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ABSTRACT: We present a novel function fitting method for
approximating the propagation of the time-dependent electric
dipole moment from real-time electronic structure calculations.
Real-time calculations of the electronic absorption spectrum
require discrete Fourier transforms of the electric dipole moment.
The spectral resolution is determined by the total propagation
time, i.e., the trajectory length of the dipole moment, causing a
high computational cost. Our developed method uses function
fitting on shorter trajectories of the dipole moment, achieving
arbitrary spectral resolution through extrapolation. Numerical
testing shows that the fitting method can reproduce high-
resolution spectra by using short dipole trajectories. The method
converges with as little as 100 a.u. dipole trajectories for some
systems, though the difficulty converging increases with the spectral density. We also introduce an error estimate of the fit, reliably
assessing its convergence and hence the quality of the approximated spectrum.

1. INTRODUCTION
The rapid advancement of laser technology in the past decades
allows us to probe matter on spatiotemporal scales that
approach the characteristic time and length scales of the
electron, opening the field of attosecond science.1,2 This
development has forced quantum chemists to shift their
attention from the time-independent to the time-dependent
Schrödinger and Dirac equations.3−5 Numerical approaches to
laser-driven electron dynamics are often labeled real-time
methods to distinguish them from the response-theoretical
methods to the time-dependent Schrödinger/Dirac equation,
the latter solving the equations of motion perturbatively in the
frequency domain.6,7

Even without explicit reference to results derived from
perturbation theory such as, e.g., Fermi’s golden rule, it is still
possible to extract linear and low-order nonlinear optical
properties from nonperturbative real-time simulations, includ-
ing electronic absorption spectra and time-resolved pump−
probe absorption spectra that would be hard or impossible to
compute using response theory�see refs 8−12 for recent
examples.
In this work, we focus on electronic absorption spectra

extracted from electron-dynamics simulations driven by a
Dirac-delta impulse, which excites the molecule into all dipole-
allowed excited states simultaneously.8 Due to the non-
perturbative nature of real-time methods, the resulting

spectrum contains nonlinear (e.g., two-photon) as well as
linear absorption lines.11 For weak pulses, the nonlinear effects
are small, and the absorption spectrum is dominated by linear
lines. In practice, the induced electric dipole moment is
recorded in the course of the simulation and subsequently
transformed to the frequency domain to yield an absorption
cross section. When using the conventional discrete Fourier
transform to process the signal, the spectral resolution is
inversely proportional to the number of time steps N and the
time-step length Δt, as Δω = 2π/(NΔt). Obtaining sufficient
spectral resolution typically requires tens to hundreds of
thousands of time steps since Δt cannot be increased beyond a
certain limit if rapid oscillations of the electron density are to
be captured. Moreover, increasing Δt reduces the accuracy and
stability of the numerical integration scheme used to propagate
the electronic degrees of freedom. As the computational effort
in each time step requires multiple rebuilds of the Hamiltonian
matrix, it is comparable to several iterations of a ground-state
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optimization within the chosen electronic-structure model.13

Hence, there is considerable interest in decreasing the number
of time steps required to achieve sufficient spectral resolution.
In addition to reducing the number of time steps, it is

possible to increase the computational efficiency of real-time
electronic structure methods by disregarding negligible basis
functions,14 basis-function pairs and quartets.15 As a result, in a
large molecule, although there are N( )4 electron repulsion
integrals (ERIs) in total, it can be shown that only N( )2 of
them are significant, where N refers to the number of basis
functions. As shown within real-time time-dependent density-
functional theory (RT-TDDFT), a large prefactor associated
with the evaluation of non-negligible ERIs can further be
reduced by using, e.g., the resolution-of-the-identity method.16

By applying a spatial truncation radius upon the time-
dependent density matrix, RT-TDDFT can approach the
linear N( ) scaling.17,18

Previous efforts to improve the spectral resolution have been
made by estimating excitation energies through various signal
processing techniques.19−21 More recently, Bruner et al.22

investigated the use of Pade ́ approximants to interpolate the
discrete Fourier transforms used for the absorption spectrum.
These are all methods operating in the frequency domain,
leaving no other validation options other than comparison with
a fully propagated spectrum.
The original periodic signal is typically damped using a

decaying exponential function to reduce unwanted artifacts
arising when the discrete Fourier transform is applied to
oscillating functions in simulations with finite trajectory length.
In the time domain, the number of time points can be
increased by padding the damped signal with zeros, leading to
finer spectra. However, this artificial extension of the trajectory
length can be applied only to sufficiently damped signals.
In this work, we investigate a more sophisticated and

powerful alternative: the extrapolation of a short signal. The
discrete Fourier transform of an extrapolated signal achieves an
increasingly higher spectral resolution as the extrapolation
length increases. This requires the development of a stable and
reliable method for time-series forecasting. The inherently
harmonic character of the time-dependent wave function in the
absence of an external field suggests that such forecasting of
molecular properties should be possible. Importantly, the
forecasted signal can be verified in the time domain by
comparing it with a relatively few additional time steps. To the
best of our knowledge, no published work exists on improving
the spectral resolution by such an extrapolation of the time-
dependent dipole moment.
The current success and popularity of machine learning is

undeniable, including use cases in chemistry,23−29 and one
might be tempted to leverage artificial neural networks for
forecasting the time-dependent electric-dipole moment.
However, while artificial neural networks are powerful tools
for pattern detection in large data sets, they struggle with
precise and reliable extrapolations.30,31 Although the universal
approximation theorem32 tells us that an excellent interpolation
can be achieved, it does not guarantee a stable extrapolation. In
order to achieve a stable extrapolation, overfitting must be
avoided by enforcing sufficient restrictions.
In this article, we present a novel approach for obtaining

high-resolution absorption spectra from real-time simulations
of laser-driven electron dynamics by exploiting a priori
knowledge of the form of the dipole function from quantum

mechanics in a finite-dimensional Hilbert space. The form of
the dipole function thus is motivated by the underlying
physics, with unknown parameters to be determined by fitting
a short dipole trajectory from a real-time simulation. The fitted
function may be evaluated at any point in time, meaning that it
can be extrapolated in the time domain to arbitrary future time.
This further implies that we can achieve arbitrary spectral
resolution. For sufficiently weak Dirac-delta impulse, the
evaluation of absorption spectra based on these fitted functions
may use analytical expressions for the linear response
function.6

Working in the time domain, a quantitative error measure of
the fitted dipole function can be monitored during the course
of the real-time simulation and used to evaluate convergence.
This way, an unnecessarily long real-time propagation can be
avoided by automatically terminating the propagation upon
convergence of the fit. The developed method is independent
of the quantum mechanical model and is tested with several
molecular systems using mainly RT-TDDFT.8,33−38 Despite
certain flaws arising mainly from the almost universally
adopted adiabatic density-functional approximation,3,39 RT-
TDDFT is the far most widely used electronic-structure
method for laser-driven electron dynamics. With computa-
tional costs comparable to (or below) time-dependent
Hartree−Fock theory,40 RT-TDDFT takes into account
electron-correlation effects that would otherwise require
advanced and computationally expensive wave function
theories.4,5 To demonstrate the independence of the under-
lying electronic-structure theory, we also present results
obtained from real-time time-dependent configuration inter-
action singles (RT-TDCIS)41−43 theory.
We start with a short presentation of the electric-dipole

approximation within real-time simulations before introducing
the proposed method for fitting the time-dependent electric-
dipole moment. After briefly laying out the simulation details
for the real-time simulation of a selection of systems, the
results of the fitting method for these systems are presented
and discussed. Finally, we reflect on the performance of the
fitting method and discuss potential future improvements.

2. THEORY
In this work, we employ the following conventions: Subscripts
u, v denote Cartesian components, vectors are typed in
boldface, and quantum-mechanical operators are denoted by a
hat. Following the convention of response theory by Olsen and
Jørgensen,6 we define the Fourier transform and its inverse
according to

= [ ] =f f t f t t( ) ( )
1

2
( )e dti

(1)

= [ ] =f t f f( ) ( ) ( )e dt1 i
(2)

where the transformed function is denoted by a tilde. Atomic
units are used throughout, unless otherwise specified.

2.1. Real-Time Simulations of Absorption Spectra.
Within the clamped-nucleus Born−Oppenheimer approxima-
tion, real-time simulations of electronic absorption spectra
typically assume the electric-dipole approximation where a
molecule is subjected to a time-dependent spatially uniform
electric field, F(t). The time-dependent Hamiltonian reads

= +H t H V t( ) ( )0 (3)
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where Ĥ0 is the time-independent electronic Hamiltonian, and
the interaction operator is given by

= ·V t F tu( ) ( ) (4)

where μ̂ is the electric dipole moment operator. The linear
polarization direction of the electric field is determined by real
unit vector u, such that the field aligns with one of the
Cartesian axes. This implies the form V̂(t) = −μ̂uF(t), where μ̂u
is the component of μ̂ along the polarization direction.
We assume that the electronic system is in the ground state |

0⟩ at time t < 0, and that the external field F(t) is only active
between t = 0 and time t0 ≥ 0. At time t0, the Hamiltonian
reduces to the time-independent Hamiltonian such that
Schrödinger’s equation for t ≥ t0 becomes

| = |H t
t

t( ) i
d
d

( )0 (5)

The time-dependent wave function in the absence of the
external field oscillates around the solution at time t0, |Ψ(t0)⟩ =
∑n kn(t0) |n⟩, as given by

| = | = |t t k t n( ) e ( ) ( )eH t t

n
n

E t ti ( )
0 0

i ( )n0 0 0

(6)

where |n⟩ denotes a normalized eigenfunction of the
unperturbed Hamiltonian, Ĥ0 |n⟩ = En |n⟩.44,45 This
formulation is exact when the electronic continuum is
excluded, e.g., by choosing a fixed, finite basis, as commonly
done in quantum chemistry. Actual simulations are not
performed in the energy eigenbasis but in, e.g., a basis of
Slater determinants, implying that the coefficients kn(t0) are
not known.
In order to obtain the electronic absorption spectrum

averaged over all molecular orientations relative to the electric
field, the time-dependent electric dipole moment μu(t) =
⟨Ψ(t)|μ̂u|Ψ(t)⟩ is calculated in three separate simulations with
the electric field polarized in each of the three Cartesian
directions (u = x, y, z). The absorption cross-section is then
obtained from the Fourier transform of the dipole moments,
μ̃u(ω), as46

=
*

| |
+

*

| |
+

*

| |
S

c

F

F

F

F

F

F
( )

4
3

Im
( ) ( )

( )

( ) ( )

( )

( ) ( )

( )
x y z

2 2 2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
(7)

where c is the speed of light. The resulting spectrum contains
both linear (one-photon transitions between the ground and
excited states) and nonlinear (multiphoton transitions between
the ground and excited states and one- and multiphoton
transitions between excited states) absorptions, as recently
stressed by Guandalini et al.11 We note that only the induced
dipole moment, that is, the total dipole moment with the static
ground-state part subtracted, contributes to the absorption
cross section, but for notational convenience, we only
distinguish between that and the total dipole moment when
it is strictly required.
Since the dipole moment is calculated on a finite discrete

time grid, the Fourier transforms are replaced by discrete
Fourier transforms, thus introducing artificial periodic
boundary conditions. To avoid artifacts from these, the dipole
moment is multiplied by a damping factor before the discrete
Fourier transform, i.e.,

= [ ] =| | +t t t( ) ( )e
1

2
( )e du u

t
u

t

0

i( i )
(8)

where we have used that the induced dipole moment vanishes
for t < 0. The Fourier transform thus becomes a Laplace
transform. The parameter + can be interpreted as a
common (inverse) lifetime of all excited states, giving rise to
Lorentzian line shapes in the simulated absorption spectra.47

The discrete Fourier transform, however, requires a very large,
often prohibitive, number of time steps to achieve sufficient
spectral resolution. In the following sections, we describe an
extrapolation technique aiming at high resolution with a short
simulation time.

2.2. Expected Form of the Electric Dipole Moment.
Once the external field is turned off, the time-dependent
e l e c t r i c d ipo l e momen t evo l v e s a c co rd ing to
μu(t) = ⟨Ψ(t)|μ̂u|Ψ(t)⟩, where |Ψ(t)⟩ is defined in eq 6. The
dipole moment oscillates with the Bohr frequencies ωnm = En −
Em according to

= { [ | | * ]

[ | | * ] }
+ | | |

>
t n m k t k t t t

n m k t k t t t

k t n n

( ) 2 Re ( ) ( ) cos( ( ))

Im ( ) ( ) sin( ( ))

( )

u
n m

u n m nm

u n m nm

n
n u

0 0 0

0 0 0

0
2

(9)

for time t ≥ t0.
48 The function form of the approximated dipole

moment μu(t) ≈ μu(t) will therefore be given by

= + [ + ]
=

+t c c t t c t t( ) sin( ( )) cos( ( ))u
u

i

N

i
u

i
u

N i
u

i
u

0
1

0 0

u

u

(10)

where Nω
u is the number of participating frequencies ωi

u, each
frequency with two independent linear coefficients ciu and cNdω

u+i
u .

If we can determine these frequencies and their corresponding
real coefficients from a short dipole time series, then we obtain
a continuous dipole function and, hence, infinite spectral
resolution.
As described in detail below, we estimate the participating

frequencies using the poles of a Fourier−Pade ́ approximant,
while the linear coefficients are determined using linear
regression in a subsequent step.

2.3. Estimating Bohr Frequencies. In order to estimate
the frequencies of the dipole moment, we investigate the
singular points of the Fourier−Pade ́ approximant, originally
introduced in real-time quantum simulations by Bruner et al.22

In general, the Pade ́ approximant is used to accelerate
convergence of a truncated power series. The discrete Fourier
transform can be written as the power series

=
=

t t z( )
2

( )u
n

N

u n
n

0

1t

(11)

where z depends on the frequency according to

=z z( ) e t(i ) (12)

The diagonal Fourier−Pade ́ approximates the Fourier trans-
form using two polynomials Pu(z) and Qu(z) of degree
M = (Nt − 1)/2

[ ] =M M t P z
Q z

/ ( )
2

( ( ))
( ( ))

u

u
u (13)
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where the coefficients of the polynomials create a Toeplitz
linear system, for details see ref 22. The Fourier−Pade ́ poles,
denoted zpu, are found by

=Q z( ) 0u p
u

(14)

where the damping parameter γ is set to zero, as the damping
parameter removes the singularities of the spectrum. The Bohr
frequencies are positive and real-valued, while the frequencies
corresponding to the roots of Qu(z) will be complex. The
number of roots of Qu(z), (which amounts to M roots), should
also significantly exceed the number of Bohr frequencies. The
potential frequencies are given by

=
z

t

ln( )
p
u p

u

(15)

where ln(zpu) returns the principal value of the logarithm. Only
roots Im(zpu) > 0 are considered, as the complex conjugate root
theorem states that complex roots will form conjugate pairs.
These conjugate pairs yield duplicates of the real-valued
frequencies. Real-valued roots zpu yield purely imaginary
frequencies and are therefore also excluded. The potential
frequencies ωp

u discard the imaginary component and should
represent the extrema of the Fourier−Pade ́ spectrum, not
singular points like zpu.
Estimating the potential frequencies uses the Python

NumPy49 library to compute the eigenvalues of the companion
matrix50 of the polynomial Qu(z) to determine its roots. This
method exhibits poor scaling with respect to the number of
time points, Nt, representing a computational bottleneck of the
dipole-moment μu(t) fitting procedure. In real-time simu-
lations using very small time steps, one may safely increase the
step length on the dipole data used to create the Fourier−Pade ́
approximant to alleviate the computational cost. As shown by
Mattiat and Luber,51 the convergence of the Fourier−Pade ́
approximant is mostly impacted by the trajectory length NtΔt,
and not the time step itself. However, the discrete Fourier
transform and hence also the Fourier−Pade ́ are periodic with a
cycle length of 2π/Δt. Peaks above π/Δt will fold back due to
antisymmetry and appear as negative duplicates polluting the
spectrum. Therefore, it is crucial to keep the time step Δt < π/
ωmax, where ωmax is the largest significant frequency in the
signal.
The potential frequencies ωp

u must be classified as either an
estimated frequency or a redundant root. The classification is
based on the assumption that ln (zpu)/(iΔt) should have a
significant imaginary component if ωp

u is a redundant root,
while it should lie close to the real axis if ωp

u corresponds to an
actual Bohr frequency. This further means that Qu(z(ωp

u))
should be close to zero and that [M/M]μdu

(ωp
u) should be large

for estimated frequencies. Hence, we create a two-dimensional
representation rpu of the prospective frequencies ωp

u given by

[ ] =
[ ]

[ ] [ ]
r

X X

X X
1

( ) min ( )

max ( ) min ( )p
u

x
p
u

q
u

q
u

q
u

q
u

q
u

q
u (16)

[ ] =
[ ]

[ ] [ ]
r

Y Y

Y Y

( ) min ( )

max ( ) min ( )p
u

y
p
u

q
u

q
u

q
u

q
u

q
u

q
u (17)

where the unnormalized features are defined as

= |[ ] |X M M( ) log ( / ( ) )p
u

p
u

10 u (18)

= | |Y Q z( ) log ( ( ( )) )p
u

u p
u

10 (19)

The base-10 logarithm is used to manage the extreme scaling
of both features, as prospective frequencies should cause
Qu(z(ωp

u)) to approach zero and hence be a nearly singular
point of [M/M]μdu

(ωp
u). The features are constructed such that

estimated frequencies should be close to rpu = (0, 0), while
redundant roots should be closer to rpu = (1, 1).
We use the K-means clustering algorithm (see, e.g., refs 52

and 53), implemented in the Python SciKit-Learn54 library,
with K = 2 to classify prospective frequencies. The 2-means
clustering algorithm is a computationally inexpensive way to
separate a set into two categories. The centroid for the cluster
of potential frequencies should be closer to (0, 0), whereas the
centroid for the redundancy cluster should be closer to (1, 1).

2.4. Determining Linear Coefficients. Once the
frequencies are estimated, the linear coefficients are
determined by using linear regression. The coefficients are
optimized by minimizing the cost function55

= [ ]
=

R t tc c( ) ( ) ( ; )u

n

N

u n u n
u

0

1
2

t

(20)

Using the general form of the dipole moment in eq 9, the
linear coefficients may be optimized using a simple least-
squares optimization. The only restraint in the optimization of
these coefficients is that they are real. This fitting procedure is
general for any type of external field, F(t). However, as shown
by Hauge,48 restricting the coefficients is crucial to avoid
overfitting the dipole moment.
The form μu(t) in eq 10 is based on the full dipole moment,

correct through all orders in perturbation theory, and is
independent of the electric field. In this work, we use a Dirac
delta-type impulse8 of strength κ

=F t t( ) ( ) (21)

which has an infinitely wide frequency distribution and thus
generates the full absorption spectrum for the given polar-
ization direction. This implies that t0 = 0. Further, we assume
that the electric field strength is sufficiently weak, such that we
may regard the interaction operator V̂(t) as a time-dependent
perturbation and assume that the interaction induces only one-
photon transitions from the ground state, i.e., a linear
absorption spectrum. The electric dipole moment should
then be of the form μu(t) ≈ μu(0) + μu(1)(t), where the zeroth
order dipole moment corresponds to the ground-state value,
μu(0) = μu(t = 0). We now investigate an analytical expression
for the first-order correction of the dipole moment induced by
a weak Dirac delta impulse.
We start with the exact expression for the linear response

function6

= | | | |
++V F n; ( ) 2 ( ) 0

( i )u u
n

u
n

n
i

0

2 0
2

0
2

(22)

where we have used the Fourier transform of the interaction
operator V̂(t)

= =V F F( ) ( ), ( )
2u u (23)

The linear response function and the first-order correction to
t h e d i p o l e m o m e n t a r e r e l a t e d b y
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= [ ]+
| |V t; ( ) ( )eu u u
t

i
(1) . Since μu1(t < 0) = 0, we

get the relation

= | | |
+

t t

n

( )e d

2 0
( i )

u
t

n
u

n

n

0

(1) ( i )

0

2 0
2

0
2

(24)

Using well-known Laplace transforms, it is readily verified that
the first-order dipole correction must be a linear combination
of sine waves48

= = | | | |t B t B n( ) sin( ), 2 0u
n

n
u

n n
u

u
(1)

0
0

2

(25)

We have also used that the first-order perturbation correction
to the dipole moment should only include one-photon
transitions. This further means that the approximated dipole
moment, when using a weak Dirac delta impulse, should have
the form

= +
=

t c c t( ) sin( )u
u

i

N

i
u

i
u

0
1

u

(26)

where all sine coefficients are positive.
The coefficients of μu(t), approximating the dipole moment

from the Dirac delta impulse, are optimized using the least
absolute shrinkage and selection operator (LASSO)56 method.
The coefficients are determined according to

= + | |R cc cargmin
1
2

( )u u

i
i
u

c
LASSO

u

l
moo
noo

|
}ooo
~oo (27)

where λ is the shrinkage parameter restricting the magnitude of
the coefficients, ciu. In contrast to the ordinary linear least-
squares algorithm, the LASSO method is iterative and,
therefore, somewhat less computationally efficient. In return,
this makes it possible to enforce positive coefficients, as in the
implementation by SciKit-Learn.54 This makes the method less
prone to overfitting.
2.5. Molecular Orbital Decomposition. The electric

dipole moment can be written as a sum of contributions from
elementary molecular orbital (MO) transitions8
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u
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where i and a label occupied and virtual MOs, respectively.
The components μuia(t) are then approximated separately. This
MO decomposition can divide a dense spectrum into a series
of sparser spectra and aid in the assignment of absorption
lines.8 Clustering the MO components into groups can be used
to offset the increased memory consumption.57 For the fitting
method, the creation of clusters with well-separated
frequencies could also reduce the accumulation of errors
when summing the component fits.
When the individual components are fitted, the assumptions

on the sign of the linear coefficients are no longer valid. As is
clear from the underlying theory and as demonstrated in
practice by Bruner et al.,22 the same frequencies may be found
in several components μuia, and their corresponding partial
spectra may contain negative peaks. Only the full spectrum, i.e.,
the sum of the components, is guaranteed to contain positive
peaks exclusively. The ordinary least-squares method must
therefore be used when optimizing the linear coefficients of the

individual components, which may introduce additional errors
due to overfitting in each component.
Alternatively, the fitting algorithm may estimate the

frequencies of each component separately and then optimize
the linear coefficients for the full dipole moment. This way, the
additional coefficient restrictions can be used in the
optimization. In our experience, however, this produces a
vast number of estimated frequencies leading to problems with
overfitting even when enforcing positive linear coefficients.

2.6. Convergence Criterion. The goal of the fitting
method is to accurately construct the function μ(t) using the
shortest possible dipole trajectory. A given trajectory is divided
into two parts: a fitting domain and a verification domain. The
linear coefficients are optimized by using only the fitting
domain, while the error is calculated on the verification
domain. When estimating the frequencies, however, the entire
available trajectory is used. Measuring the error in the fitting
domain gives the interpolation error, which is artificially low in
cases of overfitting, whereas the error in the verification
window indicates the reliability of the extrapolated dipole
moment. The error of the fit is estimated using one minus the
coefficient of determination, R2, i.e.,
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where μum is the mean value of the induced dipole moment.
The error measure is unitless and independent of the
magnitude of the dipole moment. The fitting method can be
run in parallel with real-time simulations, which are terminated
once Eu drops below a predefined threshold value. The
computational cost of the fitting method is not insignificant,
and we recommend that it is run once per time intervals of
50−100 a.u. when used to automatically terminate the real-
time simulation.
Computing the error according to eq 29 provides an error

estimate of the fit as a whole. In our experience from testing
the algorithm with ideal multisinusoidal signals, the error of the
fit depends primarily on the frequency estimation. Significant
deviations in the estimated linear coefficients were only
observed if there were frequencies missing or poorly estimated.
In the case of ideal signals, there would be a significant error in
the fit only if the frequency estimation failed. Real dipole data
contain noise introduced by numerical integration in time.
How this affects the distribution of error is unknown, although
it is reasonable to believe that the main source of error still lies
in the frequency estimation.
The error measure Eu cannot distinguish error contributions

from different parts of the spectrum, preventing termination
once the desired frequency region is converged. In order to
focus on valence excitations in the low-frequency region, we
apply a low-pass (smoothing) filter to remove frequencies
above a cutoff frequency ωmax from the dipole moment in the
time domain. We used a Butterworth filter, implemented by
SciPy,58 which removes the high-energy part of the spectrum
while leaving the lower-energy part almost unchanged. If
bound core excitations are the main targets, then a high-pass
filter must be used instead.

3. COMPUTATIONAL DETAILS
We test the dipole extrapolation scheme using RT-TDDFT
simulations, supplemented by a few RT-TDCIS simulations, to
demonstrate its applicability to wave function-based theories.
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The RT-TDDFT simulations are performed using the ReSpect
program,59 while the RT-TDCIS calculations are performed
using the Hylleraas Quantum Dynamics (HyQD) software.60

The RT-TDDFT and RT-TDCIS simulations are performed
with analytic integration at t = 0 au, as described in ref 8. The
subsequent time steps are performed numerically using the
Magnus integrator for the RT-TDDFT simulations8 and the
three-stage Gauss-Legendre integrator61 as described in ref 62
with the residual norm convergence criterion 10−14 a.u. for the
implicit equations for the RT-TDCIS simulations.
The RT-TDCIS simulations are performed with time step

Δt = 0.01 a.u. and field strength κ = 10−3 a.u. The RT-TDDFT
simulations for the organic molecules CH4, CH2O, CH3OH,
C2H6, and C6H6 are performed with time step Δt = 0.01 a.u.
and field strength κ = 10−4 a.u., while Δt = 0.01 a.u. and κ =
10−3 a.u. are used for CO2, H2O, and NH3. For the smallest
systems, He, H2, Be, and LiH, Δt = 0.1 a.u. and κ = 10−3 a.u.
are used.
Molecular geometries are listed in the Supporting

Information. The simulations were performed in Dunning’s
cc-pVXZ and aug-cc-pVXZ, X = D,T, basis sets63−65

(uncontracted in the case of RT-TDDFT calculations). The
RT-TDDFT simulations were performed using the PBE0
exchange−correlation potential66−69 in the adiabatic approx-
imation.
Simulations are performed for all three Cartesian directions

for all systems, even in cases in which point-group symmetry
could have been easily exploited to reduce the computational
effort to one or two directions. While this is mainly done to
make automation simple (identical treatment for all systems),
it also provides a simple check that the extrapolation algorithm
does not significantly break point-group symmetry due to
numerical noise in the input dipole trajectories.

Our implementation of the dipole-extrapolation algorithm is
freely available at https://github.com/HyQD/absorption-
spectrum.

4. RESULTS
All reference spectra in this paper are produced from low-pass
filtered electric dipole moments with a trajectory length of
4000 a.u., such that the spectral resolution becomes Δω = 1.6 ·
10−3 a.u.. In this article, the resolution of the fitted spectrum
S̅(ω) is the same as its reference spectrum. This is to allow
direct comparisons of the two spectra, although the resolution
of S̅(ω) could be made arbitrarily fine. The Fourier transform
of the approximated dipole moment μu is calculated according
to
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The half-life parameter was always set to γ = 0.5 · 10−3π, and
the spectra were cut at an estimated ionization energy of 0.5
a.u. − ϵHOMO, where the energies of the highest occupied
molecular orbital ϵHOMO of all systems are listed in the
Supporting Information.
Using the low-pass filter will leave the lower energy part of

the absorption spectrum unaltered, while the higher energy
part is removed and set to zero. Differences between filtered
and unfiltered spectra are shown in the Supporting
Information. The low-pass filter does not give a clean cutoff
at the cutoff frequency ωmax but rather a gradual lowering of
the peak intensity around ωmax. The cutoff frequency should
therefore be set somewhat higher than the desired range of the
spectrum. We have used ωmax = 4 a.u. for all systems.
When fitting the dipole moment, the available trajectory is

from when the external field is turned off at t = 0 to time t =

Table 1. Convergence Times and Corresponding Errors of Systems from RT-TDCIS Calculations

basis Tverx [a.u.] Tvery [a.u.] Tverz [a.u.] Ex Ey Ez ES
CH2O aug-cc-pVDZ 450 600 650 8 · 10−6 8 · 10−4 1 · 10−3 1 · 10−3

CO2 cc-pVDZ 100 100 100 8 · 10−5 8 · 10−5 3 · 10−6 2 · 10−4

aug-cc-pVDZ 250 250 200 6 · 10−5 6 · 10−5 3 · 10−4 2 · 10−3

aug-cc-pVTZ 300 300 250 2 · 10−4 2 · 10−4 1 · 10−4 2 · 10−3

H2O aug-cc-pVDZ 150 200 300 1 · 10−5 2 · 10−4 7 · 10−5 3 · 10−4

NH3 aug-cc-pVDZ 350 300 300 4 · 10−5 7 · 10−4 7 · 10−6 3 · 10−3

Table 2. Convergence Times and Corresponding Errors of Systems from RT-TDDFT Calculations

basis Tverx [a.u.] Tvery [a.u.] Tverz [a.u.] Ex Ey Ez ES
Be aug-ucc-pVTZ 100 100 100 1 · 10−8 1 · 10−8 1 · 10−8 6 · 10−6

C2H6 aug-ucc-pVDZ 750 800 550 6 · 10−4 7 · 10−4 5 · 10−4 8 · 10−4

aug-ucc-pVTZ 1000 1000 950 5 · 10−2 3 · 10−2 2 · 10−5 6 · 10−3

C6H6 aug-ucc-pVDZ 1000 1000 550 3 · 10−2 4 · 10−2 7 · 10−4 4 · 10−2

CH2O aug-ucc-pVDZ 450 650 700 4 · 10−6 8 · 10−4 1 · 10−4 5 · 10−4

aug-ucc-pVTZ 650 900 1000 2 · 10−4 4 · 10−4 2 · 10−3 8 · 10−4

CH3OH aug-ucc-pVDZ 1000 1000 1000 2 · 10−1 8 · 10−1 4 · 10−2 8 · 10−2

aug-ucc-pVTZ 1000 1000 1000 3 · 10−1 8 · 10−1 4 · 10−1 2 · 10−1

CH4 aug-ucc-pVDZ 200 200 200 8 · 10−4 7 · 10−4 6 · 10−4 2 · 10−3

aug-ucc-pVTZ 350 350 350 4 · 10−4 3 · 10−4 3 · 10−4 3 · 10−3

CO2 aug-ucc-pVDZ 350 350 250 4 · 10−4 4 · 10−4 1 · 10−4 5 · 10−4

H2O aug-ucc-pVDZ 200 250 300 2 · 10−6 3 · 10−6 3 · 10−4 3 · 10−4

H2 aug-ucc-pVTZ 100 100 100 1 · 10−7 1 · 10−7 8 · 10−8 5 · 10−6

He aug-ucc-pVTZ 100 100 100 9 · 10−8 9 · 10−8 1 · 10−7 9 · 10−6

LiH aug-ucc-pVDZ 100 100 300 1 · 10−5 3 · 10−5 3 · 10−4 3 · 10−4

NH3 aug-ucc-pVDZ 350 400 300 2 · 10−4 4 · 10−4 7 · 10−4 1 · 10−3
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Tveru . The linear coefficients are determined on the time interval
[0, Tfitu ], where Tfitu = 0.75Tveru . The frequencies are estimated
on the entire available trajectory [0, Tveru ] but with a limit on
the total number of data points supplied to the Pade,́ set to 5 ·
103. The reduction in points, if exceeding the limit, is done by
effectively increasing the time step Δt used (by an integer
factor) when creating the Pade.́ The error Eu is evaluated only
on (Tfitu , Tveru ]. The error in spectrum ES is calculated the same
way as that in the time domain, as given in eq 29.
4.1. Performance on a Selection of Systems. For each

spatial direction, the convergence of the fit is tested every 50 au
in time of the trajectory length, starting from Tmin = 100 a.u..
The simulation is terminated when the fit has converged below
a given threshold or when the trajectory length reaches
Tmax = 1000 a.u., which corresponds to a target minimum
spectral resolution of 0.006 a.u.. The convergence criterion was
set to Eu < 10−3, a strict threshold corresponding to a near-
perfect fit. The criterion was set based on preliminary
investigations.48 Since the real-time calculations on a given
system using three spatial directions of the external field are
independent, the trajectory length needed for a converged fit
might vary between the three simulations.
The required trajectory length of each spatial direction Tveru

and their corresponding verification error Eu as well as the
error in the spectrum ES are listed in Tables 1 and 2. The
fitting of the dipole moment from RT-TDCIS calculations is
shown in Table 1, while the fitting of the RT-TDDFT data is
found in Table 2. Figures of the approximated spectra of all
systems can be found in the Supporting Information.
The fitting method reached the strict threshold for most

systems with a maximum spectral error of ES ≤ 3 · 10−3. For all
converged systems, the approximated functions for dipole
moment μu(t) reliably reproduce its reference spectrum. The
systems with very sparse spectra (He, H2, and Be) converged
instantly (Tver = 100 a.u.), providing approximated spectra
indistinguishable from their reference spectra. In these cases,
the fitting method achieved a speedup of 10 times compared to
the max trajectory length of Tmax = 1000 a.u. or 40 times
compared to computing the reference spectra (using 4000
a.u.). The reduction in computational cost achieved by using
the fitting method is relative to the desired spectral resolution.
We would argue that the least unambiguous way to assess the
speedup is to compare the convergence times Tveru with the
simulation time that would have been used if the fitting
method was not used, i.e., the max trajectory length. Should
the method converge at the preset max trajectory length, one
may argue that no simulation time was spared. In this case, one
still achieves arbitrary improvement in the spectral resolution.
Systems with relatively sparse spectra (CH4, CO2, H2O, LiH,

and NH3) also converged nicely with short dipole trajectories
(Tveru ≤ 350 a.u.). As the spectral density increases, the fitting
method struggles to converge. Systems like C2H6 and CH2O
only converged when using a double-zeta basis set, while the
fitting of C6H6 and CH3OH did not achieve errors below the
low threshold.
The CH2O molecule with a double-zeta basis set converged

for both of the real-time methods. The spectra of the fit in both
cases are nearly indistinguishable from their reference spectra.
A comparison between the approximated and reference spectra
from RT-TDDFT calculations is shown in Figure 1. The RT-
TDDFT triple-zeta case nearly reached the error threshold (Ez
= 2 · 10−3), also providing a very low spectral error (ES = 8 ·
10−4).

Among the converged systems, NH3 from RT-TDCIS
calculations showed the largest error compared to its reference
spectrum (ES = 3 · 10−3). Its spectrum is shown in Figure 2,

and it was the approximated spectrum with the most visible
deviation from its reference spectrum among the converged
systems. The approximated spectrum shows a deviation in a
peak at ω ≈ 0.75 a.u., but the rest of the peaks correspond well
to the reference spectrum.
The fitting method only partially converged for C6H6, as well

as C2H6 and CH2O with triple-zeta basis, meaning that the
error of the fit was below the set threshold in only one or two
of the spatial directions. Still, the spectral error in all three
cases is quite low. The result of the fitting of benzene is shown
in Figure 3, which had the largest spectral error (ES = 4 · 10−2)
of the three.

The trajectory length needed for the fitting method to
converge strongly depends on the spectral density. We
observed a trend in that fitting becomes increasingly difficult
as the spectral density increases. Increasing either the number
of electrons in the system or the size of the basis set will, in
general, require longer real-time simulations before the fitting

Figure 1. Spectrum of CH2O using the aug-ucc-pVDZ basis in an RT-
TDDFT simulation. The reference spectrum is in solid blue, while the
yellow dashed line shows the spectrum of the fitted functions. The
fitting errors are Ex = 4 · 10−6, Ey = 8 · 10−4, and Ez = 1 · 10−4.

Figure 2. Spectrum of NH3 using the aug-cc-pVDZ basis in an RT-
TDCIS simulation. The reference spectrum is in solid blue, while the
yellow dashed line shows the spectrum of the converged fitted
functions. This was the poorest approximated spectrum of all
converged cases. The fitting errors are Ex = 4 · 10−5, Ey = 7 · 10−4,
and Ez = 7 · 10−6.

Figure 3. Spectrum of C6H6 using the aug-ucc-pVDZ basis in an RT-
TDDFT simulation. The reference spectrum is in solid blue, while the
yellow dashed line shows the spectrum of the fitted functions. The
fitting errors are Ex = 3 · 10−2, Ey = 4 · 10−2, and Ez = 7 · 10−4.
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method converges. The trend with increasing basis set size is
clearly seen from the fitting of CO2 from RT-TDCIS
calculations. The simulation using the cc-pVDZ basis set
converges faster (Tveru = 100 a.u.) than when using the larger
basis sets like the aug-cc-pVDZ basis set (Tveru ≤ 250 a.u.) or
aug-cc-pVTZ basis set (Tveru ≤ 300 a.u.).
Only the fit of CH3OH did not result in errors below the

convergence threshold in any of the spatial directions. This was
true for both the double and triple-zeta basis sets (from RT-
TDDFT calculations). The result using a triple-zeta basis set is
shown in Figure 4 and is the case with the highest error in the

time domain, Eu ∼ 10−1. There is a significant deviation from
the reference spectrum, although the main features are intact.
Of all systems in this paper, this gave the worst approximation
to the reference spectrum. Despite this, the spectrum S̅(ω) still
provides a reasonable coarse approximation.
These results are promising in all cases, as the converged fit

seems to reproduce its reference spectrum reliably with only
minor deviations in the peak intensities. The error of the fit Eu
also correlates with the spectral error, ES. This predictability is
crucial if the convergence criterion is used to automatically
terminate real-time simulations. Our results also indicate that
the convergence criterion used in this study is stricter than
necessary. A slight relaxation in the criterion might lead to
faster convergence without significantly impacting the quality
of the approximated spectrum.
For the estimated dipole moment, the frequencies and their

corresponding linear coefficients are known. For a successful
fit, one may therefore obtain the transition probability |⟨0|μ̂u|
n⟩|2 of a transition with energy En − E0 directly from the linear
coefficient, as |⟨0|μ̂u|n⟩|2 = Bnu/(2κ). This could be used to
calculate the oscillator strength and create stick spectra.
However, estimated frequencies in different spatial directions
but corresponding to the same transition will have a small error
associated with the frequencies. In order to compute the
oscillator strength, one would therefore have to assess which
estimated frequencies across the spatial directions correspond
to the same transition.
The convergence of the dipole moment fitting depends

primarily on the frequency estimation. When the fit does not
converge, it follows that the Fourier−Pade ́ approximant is not
sufficiently converged to accurately capture the Bohr
frequencies. The quality of the Fourier−Pade ́ depends on
the dipole trajectory length tN rather than the number of steps
or step length.51 However, there is no given final time tN
ensuring convergence; the necessary trajectory length depends
on the spectral density. High spectral density can cause the
Fourier−Pade ́ to fail, even for relatively long simulations. The
general Pade ́ approximant is prone to instabilities due to

problems with near-degeneracy of the linear system. As
pointed out by Cooper et al.,70 the Fourier−Pade ́ used in
real-time spectroscopy is known to struggle with dense spectra.
The fitting method introduces a measure of the error Eu that
does not rely on any reference spectrum. This introduces a
more reliable way of estimating the error in the approximated
spectrum.

4.2. Fitting Using MO Decomposition. We assessed the
performance of the fitting procedure used to extrapolate the
components of the dipole moment of C6H6 decomposed to the
MO pairs μuia in the RT-TDDFT calculation. Instead of
creating a fitting function for each individual MO pair, which
would increase the memory overhead, we clustered the
components μuia into groups of ten. These groups are formed
so that the overall sparsity of the spectra obtained for each
cluster is maintained. This is accomplished by spreading the
individual constituents of the cluster across the energy range. A
fitted function of each cluster was then created from the sum of
the MO pairs that the cluster contains. The total error is
measured for the full dipole moment, μu(t). Some of the MO
pairs were omitted entirely, making the MO decomposition
work as a low-pass filter. When fitting components, the low-
pass filter is, therefore, not needed.
Fitting the decomposed signal, however, did not improve the

convergence compared with when the full dipole moment was
used for extrapolation. Simulations for both directions μx and
μy reached the max trajectory length (t = 1000 a.u.) without
the fitting error going below the error threshold. The errors (Ex
= 1 · 10−2 and Ey = 1 · 10−2) were only slightly lower compared
with fitting without the MO decomposition. The last spatial
direction μz converged at Tver = 650 a.u. (Ez = 4 · 10−4), which
is somewhat slower than without MO decomposition. The
spectral error was ES = 9 · 10−3, which corresponds to a low
spectral error.
Although the MO decomposition did not lead to an

accelerated convergence of the fitting method, we still
observed improvements. For example the simulation with
Tveru = 600 a.u. has a lower error of the fit for the decomposed
dipole moment (Ex = 6 · 10−2, Ey = 4 · 10−2, and Ez = 1 · 10−3)
for all spatial directions compared to the fit on the full dipole
moment, (Ex = Ey = 3 · 10−1 and Ez = 2 · 10−3). The
decomposed fit in Figure 5 (ES = 3 · 10−2) is visibly improved
compared to the fit using the full dipole moment in Figure 6
(ES = 2 · 10−1).
It is important to note that the scope of our testing of the

fitting method using MO decomposition was limited. Previous
success using the Fourier−Pade ́ approximant in combination
with the MO decomposition on RT-TDDFT data suggests that
this in many cases is very effective.22 Our study, however, raises
cause for caution regarding the use of the Fourier−Pade ́

Figure 4. Spectrum of CH3OH using the aug-ucc-pVTZ basis in an
RT-TDDFT simulation. The reference spectrum is in solid blue, while
the yellow dashed line shows the spectrum of the fitted functions. The
fitting errors are Ex = 3 · 10−1, Ey = 8 · 10−1, and Ez = 4 · 10−1.

Figure 5. Spectrum of C6H6 using the aug-ucc-pVDZ basis in a RT-
TDDFT simulation. The reference spectrum is in solid green, while
the orange dashed line shows the spectrum of the fitted functions
using molecular orbital decomposition from Tveru = 600 a.u..
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approximant: The Pade ́ can struggle, even when using MO
decomposition. The unknown amount of error introduced to
the final spectrum by this procedure remains an open problem
that the user should be aware of when analyzing spectra with
the Fourier−Pade ́ method with MO decomposition.
The particular form of components μupq is also very

dependent on the quantum mechanical method used to
compute the time-dependent wave function. Using MO
decomposition on the electric dipole moment from RT-
TDCCSD calculations leads to large overlaps in frequencies
among different components.48 The usefulness of such
decomposition might vary among the different quantum
mechanical frameworks.

5. CONCLUSION
We have developed a novel method for creating functions
approximating the electric dipole moment from real-time
calculations. The fitted functions for the dipole moment in the
three spatial directions can then be used to produce absorption
spectra with an arbitrary high resolution. Real-time calculations
of absorption spectra require the use of discrete Fourier
transforms, demanding long simulation times to obtain high
spectral resolution. In our work, we have shown that the length
of the real-time simulations and, hence, the computational cost
can be greatly reduced by the developed fitting method.
We introduced a quantitative error measure to evaluate the

convergence of the fit. For all systems in this work, a converged
fit reliably reproduced the reference spectrum from long real-
time calculations. A convergence criterion of 10−3 seems to be
quite strict, and further studies should be conducted to
investigate the impact of slightly higher errors on the estimated
spectrum. In order to reduce the computational cost of
calculating absorption spectra, real-time calculations should be
automatically terminated once the convergence criterion is
reached.
In this work, we set the verification window to 25% of the

available dipole trajectory. The critical step of the method is
determining the frequencies, which always uses all available
data. For the linear optimization, the verification window
should include an entire period of the smallest frequency in the
signal as an insufficiently large verification window may lead to
misleading error estimates. In future work, the verification
window should depend on an estimate of the smallest
frequency in the signal based on differences in the molecular
orbital energies.
The fitting method converged with as little as 100 a.u. long

trajectories in time for systems with sparse spectra.
Convergence slows as spectral density increases, even leading
to failure of convergence in some cases. The current version of
the fitting method shows encouraging results for smaller

systems, although aspects of the method require further
investigation.
Our testing of the fitting method using the molecular orbital

decomposition of a single system gave mixed results. The
decomposition did not enable the fit to meet the convergence
criterion, although we observed improvements in the
approximated spectrum. This motivates the need for further
investigations.
An apparent weakness of the current implementation is the

way of estimating frequencies. Future versions should not rely
on Fourier−Pade ́ but rather investigate other methods of
estimating frequencies. This could include other methods for
harmonic inversion or letting the function form of the fitted
dipole moment be a truncated Fourier series based on an
estimation of the fundamental frequency. The same
frequencies can appear in all spatial directions, which could
be exploited to improve frequency estimation. In particular, in
cases where the frequencies are successfully estimated in one
spatial direction, knowledge of these existing frequencies could
be used to alleviate the search in other spatial directions with
potentially higher spectral density. Improving the frequency
estimation is crucial for stabilizing the fitting method for
systems with a high spectral density.
This work has focused on the Dirac delta impulse, although

the general fitting algorithm may be used on systems with any
type of external field. Using a laser pulse targeting a specific
spectral region may provide both an upper and lower bound
when estimating the frequencies. Any a priori information
about the frequencies should be exploited by the fitting
algorithm. Additionally, the Dirac delta impulse targets all
excitation energies, thereby maximizing the spectral density. It
is not unlikely that a narrow-band laser pulse would somewhat
alleviate the fitting process by reducing the spectral density.
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