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Abstract
This paper investigates the projective lag quasi-synchronization by feedback control of a coupled dynamical system with

delays and parameter mismatches on arbitrary time domains. Being formulated on time scales, our results are valid

simultaneously for continuous- and discrete-time models as well as for any non-standard time domain. Furthermore, the

controller design respects the structure of the equations so that we can characterize the stabilization by a limited controller

action. Our proofs rely on the unified matrix-measure theory and the generalized Halanay inequality on time scales. We

validate our theoretical results with several simulation examples on various time domains.
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1 Introduction

Synchronization is a fundamental property of dynamic

systems, where two or more systems achieve a coordinated

behaviour, typically through the use of coupling or external

forces. It has been an interesting problem since the seminal

work of Pecora and Carroll [1] and has applications in

many fields of engineering and science, such as image

encryption [2], signal and image processing [3], and secure

communication [4]. As a result, in the last two decades,

many authors have studied the synchronization problem for

various types of continuous-time and discrete-time

dynamic systems; see, for example, [5–16], and the refer-

ences cited therein. To establish the synchronization

results, the authors mainly used two techniques: one is the

Lyapunov technique or functional method, see, for

instance, [5–10]. The second technique is based on the

direct method or matrix-measure method which comes

with a general algebraic approach to stability or stabiliz-

ability as opposed to the often problem-specific construc-

tion of Lyapunov functions. The stability and

synchronization problem using the matrix-measure method

has been studied, for example, in [11–15].

In the literature, researchers have developed different

types of synchronization schemes such as exponential

synchronization [17, 18], quasi-synchronization [19, 20],

lag synchronization [21], and projective synchronization

[22]. Among these schemes, projective lag synchronization

[23] is a scheme that includes both the projective and lag

factors. Here, the state of the response system y lags behind

the state of the master system x proportionally after a

transient time, i.e. yðtÞ ¼ axðt � 1Þ, where 1[ 0 is the lag

delay and a is a projective real constant. This scheme has

been used in secure communication to extend binary digital

to M-nary digital and achieve fast communication [23] and

has received more attention in recent years [24–27]. Par-

ticularly, in [25], the authors investigated projective lag

synchronization in spatiotemporal chaotic systems with

disturbances and time delay using the sliding mode control

technique. In [26], the finite-time generalized projective lag

synchronization of neutral-type neural networks with delay

was studied by using the Gronwall–Bellman inequality and

nonlinear feedback control. Additionally, [27] addressed
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function projective lag synchronization in chaotic systems

by utilizing nonlinear adaptive impulsive control and the

Lyapunov stability theory.

Further, in many practical applications, parameter mis-

matches between the drive and response systems are a

common issue which can significantly impact the conver-

gence rate of synchronization or even completely prevent

synchronization from occurring. Therefore, it is important

to establish synchronization results in systems with

parameter mismatches. Recently, few authors have inves-

tigated the parameter mismatches systems (see, for exam-

ple, [28–38]). In particular, the authors in Zou et al. [31]

proposed two novel protocols for leader–follower and

leaderless scenarios using the reference trajectory-based

method. They also investigated finite-time consensus in

second-order multi-agent systems with non-identical non-

linear dynamics under directed networks by using graph

theory, Lyapunov functional method, and finite-time sta-

bility theory. In Huang et al. [32] and Yuan et al. [33], the

authors discussed the projective lag synchronization and

lag quasi-synchronization of coupled systems with

parameter mismatch and mixed delays by using the inter-

mittent control and Lyapunov techniques, while in Chen

and Cao [34] and He et al. [35], the authors studied the

projective synchronization and lag quasi-synchronization

results of two coupled delayed systems with parameter

mismatch by using the feedback control, generalized

Halanay inequality, and matrix-measure method. Addi-

tionally, in Huang et al. [36], the authors investigated the

weak projective lag synchronization results for coupled

neural networks with parameter mismatch and delay by

using the feedback control and Lyapunov stability theorem.

In Feng and Yang [37], the authors studied the projective

lag synchronization results for two different discrete-time

chaotic systems by using the feedback controller and

Lyapunov method, and in Xiao and Huang [38], the

problem of quasi-synchronization for discrete-time inertial

neural networks with delay was studied by using the

matrix-measure method.

It is worth noting that all the aforementioned results

about synchronization have been studied for continuous-

time and discrete-time systems but separately. Apart from

these separate studies being possibly partially redundant,

there exist physical models that consider continuous and

discrete evolution at the same time or on some different

timelines. For example, in a simple RLC circuit (see

Fig. 1), a dynamical scenario with a discharge of the

capacitor that takes d[ 0 time units and occurs periodi-

cally after l time units can conveniently be modelled on the

time domain [39]: T ¼ [1
l¼0½l; lþ 1� d�:

Further, the life span of several species including

Pharaoh-Cicada, Magi-Cicada Cassini, and Magi-Cicada

Septendecim is represented by the union of equal-length

closed time intervals with some gap, i.e. they grow con-

tinuously as well as discretely in different stages of their

life, and hence, to examine the dynamic properties of these

species, one may consider a time domain T ¼ [1
l¼0½lðcþ

dÞ; lðcþ dÞ þ d�; where c; d 2 Rþ [39]. Furthermore, cer-

tain neurons in our brain are active during the day and

inactive at night, and this process continues with respect to

time. The active dynamics of neurons can be intuitively

viewed in the time domain T ¼ [1
l¼0½24l; 24lþ dl�; where

dl denotes the number of active hours of the neurons in

each day (see Fig. 2).

Since these types of models evolve in both continuous-

and discrete-time domains, in order to study their dynamic

behaviour more accurately, we require a dynamic system

that can simultaneously incorporate both continuous and

discrete-time domains. In this regard, Hilger [40] intro-

duced the concept of time scales theory (measure chain

theory), which unifies, extends, and bridges the conven-

tional continuous and discrete dynamical systems into a

single unified theory. The results obtained on time scales

are not only applicable to discrete and continuous-time

domains but also valid for any hybrid-type time domains (a

combination of discrete and continuous-time domain, non-

uniform discrete sets) which are useful in the study of

various complex dynamical systems. For further study on

time scales calculus, see [39, 41].

In recent years, time scales theory has gained significant

attention due to its diverse applications in science and

engineering, including control theory [42], economics [43],

and epidemiology [44]. Qualitative properties of dynamic

equations on time scales, such as positivity, observability,

controllability, and stability, have been extensively studied

(see, for instance, [45–48] and references therein). How-

ever, few studies have investigated the synchronization of

coupled dynamic systems on time scales [49–56]. Partic-

ularly, in Lu et al. [52], synchronization results were

investigated for complex dynamical networks with delays

on time scales by using the unified Wirtinger-based

inequality, while in Ali and Yogambigai [53], global

exponential synchronization results of dynamical networks

Fig. 1 A simple RLC circuit
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with delays on time scales were studied by employing the

Lyapunov–Krasovskii functional and unified Jensen’s

inequalities. The works in Wang et al. [54] investigated the

problem of synchronization of non-autonomous recurrent

neural networks with delays on time scales by applying the

comparison lemma and Lyapunov techniques. In Huang

et al. [55], the authors studied quasi-synchronization

results for neural networks with parameter mismatches on

time scales using the Lyapunov functional method.

Recently, Kumar et al. [56] investigated the exponential

lag synchronization results of Cohen–Grossberg-type neu-

ral networks with mixed delays on time scales by using the

matrix-measure and Halanay inequality. It should be noted

that the synchronization results for continuous and discrete

systems with parameter mismatches have been studied in

[28–30, 32, 34–36, 38], with some utilizing the Lyapunov

method [28, 32, 36] and others employing the matrix-

measure method [29, 30, 34, 35, 38]. However, these

results cannot be easily applied and extended to the hybrid

time domains. Also, to the best of the authors’ knowledge,

there is no work reported on the projective lag quasi-syn-

chronization (PLQS) of coupled dynamic systems on

hybrid-type time domains.

When it comes to considering coupled systems on time

scales, several relevant questions arise, such as: What type

of time scales conditions must be met for different types of

synchronization? Does any relationship exist between

synchronization and time scale? It is well known that for

computational purposes, continuous-time systems descri-

bed by differential equations are discretized, in such cases,

how can one ensure the selection of an appropriate dis-

crete-time system? Can the synchronization error bound in

the existing literature be further refined? Motivated by the

above discussion and questions, this manuscript aims to

establish PLQS results for coupled dynamic systems with

mixed delays and parameter mismatches on time scales

using the matrix-measure technique. The main contribu-

tions of this manuscript can be highlighted as follows.

• We apply the time scales approach to investigate the

problem of PLQS for coupled dynamic systems on

arbitrary time domains with mixed delays and param-

eter mismatches.

• Continuous and discrete-time domains are the particular

cases of time scales, and hence, the obtained PLQS

scheme is not just true for the continuous-time or

discrete-time state analysis, but additionally hold for

any mixture of these two, which provides a wider range

of applications.

• We refine the theoretical error bound so that it is close

to the simulation error.

• We also provide conditions under which the obtained

results can be extended to the case of projective quasi-

synchronization, lag quasi-synchronization, and quasi-

synchronization.

• Three examples are presented to validate the analytical

outcomes of this manuscript.

The rest of the manuscript is structured as follows: We

provide fundamental notations, definitions, and lemmas in

Sect. 2. Section 3 presents the statement of the proposed

problem. We establish the main results of this manuscript

in Sect. 4. Finally, in Sect. 5, we provide three illustrative

examples to validate the obtained analytical results.

2 Preliminaries

We use Id to represent the identity matrix of suitable order

and superscript T for matrix transpose. The symbol ;
denotes the empty set. The space Rn refers to the n-di-

mensional Euclidean space. The collection of all continu-

ous functions from ½a; b�T into Rn, represented by

Cð½a; b�T;RnÞ, form a Banach space equipped with the

induced norm kxkp ¼ supt2½a;b�T kxðtÞkp, where p 2
f1; 2;1g and k � kp is a vector norm. For any x 2 Rn and

p ¼ 1; 2;1, the vector norm is defined as

kxk1 ¼
Xn

k¼1

jxkj; kxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k¼1

x2k

s
; kxk1 ¼ max

1� k� n
jxkj:

Next, we recall some basic definitions of time scales and

matrix-measure which will be used in the subsequent

sections.

A time scale is a non-empty closed subset of the real

numbers R which inherits its topology and ordering from

R. Now onwards, we denote a time scale by T. R, hZ for

h[ 0, and Pc;d ¼
S1

l¼0½lðcþ dÞ; lðcþ dÞ þ d�; c; d 2 Rþ

are some typical examples of time scales. We represent a

time scale interval as ½c; d�T, which is defined as the set

t 2 T : c� t� d.

The backward and forward jump operators q; r : T !
T are defined as qðtÞ ¼ supfr\t : r 2 Tg and

rðtÞ ¼ inffr[ t : r 2 Tg, respectively, with the substitu-

tions sup ; ¼ inf T and inf ; ¼ supT. Additionally, we

define the graininess function l : T ! ½0;1Þ as

lðtÞ ¼ rðtÞ � t. For t 2 T, if t\ supT and rðtÞ ¼ t, then t

is called right-dense point of T.

Let us define the set Tj as follows:

Fig. 2 Red lines denote the active time of neurons in day, while the gap shows the inactive time of neurons at night (color figure online)
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Tj ¼
Tj n ðqðsupðTÞÞ; supðTÞ� if supT\1;

T if supT ¼ 1:

�

Now, we will provide the definition of the delta derivative

(also known as the Hilger derivative), which extends the

notions of the ordinary derivative and difference operator.

Definition 1 ([54], Def. 1) Let f : T ! R be a function

and t 2 Tj. The Hilger (or delta) derivative of f at t,

denoted by f DðtÞ, is defined as the number (if it exists) such

that for any given �[ 0, there exists a neighbourhood U of

t satisfying the inequality

j½f ðrðtÞÞ � f ðsÞ� � f DðtÞ½rðtÞ � s�j � �jrðtÞ � sj

for all s 2 U. Furthermore, the delta derivative can be

referred to as the upper right Dini- D-derivative denoted by

Dþ
D f ðtÞ, if the right-sided neighbourhood Uþ replaces the

neighbourhood U.

Remark 1 In Definition 1, if we consider

• T ¼ hZ, h[ 0, then the delta derivative f DðtÞ becomes

the usual h-difference forward operator, i.e.

f DðtÞ ¼ Dhf ðtÞ ¼ f ðtþhÞ�f ðtÞ
h .

• T ¼ R, then the delta derivative f DðtÞ becomes the

usual ordinary derivative f 0ðtÞ and the upper right Dini-

D-derivative Dþ
D f ðtÞ becomes the ordinary upper right

Dini-derivative Dþf ðtÞ.

Theorem 1 ([39], Theorem 1.16) Assume that f : T ! R

is differentiable at t 2 Tj, then we have

f ðrðtÞÞ ¼ f ðtÞ þ lðtÞf DðtÞ:

A function f : T ! R is said to be regressive (or posi-

tive regressive) if 1þ lðtÞf ðtÞ 6¼ 0 (or [ 0) for all t 2 T.

Further, f is said to be a regulated function if its right and

left side limit exists (finitely) at all right and left dense

points of T, respectively. Additionally, a regulated function

f is said to be rd-continuous, if it is continuous at all the

right-dense points of T. The sets of all rd-continuous

functions and rd-continuous regressive (positive) functions

on T are denoted by CrdðT;RÞ and RðRþÞ, respectively.
The generalized delta integral on time scales is defined

as follows.

Definition 2 ( [39], Def. 1.71) A function F : T ! R is

said to be an anti-derivative of a regulated function

f : T ! R, if for all t 2 Tj, the relation FDðtÞ ¼ f ðtÞ holds.
Further, the Cauchy integral is defined by

Z d

c

f ðsÞDs ¼ FðdÞ � FðcÞ for all c; d 2 T:

Theorem 2 ([39], Theorem. 1.77) Let c; d 2 T and

f 2 CrdðT;RÞ, then, for

• T ¼ hZ ¼ fhk : k 2 Zg, where h[ 0, we have

Z d

c

f ðsÞDs ¼

Pd
h�1

k¼c
h
hf ðkhÞ if c\d;

0 if c ¼ d;

�
Pd

h�1

k¼c
h
hf ðkhÞ if c[ d:

8
>><

>>:

• T ¼ R, we have
Z d

c

f ðsÞDs ¼
Z d

c

f ðsÞds:

In the next definition, we are defining the classical

matrix-measure.

Definition 3 ([57], Def. 2.1) For a real square matrix

A ¼ ðaklÞn�n, the classical matrix-measure with respect to

the p�norm ðp ¼ 1; 2 or 1Þ is defined as

!pðAÞ ¼ lim
s!0þ

k Id þ sAkp � 1

s
;

where k � kp is the induced matrix norm on Rn�n. Table 1

provides the matrix norms and related measures.

Next, we recall how the matrix-measure is generalized

to time scales:

Definition 4 ([48], Def. 2 ) For a real square matrix

A ¼ ðaklÞn�n, the unified matrix-measure on an arbitrary

time scale T with respect to the p�norm ðp ¼ 1; 2 or 1Þ is
defined as

MpðA;TÞ

¼
max

�k Id þ lðtÞAkp � 1

lðtÞ : t 2 T

�
; if lðtÞ[ 0;8 t 2 T;

max

�
!pðAÞ; max

nk Id þ lðtÞAkp � 1

lðtÞ : t 2 T;lðtÞ[ 0
o�

; else.

8
>>><

>>>:

Table 1 Matrix norms and related measures

Matrix norm Matrix-measure

kAk1 ¼ maxj
Pn

i¼1 jaijj !1ðAÞ ¼ maxj ajj þ
Pn

i¼1;i6¼j jaijj

kAk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðATAÞ

p
!2ðAÞ ¼

1

2
kmaxðAT þ AÞ

kAk1 ¼ maxi
Pn

j¼1 jaijj !1ðAÞ ¼ maxi aii þ
Pn

j¼1;6¼i jaijj
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Note that for T ¼ R, Definition 4 reduces to Definition

3. Also, for T ¼ hZ, h[ 0, which means that lðtÞ ¼ h for

all t 2 T, Definition 4 reads

xpðA; hÞ ¼
k Id þ hAkp � 1

h
:

We are ending this section by giving the following

important result:

Theorem 3 (Halanay inequality [41], Theorem 2.1) Let

zðtÞ 2 CrdðT;RÞ be a nonnegative function satisfying

Dþ
D zðtÞ � � aðtÞzðtÞ þ bðtÞ sups2½t�#;t�T zðsÞ þ cðtÞ; t 2 ½0;1ÞT;
zðsÞ ¼ UðsÞ; s 2 ½�#; 0�T;

�

where #[ 0; aðtÞ; bðtÞ; cðtÞ are nonnegative rd-continuous

functions, U 2 Crdð½�#; 0�T;RÞ, and �aðtÞ 2 Rþ. If there

exist constants d[ 0 and k 2 ð0; 1Þ such that

aðtÞ � bðtÞ� d[ 0; kaðtÞ � bðtÞ[ 0; t 2 ½0;1ÞT;

then for any given �[ 0, there exists a T ¼ TðM; �Þ[ 0

such that

zðtÞ� c

d
þ �; t 2 ½T;1ÞT;

where c ¼ supt��# cðtÞ and M ¼ sups2½�#;0�T jUðsÞj.

3 Problem description

We consider the following coupled dynamical system with

discrete and distributed delays on time scales:

xDðtÞ ¼ bQxðtÞ þ bRF ðxðtÞÞ
þbSGðxðt � #1ðtÞÞÞ þ bT

R t

t�#2ðtÞ HðxðsÞÞDs; t 2 ½0;1ÞT;

xðsÞ ¼ /̂ðsÞ; s 2 ½�#; 0�T;

8
>><

>>:

ð1Þ

where xðtÞ 2 Rn; Q̂; R̂; Ŝ; T̂ 2 Rn�n are constant matrices;

#1ðtÞð[ 0Þ is the discrete delay such that t � #1ðtÞ 2 T

and 0�#1ðtÞ� g1 for all t 2 T; #2ðtÞð[ 0Þ is the dis-

tributed delay such that t � #2ðtÞ 2 T and 0�#2ðtÞ� g2
for all t 2 T; g1 and g2 are positive constants;

g ¼ maxfg1; g2g; /̂ 2 Crdð½�g; 0�T;RnÞ; and

Fðxð�ÞÞ;Gðxð�ÞÞ;Hðxð�ÞÞ are functions in Rn which satisfy

certain conditions to be specified later.

Let us consider the system (1) as the drive system and

the corresponding response system with parameter mis-

matches in the coefficient matrices as

yDðtÞ ¼ QyðtÞ þRF ðyðtÞÞ þ SGðyðt � #1ðtÞÞÞ
þT

R t

t�#2ðtÞ HðyðsÞÞDsþ uðtÞ; t 2 ½0;1ÞT;
yðsÞ ¼ /ðsÞ; s 2 ½�g; 0�T;

8
<

: ð2Þ

where yðtÞ 2 Rn; Q;R;S; T 2 Rn�n are constant

matrices such that Q̂ 6¼ Q; R̂ 6¼ R; Ŝ 6¼ S; T̂ 6¼ T ;

/ 2 Crdð½�g; 0�T;RnÞ. Due to the finite speed of trans-

mission and spreading, there is a time delay associated with

the signal travelling from the master system to the slave

system. To account for this delay, we introduce the fol-

lowing controller

uðtÞ ¼ �KðyðtÞ � axðt � 1ÞÞ; ð3Þ

where K is the coupling matrix, a is the projective constant,
and 1 is the transmittal delay with t � 1 2 T.

Let’s define the error by eðtÞ ¼ yðtÞ � axðt � 1Þ,
between the drive system (1) and the response system (2),

so that the related error dynamical system can be written as

eDðtÞ ¼ ðQ�KÞeðtÞ þR �FðeðtÞÞ þ S �Gðeðt � #1ðtÞÞÞ

þ T

Z t

t�#2ðtÞ
�HðeðsÞÞDs

þ Fðx; #1ðtÞ; #2ðtÞ; a; 1Þ;
ð4Þ

where eðtÞ 2 Rn; �F ðeð�ÞÞ :¼ Fðyð�ÞÞ � Fðyð�Þ � eð�ÞÞ;
�Gðeð�ÞÞ :¼ Gðyð�ÞÞ � Gðyð�Þ � eð�ÞÞ; �Hðeð�ÞÞ :¼ Hðyð�ÞÞ �
Hðyð�Þ � eð�ÞÞ and

Fðx; #1ðtÞ; #2ðtÞ; a; 1Þ
:¼ aðQ� Q̂Þxðt � 1Þ þRF ðaxðt � 1ÞÞ � aR̂F ðxðt � 1ÞÞ
þ SGðaxðt � 1� #1ðtÞÞÞ � aŜGðxðt � 1� #1ðtÞÞÞ

þ
Z t

t�#2ðtÞ
ðT Hðaxðs� 1ÞÞ � aT̂ Hðxðs� 1ÞÞÞDs:

To account for the delays, we set xðsÞ ¼ /̂ð�gÞ for all

s 2 ½�g� 1;�g�T and

wðsÞ ¼
/̂ðsÞ; s 2 ½�g; 0�T;

/̂ð�gÞ; s 2 ½�g� 1;�g�T:

(

The initial condition for the error dynamics (4) can be

defined by

eðsÞ ¼ /ðsÞ � wðs� 1Þ; s 2 ½�g; 0�T:

It could be noticed that, due to the parameter mismatches

between the drive systems (1) and response system (2), the

origin e ¼ 0 is not an equilibrium point of the error system

(4); therefore, complete projective lag synchronization is

not possible. However, we provide the PLQS

scheme which synchronizes the drive-response systems up
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to a small error bound. Mathematically we can define the

PLQS as follows.

Definition 5 The drive system (1) and the response system

(2) are said to be projective lag quasi-synchronized to an

error bound �p in the timescale sense if it holds that

kyðtÞ � axðt � 1Þkp � �p as t ! 1:

Remark 2 In Definition 5, the drive system (1) and the

response system (2) are called

• projective quasi-synchronized to the error bound �p, if

1 ¼ 0;

• lag quasi-synchronized to the error bound �p, if a ¼ 1;

• quasi-synchronized to the error bound �p, if a ¼ 1 and

1 ¼ 0.

To prove the main results, we need the following

assumptions.

Assumption 1 (Ass. 3 in [34]) The state x of the drive

system evolves in a bounded state space X � Rn. In par-

ticular, there exists a constant bp so that kxðtÞkp � bp for

p ¼ 1; 2;1.

Assumption 2 (Ass. 1 in [34]) F ;G; and H are Lipschitz

on X, i.e. for any z1; z2 2 X, there exist positive constants

LF ; LG; and LH such that

kFðz1Þ � Fðz2Þkp � LFkz1 � z2kp;
kGðz1Þ � Gðz2Þkp � LGkz1 � z2kp;
kHðz1Þ �Hðz2Þkp � LHkz1 � z2kp

for p ¼ 1; 2;1:

Remark 3 Note that in many applied neural networks,

typical choices of the activation functions like tanh or

Sigmoid fulfil Assumption 2. Moreover, in Assumption 2,

we do not require f ð0Þ ¼ 0 and gð0Þ ¼ 0 which is required

in some existing works [29, 34]. This implies that a broad

spectrum of nonlinear functions satisfies Assumption 2.

Remark 4 In the previous studies [5, 6], time delays have

been considered as differentiable, but in this study, we do

not require such assumption.

Remark 5 Since F ;G; and H are Lipschitz on X; they are

also bounded on X: This means that there exist positive

constants KF ;KG; and KH such that kFðzÞkp �KF ;

kGðzÞkp �KG , and kHðzÞkp �KH for all z 2 X and

p ¼ 1; 2;1:

4 Projective lag quasi-synchronization

In this section, we will derive some sufficient conditions

for PLQS of the drive system (1) and the response system

(2) by using the matrix-measure theory and generalized

Halanay inequality. Prior to that, we introduce an important

lemma that is required to establish these conditions.

Lemma 1 Under Assumptions 1 and 2,

Fðx; #1ðtÞ; #2ðtÞ; a; 1Þ is bounded by a constant cp [ 0, i.e.

kFðx; #1ðtÞ; #2ðtÞ; a; 1Þkp � cp;

where

cp ¼ jajkðQ� Q̂Þkpbp þ ðkRkp þ jajkR̂kpÞKF

þ ðkSkp þ jajkŜkpÞKG

þ g2ðkT kp þ jajkT̂ kpÞKH:

Proof For any x 2 X, we have

kFðx; #1ðtÞ; #2ðtÞ; a; 1Þkp
�kaðQ� Q̂Þxðt � 1Þkp þ kRF ðaxðt � 1ÞÞ � aR̂F ðxðt � 1ÞÞkp

þ kSGðaxðt � 1� #1ðtÞÞÞ � aŜGðxðt � 1� #1ðtÞÞÞkp

þ k
Z t

t�#2ðtÞ
ðT Hðaxðs� 1ÞÞ � aT̂ Hðxðs� 1ÞÞÞDskp:

ð5Þ

Now, from Assumptions 1 and 2, we get

kRF ðaxðt � 1ÞÞ � aR̂F ðxðt � 1ÞÞkp
�kRF ðaxðt � 1ÞÞkp þ kaR̂F ðxðt � 1ÞÞkp
�kRkpKF þ jajkR̂kpKF :

ð6Þ

Similarly, we obtain

kSGðaxðt � 1� #1ðtÞÞÞ � aŜGðxðt � 1� #1ðtÞÞÞkp
�kSkpKG þ jajkŜkpKG

ð7Þ

and
Z t

t�#2ðtÞ
ðkT Hðaxðs� 1ÞÞ � aT̂ Hðxðt � 1ÞÞkpÞDs

� g2kT kpKH þ g2jajkT̂ kpKH:

ð8Þ

Therefore, from the equations (5), (6), (7) and (8), we get

kFðx; #1ðtÞ; #2ðtÞ; a; 1Þkp
� jajkðQ� Q̂Þkpbp þ ðkRkp þ jajkR̂kpÞKF þ ðkSkp
þ jajkŜkpÞKG þ g2ðkT kp þ jajkT̂ kpÞKH

¼ cp;

where cp [ 0 is a constant. h
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Remark 6 In Lemma 1, if a ¼ 1, then the constant cp can

be calculated as

cp ¼ kðQ� Q̂Þkpbp þ ðkRkp � kR̂kpÞKF

þ ðkSkp � kŜkpÞKG þ g2ðkT kp � kT̂ kpÞKH:

Now, we are in a position to give the first main result of

PLQS for the drive system (1) and response system (2) as

follows.

Theorem 4 Let Assumptions 1 and 2 hold, then the drive

system (1) and the response system (2) are projective lag

quasi-synchronized with an error level

�p ¼
kB�1kpkBkpcp

dp
;

if, for some p 2 f1; 2;1g, there exist a non-singular

matrix B, a coupling matrix K, and a constant k 2 ð0; 1Þ
such that

Mð1;pÞ �Mð2;pÞ � dp [ 0; kMð1;pÞ �Mð2;pÞ [ 0

and �Mð1;pÞ 2 Rþ, where

Mð1;pÞ ¼ �ðMpðBðQ�KÞB�1;TÞ þ LFkBkpkRkpkB�1kpÞ;
Mð2;pÞ ¼ LGkBkpkSkpkB�1kp þ g2LHkBkpkT kpkB�1kp

and cp is the same as defined in Lemma 1.

Proof Let us define

VðtÞ ¼ kBeðtÞkp:

For any point t 2 T, there are two possibilities: either

lðtÞ ¼ 0 or lðtÞ[ 0. As a result, we separate the proof into

two cases as follows:

Case 1: When lðtÞ[ 0, then we have

kBeðrðtÞÞkp � kBeðtÞkp
lðtÞ

¼ 1

lðtÞ

�
kBeðtÞ þ lðtÞBeDðtÞkp � kBeðtÞkp

�

¼ 1

lðtÞ

�
kBeðtÞ þ lðtÞBððQ�KÞeðtÞ þR �FðeðtÞÞ

þ S �Gðeðt � #1ðtÞÞÞ þ T

Z t

t�#2ðtÞ
�HðeðsÞÞDs

þ Fðx; #1ðtÞ; #2ðtÞ; a; 1Þkp � kBeðtÞkp
�

� 1

lðtÞ

�
kBeðtÞ þ lðtÞBðQ�KÞeðtÞkp � kBeðtÞkp

�

þ kBS �Gðeðt � #1ðtÞÞÞkp þ kBT
Z t

t�#2ðtÞ
HðeðsÞÞDskp

þ kBR �FðeðtÞÞkp þ kBFðx; #1ðtÞ; #2ðtÞ; a; 1Þkp:

ð9Þ

Now, from Assumption 2, we have

k �F ðeðtÞÞkp ¼ kFðyðtÞÞ � FðyðtÞ � eðtÞÞkp
� LFkyðtÞ � axðt � 1Þkp ¼ LFkeðtÞkp:

ð10Þ

Similarly, we obtain

k�Gðeðt � #1ðtÞÞÞkp � LGkeðt � #1ðtÞÞkp ð11Þ

and

k �HðeðtÞÞkp � LHkeðtÞkp: ð12Þ

Now, from the inequalities (9), (10), (11), (12) and Lemma

1, we obtain

kBeðrðtÞÞkp � kBeðtÞkp
lðtÞ

�
k Id þ lðtÞBðQ�KÞB�1kp � 1

lðtÞ kBeðtÞkp

þ LFkBkpkRkpkB�1kpkBeðtÞkp
þ LGkBkpkSkpkB�1kpkBeðt � #1ðtÞÞkp
þ g2LHkBkpkT kpkB�1kp sup

s2½t�g2;t�
kBeðsÞkp þ kBkpcp

�ðMpðBðQ�KÞB�1;TÞ þ LFkBkpkRkpkB�1kpÞkBeðtÞkp
þ kBkpcp þ ðLGkBkpkSkpkB�1kp
þ g2LHkBkpkT kpkB�1kpÞ sup

s2½t�g;t�
kBeðsÞkp

� �Mð1;pÞkBeðtÞkp þMð2;pÞ sup
s2½t�g;t�T

kBeðsÞkp þ kBkpcp:

Hence, using Definition 1, we obtain

Dþ
DVðtÞ� �Mð1;pÞVðtÞ þMð2;pÞ sup

s2½t�g;t�T
VðsÞ

þ kBkpcp:
ð13Þ

Case 2: When lðtÞ ¼ 0, the delta derivative becomes the

ordinary derivative, i.e. zDðtÞ ¼ z0ðtÞ. Accordingly, by

applying the formula zðt þ hÞ ¼ zðtÞ þ z0ðtÞhþ rzðhÞ with

limh!0

krzðhÞkp
h

¼ 0, we obtain
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lim
h!0þ

kBeðt þ hÞkp � kBeðtÞkp
h

¼ lim
h!0þ

1

h

�
kBeðtÞ þ hBeDðtÞ þ reðhÞkp � kBeðtÞkp

�

� lim
h!0þ

1

h

�
kBeðtÞ þ hBððQ�KÞeðtÞ þR �FðeðtÞÞ

þ S �Gðeðt � #1ðtÞÞÞ þ T

Z t

t�#2ðtÞ
�HðeðsÞÞDs

þ Fðx; #1ðtÞ; #2ðtÞ; a; 1Þ þ reðhÞkp � kBeðtÞkp
�

�ðMpðBðQ�KÞB�1;TÞ þ LFkBkpkRkpkB�1kpÞkBeðtÞkp
þ kBkpcp þ ðLGkBkpkSkpkB�1kp
þ g2LHkBkpkT kpkB�1kpÞ sup

s2½t�g;t�
kBeðsÞkp

� �Mð1;pÞkBeðtÞkp þMð2;pÞ sup
s2½t�g;t�T

kBeðsÞkp þ kBkpcp:

Therefore, by utilizing Definition 1, we obtain the same

inequality as (13).

As a result of the above two cases, for each t 2 T, we

obtain

Dþ
DVðtÞ� �Mð1;pÞVðtÞ þMð2;pÞ sup

s2½t�g;t�T
VðsÞ þ kBkpcp:

Therefore, from Lemma 3, we get

VðtÞ�
kBkpcp

dp
þ �:

Subsequently, we obtain

keðtÞkp ¼ kB�1BeðtÞkp
�kB�1kpkVðeðtÞÞkp

�
kB�1kpkBkpcp

dp
þ kB�1kpkBkp�:

Hence, the drive system (1) and the response system (2) are

projective lag quasi-synchronized to the error level

�p ¼
kB�1kpkBkpcp

dp
. h

Remark 7 The error bound level �p depends on the bound

on F. The estimate of F obtained in Lemma 1 is optimal

(smallest and least assumptions) but certainly not practical.

Therefore, based on a slight strengthening of the assump-

tions (Lipschitz is almost differentiable and in applications,

this is typically no restriction), we provide better error

estimates that take into account the parameter mismatch

and the projection.

Assumption 3 The functions F ;G;H : X ! Rn are dif-

ferentiable, and there exist some positive constantsMF ;MG

and MH such that

kF 0ðzÞkp �MF ; kG0ðzÞkp �MG and kH0ðzÞkp �MH

for all z 2 X and p ¼ 1; 2;1.

Lemma 2 Under the additional Assumption 3, the con-

stant cp as in Theorem 4 can be replaced by Cp, where

Cp ¼ jajkðQ� Q̂Þkpbp þ j1� ajðkRkpMF

þ kSkpMG þ g2kT kpMHÞ
þ kRkpkrF ðða� 1Þxðt � 1ÞÞkp
þ kSkpkrGðða� 1Þxðt � 1ÞÞkp
þ g2kT kpkrHðða� 1Þxðt � 1Þkp
þ jajðkR̂�RkpKF þ kŜ � SkpKG þ g2kT̂ � T kpKHÞ;

where rf ðða� 1Þxðt � 1ÞÞ denotes the remainder term of

the linear approximation of f that, for fixed x, goes to zero

faster than ða� 1Þ approaches zero.

Proof For any x 2 X, we have

kFðx; #1ðtÞ; #2ðtÞ; a; 1Þkp �kaðQ� Q̂Þxðt � 1Þkp
þ kRF ðaxðt � 1ÞÞ � aR̂F ðxðt � 1ÞÞkp
þ kSGðaxðt � 1� #1ðtÞÞÞ � aŜGðxðt � 1� #1ðtÞÞÞkp

þ
����
Z t

t�#2ðtÞ
ðT Hðaxðs� 1ÞÞ � aT̂ Hðxðs� 1ÞÞÞDs

����:

ð14Þ

Now, from Assumption 3, F is differentiable, and hence,

we can write

F ðaxðt � 1ÞÞ ¼ F ðxðt � 1Þ þ ða� 1Þxðt � 1ÞÞ
¼ F ðxðt � 1ÞÞ þ ða� 1Þxðt � 1Þ
þ F 0ðxðt � 1ÞÞÞ þ rF ðða� 1Þxðt � 1ÞÞ:

Therefore, we can calculate

RF ðaxðt � 1Þ
¼ RðF ðxðt � 1ÞÞ þ ða� 1Þxðt � 1ÞF 0ðxðt � 1ÞÞÞ
þ rF ðða� 1Þxðt � 1ÞÞ � aRF ðxðt � 1ÞÞ
� aðR̂�RÞFðxðt � 1ÞÞ:

Thus, by using Assumptions 1, 2 and 3

kRF ðaxðt � 1Þ � aðRþ ðR̂�RÞÞF ðxðt � 1ÞÞkp
� jð1� aÞjkRkpkðF 0ðxðt � 1ÞÞxðt � 1ÞÞkp

þ kRkpkrF ðða� 1Þxðt � 1ÞÞkp
þ jajkðR̂�RÞkpkF ðxðt � 1ÞÞkp

� jð1� aÞjkRkpMF þ kRkpkðrF ðða� 1Þxðt � 1ÞÞkp
þ jajkðR̂�RÞkpKF :

ð15Þ

Similarly, we obtain
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kSGðaxðt � 1� #1ðtÞÞÞ � aŜGðxðt � 1� #1ðtÞÞÞkp
� jð1� aÞjkSkpMG þ kSkpkrGðða� 1Þxðt � 1ÞÞkp

þ jajkðŜ � SÞkpKG

ð16Þ

and
Z t

t�#2ðtÞ
ðkT Hðaxðs� 1ÞÞ � aT̂ Hðxðt � 1ÞÞkpÞDs

� g2jð1� aÞjkT kpMH þ g2kT kpkrHðða� 1Þxðt � 1ÞÞkp
þ g2jajkðT̂ � T ÞkpKH:

ð17Þ

Therefore, from the inequalities (14), (15), (16) and (17),

we get

kFðx; #1ðtÞ; #2ðtÞ; a; 1Þkp �Cp:

Hence, the result follows. h

Remark 8 Note that the bounds in Lemma 2 scale with the

mismatch kR̂�Rkp; kŜ � Skp, and kT̂ � T kp. There-

fore, the estimate obtained in Lemma 2 is likely sharper

than the estimate obtained in Lemma 1 (see Sect. 5).

Remark 9 Assumption 3 is stronger than Assumption 2 but

still satisfied by many nonlinear functions and well-known

activation functions in applied neural networks, such as

tanh, Sigmoid or Logistic, and Gaussian. However, there

are some nonlinear functions, like modulus function, which

are not differentiable at certain points of the domain.

Exploring the behaviour of these functions and developing

results for such cases could be an interesting direction for

future research.

Remark 10 Based on Theorem 4, we can design a control

gain matrix that incorporates considerations for parameter

mismatches and synchronization error levels. For conve-

nience, we consider B ¼ Id .

Step 1: Calculate the parameter mismatches bound or

uncertainty bound cp ðor CpÞ from Lemma 1 (or Lemma

2).

Step 2: Chose an appropriate error level �p [ 0, and

calculate dp from �p ¼ cp
dp

ðor Cp

dp
Þ.

Step 3: Compute

D ¼ �dp � LGkSkp � g2LHkT kp � LFkRkp:
Step 4: Determine the feedback gain matrix K such that

MpðQ�K;TÞ�D.

We note that the determination of the constants like Cp

contain upper and worst-case bounds to the parameter

mismatches like Q� Q̂ so that they naturally cover

unmodelled mismatches that are smaller than assumed.

Furthermore, the constants that bound the states of the

drive system are inferred from a simulation which would

also simply include modelling errors in the drive system.

Finally, the matrix-measure continuously depends on

perturbations in the coefficients as can be seen from the

formulas for the particular realizations for the different

norms in Table 1. Overall, we can state that the presented

procedure is robust with respect to unknown perturbations

in the systems.

Next, we provide a remark for different choices of B and

K as follows.

Remark 11 In Theorem 4,

• if we choose B ¼ Id , then the values of Mð1;pÞ, Mð2;pÞ,

and �p will be replaced by

�ðMpððQ�KÞ;TÞ þ LFkRkpkÞ,
LGkSkp þ g2LHkT kp, and

cp
dp
, respectively;

• if K is a time-varying matrix, i.e. K ¼ KðtÞ, then the

values of Mð1;pÞ will be replaced by

�ðMpðBðQ�KðtÞÞB�1;TÞ þ LFkBkpkRkpkB�1kpÞ
for all t 2 ½0;1ÞT;

• if we choose B ¼ Id and K ¼ KðtÞ, then the values of

Mð1;pÞ, Mð2;pÞ, and �p will be replaced by

�ðMpððQ�KðtÞÞ;TÞ þ LFkRkpkÞ,
LGkSkp þ g2LHkT kp, and

cp
dp
, respectively, for all

t 2 ½0;1ÞT.

The next remark discusses some immediate results from

the above-obtained results.

Remark 12 Similarly to Theorem 4, Lemma 2, and

Remark 11, one can establish the similar results for

• lag quasi-synchronization of the system (1) and (2),

when a ¼ 1;

• projective quasi-synchronization of the system (1) and

(2), when 1 ¼ 0;

• quasi-synchronization of the system (1) and (2), when

a ¼ 1 and 1 ¼ 0.

Remark 13 When there are no distributed time delays (i.e.

#2ðtÞ ¼ 0), all the above discussed results can be proven by

setting the respective terms to zero in the computation of

the constants Mð1;pÞ;Mð2;pÞ and the estimates on the

mismatch.

Remark 14 Theorem 4 covers the problem in all general-

ity; therefore, for specific time scales like continuous time

or discrete time, the matrix measures in Mð1;pÞ are readily

computed by the known formulas.

Next, some special cases of the considered problem for

different time scales including real, discrete, and non-

overlapping time intervals are considered and show how

our results generalize and extend the existing results.
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\\ Case 1. For the continuous-time domain, i.e. when

T ¼ R, the drive system (1) reduces to

x0ðtÞ ¼ Q̂xðtÞ þ R̂F ðxðtÞÞ þ ŜGðxðt � #1ðtÞÞÞ

þ T̂

Z t

t�#2ðtÞ
HðxðsÞÞds

ð18Þ

and the response system (2) reduces to

y0ðtÞ ¼ QyðtÞ þRF ðyðtÞÞ þ SGðyðt � #1ðtÞÞÞ

þ T

Z t

t�#2ðtÞ
HðyðsÞÞdsþ uðtÞ;

ð19Þ

where t 2 ½0;1Þ and the remaining parameters are equal to

those defined previously.

Remark 15 As far as we know, the PLQS of the contin-

uous-time system (18)–(19) using the Halanay inequality

and matrix-measure approach has not yet been investigated

in the existing literature. Hence, the findings presented in

this paper are entirely novel, even in the context of con-

tinuous-time systems. A few authors [29, 34] have inves-

tigated different synchronization results for the system

(18)–(19) by using the different techniques. Notably, our

results are particularly significant when 1 ¼ 0, where they

become the main outcomes of [34]. Further, in contrast to

the impulsive control approach utilized in [29], we utilize a

feedback controller and provide simpler criteria for

achieving PLQS. Our numerical simulations show that to

achieve the same error bounds, our proposed method

greatly reduces the required feedback gain as compared to

[29] (see Example 2), underscoring the efficacy of our

approach.

Remark 16 The synchronization results for the continu-

ous-time system (18)–(19) without distributed time delay,

i.e. when #2ðtÞ ¼ 0, have been investigated in

[28, 32, 33, 35]. In particular, if a ¼ 1, our results coincide

with those of [35]. Further, in comparison with the inter-

mittent technique developed in [33], our results signifi-

cantly reduce the required feedback gain to achieve the

same error bound, as shown in Example 3. This further

demonstrates that the results of this paper are non-trivial

extensions and generalizations of the existing results.

Case 2. For the h�difference discrete-time domain,

i.e. when T ¼ hZ, h[ 0, the drive system (1) reduces to

xðt þ hÞ ¼ xðtÞ þ hðQ̂xðtÞ þ R̂F ðxðtÞÞ þ ŜGðxðt � #1ðtÞÞÞ

þ T̂

Z t

t�#2ðtÞ
HðxðsÞÞDsÞ

ð20Þ

and the response system (2) reduces to

yðt þ hÞ ¼ yðtÞ þ hðQyðtÞ þRF ðyðtÞÞ þ SGðyðt � #1ðtÞÞÞ

þ T

Z t

t�#2ðtÞ
HðyðsÞÞDsþ uðtÞÞ;

ð21Þ

where t 2 ½0;1ÞhZ.

Remark 17 The discrete-time systems have been studied

in [13, 18, 20], but to the best of our knowledge, there is no

paper that discussed the PLQS results for the discrete-type

system (20)–(21). However, we have formulated our

problem by using the time scales theory; therefore, our

results can also be applied to the discrete-time systems of

the form (20)–(21), as demonstrated in Case 2 of Example

1.

Case 3. For the mixed time domain T ¼ hPc;d, i.e. T ¼
[1
l¼0h½lðcþ dÞ; lðcþ dÞ þ d�; h; c; d[ 0; which is differ-

ent from the traditional discrete-time domain and contin-

uous-time domain, the drive system (1) becomes

x0ðtÞ ¼ bQxðtÞ þ bRF ðxðtÞÞ þ bSGðxðt � #1ðtÞÞÞ

þ bT
Z t

t�#2ðtÞ
HðxðsÞÞds; t 2 hPc;dn [1

l¼0 hflðcþ dÞ þ dg;

xðt þ hcÞ ¼ xðtÞ þ hcð bQxðtÞ þ bRFðxðtÞÞ þ bSGðxðt � #1ðtÞÞÞ

þ bT
Z t

t�#2ðtÞ
HðxðsÞÞDsÞ; t ¼ [1

l¼0hflðcþ dÞ þ dg

8
>>>>>>>>><

>>>>>>>>>:

ð22Þ

and the response system (2) becomes

y0ðtÞ ¼ QyðtÞ þRF ðyðtÞÞ þ SGðyðt � #1ðtÞÞÞ

þ T

Z t

t�#2ðtÞ
HðyðsÞÞdsþ uðtÞ; t 2 hPc;dn [1

l¼0 hflðcþ dÞ þ dg;

yðt þ hcÞ ¼ yðtÞ þ hcðQyðtÞ þRF ðyðtÞÞ þ SGðyðt � #1ðtÞÞÞ

þ T

Z t

t�#2ðtÞ
HðyðsÞÞDsþ uðtÞÞ; t ¼ [1

l¼0hflðcþ dÞ þ dg:

8
>>>>>>>><

>>>>>>>>:

ð23Þ

We are ending up this section by giving the final remark as

follows.

Remark 18 Standard and generalized matrix-measure

theory can be used to establish results for regular time-

domain systems, such as continuous and discrete-time

systems. However, for irregular time-domain systems like

(22) and (23), these results cannot be directly studied using

discrete-time and continuous-time system theories. Instead,

the time scales and unified matrix-measure theory can be

used to study these results easily (see case 3 of Example 1).
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5 Illustrative examples

In this section, we provide three examples to illustrate the

obtained results for different time domains. Whereas the

first example is tailored to best illustrate the potential of

our theoretical results with respect to arbitrary time

domains, the second example is borrowed from [29] to

show the general applicability of our methods. In the final

example, we consider the Lu oscillator from [33] and show

that our results can be applied to a variety of dynamical

systems.

Example 1 Consider the following coefficients for the

drive system (1) and the response system (2)

Q̂ ¼
�0:5 0:0

0:0 � 0:4

� �
; R̂ ¼

0:4 0:4

0:4 0:3

� �
;

Ŝ ¼
�0:4 0:1

�0:2 0:5

� �
; T̂ ¼

0:2 � 0:1

0:1 � 0:4

� �
;

Q ¼
�0:51 0:0

0:0 � 0:41

� �
; R ¼

0:401 0:401

0:401 0:311

� �
;

S ¼
�0:401 0:11

�0:21 0:5001

� �
; T ¼

0:201 � 0:101

0:101 � 0:4001

� �
;

F ðxð�ÞÞ ¼ Gðxð�ÞÞ ¼
0:7 tanhðx1ð�ÞÞ
0:8 tanhðx2ð�ÞÞ

� �
;

Hðxð�ÞÞ ¼
0:8 tanhðx1ð�ÞÞ
0:7 tanhðx2ð�ÞÞ

� �
;

/̂ðsÞ ¼
�0:2

�0:1

� �
; /ðsÞ ¼

0:1

0:2

� �
for s 2 ½�g; 0�T;

a ¼ 0:5; B ¼
1 0

0 1

� �
:

Clearly, for the considered coefficients, Assumption 1

holds. Also, one can see that F ;G; and H satisfy

Assumption 2 and Assumption 3. Now, we consider the

following three different time domains as follows.

Case 1. T ¼ R, i.e. lðtÞ ¼ 0 for all t. We set #1ðtÞ ¼
#2ðtÞ ¼ expðtÞ

2þexpðtÞ and 1 ¼ 0:4; then, g ¼ 1. The synchro-

nization errors and error norm between the drive system (1)

and the response system (2) without feedback controller are

shown in Fig. 3.

Now, for the coupling matrix

K ¼
3:81 0:0

0:0 3:91

� �
;

we can calculate

Mð2;1Þ ¼ 0:8897; Mð2;2Þ ¼ 0:8505; Mð2;1Þ ¼ 0:9690

and

!1ðQ�KÞ ¼ �4:32; !2ðQ�KÞ ¼ �8:64; !1ðQ�KÞ ¼ �4:32:

Hence,

Mð1;1Þ ¼ 3:6784; Mð1;2Þ ¼ 8:0327; and Mð1;1Þ ¼ 3:6784:

Therefore, we can see that �Mð1;pÞ 2 Rþ for p 2
f1; 2;1g and

Mð1;1Þ �Mð2;1Þ � 2:7887[ 0;

Mð1;2Þ �Mð2;2Þ � 7:1822[ 0;

Mð1;1Þ �Mð2;1Þ � 2:70940:

Also, for k ¼ 0:5 and p 2 f1; 2;1g, the inequality

kMð1;pÞ �Mð2;pÞ [ 0 holds. Thus, all of the requirements

of Theorem 4 and Lemma 2 are satisfied, and as a result,

the drive system (1) and the response system (2) are pro-

jective lag quasi-synchronized. The synchronization errors

and error norm between the drive system (1) and the

response system (2) with feedback controller (3) are shown

in Fig. 4.

The theoretical error bounds for different values of p are

given in Table 2. Clearly, the theoretical error bound

obtained from Lemma 2 is fairly close to the computed

error as shown in Fig. 4.

Case 2. T ¼ 0:2Z, i.e. lðtÞ ¼ 0:2 for all t 2 0:2Z. We

set #1ðtÞ ¼ #2ðtÞ ¼ 0:2 and 1 ¼ 0:4; then, g ¼ 0:2. The

synchronization errors and error norm between the drive

system (1) and the response system (2) without feedback

controller (3) are shown in Fig. 5.

Now, for the coupling matrix

K ¼
4:49 0:0

0:0 4:59

� �
;

we can calculate

Mð2;1Þ ¼ 0:5690; Mð2;2Þ ¼ 0:5674; Mð2;1Þ ¼ 0:6483

and

x1ðQ�KÞ ¼ �5:0; x2ðQ�KÞ ¼ �5:0; x1ðQ�KÞ ¼ �5:0:

Hence,

Fig. 3 Trajectories of the errors e1, e2, and error norm kek2 of the

uncontrolled system when T ¼ R
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Mð1;1Þ ¼ 4:3584; Mð1;2Þ ¼ 4:3927; and Mð1;1Þ ¼ 4:3584:

Therefore, we can see that �Mð1;pÞ 2 Rþ for p 2
f1; 2;1g and

Mð1;1Þ �Mð2;1Þ � 3:7894[ 0;

Mð1;2Þ �Mð2;2Þ � 3:8253[ 0;

Mð1;1Þ �Mð2;1Þ � 3:7101[ 0:

Also, for k ¼ 0:5 and p 2 f1; 2;1g, the inequality

kMð1;pÞ �Mð2;pÞ [ 0 holds. Thus, all of the requirements

of Theorem 4 and Lemma 2 are satisfied, and as a result,

the drive system (1) and the response system (2) are pro-

jective lag quasi-synchronized. The synchronization errors

and error norm between the drive system (1) and the

response system (2) with feedback controller (3) are shown

in Fig. 6.

The theoretical error bounds for different values of p are

given in Table 3. Here also, the theoretical error bound

obtained from Lemma 2 is fairly close to the computed

error as shown in Fig. 6.

Case 3. T ¼ P ¼ ½�1; 0� [1
l¼0 0:5½l; ðlþ 0:7Þ�. Here,

lðtÞ is given by

lðtÞ ¼ 0; t 2 ½�1; 0� [1
l¼0 ½0:5l; 0:5ðlþ 0:7ÞÞ;

0:15; t ¼ [1
l¼0f0:5ðlþ 0:7Þg:

�

We set #1ðtÞ ¼ #2ðtÞ ¼ 0:5 and 1 ¼ 1; then, g ¼ 0:5. The

synchronization errors and error norm between the drive

system (1) and the response system (2) without feedback

controller (3) are shown in Fig. 7.

Now, for the coupling matrix

K ¼
6:15 0:0

0:0 6:25

� �
;

we can calculate

Mð2;1Þ ¼ 0:6892; Mð2;2Þ ¼ 0:6736; Mð2;1Þ ¼ 0:7685

and

M1ððQ�KÞ;PÞ ¼ �6:66; M2ððQ�KÞ;PÞ ¼ �6:66;

M1ððQ�KÞ;PÞ ¼ �6:66:

Hence,

Mð1;1Þ ¼ 6:0184; Mð1;2Þ ¼ 6:0527; and

Mð1;1Þ ¼ 6:0184:

Therefore, we can see that �Mð1;pÞ 2 Rþ for p 2
f1; 2;1g and

Mð1;1Þ �Mð2;1Þ � 5:3292[ 0;

Mð1;2Þ �Mð2;2Þ � 5:3791[ 0;

Mð1;1Þ �Mð2;1Þ � 5:2499[ 0:

Also, for k ¼ 0:5 and p 2 f1; 2;1g, the inequality

kMð1;pÞ �Mð2;pÞ [ 0 holds. Thus, all of the requirements

of Theorem 4 and Lemma 2 are satisfied, and as a result,

the drive system (1) and the response system (2) are pro-

jective lag quasi-synchronized. The synchronization errors

Fig. 4 Trajectories of the errors e1, e2, and error norm kek2 of the

controlled system when T ¼ R

Table 2 Error bounds from Theorem 4 and Lemma 2 when T ¼ R

p cp Cp dp �p ¼ cp
dp �p ¼ Cp

dp

1 2.2998 0.1469 2.7887 0.8247 0.0526

2 2.1861 0.1374 7.1822 0.3044 0.02

1 2.4156 0.1490 2.7094 0.8916 0.054

Fig. 5 Trajectories of the errors e1, e2, and error norm kek2 of the

uncontrolled system when T ¼ 1
5
Z

Fig. 6 Trajectories of the errors e1, e2, and error norm kek2 of the

controlled system when T ¼ 1
5
Z
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and error norm between the drive system (1) and the

response system (2) with feedback controller (3) are shown

in Fig. 8.

The theoretical error bounds for different values of p are

given in Table 4. In this case also, the theoretical error

bound obtained from Lemma 2 is fairly close to the com-

puted error as shown in Fig. 8.

Example 2 Consider the continuous-time case of the drive

and response systems (18)–(19) with the following coeffi-

cients as in [29]

Q̂ ¼
�1:0 0:0

0:0 � 1:0

� �
; R̂ ¼

2:0 � 0:1

5:0 4:5

� �
;

Ŝ ¼
�1:5 � 0:1

�0:2 � 4:0

� �
; T̂ ¼

�0:3 0:1

0:1 � 0:2

� �
;

Q ¼
�1:0 0:0

0:0 � 1:0

� �
; R ¼

1:8 � 0:15

�0:52 3:5

� �
;

S ¼
�1:7 � 0:12

�0:26 � 2:5

� �
; T ¼

0:6 0:15

2:0 � 0:12

� �
;

Fðxð�ÞÞ ¼ Gðxð�ÞÞ ¼ Hðxð�ÞÞ ¼
tanhðx1ð�ÞÞ
tanhðx2ð�ÞÞ

� �
; B ¼

1 0

0 1

� �
;

#1ðtÞ ¼ 1; #2ðtÞ ¼ 0:2; a ¼ 0:5; /̂ðsÞ ¼
0:01

0:1

� �
;

/ðsÞ ¼
0:02

0:01

� �
for s 2 ½�1; 0�:

Clearly, for the considered coefficients, Assumption 1

holds. Also, one can see that F ;G; and H satisfy

Assumption 2 and Assumption 3. The synchronization

errors and error norm between the drive system (1) and the

response system (2) without feedback controller are shown

in Fig. 9.

Now, for the coupling matrix

K ¼
10:1557 0:0

0:0 10:1557

� �
;

we can calculate Mð2;2Þ ¼ 2:9619 and !2ðQ�KÞ ¼
�22:3114: Hence, Mð1;2Þ ¼ 15:8442: Therefore, we can

see that Mð1;2Þ �Mð2;2Þ ¼ 12:8824[ 0 and

�Mð1;2Þ 2 Rþ. Also, for k ¼ 0:5, the inequality kMð1;2Þ �
Mð2;2Þ [ 0 holds. Thus, all of the requirements of Theo-

rem 4 and Lemma 2 are satisfied, and as a result, the drive

system (1) and the response system (2) are projective lag

quasi-synchronized. The synchronization errors and error

norm between the drive system (1) and the response system

(2) with feedback controller (3) are shown in Fig. 10.

Further, for p ¼ 2, we can calculate C2 ¼ 3:1471.

Hence, the theoretical error bound �2 ¼ C2

d2
is 0.2443.

Comparing the results quantitatively, we note that to

achieve the error bound 0.2443, we used the feedback gain

K ¼ diag f10:1557; 10:1557g; while to achieve the same

error bound, the authors in [29] used a gain of

K ¼ diag f20; 20g, which is approximate double of our

gain.

Finally, we present our third example as follows.

Example 3 Consider the continuous-time Lu oscillator

given by the drive and response systems (18)–(19) with the

following coefficients as in [33]

Q̂ ¼
�1:0 0:0

0:0 � 1:0

� �
; R̂ ¼

2:0 � 0:1

5:0 3:2

� �
;

Ŝ ¼
�1:5 � 0:1

�0:18 � 2:5

� �
;

Q ¼
�0:99 0:0

0:0 � 1:1

� �
; R ¼

2:1 � 0:1

�0:51 3:1

� �
;

S ¼
�1:5 � 0:11

�0:16 � 2:4

� �
;

F ðxð�ÞÞ ¼ Gðxð�ÞÞ ¼
tanhðx1ð�ÞÞ
tanhðx2ð�ÞÞ

� �
; B ¼

1 0

0 1

� �
;

#1ðtÞ ¼ 1; #2ðtÞ ¼ 0:0; a ¼ 0:9; 1 ¼ 0:02; p ¼ 2;

/̂ðsÞ ¼
0:2

�0:3

� �
; /ðsÞ ¼

�0:1

0:1

� �
for s 2 ½�1; 0�:

Clearly, for the considered coefficients, Assumption 1

holds. Also, one can see that F ;G; and H satisfy

Assumption 2 and Assumption 3. The synchronization

errors and error norm between the drive system (1) and the

response system (2) without feedback controller are shown

in Fig. 11.

Now, for the coupling matrix

Table 3 Error bounds from Theorem 4 and Lemma 2 when T ¼ 1
5
Z

p cp Cp dp �p ¼ cp
dp �p ¼ Cp

dp

1 1.8223 0.1770 3.7894 0.4809 0.0467

2 1.7673 0.1696 3.8253 0.4620 0.0443

1 1.9416 0.1849 3.7101 0.5233 0.04983

Fig. 7 Trajectories of the errors e1, e2, and error norm kek2 of the

uncontrolled system when T ¼ P
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K ¼
10:4848 0:0

0:0 10:3748

� �
;

we can calculate Mð2;2Þ ¼ 2:42 and !2ðQ�KÞ ¼
�22:9496: Hence, Mð1;2Þ ¼ 16:6950: Therefore, we can

see that Mð1;2Þ �Mð2;2Þ ¼ 14:2750[ 0 and

�Mð1;2Þ 2 Rþ. Also, for k ¼ 0:5, the inequality kMð1;2Þ �
Mð2;2Þ [ 0 holds. Thus, all of the requirements of Theo-

rem 4 and Lemma 2 are satisfied, and as a result, the drive

system (1) and the response system (2) are projective lag

quasi-synchronized. The synchronization errors and error

norm between the drive system (1) and the response system

(2) with feedback controller (3) are shown in Fig. 12.

Further, for p ¼ 2, we can calculate C2 ¼ 3:5259.

Hence, the theoretical error bound �2 ¼ C2

d2
is 0.2470.

Comparing the results quantitatively, we note that to

achieve the error bound 0.2470, we used the feedback gain

K ¼ diag f10:4848; 10:3848g; while to achieve the same

error bound, the authors in [33] used the intermittent

control technique with a feedback gain of

K ¼ diag f40; 40g, which is approximate four times of our

gain.

Remark 19 Previous works, such as [28, 29, 32–35], have

considered similar types of examples on either continuous

or discrete-time domains. To the best of our knowledge,

there is currently no other example in the literature that has

addressed PLQS of coupled systems on hybrid-type time

domains (as presented in case 3 of Example 1).

Remark 20 In this paper, we have derived protocols for

achieving asymptotic quasi-synchronization. However, it is

important to note that these protocols only guarantee con-

vergence with an infinite settling time. In order to address

this limitation, an interesting future direction could be to

investigate the finite-time quasi-synchronization, where the

synchronization is achieved within a specific finite-time

period instead of an infinite duration. Furthermore, the

continuous feedback controller we used in our approach

can be costly in terms of implementation and computa-

tional resources. Therefore, another potential future direc-

tion could be to develop alternative controllers, like

impulsive controllers and event-triggered controllers which

have the advantage of reducing implementation and com-

putational costs compared to continuous feedback control.

Fig. 8 Trajectories of the errors e1, e2, and error norm kek2 of the

controlled system when T ¼ P

Table 4 Error bounds from Theorem 4 and Lemma 2 when T ¼ P

p cp Cp dp �p ¼ cp
dp �p ¼ Cp

dp

1 1.9994 0.1290 5.3292 0.3752 0.0242

2 1.9233 0.1216 5.3791 0.3575 0.0226

1 2.1187 0.1311 5.2499 0.4036 0.0249

Fig. 9 Trajectories of the errors e1, e2, and error norm kek2 of the

uncontrolled system

Fig. 10 Trajectories of the errors e1, e2, and error norm kek2 of the

controlled system

Fig. 11 Trajectories of the errors e1, e2, and error norm kek2 of the

uncontrolled system
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6 Conclusions

In this study, we have presented a feedback control law that

successfully establishes projective lag quasi-synchroniza-

tion for coupled dynamical systems with parameter mis-

matches and mixed time-varying delays on arbitrary time

domains. More precisely, we first formulated the problem

on time scales, allowing the results to be valid for arbitrary

time domains. Next, we derived various sufficient condi-

tions for projective lag quasi-synchronization and obtained

corresponding error bounds. Additionally, by setting some

particular values to the parameters, we provided different

conditions for projective quasi-synchronization, quasi-

synchronization, and lag synchronization. Our study has

also extended and refined existing results by generalizing

them using the time scales theory. The analytical outcomes

have been validated using time scales calculus, unified

matrix-measure, and generalized Halanay inequality. In the

last, we provided some numerical examples for different

time domains and showed that the error bounds obtained

analytically are very close to the simulated error bounds.

Overall, this study provides a comprehensive under-

standing of the problem of projective lag quasi-synchro-

nization and offers a generic solution for synchronizing

parameter mismatched coupled dynamical systems with

mixed time-varying delays on continuous, discrete and also

arbitrary time domains. It can be used as a foundation for

future research in the field of synchronization of deter-

ministic and stochastic dynamical systems. An immediate

valuable extension would be the inclusion of impulsive

effects with time-dependent delays. Furthermore, a

promising application where memory terms, delays, and

on-off behaviour as it can be naturally modelled by time

scales are relevant lies in the synchronization of connected

memristors [16].
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