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ABSTRACT
Many state-of-the art machine learning (ML) interatomic potentials are based on a local or semi-local (message-passing) representation
of chemical environments. They, therefore, lack a description of long-range electrostatic interactions and non-local charge transfer. In this
context, there has been much interest in developing ML-based charge equilibration models, which allow the rigorous calculation of long-range
electrostatic interactions and the energetic response of molecules and materials to external fields. The recently reported kQEq method achieves
this by predicting local atomic electronegativities using Kernel ML. This paper describes the q-pac Python package, which implements several
algorithmic and methodological advances to kQEq and provides an extendable framework for the development of ML charge equilibration
models.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156290

I. INTRODUCTION

Atomistic machine learning (ML) methods and interatomic
potentials, in particular, have had an enormous impact in the fields
of molecular and materials simulation.1–5 One of the key inno-
vations that made this possible was the idea of decomposing the
total energy of a system into atomic contributions, which could be
learned as a function of each atom’s chemical environment within
a certain cutoff radius using Neural Networks (NNs)6 or Gaussian
Process Regression (GPR).7 This locality assumption has enabled
the construction of highly accurate, computationally efficient, and
size-extensive potentials that approach first-principles accuracy at a
fraction of the cost.8–11

At the same time, locality ultimately limits the achievable accu-
racy of a potential, since the information beyond the cutoff radius is
not taken into account in this case.12–14 Indeed, long-range interac-
tions can be substantial in bulk systems, most prominently due to the
Coulomb interaction, which decays slowly (∼ 1

r ) with interatomic
distance. These electrostatic interactions are often screened in prac-
tice so that local potentials can still effectively describe polar solids
and liquids with surprising accuracy.9,10,14 Unfortunately, this can-
not always be relied upon, however. For example, non-local charge

transfer at heterogeneous interfaces or through molecular wires can-
not be adequately captured in this manner.15 Similarly, the relative
stability of molecular crystal polymorphs sensitively depends on
a balance of long-ranged electrostatic and dispersion interactions,
precluding a purely local description.16,17

Due to these limitations, the inclusion of long-range inter-
actions in ML potentials has been an active field of study, with
several different approaches in use. These, for example, include the
use of global or non-local descriptors.18–20 In many cases, physi-
cal baseline models can also provide the correct long-range physics
at affordable computational cost (Δ-ML).16,17,21–23 Finally, message-
passing neural networks can extend the range of local interatomic
potentials by a multiple of the employed cutoff, although with-
out including the full long-range interactions present in a periodic
system.24

In this contribution, we focus on approaches that tackle the
problem of long-range electrostatics by describing the charge distri-
bution of molecules or materials within the ML model itself (e.g., via
partial charges). This has the advantage that it allows the incorpora-
tion of different total charge states and the response to external fields
rigorously. The simplest approach to this end is to directly learn
suitable reference charges, e.g., from Hirshfeld decomposition.25,26
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While this, in principle, affords a reasonable description of long-
range electrostatics, it does not resolve the issue of non-local charge
transfer since the charges are, in this case, themselves functions of a
local ML model.

To overcome this, Goedecker and co-workers proposed the
Charge Equilibration via Neural Network Technique (CENT),27–29

where the charges are obtained by minimizing a charge depen-
dent energy function. Specifically, CENT uses the classical Charge
Equilibration (QEq) model30 as a basis, replacing fixed elemen-
tal electronegativities with environment-dependent ones predicted
by a NN. This approach was subsequently developed further by
Behler, Goedecker, and co-workers into the Fourth Generation High
Dimensional Neural Network Potentials (4GHDNNP).1,15,31 Here,
CENT and local NN potentials are combined, and partial charges
are fitted to reproduce those obtained from Hirshfeld partitioning.32

Similarly, Xie et al. reported a self-consistent NN potential, where
charges are obtained through the gradient-based minimization of a
coupled local and electrostatic energy function.33 Here, charges from
the Becke population analysis were used as a reference for the partial
charges.

Our recently reported Kernel Charge Equilibration (kQEq)
method is in the same spirit as these approaches but uses Kernel
ML instead of NNs.34 Kernel methods are frequently used for inter-
atomic potentials, as they are highly data-efficient, depend on few
hyperparameters, and can be trained through a closed-form lin-
ear algebra expression.4 Furthermore, kQEq avoids the ambiguity
of charge partitioning schemes by training directly on electrostatic
observables, such as the dipole moment.

In this paper, we introduce the q-pac Python package. q-pac
provides a modular framework for implementing machine-learned
charge equilibration methods, with a particular focus on kQEq. We
review the kQEq methodology and describe several new algorith-
mic and methodological advances in q-pac. In particular, the Kernel
Ridge Regression (KRR) approach of the original kQEq paper is
replaced by a sparse GPR formulation, which provides better com-
putational scaling of training and prediction as a function of the
training set size. Furthermore, additional fitting targets and the
possibility to fit multiple properties at the same time have been
implemented. Notably, this includes energies, which allow the devel-
opment of fully long-ranged ML interatomic potentials based on
kQEq. Finally, some example applications of these new capabilities
are showcased.

II. THEORY
To provide a consistent account of the methodology, the kQEq

working equations are rederived in this section, starting from the
classical QEq approach of Rappe and Goddard.30,35 Differences and
new features relative to the original implementation presented in
Ref. 34 are highlighted where appropriate. Atomic units are used in
all equations.

A. Charge equilibration
The core idea of QEq30,35 and related methods is to define a sim-

ple energy expression that depends on the charge distribution within
a system. The ground-state charge distribution for a given geometry

FIG. 1. Illustration of the approximate electron density decomposition into an iso-
lated atom density ρ0(r) (left) and fluctuation density δρ(r) (right) for a schematic
one-dimensional acetylene molecule. The solid line represents the target elec-
tron density ρ(r), the dotted line represents the superposition of isolated atom
densities ρ0(r), and the dashed line represents a combination of ρ0(r) with an
approximate fluctuation density δρ(r). The latter describes charge transfer and
polarization within the molecule.

is then obtained by minimizing this energy, under the constraint that
the total charge is conserved.

The charge distribution in a molecule or solid is rigorously
described by the electron density ρ(r) and the location of the nuclei.
Since the electron density is a complex three dimensional distribu-
tion, it is computationally convenient to work with a more simplified
representation, such as atomic partial charges, however. To this end,
we can split the total electron density into a reference density ρ0(r)
and a fluctuation term δρ(r), where the former is typically the super-
position of electron densities of the corresponding isolated spherical
atoms (see Fig. 1). Together with the corresponding nuclei, these
atomic reference densities are charge neutral and, therefore, do not
contribute to the long-range electrostatic interactions, leaving the
fluctuation density as the object of interest.

In the following, we will assume some atomic partitioning of
the fluctuation density,

δρ(r) =∑
i

δρi(r), (1)

where δρi(r) is the local fluctuation density around atom i. This
allows us to define partial charges as

qi = ∫ δρi(r)dr. (2)

Note that since there is no unique partitioning of δρ(r), the partial
charges are also to some extent arbitrary, although canonical choices
like Hirshfeld partitioning exist.

We can now approximate the total energy of a non-periodic
system as

Etot ≈ E0 + EQEq = E0 +
N

∑

i=1
(χiqi +

1
2

Jiq2
i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Site−Energy

+
1
2∬

δρ(r)δρ(r′)
∣r − r′∣

drdr′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Coulomb−Integral

. (3)

Here, the first term E0 is a charge-independent reference energy.
This could, e.g., be defined as the sum of the energies of the isolated
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neutral atoms, or this could stem from a local (charge-independent)
interatomic potential. The second term EQEq collects all charge-
dependent terms and will be our primary focus in the following.
EQEq can itself further be divided into two terms. The first of these
is a site-energy term that sums over all N atoms i and represents the
second-order Taylor expansion of the atomic energy with respect
to the partial charges. In this context, the expansion coefficient χi
is usually termed the electronegativity, while Ji is the electronic
hardness. In the original QEq scheme, both of these coefficients
are element-dependent parameters. The second term in EQEq is the
classical Coulomb energy of the fluctuation density.

In order to evaluate EQEq, we now need to define a mathematical
expression of the fluctuation density and its partitioning. Specifi-
cally, we will assume that the fluctuation density δρ(r) can approx-
imately be expressed as a superposition of spherically symmetric
atom-centered Gaussians. Each of these Gaussians is normalized to
the corresponding atomic partial charge qi according to Eq. (2) and
has an inverse distribution width ϕi = 1/(

√

2αi), where αi can be
interpreted as an atomic radius. This leads to the expression

δρ(r) ≈
N

∑

i=1
− qi(

ϕi
√

π
)

3

exp (−ϕ2
∣r − ri∣

2
). (4)

Here, the Gaussians are centered at the atomic positions ri. Using
this definition, the Coulomb integral in Eq. (3) can be evaluated
analytically as

∬

δρ(r)δρ(r′)
∣r − r′∣

drdr′ =
N

∑

i=1

⎛

⎜
⎜

⎝

q2
i

1
2αi
√

π
+

N

∑

j=1
qiq j

erf( ri j√
2γij
)

rij

⎞

⎟
⎟

⎠

,

(5)
with γi j =

√

(α2
i + α2

j) and rij being the distance between atoms i and
j. With this, EQEq from Eq. (3) can be rewritten as

EQEq =
N

∑

i=1
[χiqi +

1
2
(Ji +

1
αi
√

π
)q2

i ]

+
1
2

N

∑

i, j
qiqj

erf( rij√
2γij
)

rij
. (6)

Note that here the on-site contribution to the Coulomb integral has
been pulled into the electronic hardness term. We can thus inter-
pret the parameter Ji as a non-classical contribution to the hardness,
while the classical contribution is given by the self-energy of the
Gaussians.

In order to obtain the equilibrium partial charges qi, EQEq must
now be minimized. Due to the chosen functional form of the site
energy, this expression is quadratic in qi, so that the optimal charges
can be computed in closed form. To this end, we take the derivative
of Eq. (6) with respect to each partial charge and set it to zero. This
leads to the linear system of equations,

∂EQEq

∂qi
=

N

∑

j=1
Aijqj + χi = 0, (7)

with Aij being the elements of the hardness matrix A defined as

Ai j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

Ji +
1

αi
√

π
for i = j,

erf( ri j√
2γi j
)

ri j
otherwise.

(8)

Using a Lagrange multiplier λ to conserve the total charge qtot, we
obtain a linear system of equations that can be expressed in matrix
notation as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

A1,1 A1,2 ⋅ ⋅ ⋅ A1,N 1

A2,1 A2,2 ⋅ ⋅ ⋅ A2,N 1

⋮ ⋮

. . . ⋮ ⋮

AN,1 AN,2 ⋅ ⋅ ⋅ AN,N 1

1 1 ⋅ ⋅ ⋅ 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ā

⋅

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

q1

q2

⋮

qN

λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

²
q̄

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

χ1

χ2

⋮

χN

−qtot

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
χ̄

. (9)

Here, the bars denote that these arrays are expanded by one dimen-
sion due to the Lagrange multiplier. Without the bars, these symbols
represent the corresponding N-dimensional arrays.

The charge vector q̄ (including the Lagrange multiplier λ) can
now easily be computed as

q̄ = −Ā−1χ̄, (10)

meaning that the charges are a linear function of the elec-
tronegativities. Using this matrix notation, EQEq can be
expressed as

EQEq =
1
2

qTAq + qTχ. (11)

B. Periodic boundary conditions
Up to this point (and in Ref. 34), we have only considered sys-

tems in open boundary conditions (i.e., isolated molecules in the gas
phase). For periodic systems, Eqs. (10) and (11) can also be used.
However, this requires using Ewald summation in the construction
of the hardness matrix A, in order to take the full long-range interac-
tions in an infinite crystal into account.36 In particular, the Coulomb
integral must be modified. The same implementation as in 31 was
adopted here.

Ewald summation allows the efficient computation of the elec-
trostatic energy of N point charges in periodic boundary conditions
by separating it into a real-space and a reciprocal-space contribution.
To this end, each charge is embedded into an auxiliary Gaussian
charge distribution of the opposite sign and width η, defined as37

η =
1
√

2π
V

1
3 , (12)

where V is the volume of the unit cell. Note that these aux-
iliary Gaussians are not to be confused with the ones defined
in Eq. (4).
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In the long-range, the electrostatic interactions between the
point charges and the auxiliary charge distributions cancel out, so
that the short-range part of the electrostatic energy Ereal can be
evaluated in real space as

Ereal =
1
2

N

∑

i=1

Nneig

∑

j≠i
qiqj

erfc( ri j√
2η
)

rij
. (13)

Here, the first sum goes over the N atoms i in the unit cell, and the
second sum goes over all Nneig atoms j (including periodic replicas)
within the cutoff distance rreal of atom i. The cutoff is derived from
the width η of the auxiliary Gaussians and depends on the desired
accuracy ϵ, which is a small positive number determined by the user
(as in Ref. 31, we use a default value of ϵ = 10−8). This yields the
following expression for rreal:37,38

rreal =
√

2η
√

− log ϵ. (14)

As a second step, the long-range interactions of the auxiliary
charge distributions are computed. This can be evaluated efficiently
in reciprocal space using the Fourier transform of the auxiliary
charge density,

Erecip =
2π
V ∑k≠0

exp (−η2 ∣k∣2
2 )

∣k∣2
(

N

∑

i=1
qi exp (ik ⋅ ri))

2

. (15)

Here, the first sum goes over all reciprocal lattice points k within the
cutoff rrecip, which is computed as

rrecip =

√

2
η
√

− log ϵ. (16)

The cutoff distance rrecip depends again on the user defined accuracy
parameter ϵ.

Finally, the self-interaction of the auxiliary Gaussian charges is
accounted for via

Eself = −
N

∑

i=1

q2
i

√

2πη
. (17)

Summation of all previous terms is equal to the electrostatic energy
of N point charges in periodic boundary conditions,

EEwald = Ereal + Erecip + Eself. (18)

Because we use Gaussian charge distributions of width αi instead of
point charges, an additional correction term is required36

EGauss = −
1
2

N

∑

i=1

Nneig

∑

j≠i
qiqj

erfc( rij√
2γi j
)

rij
+

N

∑

i=1

q2
i

2
√

παi
. (19)

Here, the first term is again applied for all interactions within
the cutoff rreal, while the second term corresponds to the on-site

contribution of the Coulomb integral, which is also present in the
non-periodic case.

The periodic Coulomb integral can now be written as

∬

δρ(r)δρ(r′)
∣r − r′∣

drdr′ = EEwald −
1
2

N

∑

i=1

Nneig

∑

j≠i
qiqj

erfc( ri j√
2γi j
)

rij

+

N

∑

i=1

q2
i

2
√

παi
. (20)

From this, the periodic hardness matrix elements can be derived
analogously to the non-periodic case.

C. Kernel charge equilibration
As described so far, conventional charge equilibration schemes

like QEq require the definition of three parameters per element.
These are the electronegativity (χi), the non-classical contribution to
the hardness (Ji), and the atomic radius (αi). In practice, this limits
the achievable accuracy of QEq, since the same electronic properties
are assumed for all atoms of the same element, independent of their
chemical environment and oxidation state. ML based charge equili-
bration methods can overcome this limitation by allowing χi (and,
in principle, also the other parameters) to adapt to the environment
of each atom, e.g., via a NN.27,28

To implement this environment dependence in a Kernel ML
framework, kQEq expresses the electronegativities in terms of
atomic environment representation vectors pi, a kernel function k,
and regression weights wm as

χi(pi) =
M

∑

m=1
k(pi, pm)wm, (21)

where the sum goes over all atoms m in a representative set of
chemical environments. Simply put, this equation thus assigns the
electronegativity of atom i based on the similarity between i and
each atom m in the representative set, as quantified by the kernel
function k.

In the original kQEq implementation reported in Ref. 34, the
representative set simply consisted of all chemical environments
in the training set. In this case, the cost of predicting the elec-
tronegativities scales linearly with the number of training samples.
Even worse, the training cost of such a Kernel Ridge Regression
(KRR) model scales cubically with the number of training sam-
ples. The new implementation in q-pac, therefore, uses a different
regression framework, namely sparse GPR. This is directly analo-
gous to the approach used in Gaussian Approximation Potentials
(GAP).4,7 Specifically, the representative set now consists of M
environments (also called sparse points), which form a represen-
tative subset of the training set. As in GAP, these are selected
through a CUR decomposition of the matrix of representation
vectors.4,39

To represent the chemical environments of atoms, Smooth
Overlap of Atomic Positions (SOAP)40 vectors are used, as imple-
mented in the Dscribe package. As in GAP, polynomial kernels are
used to quantify similarities between SOAP vectors,
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k(pi, pj) = (pi ⋅ pj)
ζ. (22)

Throughout this manuscript, ζ = 2 is used as a default. SOAP vectors
are normalized so that k(pi, pi) = 1.

To predict the electronegativities of N atoms, Eq. (21) can be
rewritten as a matrix–vector multiplication,

χ = KNMw. (23)

Here and in the following, we use the notation of Csányi and co-
workers for Kernel matrices,4 where the subscripts indicate their
dimensions. KNM is thus a matrix containing the evaluations of the
kernel function between all M sparse points and all N environments
to be predicted. Thus, the obtained electronegativities can then be
used to predict charges via Eq. (10).

D. Training on electrostatic properties
In principle, Eqs. (23) and (10) fully specify the kQEq method.

However, this leaves the key question of what the regression weights
wm should be. In Ref. 34, we showed that these can be computed
in closed-form by solving a regularized least-squares problem. This
was demonstrated by fitting kQEq models on molecular dipole
moments. Importantly, the fact that training can be performed as
a single closed-form linear algebra operation, in this case, hinges on
the fact that dipole moments are linear functions of atomic partial
charges. Additionally, the charges in QEq are linear functions of the
electronegativities [see Eq. (10)], and the electronegativities are lin-
ear functions of the regression weights [see Eq. (23)]. Indeed, Kernel
methods like KRR and GPR allow arbitrary linear transformations
of the regression output in the loss function.

Taking advantage of this, q-pac provides a generalized loss
function for fitting to any electrostatic property that is a linear
function of atomic partial charges. The corresponding regularized
least-squares loss reads

Lt = ∥Ttq̄ − tref∥
2
Σ−1

t
+ ∥w∥2

KMM

= (Ttq̄ − tref)
TΣ−1

t (Ttq̄ − tref) +wTKMMw, (24)

where tref is a general target property (e.g., atomic charges or dipole
vector elements), and Tt is a transformation matrix that converts a
Lagrange multiplier expanded vector [see Eq. (9)] of charges q̄ to
the target property. Σt is an N-dimensional diagonal regularization
matrix that contains noise parameters σ2

i , which are proportional to
the regularization strength. Unlike the unit-less regularization para-
meter in the previous KRR implementation, σi has the unit of the
predicted property and can be interpreted as the expected accuracy
of the fit. Furthermore, the GPR framework allows assigning indi-
vidual values of σi in order to weight training samples differently.
For simplicity, a single value of σi is used for each of the examples
below.

We now aim to find the vector of weights w, which minimizes
this loss function. To this end, Eq. (24) must be rewritten so that it
only depends on w. Here, a technical difficulty arises, in that Eq. (23)
yields a vector of electronegativities χ, while Eq. (10) requires the
extended vector χ̄, which includes the total charge of the system qtot.
This transformation is achieved via an auxiliary matrix X,

⎛

⎜
⎜
⎜
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⎜
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⎜
⎜
⎜
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⋮
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
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⎜
⎜

⎝

1 0 ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 0

⋮ ⋮

. . . ⋮

0 0 ⋅ ⋅ ⋅ 1
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⎜

⎝

K1,1 K1,2 ⋅ ⋅ ⋅ K1,M
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⋮ ⋮

. . . ⋮

KN,1 KN,2 ⋅ ⋅ ⋅ KN,M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
KNM

⋅

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

w1

w2

⋮

wM

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

´¹¹¹¹¹¸¹¹¹¹¹¶
w

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0

0

⋮

0

qtot

⎞
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⎟
⎟
⎟
⎟
⎟
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⎠

²
qtot

. (25)

Plugging this into Eq. (10) yields

q̄ = −Ā−1χ̄ = −Ā−1
(

χ̄
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

X
χ

KNMw
´¹¹¹¹¸¹¹¹¹¶

− qtot). (26)

Finally, the transformation matrix Tt determines the targeted
property t,

t = Ttq̄ = −TtĀ−1
(XKNMw − qtot). (27)

In the current implementation, transformation matrices for charges
and dipoles are provided,

Tq =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1 0 ⋅ ⋅ ⋅ 0 0

0 1 ⋅ ⋅ ⋅ 0 0

⋮ ⋮

. . . ⋮ 0

0 0 ⋅ ⋅ ⋅ 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, (28)

Tμ =

⎛

⎜
⎜
⎜
⎜

⎝

x1 x2 ⋅ ⋅ ⋅ xN 0

y1 y2 ⋅ ⋅ ⋅ yN 0

z1 z2 ⋅ ⋅ ⋅ zN 0

⎞

⎟
⎟
⎟
⎟

⎠

. (29)

Note that these transformation matrices can, in principle, easily
be modified to accommodate for higher multipole moments or
other charge-derived electrostatic properties, such as electrostatic
potentials at given grid points.

The final form of the loss function is obtained by plugging
Eq. (27) into Eq. (24), yielding

Lt = ∥t − tref∥
2
Σ−1

t
+ ∥w∥2

KMM

= ∥TtA−1
(XKNMw − qtot) − tref∥

2
Σ−1

t
+ ∥w∥2

KMM . (30)

In this loss function, both the least-squares and regularization terms
are quadratic in the regression weights w. The optimal weights are
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obtained by taking the derivative∇wL (which is linear in w), setting
it to zero and solving for w.

While Eq. (30) is a general loss function for single-property
prediction, it may also be of interest to train models on multiple
properties simultaneously. To this end, q-pac also allows combined
loss functions. For instance, one may want to fit a model that repro-
duces molecular dipoles with partial charges that are close to some
population analysis scheme,

Lq/μ = ∥μ − μref∥
2
Σ−1

μ
+ ∥q − qref∥

2
Σ−1

q
+ ∥w∥2

KMM . (31)

Here, separate regularization parameters can be used for the differ-
ent properties. This allows weighting of the properties relative to
each other.

Note that for simplicity, all expressions provided herein assume
a single kQEq problem with N atoms (i.e., one simulation cell
or molecule). In practice, models are trained on multiple systems
simultaneously using blocked matrices and concatenated vectors,
which then naturally allow the use of systems with varying numbers
of atoms N in the training set.

E. Training on energies
As discussed in the introduction, one of the main motivations

for developing ML-based charge equilibration models is the devel-
opment of interatomic potentials with full long-range electrostatics.
To this end, training on reference charges (e.g., from Hirshfeld
partitioning) can yield a reasonable description of long-range inter-
actions. However, population analysis schemes are, in general, not
optimal for this purpose, as the charges usually yield quantitatively
incorrect electrostatic properties. More critically, the energy EQEq is
in our experience rather unphysical when only training on charges
or dipole moments. This is due to the fact that the energy expression
is only a latent quantity in this case (yielding the appropriate charges
upon minimization), which bears no relation to the real potential
energy surface. As a consequence, the on-site energy contributions
can be large and overly sensitive to small geometric changes, making
EQEq a poor basis for an interatomic potential.

One way to overcome this issue is to simply ignore the site-
energy term in the interatomic potential. This is the approach taken
in the 4GHDNNPs mentioned above.15 However, this has the down-
side that the corresponding potentials are not self-consistent, in the
sense that their charges do not minimize the energy. The other alter-
native is to explicitly include energies in the loss function so that
EQEq takes physical information about the potential energy surface
into account.

Unfortunately, fitting energies is not entirely straightforward
within the kQEq framework. This is because EQEq is not linear in
the charges, which means that a closed-form solution for the opti-
mal regression weights does not exist. However, for a given set
of charges, the energy is linear in the electronegativities. q-pac,
therefore, includes a form of fixed-point iteration to obtain accurate
self-consistent energy models.

Specifically, we use an arbitrary set of initial charges q0 (e.g.,
from Hirshfeld partitioning) and train electronegativities χ1 that
yield optimal energies for these charges. Subsequently, we predict
the self-consistent charges q1 corresponding to χ1. In general, there
is a large difference between q0 and q1, so the self-consistent energies
of this kQEq model will be rather inaccurate. However, iteratively

restarting this process usually yields significant improvements, in
that the self-consistent charges qt corresponding to χt quickly con-
verge toward the ones used to fit the energies (qt−1

). In pathological
cases, the loss function can be expanded to include a bias toward
the charges from the previous iteration, further aiding convergence.
Here, a practical approach is to begin training on energies alone until
the energy fitting error starts to increase. The charge bias can then
be added with an initially large regularization parameter σ2

q = 0.01 e
(corresponding to a small weight of charges in the loss func-
tion), which is subsequently decreased by a factor of 0.5 at each
iteration.

By monitoring the energy fitting error and the charge differ-
ences between two iterations, optimal regression weights for a kQEq
interatomic potential can be selected. The typical convergence of
charges and energies in this process is illustrated for a set of ZnO
nanoparticles in Fig. 2 (see below for details on the dataset). This
shows that even without the charge bias, energies and charges con-
verge well, with the differences between self-consistent and fitting
charges being below 10−3 electron charges.

F. Atomic forces
To apply interatomic potentials in molecular dynamics (MD)

simulations and geometry relaxations, it is essential to efficiently
obtain energy derivatives with respect to atomic positions rj. While
the derivative of Eq. (6) with respect to rj is straightforward to com-
pute, a complication arises because both the charges q and the elec-
tronegativities χ also depend on rj. Here, the use of self-consistent
charges is beneficial because by definition,

∂EQEq

∂qi
= 0. (32)

Consequently, the force on atom j can be expressed as

F j = −
N

∑

i=1
(qi

∂χi

∂rj
) +

N

∑

i>j
qiqj

∂Vij

∂rj
, (33)

with

Vij =

erf( ri j√
2γij
)

rij
. (34)

Here, the first term describes the force caused by the response of the
atomic electronegativities to changes in rj. According to Eq. (21), this
term only requires taking the derivatives of the kernel function and
the SOAP vectors, the latter of which are obtained through Dscribe.

Meanwhile, the second term is simply the derivative of the
shielded Coulomb energy, which reads

∂Vi j

∂rj
=

√

2γi j exp(−
r2

i j

2γ2
i j
) −

√

πerf( ri j√
2γi j
)

√

πr3
i j

. (35)

G. Technical aspects
q-pac is implemented as an object-oriented library using

Python 3.9. It heavily relies on numpy41 for array operations and
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FIG. 2. RMSE of the training set (blue) and validation set (red) energies as a function of fixed point iterations for a set of ZnO nanoparticles (left). RMSE between self-
consistent charges and charges from the previous fixed point iteration (right). See Sec. III for a description of the ZnO nanoparticles and the employed training and validation
sets.

linear algebra, ase42,43 for representing structural data and running
atomistic simulations, and Dscribe37 for calculating SOAP vectors
and their derivatives. The Ewald summation portion of the code is
written in C++. C++ types are exposed to Python via pybind11.44

III. RESULTS
A. Effect of sparsification

The main algorithmic advance in q-pac relative to the orig-
inal kQEq implementation is the use of sparse GPR instead of
KRR for predicting electronegativities. In order to demonstrate the
benefit of this change, a series of dipole moment prediction mod-
els were trained, similar to Ref. 34. Specifically, 35 000 randomly
selected molecules from the QM9 database were used, spanning a
variety of small organic molecules containing C, H, O, N, and F.45

The corresponding reference dipole moments were computed at the
PBE0/def2-TZVP level using ORCA.46–48 From this, 1000 molecules
each were randomly drawn as validation and test sets, while differ-
ently sized training sets were randomly drawn from the remaining
33 000 molecules.

As described in Sec. III, multiple hyperparameters need to be
defined for any kQEq model. Following Ref. 34, the non-classical
atomic hardness Ji was set to 0 for all elements. Atomic radii αi for all
elements are tabulated in the original QEq paper.30 In our previous
work, we found it beneficial to scale these since they are not neces-
sarily ideal for the Gaussian charge distributions used in q-pac. In
this paper, all radii are globally scaled by 1√

2
, which yielded robust

models in all cases we considered.
The regularization strength σμ was optimized for each training

set using grid search on the validation set error. The main SOAP
hyperparameter to be chosen is the cut-off radius rcut, which was set
to 4.4 Å. The remaining SOAP hyperparameters are discussed in the
Supplementary Information, together with results for smaller values
of rcut.

To establish the accuracy of the sparse GPR approach, Fig. 3
shows the mean absolute error (MAE) in predicted dipole moments
for different training sets as a function of the number of sparse
points M (per element). For comparison, the dashed lines in these
figures show results for the corresponding full GPR models, where
M includes all chemical environments in the training set. This is

equivalent to the KRR models used in the original kQEq paper.34

For training sets of 3000 and 10 000 molecules, the accuracy of
the full GPR is reached with M = 3000 (0.12 and 0.1 D, respec-
tively). Note that for the training set of 20 000 molecules, the full
model was not computed due to prohibitively high memory require-
ments. With sparse GPR, this is not an issue, however, allowing even
lower MAEs.

In Fig. 4, the evolution of test set errors and computational costs
for training and prediction with the number of training molecules
is shown. Here, it should be emphasized that the number of sparse
points is given in terms of chemical environments, whereas the
training set size is given in terms of the number of molecules.
Depending on the training set size, sparse models with 1000 and
3000 sparse points are equally accurate as the full models, with the
M = 1000 models deviating from the full results for training sets
larger than 1000 molecules. As mentioned above, the full models
become computationally prohibitive for the largest training set of
20 000 molecules.

This can also be seen from the timings in Fig. 4, which clearly
show that the complete training process (including evaluation of the
validation set for hyperparameter tuning) scales much more steeply

FIG. 3. Comparison of sparse (full line) and full (dashed line) kQEq models for
training sets of 3000 (cyan), 10 000 (purple), and 20 000 (blue) molecules. Three
different randomized training sets are used and averaged for each point.
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FIG. 4. Top: Learning curves for dipole moment prediction using sparse (M = 1000
and M = 3000) and full (M = Ntrain) GPR. Bottom: Time needed for a full training
cycle including CUR decomposition (where applicable), model training and val-
idation (solid lines, left y-axis), and timings for 1000 dipole moment predictions
(dashed lines, right y axis). These calculations were performed on nodes with 2
Intel(R) Xeon(R) Platinum 8360Y CPUs (2.4 GHz) and 2048 GB RAM.

with the training set size for the full model. This is in line with the
expected asymptotic scalings of O(N3

) and O(N) for the full and
sparse models, respectively, although the sparse models are not yet
in the linear regime in this plot. In concrete terms, training and vali-
dation of the full models took an average of 2.1 h (see supplementary
material for hardware details) for 10 000 training molecules. In com-
parison, the M = 3000 model was six times faster, reaching nearly
identical accuracy in 0.35 h. With 1000 sparse points per element,
the same results were produced in 0.24 h.

The difference between sparse and full GPR models is even
more striking when looking at the prediction times. Here, the sparse
models scale as O(1), while the full models scale as O(N). This
clearly has significant implications for models with large train-
ing sets and/or a large number of required predictions, where
sparse kQEq models can potentially be one to two orders of mag-
nitude more efficient. Beyond this substantial acceleration, the
memory requirements of training sparse models are also much
smaller.

B. Interatomic potentials for isolated systems
To illustrate the capabilities of kQEq for fitting potential energy

surfaces (PES) of ionic materials, we developed an ML potential for a
set of ZnO nanoparticles taken from the global optimization study of
Chen and Dixon.49 Specifically, a set of 98 low-energy structures of
sizes between 62 and 264 zinc and oxygen atoms was used. Reference
energies and Hirshfeld charges were computed with FHI-Aims at the
PBE level using tight basis sets and integration settings.50,51

Note that the choice of a predominantly ionic material like
ZnO allows fitting accurate interatomic potentials using kQEq alone.
Although bonding in ZnO is not purely ionic but contains a partial
covalent character (in addition to other interactions like dispersion
and exchange repulsion), the use of environment-dependent elec-
tronegativities allows kQEq models to indirectly take such effects
into account. This works well for systems where non-ionic interac-
tions are not dominating and of low body-order. In the more general
case, such interactions should be treated separately.

The original dataset of Chen and Dixon exclusively consists
of locally relaxed structures. In order to also test kQEq potentials
on non-equilibrium structures, active learning was used to augment
the dataset.4,52 Specifically, the initial kQEq interatomic potential
(trained on the relaxed structures) was used to generate new con-
figurations via MD simulations. From these, a diverse subset was
selected via CUR decomposition, evaluated by the reference DFT
method, and added to the training set. This active learning loop
was repeated until the energy RMSE on newly generated structures
converged.

The corresponding MD simulations were run through the
Atomic Simulation Environment (ASE)42,43 calculator implemented
in q-pac. Langevin dynamics were performed at 300 K with a 0.5 fs
time step and a friction coefficient of 0.01. Before each production
run, structures were reoptimized with the BFGS algorithm, followed
by a 1 ps equilibration run. To account for the increasing accuracy of
the interatomic potentials as a function of the active learning itera-
tions, the length of the production runs was incrementally increased.
Specifically, the initial simulation time was set to 0.2 ps and increased
by a factor of two in each following iteration. Accordingly, the num-
ber of configurations added to the training set was also increased in
each iteration, starting with 50 configurations.

In terms of model hyperparameters, the regularization for the
energy term was set to σ2

E = 0.01 eV throughout. As discussed in the
methods section, a charge bias term was added in later fixed point
iterations to ensure convergence, although this was usually not nec-
essary (see Fig. 2). The hardness parameters Ji were set to 27.21 eV
(1.0 Ha) for Zn and O, and the SOAP cutoff was set to 3.0 Å. A full
table of hyperparameters is provided in the supplementary material.
Note that for this proof-of-principle application, no hyperparameter
optimization was performed. It is, therefore, likely that even better
performance could be achieved in principle.

The results of the active learning iterations are shown in Fig. 5.
Here, the energy RMSE for new MD configurations is shown for

FIG. 5. Active learning potential for ZnO nanoparticles. The RMSE of predicted
energies for new MD configurations generated with the potential at each active
learning iteration is shown. For each iteration, the number of (added) train-
ing configurations is shown. The final RMSE was computed for 200 unseen
configurations.
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each iteration, along with the number of configurations added to the
training set. The RMSE quickly drops from 39.6 meV/atom for the
initial model to 1 meV/atom in iteration 2 and 0.8 meV/atom in
the final iteration.

Beyond this good energetic accuracy, it is also of interest to
consider the charge distributions that are learned by this poten-
tial. In Fig. 6 (top), the correlation between Hirshfeld and kQEq
charges is shown. This reveals that kQEq charges are somewhat
larger than Hirshfeld ones, with average charges of ±0.54 and
±0.37, respectively. This is consistent with the known tendency of

Hirshfeld charges to underestimate charge transfer in polar systems,
which is related to the use of neutral isolated atom densities to define
the partitioning.53,54

Notably, the variation of the charges displays an inverse cor-
relation between kQEq and Hirshfeld, in particular for the oxygen
atoms. Here, the least negative atoms in kQEq are the most negative
in Hirshfeld and vice versa. This can be understood by consid-
ering the individual cases displayed in the lower part of Fig. 6,
which reveals that Hirshfeld charges tend to be more extreme for
undercoordinated edge and corner atoms, while kQEq charges are

FIG. 6. Top: Correlation between Hirshfeld and kQEq charges for ZnO nanoparticles. Bottom: Comparison of charges for three representative structures, namely a nanotube,
a hollow sphere, and a dense particle. Note that different color bars are used for Hirshfeld and kQEq charges since the latter are significantly larger in absolute terms.

J. Chem. Phys. 159, 054109 (2023); doi: 10.1063/5.0156290 159, 054109-9

© Author(s) 2023

 14 August 2023 13:19:02

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

less extreme for these atoms. This is again consistent with the way
the respective charges are calculated. In Hirshfeld population anal-
ysis, the electron density is spatially partitioned according to a
stockholder scheme where the electron densities of isolated neu-
tral atoms are used to define the respective weights. Here, lower
coordination environments mean that the density is partitioned
between fewer partners. Meanwhile, kQEq charges minimize an
electrostatic energy expression. Here, more extreme charges can be
stabilized through electrostatic interactions in higher coordination
environments.

Overall, partial charges are, in general, somewhat arbitrary,
so no strong conclusions in favor of either model can be drawn
from the charges alone. Here, we can consider dipole moments as
an observable instead. While dipole interactions are, in principle,
included in energies, they only dominate in the long-range inter-
actions between clusters. Since we only train on isolated clusters, it
should not be expected that these effects are learned by the current
model. Indeed, while kQEq dipole elements correlate reasonably
well with the DFT reference, they deviate rather strongly in abso-
lute terms (see Fig. S6). Notably, the Hirshfeld charges obtained
from DFT calculations actually reproduce the dipole of the parti-
cles surprisingly well in this case, as shown in Fig. S7. This indicates
that combined loss functions with energies, charges, and/or dipole
moments could be used to obtain improved electrostatic proper-
ties. Importantly, the kQEq charges are optimized for producing
an interatomic potential for these clusters, whereas the Hirshfeld
charges are not.

So far, we have only mentioned the non-classical atomic hard-
ness J as a hyperparameter without discussing its effects in detail.
Qualitatively speaking, larger values of J have the effect of counter-
acting charge transfer. To demonstrate how this affects the predicted
charges and energies, 25 additional models were trained on the ZnO
particle dataset, with different combinations of hardness parameters
for Zn and O (see Fig. S8). This reveals that higher values of J lead
to smaller absolute values of the charges and also decrease the fluc-
tuations for the individual charge types. This is also reflected in the
correlations between DFT and kQEq dipole moments (see Fig. S6),
where models using smaller hardness parameters are better at repro-
ducing the DFT dipole moments, likely because smaller hardness
allows charges to be distributed more freely. Meanwhile, the energy
RMSEs change less than 0.3 meV per atom between the best and
worst models, underscoring that the energy is rather insensitive to
this parameter.

C. Interatomic potentials for periodic systems
As described in the methods section, q-pac also allows the

development of models for periodic systems. To demonstrate this,
we fit an interatomic potential for a range of bulk structures with the
stoichiometries ZnO and ZnO2.

An initial set of crystals was obtained from Materials Project55

(16 for ZnO and 9 for ZnO2, see supplementary material). This set
was augmented by creating random neutral vacancy defect pairs
(i.e., removing one O and one Zn atom) in different supercells of
each crystal, yielding 20 configurations for each supercell. Here, the
supercells were used to sample different defect densities and were
chosen in order to still allow reference DFT calculations for all cells
(i.e., containing less than 400 atoms, see supplementary material

for details). Additionally, non-equilibrium structures were gener-
ated by randomly perturbing the atomic positions with Gaussian
noise, yielding 20 additional structures per supercell (half of them
perturbed with σ = 0.05 Å, the other half with σ = 0.1 Å). This
led to a total of 1025 structures with supercells ranging from 52
to 384 atoms, for which reference calculations were performed at
the PBE level using FHI-Aims with light basis set and integration
settings.

In order to train the kQEq model, a training set was gener-
ated from this data by randomly drawing 150 configurations each
for pristine and defective ZnO structures, respectively. Similarly,
80 ZnO2 configurations each were drawn from the pristine and
defective sets. The remaining 606 structures were used as an
unseen test set. The same hyperparameters as for the non-periodic
structures were used for the kQEq and SOAP settings.

The corresponding model displays an RMSE of 4.1 meV/atom
on the test set. This is quite satisfactory, given that the test set cov-
ers an energy span of nearly 1 eV/atom (see Fig. 7). Importantly,
the potential is able to fit ZnO and ZnO2 on the same footing,
since it is able to describe different oxidation states of Zn through
environment dependent electronegativities.

This is also reflected in Fig. 8, which shows the correla-
tion between Hirshfeld and kQEq charges for the test set. Both
approaches yield distinct clusters for the ZnO and ZnO2 charges,
with the charges again being larger in magnitude for kQEq (e.g.,
±0.55 vs ±0.35 for ZnO). Notably, the Hirshfeld oxygen charges
display a strikingly large variation for ZnO2 and are even posi-
tive in some cases, whereas the corresponding kQEq charges are
consistently negative and display much smaller variance.

To illustrate the corresponding charge distributions, three
simulation cells for a tetraauricupride-structured ZnO polymorph
(MP-ID 13161) are shown in Fig. 8. As a reference, Hirshfeld and
kQEq charge distributions for the relaxed supercell are shown in the
left column. In the center, a rattled configuration is shown. kQEq
and Hirshfeld charges display a qualitatively similar response to
this perturbation. Finally, the right frame shows a structure with
a vacancy pair. Here, an O atom is missing on the bottom right,
and a Zn atom is missing on the bottom left. Interestingly, the
response to the O vacancy is almost identical between the kQEq and

FIG. 7. Parity plot of kQEq predicted energies and reference DFT calculations
for a test set of periodic ZnO (blue) and ZnO2 (green) structures. The root mean
squared error of the model is 4.1 meV/atom.
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FIG. 8. Top: Correlation between Hirshfeld and kQEq charges for ZnO and ZnO2 bulk structures. Bottom: Comparison of charges for a relaxed ZnO structure, randomly rattled
structure, and structure with a vacancy pair (MP ID 13161, 5 × 5 × 5 supercells). Note that different color bars are used for Hirshfeld and kQEq charges since the latter are
significantly larger in absolute terms.

Hirshfeld charges, with the adjacent O atoms being more nega-
tive and the adjacent Zn atoms being less positive, consistent with
an overall charge neutral defect. Meanwhile, the response for the
Zn vacancy is similar for the adjacent Zn atoms (which become
more positive) but different for the adjacent oxygen atoms. Here,
the corresponding Hirshfeld charges are slightly more negative than
average, while the kQEq charges are slightly less negative. Neverthe-
less, the agreement between these methods in terms of the electronic
localization of the defect is rather good, given that both methods are
based on very different premises.

Since we present models for zinc oxides targeting either isolated
clusters or periodic structures, it is natural to ask whether the models
are transferable from one case to the other. This is not quite straight-
forward to test for the reported models, since the bulk structures
feature both ZnO and ZnO2 compositions, whereas the clusters all
display the stoichiometry ZnO. Additionally, slightly different DFT
settings were used to train both models.

To explore the transferability between bulk and cluster mod-
els, we, therefore, retrained the periodic model using only ZnO
compositions and consistent DFT settings with the isolated case.
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Additionally, a new model was trained on both bulk and cluster con-
figurations. In Fig. S5, the transferability is shown for these three
models. This reveals that the predictions of the bulk model are sys-
tematically too high in energy and display significant scatter for
cluster configurations. In the reverse case, even stronger deviations
are observed, with some configurations being predicted to be several
eV too high in energy. Nonetheless, when training a model on both
types of configurations, excellent predictive performance is achieved
on the test set. This indicates that the lack of transferability is not due
to the simultaneous inclusion of periodic and cluster configurations
but rather due to inherent differences in the two sets. For example,
the bulk set contains defective and randomly perturbed structures,
while the clusters feature hollow nanospheres and tubes with atomic
environments that strongly differ from the bulk case.

D. Forces
As for other interatomic potentials, in principle, forces can also

be used as fitting targets for kQEq. Currently, this feature is not
implemented in q-pac, however. This is mainly due to the increased
memory demand when fitting on forces as opposed to energies. We
are actively working to overcome this limitation at the moment.
Nevertheless, it is already of interest to consider how accurate forces
are for kQEq models trained on energies.

As described above, the model for ZnO particles was trained
on molecular dynamics configurations in an active learning setup.
Due to these non-equilibrium structures, the model has sufficient
information about the shape of the potential energy surface to
predict forces with reasonable accuracy (RMSE = 0.17 eV/Å, see
Fig. S3). In contrast, the potential for bulk ZnO and ZnO2 struc-
tures is less suitable for use in dynamical calculations due to overall
larger force errors (see Fig. S4). Here, the training configurations
were created by randomly removing atoms from crystalline super-
cells (without further relaxation) or randomly perturbing atomic
positions. Both of these procedures lead to rather unphysical struc-
tures and large forces. In practice, active learning would also allow
better performance on force prediction for the bulk structures,
however.

IV. CONCLUSIONS
In this paper, we have introduced the q-pac package, which

provides an efficient and general framework for fitting kQEq mod-
els. This is achieved through a new sparse GPR formulation of the
kQEq method and the implementation of additional and general-
izable fitting targets. Importantly, this allows fitting kQEq inter-
atomic potentials for the first time using a fixed point iteration
algorithm.

While the showcased applications demonstrate the functional-
ity and accuracy of this approach, pure kQEq potentials are (much
like the CENT method)27 limited to predominantly ionic materials
like ZnO. In future work, we will explore hybrid potentials that com-
bine short-ranged local interatomic potentials like GAP with kQEq,
in order to obtain generally applicable potentials with full long-range
interactions.

The modularity of q-pac will also allow for the development
of ML charge equilibration models beyond the simple QEq energy

function. This may become necessary for properly modeling the
response of polarizable systems to external fields, where conven-
tional QEq is known to be inadequate.56 However, there are some
indications that the much larger flexibility of kQEq mitigates these
problems to a large extent.34 Either way, q-pac provides the ideal
testing ground for addressing such pathologies both in terms of the
physics of charge equilibration and in terms of more advanced ML
approaches.

SUPPLEMENTARY MATERIAL

See the supplementary material for hyperparameters, a detailed
description of ZnO data, and an additional analysis of predicted
charges and forces.
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