)

light, while the imaginary part determines the difference in absorption of CP

light and the induced ellipticity of LP light. [181] At the molecular level, the

property underpinning these processes is the electric dipole–magnetic dipole

tensor β (also known as Rosenfeld tensor), that also connects to the first order

the induced electric dipole moment µind to the time derivative of the external

magnetic field B as well as the induced magnetic dipole moment mind to the

time derivative of the external electric field E

µind
i (ω) = βij(ω)Ḃj(ω), (125)

mind
i (ω) = −βji(ω)Ėj(ω). (126)

Note that we have restricted ourselves to isotropic samples where a quadrupo-

lar contribution that is non-zero for a single molecule vanishes after averaging

over molecular orientations. RT-TDSCF calculations of chiroptical properties

are based on Eq. (126) rather than on the direct simulation of an interaction

of molecules with circularly polarized light. The calculation proceeds anal-
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ogously to the computational protocol outlined here for electron absorption

spectroscopy: a molecule in its ground state D0 is perturbed by an external

electric field in the form of a δ-pulse and the induced magnetic dipole moment

mind(t) = Tr[MD(t)]−mstatic, (127)

is evaluated in the course of the simulation. In Eq. (127), mstatic = Tr[MD0]

is the static magnetic dipole moment and

M4c
µν = − 1

4c

 0 〈Xµ|(rg × σ)(σ · p)|Xν〉

〈Xµ|(σ · p)(rg × σ)|Xν〉 0

 , (128)

is the matrix representation of the magnetic dipole moment operator in the RKB

basis with rg = r −Rg standing for the electronic position operator relative to

a fixed gauge Rg. The induced magnetic dipole moment is transformed to the

frequency domain and used to calculate the Rosenfeld tensor via

βji(ω) = −im
ind
i (ω)

E
, (129)

where E is again the amplitude of the perturbing external field. Chiroptical

properties are notoriously sensitive to different parameters of a calculations such

as the choice of functional, basis set, conformation of the molecule, solvent effects

etc. [182]. Using relativistic RT-TDDFT it was shown [84] on a series of model

molecules – analogs of dimethyloxirane with the oxygen atom replaced with

heavier homologues (S, Se, Te, Po, Lv), that relativity alone can change the sign

of the spectral function, i.e. the factor discriminating between the enantiomers.

An example of such a spectrum is shown in Figure 2 for dimethylpolonirane

(PBE functional [178, 183, 184], uncontracted Dyall’s aug-cVDZ basis [185, 186]

for Po, and uncontracted Dunning’s aug-cc-pVDZ [187, 188] for light elements).

Therefore, relativistic real-time methods should be an important tool in practi-

cal calculations of chiroptical spectra, especially of molecules containing heavy

elements.

8.2. Nonlinear optical properties

For a weak external field, the spectra resulting from the real-time propaga-

tion will be equivalent to the results obtained using response theory. However,
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Figure 2: ECD spectrum of polonium analogue of dimethyloxirane calculated using relativis-

tic 4c as well as 2c RT-TDDFT compared to a non-relativistc 1c result. The inclusion of

relativistic effects changes the sign of the spectrum in the highlighted area demonstrating the

need of proper treatment of relativity when addressing chiroptical spectroscopic properties.

Adapted from Ref. 84 with permission. Copyright 2018, AIP.

in stronger fields, real-time simulations contain corrections of higher orders.

This is seen from comparing the perturbation expansion for the induced dipole

moment, schematically

µind = αPTE + βPTE2 + γPTE3 + . . . , (130)

with the way the induced dipole moment from a real-time simulation is pro-

cessed, again schematically

µind = αRTE =
[
αPT + βPTE + γPTE2 + . . .

]
E. (131)

In Eqs. (130) and (131) the indices PT and RT refer to perturbation theory and

real-time, respectively, and the molecular properties correspond to polarizability

(α), first hyperpolarizability (β), and second hyperpolarizability (γ). While this

feature of real-time methods enables the study of strong-field effects in spectra,

the properties of higher orders are incorporated in the non-perturbative µind

or αRT and are not readily available for further analysis. However, in some

applications, it is desirable to know the values of higher-order responses indi-
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vidually. This is also possible to achieve using real-time methods by combining

simulations with various field strengths.

To show how a method for obtaining nonlinear responses from real-time

simulations can work, let us examine more closely the Taylor expansion of the

time-dependent induced dipole moment

µi(t) = µ
(1)
ij (t)Ej + µ

(2)
ijk(t)EjEk + µ

(3)
ijkl(t)EjEkEl + . . . (132)

where Ej combines the amplitude and direction of the external field, i.e. E =

En, and we defined the n-th order contributions µ(n) to the induced dipole

moment. These contributions are convolutions of the time-dependent (hy-

per)polarizability tensors with the time dependence of the external field(s)

µ
(1)
ij (t) =

∫
dt1 αij(t− t1)F (t1), (133a)

µ
(2)
ijk(t) =

1

2!

∫
dt1

∫
dt2 βijk(t− t1, t− t2)F (t1)F (t2), (133b)

µ
(3)
ijkl(t) =

1

3!

∫
dt1

∫
dt2

∫
dt3 γijkl(t− t1, t− t2, t− t3)F (t1)F (t2)F (t3).

(133c)

Again, the experimentally relevant quantities are the frequency-dependent (hy-

per)polarizability tensors

αij(ω) =

∫
dt1 αij(t1) e−iωt1 , (134a)

βijk(ω1, ω2) =

∫
dt1

∫
dt2 βijk(t1, t2) e−iω1t1e−iω2t2 , (134b)

γijkl(ω1, ω2, ω3) =

∫
dt1

∫
dt2

∫
dt3 γijkl(t1, t2, t3) e−iω1t1e−iω2t2e−iω3t3 .

(134c)

If we choose a harmonic external field, V ext(t) = E cos(ωt)n · P, the integrals

in Eqs. (133) and (134) can be simplified to obtain expressions relating µ(n) to
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specific nonlinear optical (NLO) properties

µ
(1)
ij (t) = αij(−ω;ω) cos(ωt), (135a)

µ
(2)
ijk(t) =

1

4
[βijk(−2ω;ω, ω) cos(2ωt) + βijk(0;ω,−ω)] , (135b)

µ
(3)
ijkl(t) =

1

24
[γijkl(−3ω;ω, ω, ω) cos(3ωt) + 3γ̄ijkl(−ω;ω, ω,−ω) cos(ωt)] .

(135c)

The frequency-dependent molecular property tensors in equations (135) are the

dipole polarizability αij(−ω;ω), and higher-order properties governing processes

involving several photons, namely, the second harmonic generation (SHG) coef-

ficient βijk(−2ω;ω, ω), the optical rectification (OR) coefficient βijk(0;ω,−ω),

the third harmonic generation (THG) coefficient γijkl(−3ω;ω, ω, ω) and the av-

eraged degenerate four-wave mixing (DFWM) coefficient γ̄ijkl(−ω;ω, ω,−ω). [189,

73, 74]

The workflow of the procedure for evaluating NLO properties from real-time

simulations [74, 26] is as follows

1. Starting from a converged ground-state SCF, perform several real-time

simulations employing a cosine-shaped external field with different ampli-

tudes of the field, for example E1 = E , E2 = 2E , E3 = −E and E4 = −2E .

Note that to improve the stability of time evolution and smoothness of

extracted responses, the cosine function is multiplied with a linear enve-

lope ωt/(2π) in the first period. [74] Different envelopes with improved

performance has also been suggested. [190]

2. Calculate µ(n) as derivatives of induced dipole moment

µ
(1)
ij (t) =

∂µi(t)

∂Ej

∣∣∣∣
E=0

, µ
(2)
ijk(t) =

1

2

∂2µi(t)

∂Ej∂Ek

∣∣∣∣
E=0

, µ
(3)
ijkl(t) =

1

6

∂2µi(t)

∂Ej∂Ek∂El

∣∣∣∣
E=0

,

(136)

by means of numerical differentiation – a finite field method in each time

step. For example, the first- and second-order responses can be calculated

from simulations emplying fields from step 1) with precision of the order
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E4 via

µ
(1)
ij (t) =

8 [µi(t, Ej)− µi(t,−Ej)]− [µi(t, 2Ej)− µi(t,−2Ej)]
12Ej

, (137a)

µ
(2)
ijj(t) =

16 [µi(t, Ej) + µi(t,−Ej)]− [µi(t, 2Ej) + µi(t,−2Ej)]
24E2

j

. (137b)

3. Fit the obtained n-th order induced dipole moment contributions to ana-

lytical expressions in Eqs. (135) to evaluate numerical values of the NLO

properties.

An example of such a real-time finite field procedure is depicted in Figure 3 for

the second-order response µ
(2)
xxx(t) of W(CO)5py, py = pyridine at the 1eX2C

level of theory (B3LYP functional [178, 179, 191, 192, 193], Dyall’s uncontracted

valence DZ basis set [180] for W, uncontracted aug-cc-pVDZ basis [188] for the

light elements). The fitting was used to determine the second harmonic genera-

tion and optical rectification coefficients βSHG
xxx and βOR

xxx, respectively. The figure

is based on data underpinning Ref. [26] where it was shown that the inclusion of

relativistic effects contributed to about 35% of the final value, highlighting the

importance of a relativistic treatment in NLO applications where heavy metal-

containing compounds are of interest due to the favourable electronic properties

of the metallic centre [194, 195].

A special category of non-linear phenomena is high harmonic generation

(HHG) during which photons from a strong laser recombine into fewer photons of

higher energy via an interaction with a material. A HHG spectrum thus contains

peaks corresponding to multiples of the frequency of the laser field. HHG has

practical importance both as a spectroscopy technique as well as a means of

generating coherent high-frequency radiation. HHG presents a challenge for

theoretical modelling due to the necessity of using strong fields – several orders

of magnitude stronger than the applications discussed so far, thus requiring

a stable propagation, and due to the requirements on basis sets that need to

be able to describe electrons oscillating far from nuclei. The first relativistic

RT-TDDFT calculations of HHG were presented by De Santis et al. using the

PyBerthaRT program for Au2, capturing harmonics up to the 13th order. [83]
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Figure 3: Non-linear optical properties from RT-TDDFT: fitting of second-order induced

dipole moment contribution µ
(2)
xxx(t) of W(CO)5py obtained as a numerical second derivative

in each time step to analytical expression µ
(2)
xxx(t) = 1

4

[
βSHG
xxx cos(2ωt) + βOR

xxx

]
from which

elements of the hyperpolarizability tensor can be extracted. This figure is generated by the

authors based on data underpinning Ref. [26].

8.3. Non-equilibrium spectroscopies

So far we have discussed molecular properties where formulations in terms

of perturbation theory exist, and are usually the preferred mode of calculation.

However, real-time methods are particularly well suited for the simulation of

experiments where the use of response theory would be too cumbersome. Such is

the case of non-equilibrium spectroscopies where more than one laser pulses are

used to drive the molecule. In the so-called pump–probe or transient absorption

(TA) spectroscopies, the first pulse (the pump) is used to excite the molecule

into a non-equlibrium state while the second pulse (the probe) then measures

the response of the driven molecule. By varying the time delay between the

pump and the probe it is possible to follow quantum dynamics of electrons in

molecules in real time. While a response theory-based description for pump–

probe experiments exists in the form of non-equlibrium response theory, the

ability of real-time methods to tailor the pulse shape to match the experiments

and handle strong fields offers a distinct advantage over perturbative techniques.
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In the case of transient absorption spectroscopies, two external pulses are

used in the simulation, the pump E(t) and the probe F(t) as introduced in

the Fock matrix in Eq. (61). The pump first excites the molecule to a non-

stationary excited state. This perturbed state then evolves in time and its

evolution is probed by the second pulse applied after a time delay τ . As an

example, let us consider a set-up with the pump pulse taking the form

E(t) = nE(t) = nE cos2

(
π
t− t0
T

)
sin(ω0t+ φ), (138)

with amplitude E , polarization direction n, and the pulse shape defined by the

carrier frequency ω0 of a sine wave, cos2 envelope, carrier–envelope phase (CEP)

φ, and time duration T . The carrier frequency is usually tuned to an excitation

energy of the molecule which then becomes the primary excited state in the

superposition state created by the pump. However, even with relatively large

amplitudes, the ground state remains the most populated one.

For the probe, we use a broadband δ-function pulse

F(t) = mF(t) = mF0δ(t− (T + τ)), (139)

applied at time τ after the pump pulse, that similarly to the case of linear

spectroscopies induces a time-dependent dipole moment that can be processed to

yield an absorption spectrum. However, since the initial state now corresponds

to the superposition state instead of pure ground state, the spectrum contains

imprints of quantum dynamics of the non-equilibrium state. The probe pulse

can be applied while the pump is still active, overlapping regime, or after the

pump has been turned off, non-overlapping regime.

The final TA spectra are obtained within the RT-TDDFT framework from

the differential induced dipole moment

∆µTAS
uv (t) = Tr {Pu [Dpp

v (t)−Dp
v(t)]} ≡ µind,pp

uv (t)−µind,p
uv (t), u, v ∈ {x, y, z},

(140)

where µind
uv (t) denotes the expectation value of the dipole operator. The com-

putation of TA spectra involves performing two simulations for recording the
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dipole moment at each time step; these simulations and their quantities are

denoted by p and pp subscripts, indicating that the real-time propagation used

pump-only pulse and pump together with the probe pulse, respectively.

As an example, let us consider the TA spectrum of thiophene (PBE0 [178,

183, 184, 196] functional modified to contain 40% of Hartree–Fock exchange,

uncontracted aug-cc-pVXZ, X = T (S), D (C,H), basis [187, 188, 197]) depicted

in Figure 4. Here, the pump carrier frequency was set to correspond to the

first excitation energy while the X-ray absorption at sulfur L2,3-edges was in-

vestigated after the application of the probe. The spin–orbit splitting of the

sulfur 2p orbitals is visible in the spectrum which is thus correctly described

only by relativistic methods, in this case using the 4c Dirac–Coulomb Hamilto-

nian (4c) and the amfX2C Hamiltonian (2c). The pump–probe delay τ adds an

extra degree of freedom to the TA spectrum which is then normally plotted as

a heat map where alternating low- and high-intensity signals can be observed,

tracing the dynamics of the superposition state as induced by the pump pulse.

Due to the increased computational cost of obtaining such a spectrum – sev-

eral spectra need to be calculated from simulations with different τ in order to

generate such a heat map – efficient 2c relativistic methods are mandatory for

these applications.

9. Conclusion and perspectives

Real-time methods are based on a direct integration of the quantum me-

chanical equation of motion. In non-relativistic quantum chemistry, they gained

popularity in previous decades due to their ability to describe phenomena rang-

ing from linear response properties to interaction with strong laser fields and

time-resolved spectroscopies – areas at the forefront of experimental research.

In relativistic quantum chemistry, the pioneering theory development, computa-

tional implementation, and first applications arrived later and the field has yet

to catch up with the breadth of the scope of applications of its non-relativistic

counterparts.
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Figure 4: Transient absorption spectra of thiophene – comparison of 1c non-relativistic (or-

ange), 2c amfX2C (blue) and 4c Dirac–Coulomb (cyan) Hamiltonian-based RT-TDDFT. (a)

TAS at τ = 0; (b) Variation in 1c TAS spectra with pump–probe delay τ ; (c) Variation in

2c TAS spectra with pump–probe delay τ . All spectra are obtained with a damping factor

Γ = 0.01 au. Figure reprinted from Ref. [27] under CC-BY-4.0 licence.

In this chapter we summarized some of the advances of relativistic real-time

methods in quantum chemistry while restricting ourselves to mean-field methods

and pure electron dynamics. It has been our ambition that our introduction

explains the fundamental principles of this methodology and inspires readers to

join in this rapidly developing and promising field.
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[108] M. Göppert-Mayer, Über elementarakte mit zwei quantensprüngen, Ann.
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Comput. 12 (8) (2016) 3741–3750.

[172] X. Andrade, J. N. Sanders, A. Aspuru-Guzik, Application of compressed

sensing to the simulation of atomic systems, Proc. Natl. Acad. Sci. U.S.A.

109 (35) (2012) 13928–13933.

[173] V. A. Mandelshtam, H. S. Taylor, Harmonic inversion of time signals and

its applications, J. Chem. Phys. 107 (17) (1997) 6756–6769.

[174] M. R. Wall, D. Neuhauser, Extraction, through filter-diagonalization, of

general quantum eigenvalues or classical normal mode frequencies from a

small number of residues or a short-time segment of a signal. I. Theory

and application to a quantum-dynamics model, J. Chem. Phys. 102 (20)

(1995) 8011–8022.

[175] V. A. Mandelshtam, H. S. Taylor, A low-storage filter diagonalization

method for quantum eigenenergy calculation or for spectral analysis of

time signals, J. Chem. Phys. 106 (12) (1997) 5085–5090.

76



[176] V. A. Mandelshtam, Fdm: the filter diagonalization method for data pro-

cessing in nmr experiments, Prog. Nucl. Magn. Reson. Spectrosc. 38 (2)

(2001) 159–196.

[177] P. Norman, K. Ruud, T. Saue, Principles and Practices of Molecular Prop-

erties, Wiley-VCH, Chichester, 2018.

[178] J. C. Slater, A simplification of the hartree-fock method, Phys. Rev. 81 (3)

(1951) 385.

[179] S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid

correlation energies for local spin density calculations: a critical analysis,

Can. J. Phys. 58 (8) (1980) 1200–1211.

[180] K. G. Dyall, A. S. P. Gomes, Revised relativistic basis sets for the 5d

elements hf–hg, Theor. Chem. Acc. 125 (1-2) (2010) 97–100.

[181] L. D. Barron, Molecular Light Scattering and Optical Activity, Cambridge

University Press, 2004.

[182] I. Warnke, F. Furche, Circular dichroism: electronic, Wiley Interdiscip.

Rev. Comput. Mol. Sci. 2 (1) (2012) 150–166.

[183] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation

made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

[184] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation

made simple [phys. rev. lett. 77, 3865 (1996)], Phys. Rev. Lett. 78 (1997)

1396–1396.

[185] K. G. Dyall, Relativistic and nonrelativistic finite nucleus optimized dou-

ble zeta basis sets for the 4p, 5p and 6p elements, Theor. Chem. Acc.

99 (6) (1998) 366–371.

[186] K. G. Dyall, Relativistic quadruple-zeta and revised triple-zeta and

double-zeta basis sets for the 4p, 5p, and 6p elements, Theor. Chem.

Acc. 115 (5) (2006) 441–447.

77



[187] T. H. Dunning Jr, Gaussian basis sets for use in correlated molecular

calculations. I. The atoms boron through neon and hydrogen, J. Chem.

Phys. 90 (2) (1989) 1007–1023.

[188] R. A. Kendall, T. H. Dunning Jr, R. J. Harrison, Electron affinities of

the first-row atoms revisited. systematic basis sets and wave functions, J.

Chem. Phys. 96 (9) (1992) 6796–6806.

[189] R. W. Boyd, Nonlinear Optics, Academic Press, 2008.

[190] B. S. Ofstad, H. E. Kristiansen, E. Aurbakken, Øyvind Sigmund-

son Schøyen, S. Kvaal, T. B. Pedersen, Adiabatic extraction of nonlin-

ear optical properties from real-time time-dependent electronic-structure

theory (2023). arXiv:2302.02779.

[191] A. D. Becke, Density-functional exchange-energy approximation with cor-

rect asymptotic behavior, Phys. Rev. A 38 (6) (1988) 3098–3100.

[192] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti

correlation-energy formula into a functional of the electron density, Phys.

Rev. B 37 (2) (1988) 785–789.

[193] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab Initio

Calculation of Vibrational Absorption and Circular Dichroism Spectra

Using Density Functional Force Fields, J. Phys. Chem. 98 (45) (1994)

11623–11627.

[194] N. J. Long, Organometallic Compounds for Nonlinear Optics - The Search

for En-light-enment!, Angew. Chem. Int. Ed. 34 (1995) 21–38.

[195] S. Bella, Second-order nonlinear optical properties of transition metal

complexes, Chem. Soc. Rev. 30 (6) (2001) 355–366.

[196] C. Adamo, V. Barone, Toward reliable density functional methods without

adjustable parameters: The PBE0 model, J. Chem. Phys. 110 (13) (1999)

6158–6170.

78

http://arxiv.org/abs/2302.02779


[197] D. E. Woon, T. H. Dunning Jr, Gaussian basis sets for use in correlated

molecular calculations. iii. the atoms aluminum through argon, J. Chem.

Phys. 98 (2) (1993) 1358–1371.

79


	1 Objectives box
	2 Introduction
	3 Relativistic Particle–Field Interaction Hamiltonians
	4 Equations-of-motion for exact-state wave function
	4.1 Time-dependent Schrödinger equation
	4.2 Reduced density matrices
	4.3 Time-reversal symmetry

	5 Equations-of-motion for approximate-state wave functions
	5.1 Time-dependent Hartree–Fock theory
	5.2 Time-dependent Kohn–Sham DFT
	5.3 Liouville–von Neumann equation in four-component framework
	5.4 Reduction of the Liouville–von Neumann equation to the exact two-component (X2C) form

	6 Real-time propagation
	6.1 Evolution operator
	6.2 Magnus expansion
	6.3 Approximate evolution

	7 Signal processing
	7.1 Discrete Fourier transform
	7.2 Relationship between the time and frequency domains
	7.3 Padé approximants
	7.4 Compressed sensing
	7.5 Filter diagonalization

	8 Calculation of molecular properties using real-time methods
	8.1 Linear response properties
	8.2 Nonlinear optical properties
	8.3 Non-equilibrium spectroscopies

	9 Conclusion and perspectives

