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Widespread and complex drought effects on
vegetation physiology inferred from space

Wantong Li 1 , Javier Pacheco-Labrador 1, Mirco Migliavacca 2,
Diego Miralles 3, Anne Hoek van Dijke 1, Markus Reichstein 1,4,
Matthias Forkel 5, Weijie Zhang1, Christian Frankenberg 6,7, Annu Panwar1,
Qian Zhang 8, Ulrich Weber 1, Pierre Gentine 9 & Rene Orth 1

The response of vegetation physiology to drought at large spatial scales is
poorly understood due to a lack of direct observations. Here, we study vege-
tation drought responses related to photosynthesis, evaporation, and vege-
tation water content using remotely sensed data, and we isolate physiological
responses using a machine learning technique. We find that vegetation func-
tional decreases are largely driven by the downregulation of vegetation phy-
siology such as stomatal conductance and light use efficiency, with the
strongest downregulation in water-limited regions. Vegetation physiological
decreases in wet regions also result in a discrepancy between functional and
structural changes under severe drought. We find similar patterns of physio-
logical drought response using simulations from a soil–plant–atmosphere
continuum model coupled with a radiative transfer model. Observation-
derived vegetationphysiological responses to drought across space aremainly
controlled by aridity and additionally modulated by abnormal hydro-
meteorological conditions and vegetation types. Hence, isolating and quanti-
fying vegetation physiological responses to drought enables a better under-
standing of ecosystem biogeochemical and biophysical feedback in
modulating climate change.

Soil moisture drought is increasing in terms of duration and intensity
in many areas worldwide1. Drought affects vegetation functioning by
increasing the risk of carbon starvation and hydraulic failure which
consequently induce plant mortality2. Since terrestrial vegetation
directly regulates carbon and water fluxes at the Earth’s surface, plant
drought responses feedback to climate and likely aggravate global
warming3. Vegetation function is affected by its structure (e.g., leaf
demography and leaf area4) and its physiology (e.g., stomatal closure5).
These two components may respond differently to environmental

stress such that a comprehensive characterization of the large-scale
vegetation response to droughts requires disentangling the associated
structural and physiological changes.

Vegetation foliar cover emerges as one of the main properties of
vegetation structure. Satellite-based vegetation greenness indices or
leaf area index (LAI) products estimating green foliar cover have been
widely studied to understand vegetation response to drought6–8. On
the other hand, vegetation physiology, such as maximum carboxyla-
tion rate and stomatal conductance, have so far only been directly
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assessed at the site level9. At the same time, their changes are only
implicitly included in global observations10. Vegetation physiology
typically responds faster than the vegetation structure to environ-
mental stressors at the ecosystem scale, yet the drought response is
commonly diagnosed by concurrent structural changes which could
lead to an underestimation of the vegetation functional responses8,11–13.
In fact, drought stress first leads to reductions in stomatal con-
ductance and maximum photosynthetic rate, which in turn reduces
transpiration and photosynthesis5,14–16. Thereafter, vegetation struc-
turewill be reduced as a consequenceof the initial physiological stress.

Recent advances in satellite remote sensing10,17–22 bring new
opportunities to monitor vegetation physiology and resulting func-
tioning as illustrated in Fig. 1. Specifically, (i) Solar-induced chlorophyll
fluorescence (SIF) is an indicator of ecosystemphotosynthesis, and the
TROPOspheric Monitoring Instrument (TROPOMI) onboard the
Sentinel-5p satellite provides global SIF imagery continuously since
201817,18,23 and overcomes cloud-induced biases in previous SIF pro-
ducts and vegetation greenness indices8. As SIF is affected by photo-
synthetically active radiation and sun-view angular variability, we use
relative SIF (SIF divided by near-infrared reflected radiance24, hereafter
‘SIFrel’) as this product filters for these effects. (ii) Land surface tem-
perature (LST)25,26 is tightly linked with ecosystem evapotranspiration
(hereafter ‘ET’). Therefore, since ET cannot be directly observed at the
global scale27, we convert LST from the Moderate Resolution Imaging
Spectroradiometer (MODIS) into ET using a simplified surface energy
balancemodel28,29 (hereafter ‘SSEB’). (iii) Vegetation water content can
be estimated from microwave remote sensing to assess vegetation
hydraulics. High-frequency vegetation optical depths (VOD) retrievals
are sensitive to upper-canopy water content changes, such that they
carries information about stomatal regulation at the diurnal time
scale30. For instance, X-band VOD from the Advanced Microwave
Scanning Radiometer 2 (AMSR2) has been used to monitor ecosystem
hydraulics through the ratio ofmidday andmidnight observations3,31,32

(hereafter referred as ‘VOD ratio’). Synthesizing these opportunities
can facilitate the study of global vegetationdrought response from the

perspective of plant physiology and enable a comprehensive diagnosis
of drought effects on ecosystems globally.

In this study, we synergistically explore SIF, ET, and the VOD ratio
to assess the overall and the physiological vegetation response to
drought across the globe. Our study is based on data from March
2018–October 2021 at 8-daily temporal and 0.25˚ spatial resolution
(Methods Section: Observation-based data) where all data products
are concurrently available. We define drought events based on the soil
moisture minimum during the growing season, and to focus on severe
drought we only consider grid cells where the minimum of the 1982-
2021 monthly soil moisture reanalysis record falls in our study period
(Methods Section: Drought detection). A drought peak per grid cell is
identified from 8-daily soil moisture data matching the temporal
resolution of the satellite-based data streams, so that we can study the
trajectories of ecosystemphysiology before, during, and after drought
peaks. We introduce a random forest-based approach to isolate the
physiological components in SIFrel, ET, and VOD ratio (Fig. S1; Meth-
ods Section: Disentangling vegetation physiology). We determine the
structural response as the variability of SIFrel, ET, or VOD ratio
explained by concurrent changes in LAI in a random forest model,
while the variability explained by hydro-meteorological variables in
another random forest model indicates the physiological response.
For this purpose, we assume that (i) LAI captures all the structural
changes which are relevant for SIFrel, ET, and VOD ratio, and (ii) the
physiological response can be predicted by hydro-meteorological
data. Uncertainties in LAI may lead to an overestimation of the phy-
siological estimates. Vice versa, any physiological regulation which is
reflected in LAI changeswithin the considered8-daily time stepswill be
assigned as a structural change, leading to an underestimation of the
physiology estimates. This way, we can only detect ‘unique’ physiolo-
gical variations which do not co-vary with structural changes at the
considered 8-daily time scale. In addition to the remote sensing-based
analyzes, we use the Soil Canopy Observation of Photochemistry and
Energy flux (SCOPE) model33 to simulate the vegetation drought
response and underlying physiological changes, and hence enable a

Fig. 1 | Overview of satellite-observedwavelength bands and their information
related to vegetation functioning, structure, and physiology. Left: Considered
wavelength bands and respective vegetation products employed in this study.
Right: Functional, structural, and physiological aspects of vegetation dynamics,
which can be inferred from the considered data. Colors of boxes indicate the link
between data on the left and processes on the right. LAI: leaf area index; NIRv: the

near-infrared reflectance of vegetation is an alternative product of vegetation
canopy structure; SIF: sun-induced chlorophyll fluorescence; LST: land surface
temperature; ET: evapotranspiration simulated from land surface temperaturewith
a simplified surface energy balance model; VOD: vegetation optical depth. Leaf
angle distribution is one of vegetation structural properties, but we note it by a
dashed box because it is not globally available.
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mechanistic interpretation of our disentangled vegetation physiology
(Method Sections: SCOPE simulations). By comparing model simula-
tion resultswithfindings fromourmachine learning-based analysis, we
demonstrate that our methodology can isolate the vegetation phy-
siological signals. This way, we can show that the vegetation drought
response observed across data streams is largely attributable to phy-
siological processes with the strongest downregulation in water-
limited regions.

Results and discussion
Diagnosing the global vegetation drought response from space
Figure 2a, b shows regions around the globe where severe soil moist-
ure droughts have occurred during our study period, distinguished
between wet and dry climate regions as separated by aridity. Infor-
mation on the timing of these drought events is shown in Fig. S2. Many
of these events have been featured in recent literature, for instance,
the 2018 European drought34 and the 2017–2019 southeastern Aus-
tralian drought35. Figure 2c–j presents anomalies of all employed

vegetation data streams, respectively, before, during and after the
drought events, averaged across grid cells as shown in panels (a) or (b).

We present the vegetation drought response between 3 months
before and 3 months after drought peaks and find a contrasting
response between dry and wet regions. All vegetation and hydro-
meteorological data are de-seasonalized and de-trended to minimize
confounding effects (Methods Section: Data pre-processing). While
LAI is below normal in dry regions due to water stress, wet regions
more often show positive LAI anomalies during drought development.
This is related to the drought-associated sunny conditions in these
typically energy-limited regions which stimulate photosynthetic
capacity, water use efficiency, and consequently vegetation
greening36,37 (Fig. 2c, d). A similar pattern is found in the case of near-
infrared reflectance of the vegetation (NIRv), which is used as an
alternative indicator for vegetation structure38,39 (Fig. 2c, d). Increases
in NIRv during drought development compared to non-drought years
are less pronounced compared to LAI as NIRv is more sensitive to
decreases in soil moisture40,41.

Fig. 2 | Drought-related trajectories of multiple remote-sensing vegetation
anomalies. Drought-affected grid cells in (a) dry regions (aridity > 1) and (b) wet
regions (aridity <= 1). Results for dry regions are presented in (c, e, g, i) and for wet
regions are presented in (d, f,h, j). c,d LAI andNIRv, e, f SIF and relative SIF (SIFrel),
g, h VOD at midday, midnight, and the ratio between them (VOD ratio), i, j ET and
soil moisture. All vegetation variables are shown as anomalies, except for soil
moisture in (i, j) which is presented in absolute values to indicate the actual water

amount. Grid cells are only considered if data are available for at least 20 out of the
24 displayed time steps before, during, and after drought peaks. The solid lines
denote mean values across grid cells. Shades in figures denote the mean standard
error which is computed based on the standard deviation across the anomalies of
every third grid cell in latitudinal and longitudinal directions, respectively. Using a
subset of grid cells as opposed to all wet or dry grid cells, the effect of spatial
autocorrelation is reduced.
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Vegetation photosynthesis approximated by SIF shows con-
tinuous decreases preceding the drought peak with stronger negative
anomalies in dry regions (Fig. 2e, f). As in the case of LAI, SIF increases
to normal levels and even beyond after about 1–2 months after the
drought peaks, and wet ecosystems recover more quickly than dry
ecosystems, as the new leaf flushing of wet ecosystems promotes
photosynthesis36. SIFrel shows similar dynamics during and after
drought peaks, but in the drought development periods, SIFrel nega-
tive anomalies in wet regions are weaker. Previous studies also found
that after filtering out the effects of solar irradiance and satellite
viewing angles, SIFrel shows less decreases or even increases in vege-
tation photosynthesis during drought in Amazon forests18,24,42.

Midday and midnight VOD anomalies both decrease during
drought development and reach their lowest values shortly after soil
moisture minima and then recover at a similar pace as SIFrel (Fig. 2g,
h). In dry regions, midnight VOD anomalies become more negative
than midday anomalies, which is not the case in wet regions. As a
result, dry regions exhibit positive VOD ratio anomalies duringmost of
the drought period, which indicates plant stomatal closure to save
water as a response to high vapor pressure deficit (VPD) and soil
dryness9,14,43. Previous studies have also illustrated similar water-saving
strategies based on VOD data but mostly for seasonal time scales and
long-term trends31,44.

ET anomalies, as estimated from LST, are overall positive before
drought peaks in wet regions and negative in dry regions, which is in
line with previous findings using independent datasets27,45 (Fig. 2i, j).
The fluctuation of temporal ET anomalies is larger than that of other
vegetation-related variables, as ET is more directly affected by hydro-
meteorological variations such as changes in atmospheric water
demand and soil moisture46. Moreover, we validate the ET inferred
from LST by comparing it with ET observations from 47 eddy covar-
iance towers. There is wide agreement between them across towers in
different climate regimes and with different land cover types (Fig. S3)
and also during the specific defined drought periods (Fig. S4). ET
estimates during drought showslightly higher accuracy in drier than in
wetter regions due to the potential strong variability in atmospheric
water demand or aerodynamic conditions in the latter46.

Contrasting vegetation responses across wet and dry regions
might be related to different levels of (i) environmental stress and (ii)
drought vulnerability related to different vegetation types which are
investigated exclusively in the next section, and (iii) water accessibility
from deeper soil layers. The absolute moisture content in the top
meter of soil is higher as well as the absolute VPD is lower in wet
regions than that in dry regions (Fig. 2i, j; Fig. S5i, j), making vegetation
in dry areas harder to access soil water and groundwater resources but
easier to transport water to the atmosphere5,47,48. The strongest
reductions in vegetation-related variables are commonly found one
time step after the actual soil moistureminimum. This is related to the
time which is needed for the water from the first precipitation event
after peak drought to infiltrate into the soil and to be available for
plants49. We further quantify the spatial variability in the vegetation
drought response across grid cells with the envelopes in Fig. S6 and
find that this is large, underlining the relevance of vegetation and soil
characteristics for the local vegetation drought response. Note that
this spatial variability does not necessarily reflect the uncertainties
related to the assessment of vegetation drought responses. The nor-
malized anomalies of vegetation drought trajectories are presented in
Fig. S7. The result shows a larger magnitude of NIRv and SIF anomalies
compared to other vegetation variables, and soil moisture reductions
show larger variability in wet than dry regions.

Vegetation physiological response to drought
Moving beyond the full vegetation drought responses displayed in
Fig. 2, we compare overall anomalies of SIFrel, ET, and VOD ratio, and
their respective physiological components across aridity classes in

Fig. 3. Note that seasonal cycles are computed per grid cell based on
only four years of data and therefore potentially affected by individual
extreme years. However, we aggregate our results of vegetation
anomalies in space across many grid cells of e.g. similar aridity to
improve the robustness of the results. To filter out areas with low data
quality or notable human influence, we only consider regions where
SIFrel, ET, and VOD ratio can be reproduced by the full random forest
model considering LAI and hydro-meteorological predictors (out-of-
bag R2 > 0; Fig. S8). Physiology signals are derived by removing the
anomalies related to structural changes, as determined from the ran-
dom forest model based on LAI only (Fig. S1; Methods Section: Dis-
entangling vegetation physiology). We find that overall and
physiological patterns of vegetation anomalies across drought phases
and aridity classes are largely similar, and physiological changes
explain 60-97% of the overall functional drought responses in Fig. 3d,
e. The physiological downregulation is generally strongest around
drought peaks in sub-humid and semi-arid areas. Physiological
anomalies emerge a month before the drought peak in dry regions
which is earlier than anomalies emerged in other regions. Physiological
changes lead to severe decreases in SIFrel and ET, whereas the VOD
ratio is clearly enhanced. Increased VOD ratio suggests that drought
stress leads to reduced stomatal conductance and relatively higher
vegetation water content during the day than the night. The magni-
tudes of physiological changes in SIFrel, ET, and VOD ratio are larger
than the respective structural changes (Fig. S9). In wet regions, struc-
tural and physiological changes of SIFrel have different signs which
indicates the decoupling between structure and photosynthetic rate,
while for the case of ET, structural and physiological anomaly patterns
are similar with negative anomalies in dry regions and positive
anomalies in wet regions. Structural anomalies for VOD ratio do not
have a clear pattern, and the anomaly magnitude is very small, due to
very few structural signals remaining in the ratio. The physiological
and overall changes in VOD ratio, in turn, are very similar in terms of
magnitude and directions, indicating that the original VOD ratio lar-
gely captures physiological changes. Note that the random forest
model performance is rather limited when predicting anomalies of
global vegetation indices compared to the prediction of time series
that include the seasonal cycles40,50. We also present vegetation phy-
siology patterns using higher thresholds of out-of-bag R2 (i.e. 0.1 and
0.2) to further constrain model uncertainties in separating physiolo-
gical signals. Results indicate the physiological anomalies are a bit
more pronounced but overall largely unchanged, except for SIFrel
physiology in very wet regions with an out-of-bag R2 threshold of 0.2
due to the low number of available grid cells (Fig. S10).

Derived physiological changes in SIFrel, ET, and VOD ratio under
drought carry different information of vegetation physiology. Phy-
siological changes in SIFrel can largely reflect changes in the efficiency
of vegetation photosynthesis which show strong decreases in sub-
humid and semi-arid regions (Fig. 3d). In the caseof ET, we assume that
physiological changes in ET largely reflect the plant stomatal regula-
tion (Fig. 3e). As we focus on drought periods, ET from soils and
intercepted water should only have minor contributions51,52. Stronger
decreases of stomatal conductance in dry regions suggested by ET are
also confirmed by concurrent positive changes in the VOD ratio
(Fig. 3f). Note that ET is not exclusively influenced by vegetation leaf
area and stomatal regulation but also by the direct meteorological
variability which determines the atmospheric water demand53. Hence,
our estimate of the physiological component of ET cannot eliminate
the effect of direct meteorological influence in addition to changes in
stomatal regulation in vegetation physiology. Nevertheless, both VOD
ratio and ET indicate stronger downregulation of physiological con-
trols in dry regions, together suggesting the robustness of our results
despite a direct impact of meteorology on ET.

By comparing midday and midnight VOD, we assume that plants
are able to extract water from the soil during the night to compensate
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for daytime losses, such that the nighttime plant water content would
be higher and in equilibrium with the available soil moisture31,32.
However, this is not true everywhere aswe find some grid cells in semi-
arid and boreal regions where absolute midnight VOD is lower than
midday VOD. This could be related to sparse vegetation inducing
horizontal temperature differences in these regions which are not
considered in the satellite retrieval31. Note that these grid cells do not
affect our conclusions, as similar results are found when excluding
them from the analysis (Fig. S11).

While through the use of SIFrel and our approach to remove the
variations related to LAI, we account for temporal changes in
satellite viewing geometry, irradiance, and vegetation structure, we
do not explicitly account for potential changes in the photon escape
probability54. These could occur in response to changes in leaf
clumping55 or leaf angles. Whereas MODIS LAI includes a clumping
correction56, the leaf angle distribution is not considered, and leaf
angle distribution data is not available at a global scale57. Moreover,
uncertainties in LAI retrievals also affect our physiological esti-
mates. To further test if using LAI could underestimate vegetation
structural changes, we replace LAI by NIRv which is an alternative
indicator of vegetation structure and thus can avoid the simplifica-
tion of leaf angle distribution in the application of LAI39 (Fig. S12).
Overall, this yields similar patterns of physiological controls, sug-
gesting the capacity of using LAI in representing most synchronized
vegetation structural changes. Only the magnitude of our estimates
is reduced throughout. This could be related to the fact that NIRv
is sensitive to surface soil moisture40,41 which is then also removed
from the physiological partitioning of SIFrel, ET, and VOD ratio
signals.

Next, we aim to understand the drivers of the detected physio-
logical effects. While so far we focus on aridity, we additionally
investigate the relevance of drought duration, vegetation character-
istics, and selected hydro-meteorological variables. Specifically, we
test towhich extent anomalies of these potential drivers agreewith the
determined spatial patterns of physiological components of SIFrel, ET
andVOD ratio.We averagephysiological components of SIFrel, ET, and
VOD ratio across 3-monthdrought development anddrought recovery
periods, respectively.We then perform an attribution analysis using an
explainable machine learningmethod (SHapley Additive exPlanations,
hereafter ‘SHAP’) to quantify the relative importance of the considered
variables on each of the physiological variables and drought periods
(Methods Section: Attribution analysis). Overall, considered drivers in
this attribution analysis can explain over 35% (cross-validation R2) of
the spatial variability of physiological changes from each data stream.
Results show that, in general, aridity and tree cover fraction are the
most relevant controls of spatial variations of vegetation physiological
changes during drought development (Fig. 4a–c), even though tree
cover fraction is less important in the case of SIFrel. This is confirmed
when displaying the physiological anomalies of SIFrel, ET, and VOD
ratio detected in the 8 days before drought peaks in aridity-tree cover
fraction panels with stronger physiological controls occurring in dry
areas covered with grasses and shrubs58 (Fig. S13). In addition,
meteorological anomalies also influence vegetation physiology during
drought development, such as incoming shortwave radiation for
SIFrel, precipitation for ET, and VPD for VOD ratio, respectively, which
is in line with previous research27,58,59. The duration of the drought
development is one of the dominant controls of the physiological
component of SIFrel.

Fig. 3 | Vegetation functional and physiological responses to drought. Eco-
system functioning during drought as reflected by a SIFrel (unitless), b ET (Wm-2),
and cVOD ratio (unitless) anomalies. Ecosystemphysiology (physio) is estimated as
the components of d SIFrel, e ET, and f VOD ratio anomalies remaining after
removing the LAI-related variations. Each aridity-drought period box shows the
median value across corresponding grid cells and time windows. Aridity classes are
chosen to yield a similar number of grid cells in each group on the x-axis. The

numbers in the bottom rows denote the median ratio between vegetation phy-
siological anomalies and total functional anomalies across the entire drought
period (Physio/Total). Black dots in each bin denote that in more than 60% of the
grid cells, the vegetation physiological anomaly is significantly different (95 %
confidence) from a random sample of 1000 members from the same season (i.e. ±
16-day time steps) of a non-drought year.
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For physiological effects during drought recovery, we consider
concurrent meteorological anomalies as well as meteorological
anomalies from the related drought development periods, and find
that coinciding soilmoisture or VPD anomalies dominantly control the
spatial patterns of physiological recovery60. We also find that hydro-
meteorological variables are relatively more important in regulating
ecosystem physiology during drought recovery compared to climate
and vegetation characteristics. Only in the case of VOD ratio, the
physiological effects during drought recovery aremainly controlled by
aridity (Fig. 4d–f). We also apply Spearman’s correlation as an alter-
native method of assessing and ranking the variable importance to
avoid the potential underestimate of the variable importance in ran-
dom forests due to the multivariate collinearity. For this purpose, we
compute the absolute correlation coefficient between each considered
explained variable and the vegetation physiological variable (Fig. S14).
We find that the first-order controls of vegetation physiology during
drought development periods (i.e. aridity, tree cover fraction, and
main meteorological anomaly controls) are consistently identified in

the correlation analysis, and in drought recovery periods, instanta-
neous soil moisture, VPD, and a few more meteorological drivers are
robust in regulating spatial variability of vegetation physiology.

Furthermore, we test the robustness of our approach to isolate
physiological changes from SIFrel, ET, and VOD ratio anomalies
(Method Section: Disentangling vegetation physiology). In order to
avoid overfitting, we leave out one every 24-time steps which is similar
to the time periods displayed in Figs. 2 and 3 in training a random
forest model to predict that 24-time-step result at each grid cell.
Testing different timewindows of 6 and 12-time steps results in similar
diagnosed vegetation physiological responses to drought (Fig. S15),
indicating that overfitting does not affect our results. In addition,
instead of determining the physiological effects through the differ-
ence of two random forest models, (i) we apply the SHAP method to
the full random forest model including LAI and hydro-meteorological
variables, and consider the SHAP contribution of hydro-
meteorological variables to the variations of SIFrel, ET, and VOD
ratio as thephysiological component. An alternativemethod is to (ii)fit

Fig. 4 | Identifying drivers of global patterns of vegetation physiological
anomalies under drought. Considered drivers include mean climate and vegeta-
tion characteristics (in red), drought-related hydro-meteorological anomalies and
drought duration (in blue). Results show their relevance in explaining the spatial
variability of anomalies in a SIFrel physiology (SIFrel physio, unitless), b ET phy-
siology (ET physio, Wm-2) and c VOD ratio (unitless) during drought development.

d–f Similar as in (a–c) but for drought recovery periods where we consider
drought-development (Dev.) and recovery (Recov.) related drought duration and
hydro-meteorological anomalies. The unit of relative importance is the same for
each physiological variable. Radiation refers to incoming shortwave radiation. *
denotes the variables in the top5 ranking in SHAP importance results are consistent
with correlation results in Fig. S14.
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a multivariate regression model instead of random forests and isolate
explained variations related to the hydro-meteorological variables as
physiology. Both approaches (i) and (ii) yield similar results (Fig. S16),
and support findings of strong physiological regulations in sub-humid
and semi-arid regions using the main method (Fig. 3).

The vegetation drought response may be affected by preceding
drought events. To test if this affects our results, we repeat our
global analysis without grid cells where the second-strongest
drought occurs in our study time period in addition to the stron-
gest drought. The results with the reduced set of global grid cells are
shown in Fig. S17. We find patterns similar to Fig. 3, indicating that
multiple drought events have no major impact on our analysis. To
further test the robustness of the drought detection, we (i) more
strictly select severe drought events by checking if the detected
driest soil moisture is lower than a threshold of −1.5 standard
deviations below the seasonal mean value of the entire 40-year soil
moisture and (ii) detect drought peaks usingminimum soil moisture
anomalies rather than absolute soil moisture. Figure S18 shows that
with a more strict severe drought evaluation method, the remaining
grid cells can largely reproduce physiological patterns of SIFrel, ET,
VOD ratio under drought. In the case of using soil moisture
anomalies to detect drought in Fig. S19a, b, the detected drought
years are largely the same while the seasonal timing differs a bit in
some regions. The patterns of estimated physiological drought
responses (Fig. S19c–e) are similar even though with smaller

magnitudes, as the absolute soil moisture can be higher and vege-
tation water stress can be reduced in the case of detecting drought
by the driest soil moisture anomalies when comparing it to the case
of detecting drought by the driest absolute soil moisture.

Mechanisms underlying the physiological response to drought
In addition to the observation-based analysis, we employ SCOPE, a
soil–plant–atmosphere continuum model coupled with a radiative
transfer model, to perform and study simulations of the vegetation
response to the identified drought. This allows us to mechanistically
understand the diagnosed physiological signals fromobservations.We
choose the SCOPE model33 as it considers vegetation physiology and
produces radiance spectra associated with vegetation functioning and
biophysical properties (Method Section: SCOPE simulations). Similar
to observation-based analyzes, SCOPE uses LAI and hydro-
meteorological data as inputs. Note that given the considerable com-
putational effort, we randomly selected a subset of 600 grid cells
distributed across the globe for performing SCOPE simulations and
analyzes. Observation-based physiological effects are similar in this
subset of grid cells to those from all previously considered areas in
terms of the overall contrasting patterns of vegetation physiology
between wet and dry regions during the drought development period
(Fig. S20; Fig. 5d–f), while sub-arid and arid regions show slight dif-
ferences when comparing model results with observations due to
potential uncertainties of model structure and limited sampling data.

Fig. 5 | Modeled physiological response to drought. a Physiological component
of SIFrel (SIFrel physio) as computed by the difference between dark-adapted and
steady-state SIF yield;b Light use efficiency (LUE) as calculated by the ratio between
GPP and absorbed photosynthetically active radiation; c Stomatal conductance
(Gs); d Water use efficiency (WUE) as calculated by the ratio between GPP and ET.

Note that instead of the entire study domain, this analysis is based on 600 ran-
domly chosen grid cells considered in the observation-based analyzes and dis-
tributed across the globe. Observation-based results for the same grid cells are
presented in Fig. S20. The white numbers denote numbers of grid cells belonging
to a certain aridity group.
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The physiological SIF response to drought from SCOPE is calcu-
lated by the difference of the SIF yield betweendark-adapted and light-
adapted plants (Fig. 5a). Dark-adapted SIF represents an unstressed
reference used by the model which is independent of the environ-
mental conditions. The light-adapted SIF responds to environmental
stresses such as light saturation and high VPD4,33. The inferred phy-
siology component of SIFrel is similar to the observed SIFrel physiol-
ogy pattern during drought development and drought peak periods
with strong decreases in sub-humid and semi-arid regions (aridity
between 0.8–1.6). It is related to themodeled light use efficiency (LUE)
anomalies which show the same pattern. However, physiological
reductions recover more quickly in the model than in observational
estimates after drought peaks. This can be explained as SCOPE does
not account for drought stress through soil moisture deficits and
respective legacy effects, thus the vegetation in our simulations is
mechanistically only affected by atmospheric dryness33. While this is a
disadvantage for simulating the drought recovery, it is justified for the
simulation of drought development and drought peak periods as (i)
high VPD is typically strongly related to soil moisture drought stress46,
and (ii) because our observation-based analysis shows that VPD plays a
more important role than soil moisture in regulating physiology dur-
ing drought development (Fig. 4a–c). The simulated stomatal con-
ductance shows decreases in transitional and dry regions, which
agrees with observed physiological changes in ET and VOD ratio
anomalies. The strong stomatal regulation in dry regions is consistent
with comparatively lower decreases in water use efficiency (WUE). Our
derived contrasting patterns of WUE between wet and dry regions are
in line with previous research but not the signs of WUE changes60.
Overall, the SCOPE results provide clear evidence of vegetation phy-
siological responses to drought in support of our observation-based
findings. Additionally, the simulations allow us to mechanistically
attribute the observed physiological signals to underlying changes in
stomatal conductance, water use efficiency, and light use efficiency.

In this study, we take advantage of recent advances in satellite
remote sensing and machine learning applications to improve the
understanding of vegetation responses to drought. In particular, we
isolate the physiology-driven effects of drought on vegetation
functioning at the global scale. We find that the observed drought
responses of photosynthesis and evapotranspiration are related to,
and largely driven by, unique changes in vegetation physiology. The
vegetation’s physiological response to drought is most pronounced
in transitional and semi-arid areas, and for shrubs and grasses.
Despite the fact that our method simplifies vegetation structural
changes and cannot separate potentially direct meteorological-
driven signals beyond physiology in the case of ET, the robustness of
our result is addressed by synthesizing multiple observations. The
physical-based model SCOPE suggests similar patterns in the diag-
nosed physiological changes during drought. The model addition-
ally allows us to understand the underlying processes that the
downregulation of stomatal conductance and light use efficiency are
highly relevant to determine the vegetation response to water
stress. Overall, we have been able to quantitatively disentangle
vegetation physiology by synthesizing multiple state-of-the-art
remote sensing data streams. This is essential given the present
uncertainties in simulated large-scale ecosystem drought
responses11. In this context, disentangling physiological and bio-
physical vegetation responses enables better characterization of
these distinct vegetation response pathways to consequently reflect
their interplay more accurately in Earth system models through
better parameterizations of vegetation physiology such as photo-
synthetic capacity10, or through upgrading the respective model
structure such as incorporating sufficient soil water stress on
vegetation physiology61. This will support the accuracy of their
simulated land-climate feedbacks in particular, and of their climate
projections in general.

Methods
Observation-based data
We combine satellite remote-sensed Leaf Area Index (LAI), the near-
infrared reflectance of vegetation (NIRv), solar-induced chlorophyll
fluorescence (SIF), land surface temperature (LST), and Vegetation
Optical Depth (VOD) data to investigate global vegetation drought
responses (Fig. 1). Among them, we use ungridded TROPOMI SIF
resampled to the 0.25˚ spatial resolution and available from March
2018 toOctober 2021. SIF is then normalized by near-infrared reflected
radiance (relative SIF) to account for bidirectional reflectance effects
and incoming solar irradiance24. Although previous studies indicate
rare cloud cover influence on the SIF seasonality, cloud influence
cannot be completely ruled out18. Therefore, TROPOMI data are pre-
filtered to remove soundings covered by heavy clouds (over 0.5 of
cloud fraction) to lessen potential cloud effects and maximize the
number of observations during wet seasons.

Moderate Resolution Imaging Spectroradiometer (MODIS) pro-
ductsMOD15A2H LAI (8-daily), andMCD43C4NIRv (daily; a product of
NDVI and the near-infrared reflectance) are used as proxies of vege-
tation structure or abundance. MODIS Land Surface Temperature
(LST) from the MYD11C1 product is used to estimate daily ET. Good-
quality data fromMODIS products are ensured by quality flag filtering.
LSTdaily data are used in combinationwith a simplified surface energy
balance model (SSEB) to estimate ET at the daily scale28,29. Due to not
available global ET measurements, several global observation-based
model-driven ET products have been developed62. However, we do not
consider these ET products because they commonly show less accu-
racy in extremeeventswherephysiological changes prevail. Therefore,
we use dailyMODIS LST data (with overpassing time at 13:30 p.m.) and
ERA5-Landmeteorological variables combinedwith the SSEBmodel to
estimate ET. Additionally, hourly SSEB model meteorological inputs
(including air temperature, incoming shortwave and longwave radia-
tion, surface pressure, atmospheric vapor pressure, soil moisture, and
wind speed) are obtained from ERA5-Land reanalysis63. Note that we
adapt SSEB from Panwar & Kleidon (2022)28 by the following two
simplifications: (i) Daily minimum surface and air temperatures are
assumed to be equal; (ii) Daily maximum LST is represented byMODIS
LST at 13:30 p.m. Therefore, daily ET is calculated by:

ET = 1� Cp � ρ � ðLSTmax � TamaxÞ � ð1:4gaÞ
1:4Rsmax

� �
� Rnmean ð1Þ

where ET is estimated by latent heat flux (Wm−2) (hereafter ‘ET’),
LSTmax is MODIS land surface temperature at 13:00 p.m. (K), Tamax is
maximum hourly air temperature (K), Rsmax is maximum hourly net
shortwave radiation (Wm−2), and Rnmean is daily mean net radiation
(Wm−2).Cp (1005 J kg

−1 K−1) is specific heat capacity andρ (1.23 kgm−3) is
the simplified density of air. gamean (m s−1) is mean diurnal variation of
aerodynamic conductance. As summarized in Panwar & Kleidon
(2022), ga is different across vegetation types with higher values in
forest ecosystems and lower values in grass ecosystems. We distin-
guish tree, short vegetation (grass and shrub), and soil, and depending
on their respective fractional cover, ga is set to 0.06, 0.0345, and
0.002m s−1, respectively. Among them, the vegetation-related values
are from Panwar & Kleidon (2022)28 and the soil-related value is from
van der Tol et al. 201433.

We evaluate the ET at a 0.25˚ spatial resolution using 8-daily eddy-
covariance-measured latent heat for 73 sites, which are from the ICOS-
drought-2018 dataset. The raw data are processed following the
ONEFLUX pipeline64. Latent heat flux is first gap-filled using marginal
distribution sampling65 and then aggregated to the 8-daily scale by
computing the mean value. We exclude the days whenmore than 20%
value is missing for each 8-day window to eliminate the potential
resampling-induced noise. Gridded ET data are matched to each site
using the nearest neighbor method (Python version 3.9.7; xarray
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version 0.20.1). In total, 47 sites are selected since they offer sufficient
data. We show the distribution of the correlation coefficient between
raw data of EC-measured LE and ET across each site and find a median
correlation of 0.88 for the whole growing season (Fig. S3) and 0.8 for
drought-specific periods during 3 months before until after drought
peaks (Fig. S4).

Microwave remote sensing provides great opportunities to
monitor vegetation water content and has increased applications in
drought-related ecological studies3,30,66. Global multi-frequency VOD
products are currently available. They are irrespective of cloud cover,
and high frequencies are more sensitive to the upper part of canopy
changes. Since we aim at studying vegetation physiological dynamics,
X-band VOD at 10.7GHz from LPDR v2 is used, as it is sensitive to
upper-canopy water content, which relates to the stomatal
regulation67. LPDR X-band VOD from AMSR2 sensors for the period of
2018-2021 has day-night observational capabilities, although its spatial
resolution at 0.25˚ is relatively coarser than VOD data from sun-
synchronous orbits and than other vegetation observations such as
TROPOMI SIF and MODIS bands (for which 0.05˚ is available to use).
Both the daytime and nighttime VOD contain information about
vegetation water content, which scales with above-ground biomass
and relative moisture content30. Vegetation water content can be used
to represent leaf water potential and associated plant hydraulics32.
Daytime VOD (overpassing time at 13:30 p.m.) is normally regulated by
plant hydraulics caused by the imbalance between transpiration and
root-zonewater supply. NighttimeVOD (overpassing time at 1:30 a.m.)
is driven by root-zone soil moisture refilling and is almost linearly
linked to soil water potential32. Given pre-dawn equilibrium between
leaf water potential and root-zone water potential, a combination of
midday andmidnight VOD can largely reduce structural variations and
can be used to investigate the ecosystem isohydricity31,44. Here we
calculate the ratio betweenmidday andmidnight VOD (VOD ratio), and
investigate the responses of VOD ratio to soil moisture to characterize
ecosystem isohydricity changes under drought32. We acknowledge
that regions with incomplete root-zone water refilling at 1:30 a.m. do
not show a near-linear relationship between nighttime VOD and soil
water potential, which leads to spurious biases on VOD ratio. We
minimize this effect by excluding regions that show greater midday
than midnight growing-season averages of VOD31, as shown in Fig. S11.

Concomitant hydro-meteorological data from ERA5-Land reana-
lysis include air temperature, incoming shortwave radiation, vapor
pressure deficit, 1-m soil moisture, and precipitation63. A total of one
meter soil moisture is calculated based on three layers of ERA5-Land
soil moisture weighted by layer thickness of 7, 21, and 72 cm. Climate
regimes aredefinedby the aridity index,which is calculated as the ratio
of the 2018–2021 mean net radiation and unit-converted precipitation
from ERA5-Land, with higher values meaning drier climate regimes.

Data pre-processing
Fig. S1 presents a flowchart of data pre-processing and further analysis.
All vegetation and hydro-meteorological data from March 2018 to
October 2021 are aggregated into the 0.25˚ spatial resolution and
8-daily temporal resolution where all data are available. To minimize
the noise in daily SIF, ET, and VOD, and to match 8-daily LAI and NIRv
we produce 8-daily data from a 16-day average moving window
(TROPOMI’s revisiting cycle) with 8-day overlap. Windows with gaps
larger than 20% are set as no data in aggregated results. TROPOMI
features different overpassing daytime within the 16-day cycle,
and averaging this helps to lessen the effects of sun-view geometry
variability18. Moving window averages are also applied for all the other
vegetation and hydro-meteorological reanalysis data to keep the
consistency. All data are used in the form of anomalies, as we are
exclusively interested in abnormal behavior of vegetation drought
responses than the seasonality. For this, mean seasonal cycles are
calculated for each month (January to December), and trends are

derived by using a locally-weighted smoothing function with 40%
overlapping moving windows from March 2018 to October 2021,
which are then removed from the time series to extract the anomalies.

This study focuses on the regions characterized mostly by sig-
nificant vegetation cover and without dense human activities. For this,
we remove regions having sparse vegetation cover (<5%) and a high
irrigation fraction (>10%). The vegetation cover is calculated as the
sum of trees, shrubs, and grasses cover fractions from ESA CCI Land-
cover v2.1.1 dataset from the year 2020. The irrigation fraction was
collected around the year 200568. Vegetation fractional cover data is
also used to distinguish tree dominant, and shrub-plus grass-dominant
ecosystems by the ratio between tree/(shrub and grass) with a
threshold of 0.5.

Drought detection
We study vegetation responses to drought during growing seasons,
which are defined with temperatures higher than 5 ˚C and mean sea-
sonal cycles of SIF higher than 0.2mWm−2 sr−1 nm−1. The reason to use
mean seasonal cycles of SIF to account for growing seasons instead of
dynamic SIF values is to largely keep vegetation post-drought
anomalies, e.g., in savannas. For growing-season data, we evaluate
soil moisture dryness across grid cells during 2018–2021 using 40-year
ERA5-Land soil moisture reanalysis. For this purpose, we calculate
yearly minima using monthly soil moisture records and rank these
yearly minima, since long-term soil moisture with coarse temporal
resolutions of monthly compared to 8-daily is more representative of
drought severity. We focus on the grid cells where each yearly mini-
mumoccurs in 2018–2021, so that severe drought events could exist in
these regions during this recent time period. Drought peaks are
detected based on the lowest 8-daily soil moisture during 2018–2021
for each grid cell. We then study the vegetation data anomalies during
the course of drought from 3 months before until 3 months after
drought peaks. The drought duration is used to attribute the spatial
variation of vegetation anomalies, and is defined by the number of
time steps of soil moisture anomalies back to zero or positive values
before and after drought peaks, respectively.

Disentangling vegetation physiology
Since vegetation physiology responds significantly to drought stress,
we adapt an existing approach to disentangle physiological influence
from LAI-driven structural changes69,70. We use the way of disen-
tangling the physiological component of SIFrel as an example. Due to
an existing nonlinear relationship between SIFrel and LAI, we fit a
random forest regression model to account for non-linearity71 to pre-
dict SIFrel using LAI as the only predictor per grid cell. The predicted
drought-period SIFrel is hence expected to present the SIFrel struc-
tural component. A leave-out strategy of model training is applied to
avoid potential over-fitting due to the relatively straightforward power
of random forest modeling but limited input information. In this way,
the drought-period data are excluded from the training model when
predicting drought-period SIFrel, while the model can still learn
SIFrel–LAI relationships under dry conditions from the non-drought
years and extrapolate such relationships to drought periods. However,
note that the random forest model might be not able to predict
extreme values accurately, resulting in a less significant variation of
vegetation structural changes. The leave-outwindow in themain result
is defined as 24-time steps (192 days), while results using 12 and 6-time
steps are shown in Fig. S15 with similar patterns of significant negative
physiological changes in dry regions.

To account for potential observational noise in predicted vari-
ables (e.g., SIFrel) which are supposed to have lower signal-to-noise
ratios than greenness indices and reanalysis data, a second random
forest model is built to fully consider inputs including LAI and hydro-
meteorological anomalies using the whole growing-season data. This
model is used to predict SIFrel anomalies during drought periods, to
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provide more reliable SIF variations while lessening data noise. The
derived out-of-bag (OOB) R2 scores from cross-validation are used to
evaluate the model performance, with lower values indicating larger
difficulties in predicting SIF due to baddata quality or human activities
such as tree logging. Hence, regions with OOB R2 lower than zero are
disregarded for disentangling vegetation physiology (Fig. S8). Finally,
SIF physiological components can be extracted per grid cell as the
difference between the SIF anomalies predicted as a function of
structure and hydro-meteorology, and as a function of the
structure only.

Same steps are applied to disentangle physiological components
of ET and VOD ratio using LAI and random forests. NIRv is additionally
used to replace LAI as an indicator of vegetation structure in the ran-
dom forest model. Using NIRv confirms our main findings that
transitional-to-dry regions show strong downregulation of vegetation
physiology. While NIRv better accounts for the escape probability of
SIF, physiological components of SIF, ET, and VOD results all present
reduced variations. This is related to the potentially confounding
information of using NIRv as a structure proxy since NIRv largely
synchronizes soil moisture dynamics40,41.

Apart from trusting the random forest extrapolation ability in our
analysis, we test two alternative methods using the variance decom-
position. First, we use a Multiple Linear Regression model (MLR) and
treat LAI andhydro-meteorological data aspredictor variables of SIFrel
regardless of drought or non-drought periods. The sum of variance
explained by hydro-meteorological data only from the MLR for the
drought period can be treated as the SIFrel physiological component
under drought. In addition, we use a random forest model which
accounts for nonlinear relationships instead of MLR and apply
explainable machine learning72 (SHapley Additive exPlanations, here-
after ‘SHAP’) to disentangle hydro-meteorological contributions on
SIFrel during drought as the SIFrel physiological component. These
twomethods are also applied to the cases of ET and VOD ratio. Results
from these two alternative analyzes support findings using our main
methodology (Fig. S16). Still, we acknowledge that decomposition
methods might underestimate structural components due to the col-
linearity between vegetation structure (i.e., LAI) and hydro-
meteorological anomalies, and due to larger numbers of predictor
variables to account for physiological influence compared to struc-
tural influence. We test the effect of using a lower number of hydro-
meteorological predictors in the variance decomposition method and
find a reduced magnitude of resulting vegetation physiological pat-
terns for ET. This suggests that the decompositionmethod is sensitive
to numbers of predictors (Fig. S21). Note that our main method of
detecting physiological effects as the difference between two random
forest models used throughout the manuscript mitigates this
potential issue.

Attribution analysis
We conduct an attribution analysis to better understand potential
drivers of vegetation physiology under drought spatially. We select
multiple variables related to land-surface climate and vegetation
characteristics, drought-specific hydro-meteorological variables, and
drought duration in explaining vegetation physiology. We train a
random forestmodel and use these considered variables as predictors
to predict SIFrel, ET, and VOD ratio-related physiology, respectively,
across all study grid cells71. Using cross-validation out-of-bag R2, we
evaluate the model sufficiency in explaining physiological variations.
Then,we use the SHAPvalues to quantify themarginal contributions of
each predictor variable and identify the relative importance among
different variables by ranking the averaged absolute SHAP values72.
The attribution analysis can generally explain over 35% of the spatial
variability of each physiological variable. The remaining 65% that
cannot be explained by the random forest model are potentially rela-
ted to uncertainties in observations of leaf area index, vegetation

photosynthesis, evaporation, and vegetation water content, and also
to uncertainties in the hydrometeorological reanalysis data. Further-
more, different availability and accessibility of deep water sources
such as groundwater, for which no reliable global gridded observa-
tions are available in terms of the spatial-temporal scales of our study
to our knowledge, can introduce uncertainties here.

SCOPE simulations
The state-of-the-art model the Soil Canopy Observation of Photo-
chemistry and Energy flux (SCOPE) (v 1.73) couples radiative transfer,
energy balance, and photosynthesis submodels to predict vegetation
carbon, water, and energy exchanges with spectroradiometric vari-
ables directly linked to physiology (e.g., SIF, or thermal radiance).
SCOPE can be used to interpret remote sensing observations33 and test
physiological assumptions4. SCOPE predicts photosynthesis as a
function of plant traits, irradiance, leaf temperature, and other
meteorological conditions using Farquhar and Collatz equations for
C3 and C4 plants separately. The modular nature of SCOPE allows for
separately simulating dark-adapted fluorescence and light-adapted
fluorescence33. The difference between both radiances is that only the
light-adapted fluorescence is modulated by physiology in response to
environmental conditions. This fact has been successfully exploited in
former studies to assess methods separating structural and physiolo-
gical information from SIF time series4.

The aim of SCOPE simulations is not to accurately reproduce
observations, but to produce a comparable variability of vegetation
responses to drought and remote sensing view-angle configurations
that assess the validity of the metrics and analyzes applied to
observations. In this context, simulations provide: (i) vegetation
functioning (i.e. photosynthesis); (ii) vegetation physiology (i.e.
stomatal conductance), LUE, and WUE; (iii) physiology-driven rela-
tive SIF to resembling TROPOMI data computed as the difference
between light-adapted (physiologically-regulated) and dark-
adapted SIF4, and then normalized by the reflected radiance at
740 nm. We use the difference between dark-adapted and light-
adapted fluorescence to validate our approach capability to disen-
tangle SIFrel physiology rather than applying the random forest
approach in the SCOPE outputs, as the separation of plant physiol-
ogy in SCOPE is more mature in the former approach. Also, other
vegetation physiological patterns from model outputs such as sto-
matal conductance and light use efficiency reasonably support our
disentangled physiological regulation from vegetation observations
under drought. SCOPE outputs are simulated firstly as leaf-level
values and then are integrated over the canopy layer, and they are
then averaged every 8 days, deseasonalized, de-trended, and used to
study vegetation physiology corresponding to defined drought
periods as in observation-based results.

One simulation per day is run at different times of the day,
between 9 and 14 h for TROPOMI and at 13:30 forMODIS LST, allowing
for a plausible variability of the view angles of each sensor. We use
hourly hydro-meteorological data from ERA5-Land reanalysis as
SCOPE inputs from March 2018 to October 2021. Hydro-
meteorological data include 2m air temperature, incoming short-
wave radiation, incoming longwave radiation, surface pressure,
atmospheric vapor pressure, 10m wind speed, and 1m soil moisture.
1000 grid cells are initially randomly selected based on the regions
with severe drought events (Methods Section: Drought detection) for
SCOPE to run. Simulations are also informed with 8-daily MODIS LAI,
NDVI, and daily LST. 8-daily products are linearly interpolated to daily
values for the simulations, and the simulation results are aggregated
coherently with the observational datasets (SeeMethods Section: Data
pre-processing). After removing grid cells with bad prediction per-
formance in terms of SIFrel, ET, and VOD ratio in observation-based
analysis (See Methods Section: Disentangling vegetation physiology),
around 600 grid cells remain to compare the behavior of observations
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and SCOPE simulations. Simulations are performed at 0.25-degree
spatial resolution.

For each grid cell, we account for the spatial variability of plant
functional types (PFT) by simulating them separately. While most
vegetation parameters are PFT-specific, the most relevant for the
simulations are adjusted to make simulations more plausible. We
obtain PFT fraction cover from ESA CCI Landcover v2.1.1 dataset
including broadleaf evergreen trees, broadleaf deciduous trees,
needle-leaf evergreen tree, needle-leaf deciduous trees, broadleaf
evergreen shrubs, broadleaf deciduous shrubs, needle leaf evergreen
shrub, needle leaf deciduous shrub, natural grass, managed grass and
bare soil. First, we estimate each PFT-LAI by scaling daily MODIS LAI
cell input by a specific PFT average LAI and its corresponding fraction
in the grid cell. The seasonal variability of the evergreen PFTs is
reduced by a factor of 0.2 and the difference is distributed within the
deciduous PFTs of the cell. Secondly, leaf chlorophyll content is
similarly set but based on PFT-characteristic values from Croft et al.
(2020)73. However, the grid-averaged chlorophyll content is unknown
and thus estimated by assuming a saturating relationship with NDVI.
We select ten timestamps of the time series evenly covering the NDVI
range and numerically optimize the parameters of that function by
minimizing the difference between MODIS NDVI and the predicted
NDVI PFT-weighted average. At each iteration, PFT-chlorophyll con-
tent is estimated as described before and carotenoids content is set as
the 35% of it. To avoid anomalous pigment values and soil reflectance,
the soil bright parameter of SCOPE at each site is also optimized. For
this, whenever NDVI is negative, chlorophyll content is set to zero and
an additional parameter determining the fraction of snow cover is
allowed to be larger than 0. Soil reflectance is then linearlymixed with
snow spectra from the USGS Spectral Library. Finally, to better simu-
late energy partitioning in sparse vegetated areas, we constrain the
relationship between soil moisture content and soil resistance when
estimating evaporation from the pore space with MODIS LST obser-
vations, because soil resistance strongly controls soil evaporation and
affects vegetation transpiration and photosynthesis74. As before, we
select five points of each grid cell time series with the lowest averaged
LAI that evenly covers the LST range. Then we optimize the decaying
relationship between soil moisture-soil resistance by minimizing the
difference between predicted and MODIS LST.

SCOPE simulation outputs are averaged according to PFT cover
fraction and then aggregated every 8days tomatch the processing and
sun-view variability of the observational dataset. SCOPE v1.73 does not
impose any photosynthesis limitation as a function of soil moisture.
However, we optimize soil resistance for evaporation from the pore
space, which limits soil latent heat flux in dry soils and affects vege-
tation. We also test applying a soil moisture constraint on maximum
carboxylation rate using the empirical relationship of Bayat et al.
201975, but this approach has only been tested in dry ecosystems and
overestimates photosynthetic stress in ecosystemswith access todeep
soil water layers.

Data availability
TROPOMI SIF is available at https://web.gps.caltech.edu/~cfranken/
data.html. MOD15A2H LAI is from https://lpdaac.usgs.gov/products/
mod15a2hv006/. MCD43C4 NIRv is from https://lpdaac.usgs.gov/
products/mcd43c4v006/. MYD11C1 land surface temperature is from
https://lpdaac.usgs.gov/products/myd11c1v006/. The ICOS-drought
−2018 dataset can be downloaded from https://www.icos-cp.eu/data-
products/YVR0-4898. LPDR v2 X-band VOD is available at http://files.
ntsg.umt.edu/data/LPDR_v2/. ERA5-Land reanalysis data are from
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.
e2161bac?tab=overview. ESACCI Landcover v2.1.1 is fromhttps://www.
esa-landcover-cci.org/. The irrigation fraction dataset is from http://
www.fao.org/aquastat/en/geospatial-information/global-maps-
irrigated-areas/latest-version/.

Code availability
The codes required for reproducing the results and figures in themain
text have been deposited at https://doi.org/10.5281/zenodo.7971319,
as well as the data to run the codes are available at https://doi.org/10.
5281/zenodo.7971170
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