
Journal of Automated Reasoning (2023) 67:22
https://doi.org/10.1007/s10817-023-09673-3

SCL(EQ): SCL for First-Order Logic with Equality

Hendrik Leidinger1,2 · Christoph Weidenbach1

Received: 8 February 2023 / Accepted: 6 June 2023
© The Author(s) 2023

Abstract
We propose a new calculus SCL(EQ) for first-order logic with equality that only learns non-
redundant clauses. Following the idea of CDCL (Conflict Driven Clause Learning) and SCL
(Clause Learning from Simple Models) a ground literal model assumption is used to guide
inferences that are then guaranteed to be non-redundant. Redundancy is defined with respect
to a dynamically changing ordering derived from the ground literal model assumption. We
prove SCL(EQ) sound and complete and provide examples where our calculus improves on
superposition.

Keywords First-order logic with equality · Term rewriting · Model-based reasoning

1 Introduction

There has been extensive research on sound and complete calculi for first-order logic with
equality. The current prime calculus is superposition [2], where ordering restrictions guide
paramodulation inferences and an abstract redundancy notion enables a number of clause
simplification and deletion mechanisms, such as rewriting or subsumption. Still this “syn-
tactic” form of superposition infers many redundant clauses. The completeness proof of
superposition provides a “semantic” way of generating only non-redundant clauses, how-
ever, the underlying ground model assumption cannot be effectively computed in general
[35]. It requires an ordered enumeration of infinitely many ground instances of the given
clause set, in general. Our calculus overcomes this issue by providing an effective way of
generating ground model assumptions that then guarantee non-redundant inferences on the
original clauses with variables.

The underlying ordering is based on the order of ground literals in the model assumption,
hence changes during a run of the calculus. It incorporates a standard rewrite ordering. For

B Hendrik Leidinger
hleiding@mpi-inf.mpg.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

1 Max-Planck Institute for Informatics, Saarland Informatics Campus E1 4, Saarbrücken 66123,
Germany

2 Graduate School of Computer Science, Saarland Informatics Campus E1 3, Saarbrücken 66123,
Germany

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09673-3&domain=pdf

 22 Page 2 of 35 H. Leidinger, C. Weidenbach

practical redundancy criteria this means that both rewriting and redundancy notions that are
based on literal subset relations are permitted to dynamically simplify or eliminate clauses.
Newly generated clauses are non-redundant, so redundancy tests are only needed backwards.
Furthermore, the ordering is automatically generated by the structure of the clause set. Instead
of afixedordering as done in the superposition case, the calculusfinds and changes anordering
according to the currently easiest way tomake progress, analogous to CDCL (Conflict Driven
Clause Learning) [11, 12, 28, 33, 39].

Typical for CDCL and SCL (Clause Learning from SimpleModels) [1, 15, 21] approaches
to reasoning, the development of a model assumption is done by decisions and propagations.
A decision guesses a ground literal to be true whereas a propagation concludes the truth
of a ground literal through an otherwise false clause. While propagations in CDCL and
propositional logic are restricted to the finite number of propositional variables, in first-order
logic there can already be infinite propagation sequences [21], as there might exist an infinite
set of ground instances. In order to overcome this issue, model assumptions in SCL(EQ) are
at any point in time restricted to a finite number of ground literals, hence to a finite number
of ground instances of the clause set at hand. Therefore, without increasing the number of
considered ground literals, the calculus either finds a refutation or runs into a stuck statewhere
the current model assumption satisfies the finite number of ground instances. In this case one
can check whether the model assumption can be generalized to a model assumption of the
overall clause set or the information of the stuck state can be used to appropriately increase
the number of considered ground literals and continue search for a refutation. SCL(EQ) does
not require exhaustive propagation, in general, it just forbids the decision of the complement
of a literal that could otherwise be propagated.

For an example of SCL(EQ) inferring clauses, consider the three first-order clauses

C1:= h(x) ≈ g(x) ∨ c ≈ d C2:= f (x) ≈ g(x) ∨ a ≈ b
C3:= f (x) �≈ h(x) ∨ f (x) �≈ g(x)

with a Knuth–Bendix Ordering (KBO), unique weight 1, and precedence d ≺ c ≺ b ≺ a ≺
g ≺ h ≺ f . A Superposition Left [2] inference between C2 and C3 results in

C ′
4:= h(x) �≈ g(x) ∨ f (x) �≈ g(x) ∨ a ≈ b.

For SCL(EQ) we start by building a partial model assumption, called a trail, with two
decisions

�:=
[
h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x)�≈g(x))·σ , f (a) ≈ g(a)2:(f (x)≈g(x)∨ f (x)�≈g(x))·σ

]
,

where σ :={x �→ a}. Decisions and propagations are always ground instances of literals from
the first-order clauses, and are annotated with a level and a justification clause, in case of a
decision a tautology. Now with respect to � clause C3 is false with grounding σ , and rule
Conflict is applicable; see Sect. 3.1 for details on the inference rules. In general, clauses and
justifications are considered variable disjoint, but for simplicity of the presentation of this
example, we repeat variable names here as long as the same ground substitution is shared.
The maximal literal in C3σ is (f (x) �≈ h(x))σ and a rewrite refutation using the ground
equations from the trail results in the justification clause

(g(x) �≈ g(x) ∨ f (x) �≈ g(x) ∨ f (x) �≈ g(x) ∨ h(x) �≈ g(x)) · σ,

where for the refutation justification clauses and all otherwise inferred clauses we use the
grounding σ for guidance, but operate on the clauses with variables. The respective ground
clause is smaller than (f (x) �≈ h(x))σ , false with respect to � and becomes our new conflict

123

SCL(EQ): SCL for First-Order Logic with Equality Page 3 of 35 22

clause by an application of our inference rule Explore-Refutation. It is simplified by our
inference rules Equality-Resolution and Factorize, resulting in the finally learned clause

C4:= h(x) �≈ g(x) ∨ f (x) �≈ g(x),

which is then used to apply rule Backtrack to the trail. Further details on this example
are available from the Appendix, Example 6. Observe that C4 is strictly stronger than C ′

4
the clause inferred by superposition and that C4 cannot be inferred by superposition. Thus
SCL(EQ) can infer stronger clauses than superposition for this example.

1.1 RelatedWork

SCL(EQ) is based on ideas of SCL [1, 15, 17, 21] but for the first time includes a native treat-
ment of first-order equality reasoning. Similar to [15] propagations need not to be exhaustively
applied, the trail is built out of decisions and propagations of ground literals annotated by
first-order clauses, SCL(EQ) only learns non-redundant clauses, but for the first time conflicts
resulting out of a decision have to be considered, due to the nature of the equality relation.

There have been suggested several approaches to lift the idea of an inference guiding
model assumption from propositional to full first-order logic [8, 13, 14, 21]. They do not
provide a native treatment of equality, e.g., via paramodulation or rewriting.

Baumgartner et al. describe multiple calculi that handle equality by using unit superpo-
sition style inference rules and are based on either hyper tableaux [5] or DPLL [18, 19].
Hyper tableaux fix a major problem of the well-known free variable tableaux, namely the
fact that free variables within the tableau are rigid, i.e., substitutions have to be applied to all
occurrences of a free variable within the entire tableau. Hyper tableaux with equality [9] in
turn integrates unit superposition style inference rules into the hyper tableau calculus.

Another approach that is related to ours is the model evolution calculus with equality
(MEE) by Baumgartner et al. [6, 10] which lifts the DPLL calculus to first-order logic with
equality. Similar to our approach, MEE creates a candidate model until a clause instance
contradicts this model or all instances are satisfied by the model. The candidate model results
from a so-called context, which consists of a finite set of non-ground rewrite literals. Roughly
speaking, a context literal specifies the truth value of all its ground instances unless a more
specific literal specifies the complement. Initially the model satisfies the identity relation
over the set of all ground terms. Literals within a context may be universal or parametric,
where universal literals guarantee all its ground instances to be true. If a clause contradicts
the current model, it is repaired by a non-deterministic split which adds a parametric literal
to the current model. If the added literal does not share any variables in the contradictory
clause it is added as a universal literal.

Another approachbyBaumgartner andWaldmann [7] combined the superposition calculus
with the Model Evolution calculus with equality. In this calculus the atoms of the clauses
are labeled as “split atoms” or “superposition atoms”. The superposition part of the calculus
then generates a model for the superposition atoms while the model evolution part generates
a model for the split atoms. Conversely, this means that if all atoms are labeled as “split
atom”, the calculus behaves similar to the model evolution calculus. If all atoms are labeled
as “superposition atom”, it behaves like the superposition calculus.

Both the hyper tableaux calculus with equality and the model evolution calculus with
equality allow only unit superposition applications, while SCL(EQ) inferences are guided
paramodulation inferences on clauses of arbitrary length. The model evolution calculus with
equality was revised and implemented in 2011 [10] and compares its performancewith that of

123

 22 Page 4 of 35 H. Leidinger, C. Weidenbach

hyper tableaux. Model evolution performed significantly better, with more problems solved
in all relevant TPTP [34] categories, than the implementation of the hyper tableaux calculus.

Plaisted et al. [31] present the Ordered Semantic Hyper-Linking (OSHL) calculus. OSHL
is an instantiation based approach that repeatedly chooses ground instances of a non-ground
input clause set such that the current model does not satisfy the current ground clause set. A
further step repairs the current model such that it satisfies the ground clause set again. The
algorithm terminates if the set of ground clauses contains the empty clause. OSHL supports
rewriting and narrowing, but only with unit clauses. In order to handle non-unit clauses it
makes use of other mechanisms such as Brand’s Transformation [4].

Inst-Gen [25] is an instantiation based calculus, that creates ground instances of the input
first-order formulas which are forwarded to a SAT solver. If a ground instance is unsatisfiable,
then the first-order set is as well. If not then the calculus creates more instances. The Inst-
Gen-EQ calculus [26] creates instances by extracting instantiations of unit superposition
refutations of selected literals of the first-order clause set. The ground abstraction is then
extended by the extracted clauses and an SMT solver then checks the satisfiability of the
resulting set of equational and non-equational ground literals.

On ground equational clauses, the behavior of SCL(EQ) is similar to SMT (Satisfiability
Modulo Theories) [30]. SCL(EQ) rigorously searches for implied equalities and does not
explicitely consider the propositional abstraction that drives SMT. Therefore, SCL(EQ) only
learns non-redundant clauses that is not guaranteed by standard SMT reasoning. On the other
hand the level of laziness in reasoning that is offered by SMT is currently not supported by
SCL(EQ). On equational clauses with variables, SCL(EQ) learns only non-redundant clauses
with variables whereas SMT solely operates on ground instances.

This article is an extended version of our proceedings paper [27]. It includes more exam-
ples and an extended background and discussion section. In favor of a better structure we
havemoved all proofs to an Appendix. The rest of the paper is organized as follows. Section2
provides basic formalisms underlying SCL(EQ). The rules of the calculus are presented in
Sect. 3. Soundness and completeness results are provided in Sect. 4. We end with a discus-
sion of obtained results and future work, Sect. 5. The main contribution of this paper is the
SCL(EQ) calculus that only learns non-redundant clauses, permits subset based redundancy
elimination and rewriting, and its soundness and completeness.

2 Preliminaries

We assume a standard first-order language with equality and signature � = (�,∅) where
the only predicate symbol is equality ≈. N denotes a set of clauses, C, D denote clauses,
L, K , H denote equational literals, A, B denote equational atoms, t, s terms from T (�,X)

for an infinite set of variables X , f , g, h function symbols from �, a, b, c constants from �

and x, y, z variables from X . The function comp denotes the complement of a literal. We
write s �≈ t as a shortcut for ¬(s ≈ t). The literal s # t may denote both s ≈ t and s �≈ t .
The semantics of first-order logic and semantic entailment |
 is defined as usual.

By σ, τ, δ we denote substitutions, which are total mappings from variables to terms. Let
σ be a substitution, then its finite domain is defined as dom(σ):={x | xσ �= x} and its
codomain is defined as codom(σ) = {t | xσ = t, x ∈ dom(σ)}. We extend their application
to literals, clauses and sets of such objects in the usual way. A term, literal, clause or sets
of these objects is ground if it does not contain any variable. A substitution σ is ground if
codom(σ) is ground. A substitution σ is grounding for a term t , literal L , clause C if tσ ,

123

SCL(EQ): SCL for First-Order Logic with Equality Page 5 of 35 22

Lσ , Cσ is ground, respectively. By C · σ , L · σ we denote a closure consisting of a clause
C , literal L and a grounding substitution σ , respectively. The function gnd computes the set
of all ground instances of a literal, clause, or clause set. The function mgu denotes the most
general unifier of terms, atoms, literals, respectively. We assume that mgus do not introduce
fresh variables and that they are idempotent.

The set of positions pos(L) of a literal (term pos(t)) is inductively defined as usual.
The notion L|p denotes the subterm of a literal L (t |p for term t) at position p ∈ pos(L)

(p ∈ pos(t)). The replacement of a subterm of a literal L (term t) at position p ∈ pos(L)

(p ∈ pos(t)) by a term s is denoted by L[s]p (t[s]p). For example, the term f (a, g(x)) has
the positions {ε, 1, 2, 21}, f (a, g(x))|21 = x and f (a, g(x))[b]2 denotes the term f (a, b).

Let R be a set of rewrite rules l → r , called a term rewrite system (TRS). The rewrite
relation→R⊆ T (�,X)×T (�,X) is defined as usual by s →R t if there exists (l → r) ∈ R,
p ∈ pos(s), and a matcher σ , such that s|p = lσ and t = s[rσ]p. We write s = t↓R if s
is the normal form of t in the rewrite relation →R . We write s # t = (s′ # t ′)↓R if s is the
normal form of s′ and t is the normal form of t ′. A rewrite relation is terminating if there is
no infinite descending chain t0 → t1 → ... and confluent if t ∗← s →∗ t ′ implies t ↔∗ t ′. A
rewrite relation is convergent if it is terminating and confluent. A rewrite order is a irreflexive
and transitive rewrite relation. A TRS R is terminating, confluent, convergent, if the rewrite
relation→R is terminating, confluent, convergent, respectively. A term t is called irreducible
by a TRS R if no rule from R rewrites t . Otherwise it is called reducible. A literal, clause
is irreducible if all of its terms are irreducible, and reducible otherwise. A substitution σ is
called irreducible if any t ∈ codom(σ) is irreducible, and reducible otherwise.

Let ≺T denote a well-founded rewrite ordering on terms which is total on ground terms
and for all ground terms t there exist only finitely many ground terms s ≺T t . We call ≺T a
desired term ordering. We extend ≺T to equations by assigning the multiset {s, t} to positive
equations s ≈ t and {s, s, t, t} to inequations s �≈ t . Furthermore, we identify ≺T with
its multiset extension comparing multisets of literals. For a (multi)set of terms {t1, . . . , tn}
and a term t , we define {t1, . . . , tn} ≺T t if {t1, . . . , tn} ≺T {t}. For a (multi)set of Literals
{L1, . . . , Ln} and a term t , we define {L1, . . . , Ln} ≺T t if {L1, . . . , Ln} ≺T {{t}}. Given a
ground term β then gnd≺T β computes the set of all ground instances of a literal, clause, or
clause set where the groundings are smaller than β according to the ordering≺T . Given a set
(sequence) of ground literals � let conv(�) be a convergent rewrite system from the positive
equations in � using ≺T .

Let ≺ be a well-founded, total, strict ordering on ground literals, which is lifted to clauses
and clause sets by its respective multiset extension.We overload≺ for literals, clauses, clause
sets if the meaning is clear from the context. The ordering is lifted to the non-ground case
via instantiation: we define C ≺ D if for all grounding substitutions σ it holds Cσ ≺ Dσ .
Then we define � as the reflexive closure of ≺ and N�C :={D | D ∈ N and D � C} and
use the standard superposition style notion of redundancy [2].

Definition 1 (Clause Redundancy) A ground clause C is redundant with respect to a set N
of ground clauses and an ordering ≺ if N�C |
 C . A clause C is redundant with respect
to a clause set N and an ordering ≺ if for all C ′ ∈ gnd(C), C ′ is redundant with respect to
gnd(N).

The Superposition calculus [2] is defined by the following rules. Given a reduction order
� on terms which is extended to an ordering on literals and clauses in the usual way, the
basic Superposition rule is as follows:

123

 22 Page 6 of 35 H. Leidinger, C. Weidenbach

Superposition
N∪{D∨t ≈ t ′,C∨s[u] # s′} ⇒SUP N∪{D∨t ≈ t ′,C∨s[u] # s′, (C∨D∨s[t ′] # s′)σ }

where σ = mgu(t, u) and u is not a variable.

Inferences are only allowed if the left premise is not greater than or equal to the right one,
the last literal of each premise is greater than the remaining literals of the respective clause
and the lefthand side of these literals is not smaller or equal to the righthand side. Two more
rules are needed for completeness:
Equality Resolution

N ∪ {C ∨ s �≈ s′} ⇒SUP N ∪ {Cσ }
where σ = mgu(s, s′)
Equality Factoring

N ∪ {C ∨ s �≈ t ′ ∨ s ≈ t} ⇒SUP N ∪ {(C ∨ t �≈ t ′ ∨ s ≈ t ′)σ }
where σ = mgu(s, s′)

3 The SCL(EQ) Calculus

We start the introduction of the calculus by defining the ingredients of an SCL(EQ) state.

Definition 2 (Trail) A trail �:=[Li1:C1·σ1
1 , ..., Lin :Cn ·σn

n] is a consistent sequence of ground
equations and inequations where L j is annotated by a level i j with i j−1 ≤ i j , and a closure
C j · σ j . We omit the annotations if they are not needed in a certain context. A ground literal
L is true in � if � |
 L . A ground literal L is false in � if � |
 comp(L). A ground literal L
is undefined in � if � �|
 L and � �|
 comp(L). Otherwise it is defined. For each literal L j

in � it holds that L j is undefined in [L1, ..., L j−1] and irreducible by conv({L1, ..., L j−1}).
The above definition of truth and undefinedness is extended to clauses in the obvious way.

The notions of true, false, undefined can be parameterized by a ground term β by saying that
L is β-undefined in a trail � if β ≺T L or L is undefined. The notions of a β-true, β-false
term are restrictions of the above notions to literals smaller β, respectively. All SCL(EQ)
reasoning is layered with respect to a ground term β.

Definition 3 Let � be a trail and L a ground literal such that L is defined in �. By core(�; L)

we denote a minimal subsequence �′ ⊆ � such that L is defined in �′. By cores(�; L) we
denote the set of all cores.

Note that core(�; L) is not necessarily unique. There can be multiple cores for a given
trail � and ground literal L .

Definition 4 (Trail Ordering) Let �:=[L1, ..., Ln] be a trail. The (partial) trail ordering ≺�

is the sequence ordering given by �, i.e., (Li ≺� L j if i < j) for all 1 ≤ i, j ≤ n.

Definition 5 (Defining Core and Defining Literal) For a trail � and a sequence of literals

 ⊆ � we write max≺� (
) for the largest literal in
 according to the trail ordering ≺� .
Let � be a trail and L a ground literal such that L is defined in �. Let
 ∈ cores(�; L)

be a sequence of literals where max≺� (
) �� max≺� (�) for all � ∈ cores(�; L), then
max�(L):=max≺� (
) is called the defining literal and
 is called a defining core for L in
�. If cores(�; L) contains only the empty core, then L has no defining literal and no defining
core.

123

SCL(EQ): SCL for First-Order Logic with Equality Page 7 of 35 22

As an example, consider the trail �:=[L1, L2, L3] and literal L , such that [L1, L2] |
 L
and [L2, L3] |
 L . Then both [L1, L2] and [L2, L3] are cores, but only [L1, L2] is a defining
core and only L2 is the defining literal. Note that there can be multiple defining cores but
only one defining literal for any defined literal L . For example, consider a trail �:=[f (a) ≈
f (b)1:C1·σ1 , a ≈ b2:C2·σ2 , b ≈ c3:C3·σ3] with an ordering ≺T that orders the terms of the
equations from left to right, and a literal g(f (a)) ≈ g(f (c)). Then the defining cores are

1:=[a ≈ b, b ≈ c] and
2:=[f (a) ≈ f (b), b ≈ c]. The defining literal, however, is in both
cases b ≈ c. Defined literals that have no defining core and therefore no defining literal are
literals that are trivially false or true. Consider, for example, g(f (a)) ≈ g(f (a)). This literal
is trivially true in �. Thus an empty subset of � is sufficient to show that g(f (a)) ≈ g(f (a))

is defined in �.

Definition 6 (Literal Level) Let � be a trail. A ground literal L ∈ � is of level i if L is
annotated with i in �. A defined ground literal L /∈ � is of level i if the defining literal of L
is of level i . If L has no defining literal, then L is of level 0. A ground clause D is of level i
if i is the maximum level of a literal in D.

The restriction to minimal subsequences for the defining literal and definition of a level
eventually guarantee that learned clauses are smaller in the trail ordering. This enables com-
pleteness in combination with learning non-redundant clauses as shown later.

Lemma 1 Let �1 be a trail and K a defined literal that is of level i in �1. Then K is of level
i in a trail �:=�1, �2.

Definition 7 Let � be a trail and L ∈ � a literal. L is called a decision literal if � =
�0, K i :C ·τ , Li+1:C ′·τ ′

, �1. Otherwise L is called a propagated literal.

In other words: L is a decision literal if the level of L is one greater than the level of
the preceeding literal K . In our above example g(f (a)) ≈ g(f (c)) is of level 3 since the
defining literal b ≈ c is annotated with 3. a �≈ b on the other hand is of level 2.

We define a well-founded total strict ordering which is induced by the trail and with
which non-redundancy is proven in Sect. 4. Unlike SCL [15, 21] we use this ordering for the
inference rules as well. In previous SCL calculi, conflict resolution automatically chooses the
greatest literal and resolves with this literal. In SCL(EQ) this is generalized. Coming back to
our running example above, suppose we have a conflict clause f (b) �≈ f (c) ∨ b �≈ c. The
defining literal for both inequations is b ≈ c. So we could do paramodulation inferences with
both literals. The following ordering makes this non-deterministic choice deterministic.

Definition 8 (Trail Induced Ordering) Let �:=[Li1:C1·σ1
1 , ..., Lin :Cn ·σn

n] be a trail, β a ground
term such that {L1, ..., Ln} ≺T β and Mi, j all β-defined ground literals not contained in
� ∪ comp(�): for a defining literal max�(Mi, j) = Li and for two literals Mi, j , Mi,k we
have j < k if Mi, j ≺T Mi,k .

The trail induces a total well-founded strict order ≺�∗ on β-defined ground literals
Mk,l , Mm,n , Li , L j of level greater than zero, where

1. Mi, j ≺�∗ Mk,l if i < k or (i = k and j < l);
2. Li ≺�∗ L j if Li ≺� L j ;
3. comp(Li) ≺�∗ L j if Li ≺� L j ;
4. Li ≺�∗ comp(L j) if Li ≺� L j or i = j ;
5. comp(Li) ≺�∗ comp(L j) if Li ≺� L j ;
6. Li ≺�∗ Mk,l , comp(Li) ≺�∗ Mk,l if i ≤ k;

123

 22 Page 8 of 35 H. Leidinger, C. Weidenbach

7. Mk,l ≺�∗ Li , Mk,l ≺�∗ comp(Li) if k < i ;

and for all β-defined literals L of level zero:

8. ≺�∗ := ≺T ;
9. L ≺�∗ K if K is of level greater than zero and K is β-defined;

and can eventually be extended to β-undefined ground literals K , H by

10. K ≺�∗ H if K ≺T H ;
11. L ≺�∗ H if L is β-defined.

The literal ordering ≺�∗ is extended to ground clauses by multiset extension and identified
with ≺�∗ as well.

Note, that in the above definition for a given i we can always put the Mi, j in an order
corresponding to the integers. This is due to the fact, that the total number of ground literals
is countable and since there are only finitely many β-defined literals.

Lemma 2 (Properties of ≺�∗)

1. ≺�∗ is well-defined.
2. ≺�∗ is a total strict order, i.e. ≺�∗ is irreflexive, transitive and total.
3. ≺�∗ is a well-founded ordering.

Example 1 Assume a trail �:=[a ≈ b1:C0·σ0 , c ≈ d1:C1·σ1 , f (a′) �≈ f (b′)1:C2·σ2], select
KBO as the term ordering ≺T where all symbols have weight one and a ≺ a′ ≺ b ≺ b′ ≺
c ≺ d ≺ f and a ground term β:= f (f (a)). According to the trail induced ordering we have
that a ≈ b ≺�∗ c ≈ d ≺�∗ f (a′) �≈ f (b′) by 8.2. Furthermore we have that

a ≈ b ≺�∗ a �≈ b ≺�∗ c ≈ d ≺�∗ c �≈ d ≺�∗ f (a′) �≈ f (b′) ≺�∗ f (a′) ≈ f (b′),

by 8.3 and 8.4. Now for any literal L that is β-defined in � and the defining literal is a ≈ b
it holds that a �≈ b ≺�∗ L ≺�∗ c ≈ d by 8.6 and 8.7. This holds analogously for all literals
that are β-defined in � and the defining literal is c ≈ d or f (a′) �≈ f (b′). Thus we get:

L1 ≺�∗ ... ≺�∗ a ≈ b ≺�∗ a �≈ b ≺�∗ f (a) ≈ f (b) ≺�∗ f (a) �≈ f (b) ≺�∗
c ≈ d ≺�∗ c �≈ d ≺�∗ f (c) ≈ f (d) ≺�∗ f (c) �≈ f (d) ≺�∗

f (a′) �≈ f (b′) ≺�∗ f (a′) ≈ f (b′) ≺�∗ a′ ≈ b′ ≺�∗ a′ �≈ b′ ≺�∗ K1 ≺�∗ . . .

where Ki are the β-undefined literals and L j are the trivially defined literals.

Table 1 summarizes the various orders presented so far.

Definition 9 (Rewrite Step) A rewrite step is a five-tuple (s#t · σ, s#t ∨ C · σ, R, S, p) and
inductively defined as follows. The tuple (s#t · σ, s#t ∨C · σ, ε, ε, ε) is a rewrite step. Given
rewrite steps R, S and a position p then (s#t · σ, s#t ∨ C · σ, R, S, p) is a rewrite step. The
literal s#t is called the rewrite literal. In case R, S are not ε, the rewrite literal of R is an
equation.

Note that R and S in the above definition describe the “history” of a rewrite step, i.e. they
contain all preceeding rewrite steps.

Rewriting is one of the core features of our calculus. The following definition describes a
rewrite inference between two clauses. Note that unlike the superposition calculus we allow
rewriting below variable level.

123

SCL(EQ): SCL for First-Order Logic with Equality Page 9 of 35 22

Table 1 Summary of the orderings presented so far

Order Description

Term order ≺T Well-founded rewrite ordering on terms

Total on ground terms

For all ground terms t there exist only finitely many ground terms
s ≺T t

Trail order ≺� Sequence ordering given by the trail �

Trail induced order ≺�∗ Extends the sequence ordering to all literals implicitly defined due
to literals of level >0

Uses ≺T for literals of level 0 and undefined literals

Literals of level 0 are smaller and undefined literals are greater than
literals of level >0

Definition 10 (Rewrite Inference) Let I1:=(l1 ≈ r1 · σ1, l1 ≈ r1 ∨ C1 · σ1, R1, L1, p1) and
I2:=(l2#r2 · σ2, l2#r2 ∨ C2 · σ2, R2, L2, p2) be two variable disjoint rewrite steps where
r1σ1 ≺T l1σ1, (l2#r2)σ2|p = l1σ1 for some position p. We distinguish two cases:

1. if p ∈ pos(l2#r2) and μ:=mgu((l2#r2)|p, l1) then (((l2#r2)[r1]p)μ · σ1σ2,

((l2#r2)[r1]p)μ ∨ C1μ ∨ C2μ · σ1σ2, I1, I2, p) is the result of a rewrite inference.
2. if p /∈ pos(l2#r2) then let (l2#r2)δ be the most general instance of l2#r2 such that

p ∈ pos((l2#r2)δ), δ introduces only fresh variables and (l2#r2)δσ2ρ = (l2#r2)σ2 for
some minimal ρ. Let μ:=mgu((l2#r2)δ|p, l1). Then
((l2#r2)δ[r1]pμ · σ1σ2ρ, (l2#r2)δ[r1]pμ ∨ C1μ ∨ C2δμ · σ1σ2ρ, I1, I2, p) is the result
of a rewrite inference.

Note that case 1 describes rewriting above or at a variable and case 2 describes rewriting
inside a variable.

Lemma 3 Let I1:=(l1 ≈ r1 · σ1, l1 ≈ r1 ∨ C1 · σ1, R1, L1, p1) and I2:=(l2#r2 · σ2, l2#r2 ∨
C2 ·σ2, R2, L2, p2) be two variable disjoint rewrite steps where r1σ1 ≺T l1σ1, (l2#r2)σ2|p =
l1σ1 for some position p. Let I3:=(l3#r3 · σ3, l3#r3 ∨ C3 · σ3, I1, I2, p) be the result of a
rewrite inference. Then:

1. C3σ3 = (C1 ∨ C2)σ1σ2 and l3#r3σ3 = (l2#r2)σ2[r1σ1]p.
2. (l3#r3)σ3 ≺T (l2#r2)σ2
3. If N |
 (l1 ≈ r1 ∨ C1) ∧ (l2#r2 ∨ C2) for some set of clauses N, then N |
 l3#r3 ∨ C3

Now that we have defined rewrite inferences we can use them to define a reduction chain
application and a refutation, which are sequences of rewrite steps. Intuitively speaking, a
reduction chain application reduces a literal in a clause with literals in conv(�) until it is
irreducible. A refutation for a literal L that is β-false in � for a given β, is a sequence of
rewrite steps with literals in �, L such that ⊥ is inferred. Refutations for the literals of the
conflict clause will be examined during conflict resolution by the rule Explore-Refutation.

Definition 11 (Reduction Chain) Let � be a trail. A reduction chain P from � is a sequence
of rewrite steps [I1, ..., Im] such that for each Ii = (si#ti ·σi , si#ti ∨Ci ·σi , I j , Ik, pi) either
1. si#t

ni :si#ti∨Ci ·σ
i is contained in � and I j = Ik = pi = ε or

2. Ii is the result of a rewriting inference from rewrite steps I j , Ik out of [I1, ..., Im] where
j, k < i .

123

 22 Page 10 of 35 H. Leidinger, C. Weidenbach

Let (l # r)δo:l # r∨C ·δ be an annotated ground literal. A reduction chain application from � to
l # r is a reduction chain [I1, ..., Im] from �, (l # r)δo:l # r∨C ·δ such that lδ↓conv(�) = smσm
and rδ↓conv(�) = tmσm . We assume reduction chain applications to be minimal, i.e., if any
rewrite step is removed from the sequence it is no longer a reduction chain application.

Definition 12 (Refutation) Let � be a trail and (l # r)δo:l # r∨C ·δ an annotated ground literal
that is β-false in � for a given β. A refutation P from � and l # r is a reduction chain
[I1, ..., Im] from �, (l # r)δo:l # r∨C ·δ such that (sm#tm)σm = s �≈ s for some s. We assume
refutations to be minimal, i.e., if any rewrite step Ik , k < m is removed from the refutation,
it is no longer a refutation.

3.1 The SCL(EQ) Inference Rules

We can now define the rules of our calculus based on the previous definitions. A state is a
six-tuple (�; N ;U ;β; k; D) similar to the SCL calculus, where � a sequence of annotated
ground literals, N and U the sets of initial and learned clauses, β is a ground term such that
for all L ∈ � it holds L ≺T β, k is the decision level, and D a status that is �, ⊥ or a
closure C · σ . Before we propagate or decide any literal, we make sure that it is irreducible
in the current trail. Together with the design of ≺�∗ this eventually enables rewriting as a
simplification rule.
Propagate

(�; N ;U ;β; k;�) ⇒SCL(EQ) (�, sm#tmσ
k:(sm#tm∨Cm)·σm
m ; N ;U ;β; k;�)

provided there is a C ∈ (N ∪ U), σ grounding for C , C = C0 ∨ C1 ∨ L , � |
 ¬C0σ ,
C1σ = Lσ ∨ ...∨ Lσ ,C1 = L1 ∨ ...∨ Ln ,μ = mgu(L1, ..., Ln, L) Lσ is β-undefined in �,
(C0∨L)μσ ≺T β, σ is irreducible by conv(�), [I1, . . . , Im] is a reduction chain application
from � to Lσ k:(L∨C0)μ·σ where Im = (sm#tm · σm, sm#tm ∨ Cm · σm, I j , Ik, pm).

The rule Propagate finds a ground instance of a clause which is propagable, i.e. it contains
(possibly multiple occurences of) a literal that is undefined and all other literals are false
in the trail. The multiple occurences of the undefined literal are factored. Then it adds the
normal form of this literal to the trail. The propagating clause is reduced by the corresponding
paramodulation steps. Note that the definition of Propagate also includes the case where Lσ

is irreducible by �. In this case L = sm#tm and m = 1. The rule Decide below, is similar
to Propagate, except for the subclause C0 which must be β-undefined or β-true in �, i.e.,
Propagate cannot be applied and the decision literal is annotated by a tautology.
Decide

(�; N ;U ;β; k;�) ⇒SCL(EQ) (�, sm#tmσ
k+1:(sm#tm∨comp(sm#tm))·σm
m ; N ;U ;β; k +

1;�)

provided there is a C ∈ (N ∪ U), σ grounding for C , C = C0 ∨ L , C0σ is

β-undefined or β-true in �, Lσ is β-undefined in �, (C0 ∨ L)σ ≺T β, σ is irreducible
by conv(�), [I1, . . . , Im] is a reduction chain application from � to Lσ k+1:L∨C0·σ where
Im = (sm#tm · σm, sm#tm ∨ Cm · σm, I j , Ik, pm).
Conflict (�; N ;U ;β; k;�) ⇒SCL(EQ) (�; N ;U ;β; k; D)

provided there is a D′ ∈ (N ∪U), σ grounding for D′, D′σ is β-false in �, σ is irreducible
by conv(�), D = ⊥ if D′σ is of level 0 and D = D′ · σ otherwise.

For the non-equational case, when a conflict clause is found by an SCL calculus [15, 21],
the complements of its first-order ground literals are contained in the trail. For equational
literals this is not the case, in general. The proof showing D to be β-false with respect to
� is a rewrite proof with respect to conv(�). This proof needs to be analyzed to eventually

123

SCL(EQ): SCL for First-Order Logic with Equality Page 11 of 35 22

perform paramodulation steps on D or to replace D by a≺�∗ smaller β-false clause showing
up in the proof.
Skip (�, Kl:C ·τ , Lk:C ′·τ ′ ; N ;U ;β; k; D · σ) ⇒SCL(EQ) (�, Kl:C ·τ ; N ;U ;β; l; D · σ)

if Dσ is β-false in �, Kl:C ·τ .
The Explore-Refutation rule is the FOL with Equality counterpart to the resolve rule in

CDCL or SCL. While in CDCL or SCL complementary literals of the conflict clause are
present on the trail and can directly be used for resolution steps, this needs a generalization
for FOL with Equality. Here, in general, we need to look at (rewriting) refutations of the
conflict clause and pick an appropriate clause from the refutation as the next conflict clause.
Explore-Refutation

(�, L; N ;U ;β; k; (D ∨ s # t) · σ)) ⇒SCL(EQ) (�, L; N ;U ;β; k; (s j#t j ∨ C j) · σ j)
if (s # t)σ is strictly ≺�∗ maximal in (D ∨ s # t)σ , L is the defining literal of (s # t)σ,

[I1, ..., Im] is a refutation from � and (s # t)σ , I j = (s j#t j ·σ j , (s j#t j ∨C j) ·σ j , Il , Ik, p j),
1 ≤ j ≤ m, (s j # t j ∨ C j)σ j ≺�∗ (D ∨ s # t)σ , (s j#t j ∨ C j)σ j is β-false in �.
Factorize

(�; N ;U ;β; k; (D ∨ L ∨ L ′) · σ) ⇒SCL(EQ) (�; N ;U ;β; k; (D ∨ L)μ · σ)

provided Lσ = L ′σ , and μ = mgu(L, L ′).
Equality-Resolution

(�; N ;U ;β; k; (D ∨ s �≈ s′) · σ) ⇒SCL(EQ) (�; N ;U ;β; k; Dμ · σ)

provided sσ = s′σ , μ = mgu(s, s′).
For backtracking we have to make sure, that the learned clause is not false in the resulting

trail. It is not sufficient to backtrack to the point where the clause with the current substitution
is no longer false, but where it is no longer false with all possible substitutions.
Backtrack (�, K , �′; N ;U ;β; k; (D∨L)·σ) ⇒SCL(EQ) (�; N ;U∪{D∨L};β; j−
i;�)

provided Dσ is of level i ′ where i ′ < k, K is of level j and�, K theminimal trail subsequence
such that there is a grounding substitution τ with (D ∨ L)τ β-false in �, K but not in �;
i = 1 if K is a decision literal and i = 0 otherwise.
Grow (�; N ;U ;β; k;�) ⇒SCL(EQ) (ε; N ;U ;β ′; 0;�)

provided β ≺T β ′.
In addition to soundness and completeness of the SCL(EQ) rules their tractability in

practice is an important property for a successful implementation. In particular, finding prop-
agating literals or detecting a false clause under some grounding. It turns out that these
operations are NP-complete, similar to first-order subsumption which has been shown to be
tractable in practice.

Lemma 4 Assume that all ground terms t with t ≺T β for any β are polynomial in the size
of β. Then testing Propagate (Conflict) is NP-Complete, i.e., the problem of checking for a
given clause C whether there exists a grounding substitution σ such that Cσ propagates (is
false) is NP-Complete.

Example 2 (SCL(EQ) vs. Superposition: Saturation) Consider the following clauses:

N :={C1:=c ≈ d ∨ D,C2:=a ≈ b ∨ c �≈ d,C3:= f (a) �≈ f (b) ∨ g(c) �≈ g(d)},
where again we assume a KBO with all symbols having weight one, precedence d ≺ c ≺
b ≺ a ≺ g ≺ f and β:= f (f (g(a))). Suppose that we first decide c ≈ d and then propagate
a ≈ b: � = [c ≈ d1:c≈d∨c �≈d , a ≈ b1:C2]. Now we have a conflict with C3. Explore-
Refutation applied to the conflict clause C3 results in a paramodulation inference between

123

 22 Page 12 of 35 H. Leidinger, C. Weidenbach

C3 and C2. Another application of Equality-Resolution gives us the new conflict clause
C4:=c �≈ d ∨ g(c) �≈ g(d). Now we can Skip the last literal on the trail, which gives us
� = [c ≈ d1:c≈d∨c �≈d]. Another application of the Explore-Refutation rule to C4 using
the decision justification clause followed by Equality-Resolution and Factorize gives us
C5:=c �≈ d . Thus with SCL(EQ) the following clauses remain:

C ′
1 = D C5 = c �≈ d

C3 = f (a) �≈ f (b) ∨ g(c) �≈ g(d)

where we derivedC ′
1 out ofC1 by subsumption resolution [37] usingC5. Actually, subsump-

tion resolution is compatible with the general redundancy notion of SCL(EQ), see Lemma 6.
Now we consider the same example with superposition and the very same ordering (Ni is
the clause set of the previous step and N0 the initial clause set N).

N0 ⇒Sup(C2,C3) N1 ∪ {C4:=c �≈ d ∨ g(c) �≈ g(d)}
⇒Sup(C1,C4) N2 ∪ {C5:=c �≈ d ∨ D} ⇒Sup(C1,C5) N3 ∪ {C6:=D}

Thus superposition ends up with the following clauses:

C2 = a ≈ b ∨ c �≈ d C3 = f (a) �≈ f (b) ∨ g(c) �≈ g(d)

C4 = c �≈ d ∨ g(c) �≈ g(d) C6 = D

The superposition calculus generates more and larger clauses.

Example 3 (SCL(EQ) vs. Superposition: Refutation) Suppose the following set of clauses:
N :={C1:= f (x) �≈ a ∨ f (x) ≈ b,C2:= f (f (y)) ≈ y,C3:=a �≈ b} where again we assume
a KBO with all symbols having weight one, precedence b ≺ a ≺ f and β:= f (f (f (a))). A
long refutation by the superposition calculus results in the following (Ni is the clause set of
the previous step and N0 the initial clause set N):

N0 ⇒Sup(C1,C2) N1 ∪ {C4:=y �≈ a ∨ f (f (y)) ≈ b}
⇒Sup(C1,C4) N2 ∪ {C5:=a �≈ b ∨ f (f (y)) ≈ b ∨ y �≈ a}
⇒Sup(C2,C5) N3 ∪ {C6:=a �≈ b ∨ b ≈ y ∨ y �≈ a}
⇒Sup(C2,C4) N4 ∪ {C7:=y ≈ b ∨ y �≈ a}
⇒EqRes(C7) N5 ∪ {C8:=a ≈ b} ⇒Sup(C3,C8) N6 ∪ {⊥}

The shortest refutation by the superposition calculus is as follows:

N0 ⇒Sup(C1,C2) N1 ∪ {C4:=y �≈ a ∨ f (f (y)) ≈ b}
⇒Sup(C2,C4) N2 ∪ {C5:=y ≈ b ∨ y �≈ a}
⇒EqRes(C5) N3 ∪ {C6:=a ≈ b} ⇒Sup(C3,C6) N4 ∪ {⊥}

In SCL(EQ) on the other hand we would always first propagate a �≈ b, f (f (a)) ≈ a and
f (f (b)) ≈ b. As soon as a �≈ b and f (f (a)) ≈ a are propagated we have a conflict with
C1{x → f (a)}. So suppose in the worst case we propagate:

�:=[a �≈ b0:a �≈b f (f (b)) ≈ b0:(f (f (y))≈y){y→b} f (f (a)) ≈ a0:(f (f (y))≈y){y→a}]

Now we have a conflict with C1{x → f (a)}. Since there is no decision literal on the trail,
Conflict rule immediately returns ⊥ and we are done.

123

SCL(EQ): SCL for First-Order Logic with Equality Page 13 of 35 22

4 Soundness and Completeness

In this section we show soundness and refutational completeness of SCL(EQ) under the
assumption of a regular run. We provide the definition of a regular run and show that for a
regular run all learned clauses are non-redundant according to our trail induced ordering. We
start with the definition of a sound state.

Definition 13 A state (�; N ;U ;β; k; D) is sound if the following conditions hold:

1. � is a consistent sequence of annotated literals,
2. for each decomposition � = �1, Lσ i :(C∨L)·σ , �2 where Lσ is a propagated literal, we

have that Cσ is β-false in �1, Lσ is β-undefined in �1 and irreducible by conv(�1),
N ∪U |
 (C ∨ L) and (C ∨ L)σ ≺T β,

3. for each decomposition� = �1, Lσ i :(L∨comp(L))·σ , �2 where Lσ is a decision literal, we
have that Lσ is β-undefined in�1 and irreducible by conv(�1), N∪U |
 (L∨comp(L))

and (L ∨ comp(L))σ ≺T β,
4. N |
 U ,
5. if D = C · σ , then Cσ is β-false in �, N ∪U |
 C

Lemma 5 The initial state (ε; N ; ∅;β; 0;�) is sound.

Definition 14 A run is a sequence of applications of SCL(EQ) rules starting from the initial
state.

Theorem 1 Assume a state (�; N ;U ;β; k; D) resulting froma run. Then (�; N ;U ;β; k; D)

is sound.

Next, we give the definition of a regular run. Intuitively speaking, in a regular run we are
always allowed to do decisions except if

1. a literal can be propagated before the first decision and
2. the negation of a literal can be propagated.

To ensure non-redundant learning we enforce at least one application of Skip during conflict
resolution except for the special case of a conflict after a decision.

Definition 15 (Regular Run) A run is called regular if

1. the rules Conflict and Factorize have precedence over all other rules,
2. If k = 0 in a state (�; N ;U ;β; k; D), then Propagate has precedence over Decide,
3. If an annotated literal Lk:C ·σ could be added by an application of Propagate on � in a

state (�; N ;U ;β; k; D) and C ∈ N ∪ U , then the annotated literal comp(L)k+1:C ′·σ ′
is

not added by Decide on �,
4. during conflict resolution Skip is applied at least once, except if Conflict is applied imme-

diately after an application of Decide.
5. if Conflict is applied immediately after an application of Decide, then Backtrack is only

applied in a state (�, L ′; N ;U ;β; k; D · σ) if Lσ = comp(L ′) for some L ∈ D.

Now we show that any learned clause in a regular run is non-redundant according to our
trail induced ordering.

Lemma 6 (Non-Redundant Clause Learning) Let N be a clause set. The clauses learned
during a regular run in SCL(EQ) are not redundant with respect to ≺�∗ and N ∪U. For the
trail only non-redundant clauses need to be considered.

123

 22 Page 14 of 35 H. Leidinger, C. Weidenbach

The proof of Lemma 6 is based on the fact that conflict resolution eventually produces
a clause smaller then the original conflict clause with respect to ≺�∗ . All simplifications,
e.g., contextual rewriting, as defined in [2, 24, 37, 38, 40, 41], are therefore compatible with
Lemma 6 and may be applied to the newly learned clause as long as they respect the induced
trail ordering. In detail, let � be the trail before the application of rule Backtrack. The newly
learned clause can be simplified according to the induced trail ordering ≺�∗ as long as the
simplified clause is smaller with respect to ≺�∗ .

Another important consequence of Lemma 6 is that newly learned clauses need not
to be considered for redundancy. Furthermore, the SCL(EQ) calculus always terminates,
Lemma 11, because there only finitely many non-redundant clauses with respect to a fixed
β.

For dynamic redundancy, we have to consider the fact that the induced trail ordering
changes. At this level, only redundancy criteria and simplifications that are compatible with
all induced trail orderings may be applied. Due to the construction of the induced trail
ordering, it is compatible with ≺T for unit clauses.

Lemma 7 (Unit Rewriting) Assume a state (�; N ;U ;β; k; D) resulting from a regular
run where the current level k > 0 and a unit clause l ≈ r ∈ N. Now assume a clause
C∨L[l ′]p ∈ N such that l ′ = lμ for somematcherμ. Now assume some arbitrary grounding
substitutions σ ′ for C ∨ L[l ′]p, σ for l ≈ r such that lσ = l ′σ ′ and rσ ≺T lσ . Then
(C ∨ L[rμσσ ′]p)σ ′ ≺�∗ (C ∨ L[l ′]p)σ ′.

In addition, any notion that is based on a literal subset relationship is also compatible with
ordering changes. The standard example is subsumption.

Lemma 8 Let C, D be two clauses. If there exists a substitution σ such that Cσ ⊂ D, then
D is redundant with respect to C and any ≺�∗ .

The notion of redundancy, Definition 1, only supports a strict subset relation for Lemma 8,
similar to the superposition calculus. However, the newly generated clauses of SCL(EQ) are
the result of paramodulation inferences [32]. In a recent contribution to dynamic, abstract
redundancy [36] it is shown that also the non-strict subset relation in Lemma 8, i.e.,Cσ ⊆ D,
preserves completeness.

If all stuck states, see below Definition 16, with respect to a fixed β are visited before
increasing β then this provides a simple dynamic fairness strategy.

When unit reduction or any other form of supported rewriting is applied to clauses smaller
than the current β, it can be applied independently from the current trail. If, however, unit
reduction is applied to clauses larger than the current β then the calculus must do a restart to
its initial state, in particular the trail must be emptied, as for otherwise rewriting may result
generating a conflict that did not exist with respect to the current trail before the rewriting.
This is analogous to a restart in CDCL once a propositional unit clause is derived and used
for simplification. More formally, we add the following new Restart rule to the calculus to
reset the trail to its initial state after a unit reduction.

Restart (�; N ;U ;β; k;�) ⇒SCL(EQ) (ε; N ;U ;β; 0;�)

Next we show refutation completeness of SCL(EQ). To achieve this we first give a defini-
tion of a stuck state. Then we show that stuck states only occur if all ground literals L ≺T β

are β-defined in � and not during conflict resolution. Finally we show that conflict resolution
will always result in an application of Backtrack. This allows us to show termination (without
application of Grow) and refutational completeness.

123

SCL(EQ): SCL for First-Order Logic with Equality Page 15 of 35 22

Definition 16 (Stuck State) A state (�; N ;U ;β; k; D) is called stuck if D �= ⊥ and none
of the rules of the calculus, except for Grow, is applicable.

Lemma 9 (Form of Stuck States) If a regular run (without rule Grow) ends in a stuck state
(�; N ;U ;β; k; D), then D = � and all ground literals Lσ ≺T β, where L ∨C ∈ (N ∪U)

are β-defined in �.

Lemma 10 Suppose there is a sound state (�; N ;U ;β; k; D) resulting from a regular
run where D /∈ {�,⊥}. If Backtrack is not applicable then any set of applications of
Explore-Refutation, Skip, Factorize, Equality-Resolution will finally result in a sound state
(�′; N ;U ;β; k; D′), where D′ ≺�∗ D. Then Backtrack will be finally applicable.

Corollary 1 (Satisfiable Clause Sets) Let N be a satisfiable clause set. Then any regular run
without rule Grow will end in a stuck state, for any β.

Thus a stuck state can be seen as an indication for a satisfiable clause set. Of course, it
remains to be investigatedwhether the clause set is actually satisfiable. Superposition is one of
the strongest approaches to detect satisfiability and constitutes a decision procedure for many
decidable first-order fragments [3, 23]. Now given a stuck state and some specific ordering
such as KBO, LPO, or some polynomial ordering [20], it is decidable whether the ordering
can be instantiated from a stuck state such that � coincides with the superposition model
operator on the ground terms smaller than β. In this case it can be effectively checkedwhether
the clauses derived so far are actually saturated by the superposition calculus with respect to
this specific ordering. In this sense, SCL(EQ) has the same power to decide satisfiability of
first-order clause sets as superposition.

Definition 17 A regular run terminates in a state (�; N ;U ;β; k; D) if D = � and no rule
is applicable, or D = ⊥.

Lemma 11 Let N be a set of clauses and β be a ground term. Then any regular run that
never uses Grow terminates.

Lemma 12 If a regular run reaches the state (�; N ;U ;β; k;⊥) then N is unsatisfiable.

Theorem 2 (Refutational Completeness) Let N be an unsatisfiable clause set, and ≺T a
desired term ordering. For any ground term β where gnd≺T β(N) is unsatisfiable, any regular
SCL(EQ) run without rule Grow will terminate by deriving ⊥.

5 Discussion

We presented SCL(EQ), a new sound and complete calculus for reasoning in first-order logic
with equality. We will now discuss some of its aspects and present ideas for future work
beyond the scope of this paper.

The SCL(EQ) calculus can be viewed as a generalization of the first-order without equality
SCL calculus [17], where syntactic equality with respect to trail literals is replaced with
equality modulo the presented equational theory. If standard first-order literals like R(x, y)
are represented by equations like fR(x, y) ≈ true then performing SCL(EQ) on the latter
simplifies to classical SCL reasoningon thefirst-order literalswith a slightly different strategy.

The trail induced ordering, Definition 8, is the result of letting the calculus follow the
logical structure of the clause set on the literal level and at the same time supporting rewriting

123

 22 Page 16 of 35 H. Leidinger, C. Weidenbach

at the term level. It can already be seen by examples on ground clauses over (in)equations
over constants that this combination requires a layered approach as suggested byDefinition 8,
see Example 4.

Example 4 (Propagate Smaller Equation) Assume a term ordering ≺kbo, unique weight 1
and with precedence d ≺ c ≺ b ≺ a. Further assume β to be large enough. Assume the
ground clause set N solely built out of constants

C1:=c ≈ d C2:=c �≈ d ∨ a ≈ b
C3:=a �≈ b ∨ a ≈ c

and the trail �:=[c ≈ d0:C1 , a ≈ b0:C2 , b ≈ d0:C3]. Now, although the first two steps
propagated equations that are strictly maximal in the ordering in their respective clauses, the
finally propagated equation b ≈ d is smaller in the term ordering ≺kbo than a ≈ b. Thus
the structure of the clause set forces propagation of a smaller equation in the term ordering.
So the more complicated trail ordering is a result of following the structure of the clause set
rather than employing an a priori fixed ordering.

In case the calculus runs into a stuck state, i.e., the current trail is a model for the set of
considered ground instances, then the trail information can be effectively used for a guided
continuation. For example, in order to use the trail to certify a model, the trail literals can be
used to guide the design of a lifted ordering for the clauseswith variables such that propagated
trail literals are maximal in respective clauses. Then it could be checked by superposition,
if the current clause is saturated by such an ordering. If this is not the case, then there must
be a superposition inference larger than the current β, thus giving a hint on how to extend
β. Another possibility is to try to extend the finite set of ground terms considered in a stuck
state to the infinite set of all ground terms by building extended equivalence classes following
patterns that ensure decidability of clause testing, similar to the ideas in [15]. If this fails,
then again this information can be used to find an appropriate extension term β for rule Grow.

In contrast to superposition, SCL(EQ)does also inferences belowvariable level. In general,
single superposition inferences below variables are redundant [2]. Inferences in SCL(EQ) are
guided by a false clause with respect to a partial model assumption represented by the trail.
They are typically not single superposition steps, but a sequence of superposition inferences
eventually resulting in a non-redundant clause changing the partial model assumption. There-
fore, compared to the syntactic style of superposition-based theorem proving, in SCL(EQ)
reasoning below variables does not result in an explosion in the number of possibly inferred
clauses but also rather in the derivation of more general clauses, see Example 5.

Example 5 (Rewriting below variable level) Assume a term ordering ≺kbo, unique weight 1
and with precedence d ≺ c ≺ b ≺ a ≺ g ≺ h ≺ f . Further assume β to be large enough.
Assume the clause set N :

C1:= f (x) ≈ h(b) ∨ x �≈ g(a) C2:=c ≈ d ∨ f (g(b)) �≈ h(b)
C3:=a ≈ b ∨ f (g(b)) ≈ h(b)

Let σ = {x → g(a)} be a substitution. C1σ must be propagated: � = [f (g(a)) ≈
h(b)0:C1σ]. Now suppose that we decide f (g(b)) �≈ h(b). Then � = [f (g(a)) ≈
h(b)0:C1σ , f (g(b)) �≈ h(b)1: f (g(b))�≈h(b)∨ f (g(b))≈h(b)] and C3 is a conflict clause. Explore-

123

SCL(EQ): SCL for First-Order Logic with Equality Page 17 of 35 22

Refutation now creates the following refutation for a ≈ b:

I1:= (f (x) ≈ h(b) · σ,C1 · σ, ε, ε, ε)

I2:= (f (g(b)) �≈ h(b),C2, ε, ε, ε)

I3:= (a ≈ b,C3, ε, ε, ε)

I4:= (f (g(b)) ≈ h(b), f (g(b)) ≈ h(b) ∨ g(a) �≈ g(a) ∨ f (g(b)) ≈ h(b), I3, I1, ε)
I5:= (h(b) �≈ h(b), h(b) �≈ h(b) ∨ g(a) �≈ g(a) ∨ f (g(b)) ≈ h(b)

∨ f (g(b)) ≈ h(b), I4, I2, ε)

Multiple applications of Equality-Resolution and Factorize result in the final conflict
clause C4:= f (g(b)) ≈ h(b)with which we can backtrack. The clause set resulting from this
new clause is:

C1 = f (x) ≈ h(b) ∨ x �≈ g(a) C ′
2 = c ≈ d

C4 = f (g(b)) ≈ h(b)

whereC ′
2 is the result of a unit reduction betweenC4 andC2. Note that the refutation required

rewriting below variable level in step I4. Superposition would create the following clauses
(Equality-Resolution and Factorization steps are implicitly done):

N ⇒Sup(C2,C3) N1 ∪ {C4:=c ≈ d ∨ a ≈ b}
⇒Sup(C1,C2) N2 ∪ {C5:=c ≈ d ∨ g(a) �≈ g(b)}
⇒Sup(C4,C5) N3 ∪ {C6:=c ≈ d}

For superposition the resulting clause set is thus:

C1 = f (x) ≈ h(b) ∨ x �≈ g(a) C2 = a ≈ b ∨ f (g(b)) ≈ h(b)
C6 = c ≈ d

Currently, the reasoning with solely positive equations is done on and with respect to the
trail. It is well-known that also inferences from this type of reasoning can be used to speed
up the overall reasoning process. The SCL(EQ) calculus already provides all information for
such a type of reasoning, because it computes the justification clauses for trail reasoning via
rewriting inferences. By an assessment of the quality of these clauses, e.g., their reduction
potential with respect to trail literals, they could also be added, independently from resolving
a conflict.

The trail reasoning is currently definedwith respect to rewriting. It could also be performed
by congruence closure [29]. However, we still need a ground term rewrite system to propagate
literals. A possible solution to this is an algorithm byGallier et al. [22] which creates a ground
rewrite system out of the congruence classes in polynomial time.

Bromberger et al. [16] showed how to lift the two-watched literal scheme to SCL.We could
make use of this in an implementation as well. In general, an implementation of SCL(EQ)
requires both the infrastructure of a superpositon-based prover and an CDCL/SMT solver.
The aspect of how to find interesting ground decision or propagation literals for the trail
including the respective grounding substituion σ can be treated similar to CDCL [11, 12,
28, 33]. A simple heuristic may be used from the start, like counting the number of instance
relationships of some ground literal with respect to the clause set, but later on a bonus system
can focus the search towards the structure of the clause sets. Ground literals involved in a
conflict or the process of learning a new clause get a bonus or preference. However, since the
number of ground literals is not fixed from the beginning with growing β, all these operations
need to be done via hashing or indexing operations modulo matching/unification in contrast
to simple look-ups in the CDCL case. The regular strategy requires the propagation of all
ground unit clauses smaller than β. For an implementation a propagation of the (explicit and

123

 22 Page 18 of 35 H. Leidinger, C. Weidenbach

implicit) unit clauses with variables to the trail will be a better choice. This complicates the
implementation of refutation proofs and rewriting (congruence closure), but because every
reasoning is layered by a ground term β this can still be efficiently done.

Acknowledgements This work was partly funded by DFG Grant 389792660 as part of TRR 248, see https://
perspicuous-computing.science. The authors thank the anonymous reviewers and Martin Desharnais for their
thorough reading, detailed comments, and corrections.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: A Proofs and Auxiliary Lemmas

Proof of Lemma 1 Let �1 be a trail and K a defined literal that is of level i in �1. Then K is
of level i in a trail �:=�1, �2.

Proof Assume a trail �1 and a literal K that is of level i in �1. Let �:=�1, �2 be a trail. Then
we have two cases:

1. K has no defining literal in �1. Then cores(�1; K) = {[]} contains only the empty core
and K is of level 0 in �1. Then cores(�; K) = {[]} as well and thus K is of level 0 in �.

2. K has a defining literal L:=max�1(K) and L is of level i . Then there exists a core

 ∈ cores(�1; K) such that L is the maximum literal in
 according to ≺� and for all
� ∈ cores(�1; K) it holds max≺� (
) �� max≺� (�). Thus
 is a defining core. Now
any � ∈ (cores(�; K)\cores(�1; K)) has a higher maximum literal according to ≺� .
Thus
 is also a defining core in � and L is the defining literal of K in � and thus K is
of level i in �.

��

Auxiliary Lemmas for the Proofs of Lemma 2

Lemma 13 Let � be a trail. Then any literal in � occurs exactly once.

Proof Let �:=[Li1:C1·σ1
1 , ..., Lin :Cn ·σn

n]. Now suppose there exist Li , L j with i < j and
1 ≤ i, j ≤ n such that Li = L j . By definition of�, L j is undefined in [L1, ..., Li , ..., L j−1].
But obviously L j is defined in �. Contradiction. ��
Lemma 14 Let � be a trail. If a literal L is of level i , then it is not of level j �= i .

Proof Let � be a trail. By Lemma 13 any literal in � is unique. Suppose there exists a
literal L such that L is of level i and of level j . If the core is empty for L then L is
of level 0 by definition. Otherwise there must exist cores
,� ∈ cores(�; L) such that
max≺� (
) �� max≺� (�′) and max≺� (�) �� max≺� (�′) for all �′ ∈ cores(�; L). But
then max≺� (�) = max≺� (
). Contradiction. ��

123

https://perspicuous-computing.science
https://perspicuous-computing.science
http://creativecommons.org/licenses/by/4.0/

SCL(EQ): SCL for First-Order Logic with Equality Page 19 of 35 22

Lemma 15 Let L be a ground literal and � a trail. If L is defined in � then L has a level.

Proof Let � be a trail. Suppose that L is defined in �. Then it either has a defining literal
or it has no defining literal. If it has a defining literal K , then the level of K is the level of
L . Since K ∈ � it is annotated by a level. Thus L has a level. If L does not have a defining
literal, then L is of level 0 by definition of a literal level. ��
Proof of Lemma 2-1 ≺�∗ is well-defined.

Proof Suppose a trail �:=[Li1:C1·σ1
1 , ..., Lin :Cn ·σn

n] and a term β such that {L1, ..., Ln} ≺T β.
We have to show that the rules 8.1–8.11 are pairwise disjunct. Consider the rules 8.1–8.7.
These rules are pairwise disjunct, if the sets {L1, ..., Ln}, {comp(L1), ..., comp(Ln)} and
{Mi, j | i ≤ n} are pairwise disjunct. Obviously, {L1, ..., Ln}∩{comp(L1), ..., comp(Ln)} =
∅. Furthermore ({L1, ..., Ln}∪ {comp(L1), ..., comp(Ln)}) ∩ {Mi, j | i ≤ n} = ∅ fol-
lows directly from the definition of a trail induced ordering. 8.8 and 8.9 are disjunct since
{L | L is of level 0} and {L | L is of level greater 0} are disjunct by Lemma 14. It follows
that 8.1–8.9 are pairwise disjunct, since all relations in 8.1–8.7 contain only β-defined literals
of level 1 or higher and all relations in 8.8, 8.9 contain at least one β-defined literal of level
0. 8.10 and 8.11 are disjunct since a literal cannot be both β-defined and β-undefined. It fol-
lows that 8.1–8.11 are pairwise disjunct, since all relations in 8.1–8.9 contain only β-defined
literals and all relations in 8.10, 8.11 contain at least one β-undefined literal. ��
Proof of Lemma 2-2 ≺�∗ is a total strict order, i.e. ≺�∗ is irreflexive, transitive and total.

Proof Suppose a trail �:=[Li1:C1·σ1
1 , ..., Lin :Cn ·σn

n] and a term β such that {L1, ..., Ln} ≺T β.
IrreflexivityWe have to show that there is no ground literal L such that L ≺�∗ L . Suppose

two literals L and K such that L ≺�∗ K and L = K . Now we have several cases:

1. Suppose that L, K are β-defined and of level 1 or higher. Then we have several cases:

(a) L = Mi, j and K = Mk,l . Then by 8.1 Mi, j ≺�∗ Mk,l if i < k or (i = k and
j < l). Thus i �= k or j �= l. We show that for Mi, j , Mk,l with i �= k or j �= l
it holds Mi, j �= Mk,l . Assume that Mi, j = Mk,l and k �= i or j �= l. Assume that
k = i . Then, by Definition 8 Mi, j ≺T Mk,l or Mk,l ≺T Mi, j . Thus Mi, j �= Mk,l

since ≺T is a rewrite ordering. Now assume that k �= i . Since Mi, j = Mk,l it holds
max�(Mi, j) = max�(Mk,l), since both have the same level by Lemma 14. But then
k = i . Thus Mi, j �= Mk,l for k �= i or j �= l. Thus if by 8.1 Mi, j ≺�∗ Mk,l if i < k
or (i = k and j < l), then Mi, j �= Mk,l .

(b) L = Li and K = L j . Then by 8.2 Li ≺�∗ L j if Li ≺� L j . Then by Lemma 13
Li �= L j .

(c) L = comp(Li) and K = L j . Then by 8.3 comp(Li) ≺�∗ L j if Li ≺� L j . Li �= L j

by Lemma 13. L �= K has to hold since � is consistent.
(d) L = Li and K = comp(L j). Then by 8.4 Li ≺�∗ comp(L j) if Li ≺� L j or i = j .

If i �= j then we can proceed analogous to the previous step. If i = j then obviously
Li �= comp(Li).

(e) L = comp(Li) and K = comp(L j). Then by 8.5 comp(Li) ≺�∗ comp(L j) if
Li ≺� L j . By Lemma 13 Li �= L j . Thus comp(Li) �= comp(L j).

(f) L = Li and K = Mk,l . Then by 8.6 Li ≺�∗ Mk,l , comp(Li) ≺�∗ Mk,l if i ≤ k.
Mk,l �= Li and Mk,l �= comp(Li) follows directly from the Definition 8. Thus
if Li ≺�∗ Mk,l or comp(Li) ≺�∗ Mk,l if i ≤ k by 8.6, then Li �= Mk,l and
comp(Li) �= Mk,l .

123

 22 Page 20 of 35 H. Leidinger, C. Weidenbach

(g) L = Mk,l and K = Li . Then we can proceed analogous to the previous step for 8.7.

2. Suppose that L and K are β-defined and of level zero. Since ≺T is irreflexive, L ⊀T K
has to hold. Since ≺�∗=≺T for literals of level zero L ⊀�∗ K has to hold too.

3. Suppose that L, K are β-defined and L is of level zero and K is of level greater than zero.
But then L �= K has to hold by Lemma 14. Thus L ⊀�∗ K for 8.9.

4. Suppose that L and K are β-undefined. Then by 8.10 K ≺�∗ H if K ≺T H . Since ≺T

is a rewrite ordering K ≺T H iff K �= H .
5. Suppose that L is β-defined and K is β-undefined. Then by 8.11 L ≺�∗ K . Then L �= K

has to hold since otherwise L, K would be both β-defined and β-undefined, contradicting
consistency of �.

Transitivity Suppose there exist literals L, K , H such that H ≺�∗ K and K ≺�∗ L but
not H ≺�∗ L . We have several cases:

1. Suppose all literals are β-undefined. Then K ≺T L and H ≺T K . Otherwise K ≺�∗ L
and H ≺�∗ K would not hold. Thus also H ≺T L by transitivity of ≺T . Thus H ≺�∗ L
by 8.10.

2. Suppose two literals are β-undefined. If K would be β-defined, then K ≺�∗ H by 8.11
contradicting assumption. If L would be β-defined, then L ≺�∗ K by 8.11 again contra-
dicting assumption. Thus H has to be β-defined. Then H ≺�∗ L by definition 8.11.

3. Suppose one literal is β-undefined. If K would be β-undefined, then L ≺�∗ K by Def-
inition 8.11 contradicting assumption. If H would be β-undefined, then K ≺�∗ H by
Definition 8.11 again contradicting assumption. Thus L has to be β-undefined. Then
H ≺�∗ L by Definition 8.11.

4. Suppose all literals are β-defined. Then we have multiple subcases:

(a) Suppose all literals have the same defining literal Li and Li is of level 1 or higher.
By 8.6 Li ≺�∗ Mi, j and comp(Li) ≺�∗ Mi, j for all j . By 8.4 Li ≺�∗ comp(Li).
Thus Li ≺�∗ comp(Li) ≺�∗ Mi, j for all j . Since K ≺�∗ L either K = Li and
L �= Li or L = Mi, j and K = comp(Li) or L = Mi, j and K = Mi,k with k < j .
(i) Assume K = Li and L �= Li . Since K is the smallest literal with defining

literal Li , K = H has to hold. But then K ≺�∗ K contradicting irreflexivity.
(ii) Assume L = Mi, j and K = comp(Li). Since H ≺�∗ K and all literals have

the same defining literal, H = Li has to hold by 8.6 and 8.4. Then, again by 8.6,
H ≺�∗ L .

(iii) L = Mi, j and K = Mi,k with k < j . Since H ≺�∗ K and all have the same
defining literal either H = Mi,l with l < k by 8.1, or H = Li or H = comp(Li)

by 8.6. In both cases H ≺�∗ L holds by 8.1 and 8.6.
(b) Suppose H , K , L have at least one different defining literal and max�(L) = Li with

Li of level 1 or higher. First,we have to show that if L j = max�(K ′) ≺� max�(L ′) =
Li and Li is of level 1 or higher, then K ′ ≺�∗ L ′. Suppose that L j is of level 0. Then
K ′ ≺�∗ L ′ by 8.9. Suppose that L ′ = Mi,k and K ′ = Mj,l . Then K ′ ≺�∗ L ′ by 8.1.
Suppose that L ′ = Mi,k and K ′ = L j or K ′ = comp(L j). Then K ′ ≺�∗ L ′ by 8.6.
Suppose that L ′ = Li or L ′ = comp(Li) and K ′ = L j or K ′ = comp(L j). Then
K ′ ≺�∗ L ′ by 8.2–8.5. Suppose that L ′ = Li or L ′ = comp(Li) and K ′ = Mj,l .
Then K ′ ≺�∗ L ′ by 8.7.
Now by assumption H ≺�∗ K and K ≺�∗ L . If max�(K) ≺� max�(H) then
K ≺�∗ H contradicting assumption. The same holds for L and K . Thus either
max�(H) ≺� max�(L) or max�(K) ≺� max�(L). In the first case H ≺�∗ L

123

SCL(EQ): SCL for First-Order Logic with Equality Page 21 of 35 22

follows from above. In the second case max�(H) �� max�(K) has to hold. Thus
H ≺�∗ L follows again.

(c) Suppose thatmax�(L) = Li where Li is of level 0. Since K ≺�∗ L ,max�(K) = L j

with L j of level 0 has to hold by 8.9 and 8.11. Now assume that L ≺T K . Then
L ≺�∗ K by 8.8 contradicting assumption. Thus K ≺T L has to hold since K �= L .
Since H ≺�∗ K , max�(H) = Lk with Lk of level 0 has to hold by 8.9 and 8.11.
Now assume that K ≺T H . Then K ≺�∗ H by 8.8 contradicting assumption. Thus
H ≺T K has to hold since H �= K . By transitivity of≺T , H ≺T L and thus H ≺�∗ L
has to hold.

Totality First we show that any ground literal is either β-defined and has a level or
β-undefined. Since � is consistent, a literal is either β-defined or β-undefined. We just
need to show that if a literal is β-defined, it has a level. By Lemma 15 all defined literals
have a level. β-definedness implies definedness. Thus all β-defined literals have a level. Now
assume some arbitrary ground literals L �= K . We have several cases:

1. L, K are β-undefined. Since L �= K we have L ≺T K or K ≺T L by totality of ≺T on
ground literals. Thus by 8.10 L ≺�∗ K or K ≺�∗ L .

2. One is β-defined. Then either L ≺�∗ K or K ≺�∗ L by 8.11.
3. Both are β-defined. Then we have several subcases:

(a) L is of level zero and K is of level greater than zero or vice versa. Then by 8.9
L ≺�∗ K or K ≺�∗ L has to hold.

(b) max�(L) = Li and max�(K) = L j and both are of level 1 or higher.
(i) L = Mi,k and K = Mj,l . Then either Mi,k ≺�∗ Mj,l or Mj,l ≺�∗ Mi,k by 8.1.
(ii) L = Mi,k and K = L j or K = comp(L j). If i ≥ j then by 8.6 L j ≺�∗ Mi,k or

comp(L j) ≺�∗ Mi,k . If i < j then by 8.7Mi,k ≺�∗ L j orMi,k ≺�∗ comp(L j).
(iii) K = Mi,k and L = L j or L = comp(L j). Analogous to previous step.
(iv) L = Li and K = L j . Then if i < j by 8.2 Li ≺�∗ L j and L j ≺�∗ Li

otherwise.
(v) L = comp(Li) and K = comp(L j) analogous to previous step for 8.5.
(vi) L = Li and K = comp(L j). Then if i ≤ j by 8.4 Li ≺�∗ comp(L j). If j < i

by 8.3 comp(L j) ≺�∗ Li .
(vii) L = comp(Li) and K = L j . Then if i < j by 8.3 comp(Li) ≺�∗ L j . If j ≤ i

by 8.4 L j ≺�∗ comp(Li).
(c) max�(L) = Li and max�(K) = L j and both are of level 0. Now either L ≺T K or

K ≺T L . Thus by 8.8 L ≺�∗ K or K ≺�∗ L .

��
Proof of Lemma 2-3 ≺�∗ is a well-founded ordering.

Proof Suppose some arbitrary subset M of all ground literals, a trail �:=[Li1:C1·σ1
1 , ...,

Lin :Cn ·σn
n] and a term β such that {L1, ..., Ln} ≺T β. We have to show that M has a minimal

element. We have several cases:

1. L is β-undefined in � for all literals L ∈ M . Then ≺�∗=≺T . Since ≺T is well-founded
there exists a minimal element in M . Thus there exists a minimal element in M with
regard to ≺�∗ .

2. there exists at least one literal in M that is β-defined. Then we have two cases:

(a) there exists a literal in M that is of level zero. Then let L ∈ M be the literal of level
zero, where L ≺T K for all K ∈ M with K of level zero. We show that L is the

123

 22 Page 22 of 35 H. Leidinger, C. Weidenbach

minimal element. Suppose there exists a literal L ′ ∈ M that is smaller than L . Since
L is of level zero, L ≺�∗ K for all literals K of level greater than zero by 8.9 and
L ≺�∗ H for all β-undefined literals H by 8.11. Thus L ′ must be of level zero. But
then L ′ ≺T L has to hold, contradicting assumption.

(b) There exists no literal in M that is of level zero. Let L ∈ M be the literal where
max�(L) �� max�(K) for all K ∈ M and
(i) L = max�(L) or;
(ii) L = comp(max�(L)) and max�(L) /∈ M or;
(iii) L ≺T H for all H ∈ M such that max�(L) = max�(H) and max�(L) /∈ M

and comp(max�(L)) /∈ M .
We show that L is the minimal element. Suppose there exists a literal L ′ ∈ M that is
smaller than L . We have three cases:
(i) max�(L) = L = Li . Since Li ≺T β we have either L ′ = L j with j < i by 8.2

or L ′ = comp(L j) with j < i by 8.3 or L ′ = Mk,l with k < i by 8.7. In all
three cases we have max�(L ′) ≺� max�(L) contradicting assumption that the
defining literal of L is minimal in M .

(ii) L = comp(Li) = comp(max�(L)) and max�(L) /∈ M . Since Li ≺T β

either L ′ = L j with j < i by 8.4 or L ′ = comp(L j) with j < i by 8.5 or
L ′ = Mk,l with k < i by 8.7. In all three cases we havemax�(L ′) ≺� max�(L)

contradicting assumption that the defining literal of L is minimal in M .
(iii) L = Mk,l and max�(L) /∈ M and comp(max�(L)) /∈ M . Then either L ′ =

Mi, j with i < k or (i = k and j < l) by 8.1 or L ′ = Li or L ′ = comp(Li)

with i ≤ k. Suppose that L ′ = Mi, j and i < k. Then max�(L ′) ≺� max�(L)

contradicting assumption. Suppose that L ′ = Mi, j and i = k and j < l. Then
L ′ ≺T L and max�(L) = max�(L ′). For L it holds L ≺T H for all H ∈ M
such that max�(L) = max�(H). Contradiction. Suppose that L ′ = Li or L ′ =
comp(Li)with i = k. Thenmax�(L) = Li . By assumptionmax�(L) /∈ M and
comp(max�(L)) /∈ M . Contradiction. Suppose that L ′ = Li or L ′ = comp(Li)

with i < k. Then we have max�(L ′) ≺� max�(L) contradicting assumption
that the defining literal of L is minimal in M . ��

Proof of Lemma 4 Assume that all ground terms t with t ≺T β for any β are polynomial in
the size of β. Then testing Propagate (Conflict) is NP-Complete, i.e., the problem of checking
for a given clauseC whether there exists a grounding substitution σ such thatCσ propagates
(is false) is NP-Complete.

Proof Let Cσ be propagable (false). The problem is in NP because β is constant and for all
t ∈ codom(σ) it holds that t is polynomial in the size of β. Checking if Cσ is propagable
(false) can be done in polynomial time with Congruence Closure [29] since σ has polynomial
size.

We reduce 3-SAT to testing rule Conflict. Consider a 3-place predicate R, a unary function
g, and a mapping from propositional variables P to first-order variables xP . Assume a 3-SAT
clause set N = {{L0, L1, L2}, ..., {Ln−2, Ln−1, Ln}}, where Li may denote both Pi and¬Pi .
Now we create the clause

{R(t0, t1, t2) �≈ true, ..., R(tn−2, tn−1, tn �≈ true)},
where ti :=xPi if Li = Pi and ti :=g(xPi) otherwise. Now let �:={R(x0, x1, x2) | xi ∈
{0, 1, g(0), g(1)} such that (x0 ∨ x1 ∨ x2) ↓{g(x)�→(¬x)} is true } be the set of all R-atoms that
evaluate to true if considered as a three literal propositional clause. Now N is satisfiable if

123

SCL(EQ): SCL for First-Order Logic with Equality Page 23 of 35 22

and only if Conflict is applicable to the new clause. The reduction is analogous for Propagate.
��

Proof of Theorem 1 Assume a state (�; N ;U ;β; k; D) resulting from a run. Then (�; N ;U ;
β; k; D) is sound.

Proof Proof by structural induction on (�; N ;U ;β; k; D). Let (�; N ;U ;β; k; D) =
(ε, N ,∅, β, 0,�), the initial state. Then it is sound according to Lemma 5. Now assume
that (�; N ;U ;β; k; D) is sound. We need to show that any application of a rule results in a
sound state.

Propagate Assume Propagate is applicable. Then there exists C ∈ N ∪ U such that
C = C0 ∨C1 ∨ L , Lσ is β-undefined in �, C1σ = Lσ ∨ ... ∨ Lσ , C1 = L1 ∨ ... ∨ Ln ,μ =
mgu(L1, ..., Ln, L) and C0σ is β-false in �. Then a reduction chain application [I1, ..., Im]
from � to Lσ k:(C0∨L)μ·σ is created with Im :=(sm#tm · σm, sm#tm ∨ Cm · σm, I j , Ik, pm).

Finally sm#tmσ
k:(sm#tm∨Cm)·σm
m is added to �.

By definition of a reduction chain application (sm#tm)σm = Lσ↓conv(�). Thus, (sm#tm)σm
must be β-undefined in � and irreducible by conv(�), since (C0 ∨ L)μσ ≺T β by definition
of Propagate.

• 13.1: Since (sm#tm)σm is β-undefined in �, adding (sm#tm)σm does not make � incon-
sistent. Thus �, (sm#tm)σm remains consistent.

• 13.2: (sm#tm)σm is β-undefined in � and irreducible by conv(�). It remains to show
that Cmσm is β-false in �, N ∪ U |
 sm#tm ∨ Cm and (sm#tm ∨ Cm)σm ≺T β. By i.h.
for all L ′σ ′l:(L ′∨C ′)·σ ′ ∈ � it holds that C ′σ ′ is β-false in �, (L ′ ∨ C ′)σ ′ ≺T β and
N ∪ U |
 (L ′ ∨ C ′). By definition of Propagate C0σ is β-false in � and Cσ ≺T β

and N ∪ U |
 C . (C0 ∨ C1 ∨ L)μ is an instance of C . Thus C |
 (C0 ∨ C1 ∨ L)μ.
C0μ = Lμ ∨ ... ∨ Lμ by definition of Propagate. Thus C |
 (C1 ∨ L)μ and by this
N ∪ U |
 (C1 ∨ L)μ. By definition of a reduction chain application I j either contains
a clause annotation from �, Lσ k:(C0∨L)·σ or it is a rewriting inference from smaller
rewrite steps for all 1 ≤ j ≤ m. Thus, by Lemma 3 it follows by induction that for any
rewriting inference I j :=(s j#t j · σ j , s j#t j ∨ C j · σ j , Ii , Ik, p j) it holds C jσ j is β-false
in �, N ∪U |
 s j#t j ∨ C j and (s j#t j ∨ C j)σ j ≺T β.

• 13.3 and 13.4: trivially hold by induction hypothesis.
• 13.5: trivially holds since D = �.

DecideAssume Decide is applicable. Then there existsC ∈ N∪U such thatC = C0∨L ,
Lσ is ground and β-undefined in � and C0σ is ground and β-undefined or β-true in �.
Then a reduction chain application [I1, ..., Im] from � to Lσ k+1:(C0∨L)·σ is created with
Im :=(sm#tm · σm, sm#tm ∨Cm · σm, I j , Ik, pm). Finally sm#tmσ

k+1:(sm#tm∨comp(sm#tm))·σm
m is

added to �.
By definition of a reduction chain application (sm#tm)σm = Lσ↓conv(�). Thus, (sm#tm)σm

must be β-undefined in � and irreducible by conv(�), since (C0 ∨ L)σ ≺T β by definition
of Decide.

• 13.1: Since (sm # tm)σm is β-undefined in � adding (sm#tm)σm does not make � incon-
sistent. Thus �, (sm#tm)σm remains consistent.

• 13.3: (sm#tm)σm is β-undefined in � and irreducible by conv(�). N ∪U |
 (sm#tm) ∨
comp(sm#tm) obviously holds. (sm#tm)σm ≺T β holds inductively by Lemma 3 and
since Lσ ≺T β.

• 13.2 and 13.4 trivially hold by induction hypothesis.
• 13.5: trivially holds since D = �.

123

 22 Page 24 of 35 H. Leidinger, C. Weidenbach

Conflict Assume Conflict is applicable. Then there exists a D′σ such that D′σ is β-false
in �. Then:

• 13.1–13.4: trivially hold by induction hypothesis
• 13.5: D′σ is β-false in � by definition of Conflict. Now we have two cases:

1. D′σ is of level greater than zero. Then N ∪U |
 D′ since D′ ∈ N ∪U by definition
of Conflict.

2. D′σ is of level zero. Then we have to show that N ∪ U |
 ⊥. For any literal
L0:(L0∨D0)·σ
0 ∈ � it holds N |
 L0, since any literal of level 0 is a propagated literal.

By definition of a level, for any K ∈ D′σ there exists a core core(�; K) that contains
only literals of level 0. Thus N ∪ U |
 core(�; K) and core(�; K) |
 ¬K for any
such K . Then N ∪U |
 ¬D′σ and N ∪U |
 D′σ and therefore N ∪U |
 ⊥.

Skip Assume Skip is applicable. Then � = �′, L and D = D′ · σ and D′σ is β-false in
�′.

• 13.1: By i.h. � is consistent. Thus �′ is consistent as well.
• 13.2–13.4: trivially hold by induction hypothesis and since �′ is a prefix of �.
• 13.5: By i.h. D′σ is β-false in � and N ∪U |
 D′. By definition of Skip D′σ is β-false

in �′.

Explore-Refutation Assume Explore-Refutation is applicable. Then D = (D′ ∨ s # t) · σ ,
(s # t)σ is strictly≺�∗ maximal in (D′∨s # t)σ , [I1, ..., Im] is a refutation from� and (s # t)σ ,
I j = (s j#t j ·σ j , (s j#t j ∨C j)·σ j , Il , Ik, p j), 1 ≤ j ≤ m, (s j # t j ∨C j)σ j ≺�∗ (D′∨s # t)σ ,
(s j#t j ∨ C j)σ j is β-false in �.

• 13.1–13:4 trivially hold by i.h.
• 13.5: By definition (C j ∨ s j # t j)σ j is β-false in �. By i.h. for all L ′σ ′l:(L ′∨C ′)·σ ′ ∈ �

it holds that N ∪ U |
 (L ′ ∨ C ′). By i.h. N ∪ U |
 D′ ∨ s # t . By definition of a
refutation I j :=(s j#t j · σ j , s j#t j ∨C j · σ j , Ii , Ik, p j) either contains a clause annotation
from �, (s # t)σ k:(D′∨s # t)·σ or it is a rewriting inference from smaller rewrite steps for
all 1 ≤ j ≤ m. Thus it follows inductively by Lemma 3 that N ∪U |
 (s j#t j ∨ C j).

Factorize Assume Factorize is applicable. Then D = D′ · σ .

• 13.1–13.4: trivially hold by induction hypothesis.
• 13.5: By i.h. D′σ is β-false in � and N ∪ U |
 D′. By the definition of Factorize

D′ = D0∨L∨L ′ such that Lσ = L ′σ andμ = mgu(L, L ′). (D0∨L∨L ′)μ is an instance
of D′. Thus N ∪U |
 (D0 ∨ L∨ L ′)μ. Since Lμ = L ′μ, (D0 ∨ L∨ L ′)μ |
 (D0 ∨ L)μ.
Thus N ∪U |
 (D0 ∨ L)μ and (D0 ∨ L)μσ is β-false since (D0 ∨ L)μσ = (D0 ∨ L)σ

by definition of an mgu.

Equality-ResolutionAssumeEquality-Resolution is applicable. Then D = (D′∨s �≈ s′)σ
and sσ = s′σ , μ = mgu(s, s′). Then

• 13.1–13.4: trivially hold by induction hypothesis.
• 13.5: By i.h. (D′ ∨ s �≈ s′)σ is β-false in � and N ∪ U |
 (D′ ∨ s �≈ s′). D′μ is an

instance of (D′ ∨ s �≈ s′). Thus (D′ ∨ s �≈ s′) |
 D′μ. Thus N ∪ U |
 D′μ. D′μσ is
β-false since (D′ ∨ s �≈ s′)σ is β-false and D′μσ = D′σ by definition of a mgu.

Backtrack Assume Backtrack is applicable. Then � = �′, K , �′′ and D = (D′ ∨ L)σ ,
where Lσ is of level k, and D′σ is of level i .

• 13.1: By i.h. � is consistent. Thus �′ ⊆ � is consistent.

123

SCL(EQ): SCL for First-Order Logic with Equality Page 25 of 35 22

• 13.2–13.3: Since �′ is a prefix of � by i.h. this holds.
• 13.4: By i.h. N ∪U |
 D′ ∨ L and N |
 U . Thus N |
 U ∪ {D′ ∨ L}.
• 13.5: trivially holds since D = � after backtracking.

��

Proof of Lemma 7 Assume a state (�; N ;U ;β; k; D) resulting from a regular run where the
current level k > 0 and a unit clause l ≈ r ∈ N . Now assume a clause C ∨ L[l ′]p ∈ N such
that l ′ = lμ for some matcher μ. Now assume some arbitrary grounding substitutions σ ′ for
C ∨ L[l ′]p , σ for l ≈ r such that lσ = l ′σ ′ and rσ ≺T lσ . Then (C ∨ L[rμσσ ′]p)σ ′ ≺�∗
(C ∨ L[l ′]p)σ ′.

Proof Let (�; N ;U ;β; k; D) be a state resulting from a regular run where k > 0 and
� = [L1, ..., Ln]. Now we have two cases:

1. β ≺T (l ≈ r)σ . Since (l ≈ r)σ rewrites L[l ′]pσ ′, β ≺T L[l ′]pσ ′ has to hold as
well. Thus (l ≈ r)σ is β-undefined in � and L[l ′]pσ ′ is β-undefined in �. By def-
inition of a trail induced ordering ≺�∗ := ≺T for β-undefined literals. Thus, in case
that L[rμ]p)σσ ′ is still undefined, (L[rμ]p)σσ ′ ≺�∗ (L[l ′]p)σ ′ has to hold since
(L[rμ]p)σσ ′ ≺T (L[l ′]p)σ ′. Thus, according to the definition of multiset orderings,
(C ∨ L[rμ]p)σσ ′ ≺�∗ (C ∨ L[l ′]p)σ ′. In the case that (L[rμ]p)σσ ′ is defined,
(L[rμ]p)σσ ′ ≺�∗ (L[l ′]p)σ ′ has to hold as well by Definition 8.11. Thus, according
to the definition of multiset orderings, (C ∨ L[rμ]p)σσ ′ ≺�∗ (C ∨ L[l ′]p)σ ′.

2. (l ≈ r)σ ≺T β. Since propagation is exhaustive for literals of level 0 (cf. 15.2) (l ≈ r)σ
is on the trail or defined and of level 0. Now we have two cases:

(a) (L[l ′]p)σ ′ is of level 1 or higher. Since (L[l ′]p)σ ′ is reducible by (l ≈ r)σ ,
(L[l ′]p)σ ′ �= Li and (L[l ′]p)σ ′ �= comp(Li) for all Li ∈ �. Since (L[l ′]p)σ ′
is of level 1 or higher, rewriting with (l ≈ r)σ does not change the defin-
ing literal of (L[l ′]p)σ ′. Thus (L[rμ]p)σσ ′ ≺�∗ (L[l ′]p)σ ′ has to hold since
(L[rμ]p)σσ ′ ≺T (L[l ′]p)σ ′. Thus, according to the definition of multiset orderings,
(C ∨ L[rμ]p)σσ ′ ≺�∗ (C ∨ L[l ′]p)σ ′.

(b) (L[l ′]p)σ ′ is of level 0. First we show that (L[rμ]p)σσ ′ is still of level 0. Suppose
that (L[l ′]p)σ ′ = s # s. Then rewriting either the left or right side of the equation
results in (L[rμ]p)σσ ′. Then core(�; (l ≈ r)σ) is also a core for (L[rμ]p)σσ ′ and
thus (L[rμ]p)σσ ′ must be of level 0. Now suppose that (L[rμ]p)σσ ′ = s # s. Then
it is of level 0 by definition of a level. Finally suppose that (L[rμ]p)σσ ′ �= s # s
and (L[l ′]p)σ ′ �= s # s. Then core(�; (L[l ′]p)σ ′) ∪ core(�; (l ≈ r)σ) is a core for
(L[rμ]p)σσ ′. Thus (L[rμ]p)σσ ′ is of level 0. Since (L[rμ]p)σσ ′ ≺T (L[l ′]p)σ ′,
(L[rμ]p)σσ ′ ≺�∗ (L[l ′]p)σ ′ according to the definition of ≺�∗ . Thus, according to
the definition of multiset orderings, (C ∨ L[rμ]p)σσ ′ ≺�∗ (C ∨ L[l ′]p)σ ′.

��

Proof of Lemma 8 LetC, D be two clauses. If there exists a substitution σ such thatCσ ⊂ D,
then D is redundant with respect to C and any ≺�∗ .

Proof Let τ be a grounding substitution for D. Since Cσ ⊂ D, Cστ ⊂ Dτ . Thus, for any
L ∈ Cστ it holds L ∈ Dτ and Cστ �= Dτ . Thus, Cστ ≺�∗ Dτ by definition of a multiset
extension and Cστ makes Dτ redundant by Definition 1. ��

123

 22 Page 26 of 35 H. Leidinger, C. Weidenbach

Auxiliary Lemmas for the Proof of Lemma 6

Lemma 16 During a regular run, if (�; N ;U ;β; k;�) is the immediate result of an appli-
cation of Backtrack, then there exists no clause C ∈ N ∪U and no substitution σ such that
Cσ is β-false in �.

Proof We prove this by induction. For the induction start assume the state (�′; N ;U ∪
{D};β; i;�) after the first application of Backtrack in a regular run, where D is the learned
clause. Since Backtrack was not applied before, the previous (first) application of Conflict
in a state (�, K ; N ;U ;β; k;�) was immediately preceded by an application of Propagate
or Decide. By the definition of a regular run there is no clause C ∈ N with substitution σ

such that Cσ is β-false in �. Otherwise Conflict would have been applied earlier. By the
definition of Backtrack, there exists no substition τ such that Dτ is β-false in �′. Since
there existed such a substitution before the application of Backtrack, �′ has to be a prefix
of � and � �= �′. Thus there exists no clause C ∈ N ∪U ∪{D} and a grounding substitution
δ such that Cδ is β-false in �′.

For the induction step assume the state (�′; N ;U ∪ {D};β; i;�) after nth application
of Backtrack. By i.h. the previous application of Backtrack did not produce any β-false
clause. It follows that the the previous application ofConflict in a state (�, K ; N ;U ;β; k;�)

was immediately preceded by an application of Propagate or Decide. By the definition of
a regular run there is no clause C ∈ N ∪U with substitution σ such that Cσ is β-false in �.
Otherwise Conflict would have been applied earlier. By the definition of Backtrack, there
exists no substition τ such that Dτ is β-false in �′. Since there existed such a substitution
before the application of Backtrack, �′ has to be a prefix of � and � �= �′. Thus there exists
no clause C ∈ N ∪U ∪ {D} and a grounding substitution δ such that Cδ is β-false in �′. ��
Corollary 2 If Conflict is applied in a regular run, then it is immediately preceded by an
application of Propagate or Decide, except if it is applied to the initial state.

Lemma 17 Assume a state (�; N ;U ;β; k; D) resulting from a regular run. Then there exists
no clause (C ∨ L) ∈ N ∪U and no grounding substitution σ such that (C ∨ L)σ is β-false
in �, comp(Lσ) is a decision literal of level i in � and Cσ is of level j < i .

Proof Proof is by induction. Assume the initial state (ε; N ; ∅;β; 0;�). Then any clause
C ∈ N is undefined in �. Then this trivially holds.

Now for the induction step assume a state (�; N ;U ;β; k; D). Only Propagate, Decide,
Backtrack and Skip change the trail and only Backtrack adds a new literal to U . By i.h.
there exists no clause with the above properties in N ∪U .

Now assume that Propagate is applied. Then a literal L is added to the trail. Let C1 ∨
L1, ...,Cn ∨ Ln be the ground clause instances that get β-false in � by the application
such that L is the defining literal of L1, ..., Ln . Then Li is of level k for 1 ≤ i ≤ n. Thus
Li �= comp(K) for the decision literal K ∈ � of level k. Thus C1 ∨ L1, ...,Cn ∨ Ln do not
have the above properties.

Now assume that Decide is applied. Then a literal L of level k+1 is added to the trail. Let
C1 ∨ L1, ...,Cn ∨ Ln be the (ground) clause instances that get β-false in � by the application
such that L is the defining literal of L1, ..., Ln . By the definition of a regular run for all Li

with 1 ≤ i ≤ n it holds that Li �= comp(L) or there exists another literal Ki ∈ Ci such
that Ki is of level k + 1 and Li �= Ki , since otherwise Propagate must be applied. Thus
C1 ∨ L1, ...,Cn ∨ Ln do not have the above properties.

Now assume that Skip is applied. Then there are no new clauses that get β-false in �.
Thus this trivially holds.

123

SCL(EQ): SCL for First-Order Logic with Equality Page 27 of 35 22

Now assume that Backtrack is applied. Then a new clause D ∨ L is added to U and
� = �′, K , �′′ such that there is a grounding substitution τ with (D ∨ L)τ β-false in �′, K ,
there is no grounding substitution δ with (D∨ L)δ β-false in �′. �′ is the trail resulting from
the application of Backtrack. By Lemma 16, after application of Backtrack there exists no
clause C ∈ N ∪ U and a substitution σ such that Cσ is β-false in �′. Thus there exists no
clause with the above properties. ��

Proof of Lemma 6 Let N be a clause set. The clauses learned during a regular run in SCL(EQ)
are not redundant with respect to ≺�∗ and N ∪ U . For the trail only non-redundant clauses
need to be considered.

We first prove that learned clauses are non-redundant and then that only non-redundant
clauses need to be considered, Lemma 21, below.

Proof Consider the following fragment of a derivation learning a clause:

⇒Conflict
SCL(EQ) (�; N ;U ;β; k; D · σ)

⇒{Explore-Ref utation,Skip,Eq-Res,Factori ze}∗
SCL(EQ) (�′; N ;U ;β; l;C · σ)

⇒Backtrack
SCL(EQ) (�′′; N ;U ∪ {C};β; k′; �).

Assume there are clauses in N ′ ⊆ (gnd(N ∪ U)��∗Cσ) such that N ′ |
 Cσ . Since
N ′ ��∗ Cσ andCσ is β-defined in�, there is no β-undefined literal in N ′, as all β-undefined
literals are greater than all β-defined literals. If � |
 N ′ then � |
 Cσ , a contradiction. Thus
there is a C ′ ∈ N ′ with C ′ ��∗ Cσ such that C ′ is β-false in �. Now we have two cases:

1. �′ �= �. Then � = �′,
. Thus at least one Skip was applied, so Cσ does not contain a
literal that is β-undefined without the rightmost literal of�, thereforeCσ �= Dσ . Suppose
that this is not the case, so Cσ = Dσ . Then Dσ is β-false in �′. But since Backtrack
does not produce any β-false clauses by Lemma 16, Conflict could have been applied
earlier on Dσ contradicting a regular run. Since C ′ ��∗ Cσ we have that C ′ �= Dσ as
well. Thus, again since Backtrack does not produce any β-false clauses by Lemma 16,
at a previous point in the derivation there must have been a state such that C ′ was β-false
under the current trail and Conflict was applicable but not applied, a contradiction to the
definition of a regular run.

2. �′ = �, then conflict was applied immediately after an application of Decide by Corol-
lary 2 and the definition of a regular run. Thus � =
, K (k−1):D′·δ, Lk:D′′·τ . C ′ does not
have any β-undefined literals. Suppose that C ′ has no literals of level k. Then all literals
in C ′ are of level i < k. Since C ′ is β-false in �, C ′ is β-false in
, K as well, since it
does not have any literals of level k. Thus, again since Backtrack does not produce any
β-false clauses by Lemma 16, at a previous point in the derivation there must have been a
state such that C ′ was β-false under the current trail and Conflict was applicable but not
applied, a contradiction to the definition of a regular run.
Since C ′ ��∗ Cσ , it may have at most one literal of level k, namely comp(L), since
comp(L) ∈ Cσ by definition of a regular run, since Skip was not applied, and there exists
only L such that L ≺�∗ comp(L) and L is of level k. But L is β-true in �. Thus L /∈ C ′
has to hold.
Now suppose that C ′ has one literal of level k. Thus C ′ = C ′′ ∨ comp(L), where C ′′ is
β-false in
, K . But by Lemma 17 there does not exist such a clause. Contradiction.

��

123

 22 Page 28 of 35 H. Leidinger, C. Weidenbach

Auxiliary Lemma for the Proof of Lemma 19

Lemma 18 Assume a clause L1 ∨ ... ∨ Lm, a trail � resulting from a regular run starting
from the initial state, and a reducible (by conv(�)) grounding substitution σ , such that
Liσ is β-false (β-true or β-undefined) in � and Liσ ≺T β for 1 ≤ i ≤ m. Then there
exists a substitution σ ′ that is irreducible by conv(�) such that Liσ

′ is β-false (β-true or
β-undefined) in �, Liσ

′ ≺T β and Liσ↓conv(�) = Liσ
′↓conv(�).

Proof Let L1 ∨ ... ∨ Lm be a clause, � a trail resulting from a regular run. Let σ :={x1 →
t1, ..., xn → tn}. Now set σ ′:={x1 → (t1↓conv(�)), ..., xn → (tn↓conv(�))}. Obviously σ ′
is irreducible by conv(�) and Liσ

′ ≺T β for all 1 ≤ i ≤ m. By definition, conv(�) is a
confluent and terminating rewrite system. Since � is consistent, t j↓conv(�) ≈ t j is β-true
in � for 1 ≤ j ≤ n. Thus there exists a chain such that Liσ →conv(�) · · · →conv(�)

Liσ
′ and Liσ

′ is β-false (β-true or β-undefined) in �. Now there also exists a chain
Liσ →conv(�) · · · →conv(�) Liσ↓conv(�). By definition of convergence there must exist
a chain Liσ

′ →conv(�) · · · →conv(�) Liσ↓conv(�). Thus Liσ↓conv(�) = Liσ
′↓conv(�). ��

Auxiliary Lemma for the Proof of Lemma 9 and Theorem 2

Lemma 19 Suppose a sound state (�; N ;U ;β; k;�) resulting from a regular run. If there
exists a C ∈ N ∪U and a grounding substitution σ such that Cσ is β-false in�, then Conflict
is applicable. Otherwise, if there exists a C ∈ N ∪ U and a grounding substitution σ such
that Cσ ≺T β and there exists at least one L ∈ C such that Lσ is β-undefined, then one
of the rules Propagate or Decide is applicable and a β-undefined literal K ∈ D, where
D ∈ gnd≺T β(N ∪U) is β-defined after application.

Proof Let (�; N ;U ;β; k;�) be a state resulting from a regular run. Suppose there exists
a C ∈ N ∪ U and a grounding σ such that Cσ is β-false in �, then by Lemma 18 there
exists an irreducible substitution σ ′ such that Cσ ′ is β-false. Thus Conflict is applicable.
Now suppose there exists a C ∈ N ∪ U and a grounding substitution σ such that Cσ ≺T β

and there exists at least one L ∈ C such that Lσ is β-undefined. By Lemma 18 there exists a
irreducible substitution σ ′ such that Lσ ′ is β-undefined. Now assume that C = C0 ∨C1 ∨ L
such thatC1σ

′ = Lσ ′ ∨ ...∨ Lσ ′ andC0σ
′ is β-false in �. Then Propagate is applicable. Let

C1 = L1, ..., Ln and μ = mgu(L1, ..., Ln, L). Now let [I1, ..., Im] be the reduction chain
application from � to Lσ ′k:(L∨C0)μ·σ ′

. Let Im = (sm#tm ·σm, (sm#tm ∨Cm) ·σm, I j , Ik, pm).
Then Lσ ′↓conv(�) = sm#tmσm by definition of a reduction chain application. Thus Lσ ′ is
β-true in �, sm#tmσm . Since Lσ↓conv(�) = Lσ ′↓conv(�) by Lemma 18, Lσ is β-true in
�, sm#tmσm as well. If C0σ is β-undefined or β-true in � then Propagate is not applicable
to Cσ ′. If Decide is not applicable by definition of a regular run, then there exists a clause
C ′ ∈ (N ∪ U) and a substitution δ such that Propagate is applicable. Then we can apply
Propagate by definition of a regular run and a previously undefined literal gets defined after
application as seen above and we are done. Now suppose that there exists no such clause.
Then let [I ′

1, ..., I
′
l] be the reduction chain application from � to Lσ ′k+1:C ·σ ′

and I ′
l =

(sl#tl ·σl , (sl#tl∨Cl)·σl , I ′
j , I

′
k, pl). Then Lσ ′↓conv(�) = (sl#tl)σl bydefinition of a reduction

chain application. Thus Lσ ′ is β-true in �, (sl#tl)σl . Since Lσ↓conv(�) = Lσ ′↓conv(�) by

lemma 18, Lσ is β-true in �, (sl#tl)σl as well. (sl#tl)σ
k+1:(sl#tl∨comp(sl#tl))·σl
l can be added

to � by definition of a regular run and also by definition of Decide since C ∈ N ∪ U , σ ′ is
grounding for C and irreducible in conv(�), Lσ ′ is β-undefined in � and Cσ ′ ≺T β. ��

123

SCL(EQ): SCL for First-Order Logic with Equality Page 29 of 35 22

Auxiliary Lemma for the Proof of Lemma 9

Lemma 20 Suppose a sound state (�; N ;U ;β; k; D · σ) resulting from a regular run. Then
Dσ is of level 1 or higher.

Proof Let (�; N ;U ;β; k; D · σ) be a state resulting from a regular run. Suppose that Dσ is
not of level 1 or higher, thus Dσ is of level 0. Then Conflict was applied earlier to a clause
that was of level 1 or higher. Thus there must have been an application of Explore-Refutation
on a state (�, �′, L; N ;U ;β; l; D′ · σ ′) between the state after the application of Conflict
and the current state resulting in a state (�, �′, Ll:(L∨C)·δ; N ;U ;β; l; D′′ · σ ′′) such that
D′σ ′ is of level l and D′′σ ′′ is of level 0, since no other rule can reduce the level of D′σ ′.
Then there exists a K ∈ D′σ ′ such that L is the defining literal of K . Let [I1, ..., Im] be the
refutation of K and I j = (s j#t j ·σ j , (s j#t j ∨C j) ·σ j , Ii , Ik, p j) be the step that was chosen
by Explore-Refutation. Then D′′σ ′′ = (s j#t j ∨ C j)σ j . Cδ ⊂ C jσ j has to hold since L is
the defining literal of K . Then Cδ must be of level 0 or empty. Note that Cδ is of level l if
L is a decision literal. But then, by the definition of a regular run, Ll:(L∨C)·δ must have been
propagated before the first decision, since propagation is exhaustive at level 0. Contradiction.

��
Proof of Lemma 9 If a regular run (without ruleGrow) ends in a stuck state (�; N ;U ;β; k; D),
then D = � and all ground literals Lσ ≺T β, where L ∨ C ∈ N ∪U are β-defined in �.

Proof First we prove that stuck states never appear during conflict resolution. Assume a
sound state (�; N ;U ;β; k; D · σ) resulting from a regular run. Now we show that we can
always apply a rule. Suppose that Dσ = (D′ ∨ L ∨ L ′)σ such that Lσ = L ′σ . Then
we must apply Factorize by the definition of a regular run. Now suppose that Factorize
is not applicable and �:=�′, L and Dσ is false in �′. If Dσ = (D′ ∨ s �≈ s′)σ such
that sσ = s′σ , we can apply Equality-Resolution. So suppose that Equality-Resolution is
not applicable. Then we can apply Skip. Now suppose that �:=�′, Lk:(L∨C)δ and L is the
defining literal of at least one literal in Dσ , so Skip is not applicable. If Dσ = (D′ ∨ L ′)σ
where D′σ is of level i < k and L ′σ is of level k and Skip was applied at least once
during this conflict resolution, then Backtrack is applicable. If Skip was not applied and
L = comp(L ′σ) and L is a decision literal, then Backtrack is also applicable. Otherwise, let
(s # t)σ ∈ Dσ such that K ≺�∗ (s # t)σ for all K ∈ Dσ . (s # t)σ exists since Factorize is
not applicable. By Lemma 20, (s # t)σ must be of level 1 or higher. By the definition of ≺�∗ ,
L must be the defining literal of (s # t)σ since L is of level 1 or higher and any literal in Dσ

that has another defining literal is smaller than (s # t)σ . Now suppose that L is a decision
literal and (s # t)σ = comp(L). Then (s # t)σ is of level k and all other literals K ∈ Dσ

are of level i < k, since (s # t)σ is the smallest β-false literal of level k and Factorize
is not applicable. In this case Explore-Refutation is not applicable since a paramodulation
step with the decision literal does not make the conflict clause smaller. But Backtrack is
applicable in this case even if Skip was not applied earlier by the definition of a regular
run. Thus (s # t)σ �= comp(L) or L is a propagated literal has to hold. We show that in
this case Explore-Refutation is applicable. Let [I1, ..., Im] be a refutation of (s # t)σ from �,
Im = (sm#tm ·σm, (sm#tm∨Cm)·σm, I j , Ik, pm). Since [I1, ..., Im] is a refutation sm#tmσm =
s′ �≈ s′. Furthermore any Ii either contains a clause annotation from �, (s # t)σ k:D·σ or it is
a rewrite inference from I j ′ , Ik′ with j ′, k′ < i . Thus by Lemma 3 it inductively follows that
Cmσm = D′σm ∨ ... ∨ D′σm ∨C ′

1σm ∨ ... ∨C ′
nσm , where C

′
1σm, ...,C ′

nσm are clauses from
� without the leading trail literal and Dσ = D′σm ∨ (s#t)σ . Since L is the defining literal of
(s # t)σ there must exist at least oneC ′

i such thatC
′
iσm = Cδ. If L is a propagated literal, then

123

 22 Page 30 of 35 H. Leidinger, C. Weidenbach

any literal inC ′
iσm is smaller than (s # t)σ , since they are already false in�′. If L is a decision

literal, then C ′
iσm = comp(L). Then comp(L) is smaller, since (s # t)σ �= comp(L) and

(s # t)σ �= L . Thus comp(L) ≺�∗ (s # t)σ . Any other literal in C1σm, ...,C ′
nσm is smaller in

≺�∗ , since they are already defined in �′. Since Factori ze is not applicable (s # t)σ is also
strictly maximal in D′σm . Thus (sm#tm ∨Cm)σm ≺�∗ Dσ which makes Explore-Refutation
applicable.
Now by Lemma 19 it holds that if there exists an β-undefined literal in gnd≺T β(N ∪U), we
can always apply at least one of the rules Propagate or Decide which makes a previously
β-undefined literal in gnd≺T β(N ∪U) β-defined. ��
Proof of Lemma 10 Suppose a sound state (�; N ;U ;β; k; D) resulting from a regular run
where D /∈ {�,⊥}. If Backtrack is not applicable then any set of applications of
Explore-Refutation, Skip, Factorize, Equality-Resolution will finally result in a sound state
(�′; N ;U ;β; k; D′), where D′ ≺�∗ D. Then Backtrack will be finally applicable.

Proof Assume a sound state (�; N ;U ;β; k; D·σ) resulting froma regular run. Let (s # t)σ ∈
Dσ such that L ��∗ (s # t)σ for all L ∈ Dσ . If (s # t)σ occurs twice in Dσ , then Factori ze
is applicable. Suppose that it is applied. Then Dσ = (D′∨(s # t)∨L)σ , where Lσ = (s # t)σ .
Then μ = mgu(s # t, L) and the new conflict clause is (D′ ∨ s # t)μσ ≺�∗ Dσ . Thus in
this case we are done. If Factori ze is not applicable, then the only remaining applicable
rules are Skip, Explore-Refutation and Equality-Resolution. If � = �′, L, �′′ where L is
the defining literal of (s # t)σ , then Skip is applicable |�′′| times, since otherwise (s # t)σ
would not be maximal in Dσ . So at some point it is no longer applicable. Since Dσ is
finite, Equality-Resolution can be applied only finitely often. Thus we finally have to apply
Explore-Refutation. Then [I1, ..., Im] is a refutation of (s # t)σ from �, and there exists an
1 ≤ j ≤ m, such that I j = (s j#t j · σ j , (s j#t j ∨ C j) · σ j , Il , Ik, p j), (C j ∨ s j # t j)σ j ≺�∗
(D′∨s # t)σ . OtherwiseExplore-Refutationwould not be applicable, contradictingLemma9.
Thus in this case we are done.

Now we show that Backtrack is finally applicable. Since ≺�∗ is well-founded and � is
finite there must be a state where Explore-Refutation, Skip, Factorize, Equality-Resolution
are no longer applicable. By Lemma 20 the conflict clause in this state must be of level 1 or
higher, thus ⊥ cannot be inferred. Suppose that it is always of level i ≥ l for some l. The
smallest literal of level l that is false in � is comp(L), where L is the decision literal of level
l. Since we can always reduce if Backtrack is not applicable and since we can always apply
a rule by Lemma 9, we must finally reach a conflict clause comp(L)∨C , where C is of level
j < l. Thus Backtrack is applicable. ��
Proof of Lemma 11 Let N be a set of clauses and β be a ground term. Then any regular run
that never uses Grow terminates.

Proof Assume a new ground clause Dσ is learned. By Lemma 6 all learned clauses are
non-redundant. Thus Dσ is non-redundant. By the definition of a regular run Factorize
has precedence over all other rules. Thus Dσ does not contain any duplicate literals. By
Theorem 1, Dσ ≺T β has to hold. There are only finitely many clauses Cσ ≺T β, where
Cσ is neither a tautology nor does it contain any duplicate literals. Thus there are only finitely
many clauses Dσ that can be learned. Thus there are only finitely many literals that can be
decided or propagated. ��
Proof of Lemma 12 If a regular run reaches the state (�; N ;U ;β; k;⊥) then N is unsatisfi-
able.

123

SCL(EQ): SCL for First-Order Logic with Equality Page 31 of 35 22

Proof By definition of soundness, all learned clauses are consequences of N ∪ U , Defini-
tion 13.5, and � is satisfiable, Definition 13.1. ��
Proof of Theorem 2 Let N be an unsatisfiable clause set, and ≺T a desired term ordering. For
any ground term β where gnd≺T β(N) is unsatisfiable, any regular SCL(EQ) run without rule
Grow will terminate by deriving ⊥.

Proof Since regular runs of SCL(EQ) terminate we just need to prove that it terminates in a
failure state. Assume by contradiction that we terminate in a state (�; N ;U ;β; k;�). If no
rule can be applied in� then for all s # t ∈ C for some arbitraryC ∈ gnd≺T β(N) it holds that
s # t is β-defined in � (otherwise Propagate or Decide woud be applicable, see Lemma 19)
and there aren’t any clauses in gnd≺T β(N) β-false under � (otherwise Conflict would be
applicable, see again Lemma 19). Thus, for each C ∈ gnd≺T β(N) it holds that C is β-true
in �. So we have � |
 gnd≺T β(N), but by hypothesis there is a superposition refutation
of N that only uses ground literals from gnd≺T β(N), so also gnd≺T β(N) is unsatisfiable, a
contradiction. ��
Lemma 21 (OnlyNon-RedundantClausesBuilding theTrail) Let� = [Li1:C1·σ1

1 , ..., Lin :Cn ·σn
n]

be a trail. If L
i j :C j ·σ j
j is a propagated literal and there exist clauses {D1 ∨ K1, ..., Dm ∨ Km}

with grounding substitutions δ1, ..., δm such that N :={(D1 ∨ K1)δ1, ..., (Dm ∨ Km)δm} ≺�∗
C jσ j and {(D1 ∨ K1)δ1, ..., (Dm ∨ Km)δm} |
 C jσ j , then there exists a (Dk ∨ Kk)δk ∈ N
such that

[Li1:C1·σ1
1 , ..., L

i j−1:C j−1·σ j−1
j−1 , K

i j :(Dk∨Kk)·δk
k , ..., Lin :Cn ·σn

n]
is a trail.

Proof Let N = {(D1 ∨ K1)δ1, ..., (Dm ∨ Km)δm} and L
i j :C j ·σ j
j be as above. Let �′ =

[Li1:C1·σ1
1 , ..., L

i j−1:C j−1·σ j−1
j−1]. Now suppose that for every literal L ∈ N it holds L ≺�∗ L j .

Then every literal in N is defined in �′ and �′ |
 N , otherwise Conflict would have been
applied to a clause in N . Thus �′ |
 C jσ j would have to hold as well. But by definition of
a trail L j is undefined in �′. Thus there must be at least one clause (Dk ∨ Kk)δk ∈ N with
Kk = L j and Dkδk ≺�∗ L j (otherwise (Dk∨Kk)δk ⊀�∗ C jσ j), such that�′ �|
 Dk . Suppose
that �′ |
 Dk . Then N �|
 C jσ j , since there exists an allocation, namely �′,¬Lk such that

�′,¬Lk |
 N but �′,¬Lk �|
 C jσ j . Thus we can replace L
i j :C j ·σ j
j by K

i j :(Dk∨Kk)·δk
k in �. ��

Further Examples

For the following examples we assume a term ordering ≺kbo, unique weight 1 and with
precedence d ≺ c ≺ b ≺ a ≺ a1 ≺ · · · ≺ an ≺ g ≺ h ≺ f . Further assume β to be large
enough.

Example 6 (Implicit Conflict after Decision) Consider the following clause set N

C1 := h(x) ≈ g(x) ∨ c ≈ d C2:= f (x) ≈ g(x) ∨ a ≈ b
C3 := f (x) �≈ h(x) ∨ f (x) �≈ g(x)

Supposewe apply the ruleDecidefirst toC1 and then toC2 with substitutionσ = {x → a}.
Then we yield a conflict with C3σ , resulting in the following state:

([h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x)�≈g(x))·σ , f (a) ≈ g(a)2:(f (x)≈g(x)∨ f (x)�≈g(x))·σ];
N ; {}; 2;C3 · σ)

123

 22 Page 32 of 35 H. Leidinger, C. Weidenbach

According to ≺�∗ , f (a) �≈ h(a) is the greatest literal in C3σ . Since f (a) ≈ g(a) is the
defining literal of f (a) �≈ h(a) we can not apply Skip. Factorize is also not applicable, since
f (a) �≈ h(a) and f (a) �≈ g(a) are not equal. Thus we must apply Explore-Refutation to the
greatest literal f (a) �≈ h(a). The rule first creates a refutation [I1, ..., I5], where:
I1 := ((f (x) �≈ h(x)) · σ,C3 · σ, ε, ε, ε)

I2 := ((f (x) ≈ g(x)) · σ, (f (x) ≈ g(x) ∨ f (x) �≈ g(x)) · σ, ε, ε, ε)

I3 := ((h(x) ≈ g(x)) · σ, (h(x) ≈ g(x) ∨ h(x) �≈ g(x)) · σ, ε, ε, ε)

I4 := ((h(x) �≈ g(x)) · σ, (h(x) �≈ g(x) ∨ f (x) �≈ g(x) ∨ f (x) �≈ g(x)) · σ, I2, I1, 1)
I5 := ((g(x) �≈ g(x)) · σ, (g(x) �≈ g(x) ∨ f (x) �≈ g(x) ∨ f (x) �≈ g(x)

∨h(x) �≈ g(x)) · σ, I4, I3, 1)

Explore-Refutation can now choose either I4 or I5. Both, (h(x) �≈ g(x))σ and (g(x) �≈
g(x))σ are smaller than (f (x) �≈ h(x))σ according to ≺�∗ and false in �. Suppose we
choose I5. Now our new conflict state is:

([h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x)�≈g(x))·σ , f (a) ≈ g(a)2:(f (x)≈g(x)∨ f (x)�≈g(x))·σ];
N ; {}; 2; (g(x) �≈ g(x) ∨ f (x) �≈ g(x) ∨ f (x) �≈ g(x) ∨ h(x) �≈ g(x))σ).

Now we apply Equality-Resolution and Factorize to get the new state

([g(a) ≈ h(a)1:(g(x)≈h(x)∨g(x)�≈h(x))·σ , f (a) ≈ g(a)2:(f (x)≈g(x)∨ f (x)�≈g(x))·σ];
N ; {}; 2; (f (x) �≈ g(x) ∨ h(x) �≈ g(x)) · σ)

Now we can backtrack. Note, that this clause is non-redundant according to our ordering,
although conflict was applied immediately after decision.

Example 7 (Undefined conflict clause) Consider the following ground clause set N :

C1:= f (a, a) �≈ f (b, b) ∨ c ≈ d C2:=a ≈ b ∨ f (a, a) ≈ f (b, b)

Suppose that we decide f (a, a) �≈ f (b, b). Then C2 is false in �. Conflict state is as fol-
lows: ([f (a, a) �≈ f (b, b)1: f (a,a)�≈ f (b,b)∨ f (a,a)≈ f (b,b)]; N ; {}; 2;C2). Explore-Refutation
creates the following ground refutation for a ≈ b, since it is greatest literal in the conflict
clause:

I1:= (f (a, a) �≈ f (b, b), f (a, a) �≈ f (b, b) ∨ f (a, a) ≈ f (b, b), ε, ε, ε)
I2:= (a ≈ b,C2, ε, ε, ε)

I3:= (f (b, a) �≈ f (b, b), f (b, a) �≈ f (b, b) ∨ f (a, a) ≈ f (b, b) ∨ f (a, a) ≈ f (b, b),
I2, I1, 11)

I4:= (f (b, b) �≈ f (b, b), f (b, b) �≈ f (b, b) ∨ f (a, a) ≈ f (b, b) ∨ f (a, a) ≈ f (b, b)
∨ f (a, a) ≈ f (b, b), I3, I1, 12)

As one can see, the intermediate result f (b, a) �≈ f (b, b) is not false in �. Thus it is no
candidate for the new conflict clause. We have to choose I4. The new state is thus:

([f (a, a) �≈ f (b, b)1: f (a,a)�≈ f (b,b)∨ f (a,a)≈ f (b,b)]; N ; {}; 2;
f (b, b) �≈ f (b, b) ∨ f (a, a) ≈ f (b, b) ∨ f (a, a) ≈ f (b, b) ∨ f (a, a) ≈ f (b, b))

Now we can apply Equality-Resolution and two times Factorize to get the final clause
f (a, a) ≈ f (b, b) with which we can backtrack.

123

SCL(EQ): SCL for First-Order Logic with Equality Page 33 of 35 22

Example 8 (SCL(EQ) vs. Superposition: Clause learning) Assume clauses:

C1 :=b ≈ c ∨ c ≈ d
C2 :=a1 ≈ b ∨ a1 ≈ c

...

Cn+1 :=an ≈ b ∨ an ≈ c

The completeness proof of superposition requires that adding a new literal to an interpre-
tation does not make any smaller literal true. In this example, however, after adding b ≈ c to
the interpretation, we cannot any further literal, since it breaks this invariant. So in superpo-
sition we would have to add the following clauses with the help of the Equali t yFactoring
rule:

Cn+2 :=b �≈ c ∨ a1 ≈ c
...

C2n+1 :=b �≈ c ∨ an ≈ c

In SCL(EQ) on the other hand we can just decide a literal in each clause to get a model for
this clause set. As we support undefined literals we do not have to bother with this problem at
all. For example if we add b ≈ c to our model, both literals a1 ≈ b and a1 ≈ c are undefined
in our model. Thus we need to decide one of these literals to add it to our model.

References

1. Alagi, G., Weidenbach, C.: NRCL - A model building approach to the Bernays-Schönfinkel fragment.
In: Lutz, C., Ranise, S. (eds.) Frontiers of Combining Systems—10th International Symposium, FroCoS
2015, Wroclaw, Poland, September 21–24, 2015. Proceedings. Lecture Notes in Computer Science, vol.
9322, pp. 69–84. Springer, Cham. https://doi.org/10.1007/978-3-319-24246-0_5 (2015)

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem provingwith selection and simplification.
J. Log. Comput. 4(3), 217–247 (1994). https://doi.org/10.1093/logcom/4.3.217

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as a decision procedure
for the monadic class with equality. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) Computational Logic
and Proof Theory, Third Kurt Gödel Colloquium. LNCS, vol. 713, pp. 83–96. Springer, Berlin. https://
doi.org/10.1007/BFb0022557 (1993)

4. Bachmair, L., Ganzinger, H., Voronkov, A.: Elimination of equality via transformation with ordering
constraints. In: Kirchner, C., Kirchner, H. (eds.) International Conference on Automated Deduction.
Lecture Notes in Computer Science, vol. 1421, pp. 175–190. Springer, Berlin. https://doi.org/10.1007/
BFb0054259 (1998)

5. Baumgartner, P.: Hyper tableau—the next generation. In: de Swart, H.C.M. (ed.) Automated Reasoning
with Analytic Tableaux and Related Methods, International Conference, TABLEAUX ’98, Oisterwijk,
The Netherlands, May 5–8, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1397, pp. 60–76.
Springer, Berlin. https://doi.org/10.1007/3-540-69778-0_14 (1998)

6. Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In: Nieuwenhuis, R. (ed.) 20th
International Conference on Automated Deduction. LNAI, vol. 3632, pp. 392–408. Springer, Berlin.
https://doi.org/10.1007/11532231_29 (2005)

7. Baumgartner, P., Waldmann, U.: Superposition and model evolution combined. In: Schmidt, R.A. (ed.)
AutomatedDeduction—CADE-22.LNAI, vol. 5663, pp. 17–34. Springer,Berlin. https://doi.org/10.1007/
978-3-642-02959-2_2 (2009)

8. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in themodel evolution calculus. In: Hermann,M.,
Voronkov, A. (eds.) 13th International Conference, LPAR 2006. LNAI, vol. 4246, pp. 572–586. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/11916277_39 (2006)

9. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In: Pfenning, F. (ed.) International
Conference on Automated Deduction. LNAI, vol. 4603, pp. 492–507. Springer, Berlin. https://doi.org/
10.1007/978-3-540-73595-3_36 (2007)

10. Baumgartner, P., Pelzer, B., Tinelli, C.: Model evolution with equality-revised and implemented. J. Symb.
Comput. 47(9), 1011–1045 (2012). https://doi.org/10.1016/j.jsc.2011.12.031

123

https://doi.org/10.1007/978-3-319-24246-0_5
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1007/BFb0022557
https://doi.org/10.1007/BFb0022557
https://doi.org/10.1007/BFb0054259
https://doi.org/10.1007/BFb0054259
https://doi.org/10.1007/3-540-69778-0_14
https://doi.org/10.1007/11532231_29
https://doi.org/10.1007/978-3-642-02959-2_2
https://doi.org/10.1007/978-3-642-02959-2_2
https://doi.org/10.1007/11916277_39
https://doi.org/10.1007/978-3-540-73595-3_36
https://doi.org/10.1007/978-3-540-73595-3_36
https://doi.org/10.1016/j.jsc.2011.12.031

 22 Page 34 of 35 H. Leidinger, C. Weidenbach

11. Bayardo, R.J., Schrag, R.: Using CSP look-back techniques to solve exceptionally hard SAT instances.
In: Freuder, E.C. (ed.) Proceedings of the Second International Conference on Principles and Practice of
Constraint Programming, Cambridge, Massachusetts, USA, August 19–22, 1996. LNCS, vol. 1118, pp.
46–60. Springer, Berlin. https://doi.org/10.1007/3-540-61551-2_65 (1996)

12. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial
Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

13. Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Schulz, S., Moura, L.D.,
Konev, B. (eds.) PAAR-2014. 4th Workshop on Practical Aspects of Automated Reasoning. EPiC Series
in Computing, vol. 31, pp. 25–38. EasyChair, Bramhall. https://doi.org/10.29007/m2vf (2015)

14. Bonacina, M.P., Furbach, U., Sofronie-Stokkermans, V.: In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C.
(eds.) On First-Order Model-Based Reasoning. LNAI, vol. 9200, pp. 181–204. Springer, Cham. https://
doi.org/10.1007/978-3-319-23165-5_8 (2015)

15. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the Bernays–Schoenfinkel fragment over bounded
difference constraints by simple clause learning over theories. In: Henglein, F., Shoham, S., Vizel, Y. (eds.)
Verification, Model Checking, and Abstract Interpretation—22nd International Conference, VMCAI
2021, Copenhagen, Denmark, January 17–19, 2021, Proceedings. Lecture Notes in Computer Science,
vol. 12597, pp. 511–533. Springer, Cham. https://doi.org/10.1007/978-3-030-67067-2_23 (2021)

16. Bromberger, M., Gehl, T., Leutgeb, L., Weidenbach, C.: A two-watched literal scheme for first-order
logic. In: Boris Konev, A.S. Claudia Schon (ed.) Proceedings of the Workshop on Practical Aspects
of Automated Reasoning Co-located with the 11th International Joint Conference on Automated Rea-
soning (FLoC/IJCAR 2022). CEUR Workshop Proceedings, vol. 3201. CEUR-WS.org, RWTH Aachen,
Ahornstr. 55, 52056 Aachen (2022)

17. Bromberger, M., Schwarz, S., Weidenbach, C.: SCL(FOL) Revisited. Preprint at http://arxiv.org/2302.
05954 (2023)

18. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960).
https://doi.org/10.1145/321033.321034

19. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7),
394–397 (1962). https://doi.org/10.1145/368273.368557

20. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated
Reasoning, vol. I, pp. 535–610. Elsevier, Berlin (2001)

21. Fiori,A.,Weidenbach,C.: SCLclause learning fromsimplemodels. In: Fontaine, P. (ed.) 27th International
Conference on Automated Deduction, CADE-27. LNAI, vol. 11716. Springer, Cham. https://doi.org/10.
1007/978-3-030-29436-6_14 (2019)

22. Gallier, J., Narendran, P., Plaisted, D., Raatz, S., Snyder, W.: An algorithm for finding canonical sets of
ground rewrite rules in polynomial time. J. ACM 40(1), 1–16 (1993). https://doi.org/10.1145/138027.
138032

23. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality.
In: LICS, pp. 295–304. https://doi.org/10.1109/LICS.1999.782624 (1999)

24. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theorem proving. In: Peltier,
N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning—10th International Joint Conference, IJCAR
2020, Paris, France, July 1–4, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12166,
pp. 297–315. Springer, Cham. https://doi.org/10.1007/978-3-030-51074-9_17 (2020)

25. Korovin, K.: In: Voronkov, A., Weidenbach, C. (eds.) Inst-Gen—A Modular Approach to Instantiation-
Based Automated Reasoning, pp. 239–270. Springer, Berlin. https://doi.org/10.1007/978-3-642-37651-
1_10 (2013)

26. Korovin, K., Sticksel, C.: iProver-Eq: An instantiation-based theorem prover with equality. In: Giesl,
J., Hähnle, R. (eds.) 5th International Joint Conference, IJCAR 2010. LNAI, vol. 6173, pp. 196–202.
Springer, Berlin. https://doi.org/10.1007/978-3-642-14203-1_17 (2010)

27. Leidinger, H., and, C.W.: SCL(EQ): SCL for first-order logic with equality. In: Blanchette, J., Kovács, L.,
Pattinson, D. (eds.) Automated Reasoning—11th International Joint Conference, IJCAR 2022 Held as
Part of the Federated Logic Conference, Haifa, Israel, August 8–10, 2022, Proceedings. Lecture Notes in
Computer Science, vol. 13385, pp. 228–247. Springer, Cham. https://doi.org/10.1007/978-3-031-10769-
6_14 (2022)

28. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT
solver. In: Design Automation Conference, 2001. Proceedings, pp. 530–535. ACM, New York. https://
doi.org/10.1145/378239.379017 (2001)

29. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM 27(2), 356–364
(1980). https://doi.org/10.1145/322186.322198

30. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories: from an abstract Davis–
Putnam–Logemann–Loveland procedure to dpll(t). J. ACM 53, 937–977 (2006)

123

https://doi.org/10.1007/3-540-61551-2_65
https://doi.org/10.29007/m2vf
https://doi.org/10.1007/978-3-319-23165-5_8
https://doi.org/10.1007/978-3-319-23165-5_8
https://doi.org/10.1007/978-3-030-67067-2_23
http://arxiv.org/2302.05954
http://arxiv.org/2302.05954
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-030-29436-6_14
https://doi.org/10.1007/978-3-030-29436-6_14
https://doi.org/10.1145/138027.138032
https://doi.org/10.1145/138027.138032
https://doi.org/10.1109/LICS.1999.782624
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-14203-1_17
https://doi.org/10.1007/978-3-031-10769-6_14
https://doi.org/10.1007/978-3-031-10769-6_14
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/322186.322198

SCL(EQ): SCL for First-Order Logic with Equality Page 35 of 35 22

31. Plaisted, D.A., Zhu, Y.: Ordered semantic hyper-linking. J. Autom. Reason. 25(3), 167–217 (2000).
https://doi.org/10.1023/A:1006376231563

32. Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories with equality. In:
Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 135–150. https://doi.org/10.1007/978-3-642-
81955-1_19 (1969)

33. Silva, J.P.M., Sakallah, K.A.: GRASP—a new search algorithm for satisfiability. In: International Confer-
ence on Computer Aided Design, ICCAD, pp. 220–227. IEEE Computer Society Press, Boston. https://
doi.org/10.1007/978-1-4615-0292-0_7 (1996)

34. Sutcliffe, G.: The TPTP problem library and associated infrastructure—from CNF to th0, TPTP v6.4.0.
J. Autom. Reason. 59(4), 483–502 (2017). https://doi.org/10.1007/s10817-017-9407-7

35. Teucke, A.: An approximation and refinement approach to first-order automated reasoning. Doctoral
thesis, Saarland University. https://doi.org/10.22028/D291-27196 (2018)

36. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive framework for saturation theo-
rem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning—10th International
Joint Conference, IJCAR 2020, Paris, France, July 1–4, 2020, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 12166, pp. 316–334. Springer, Cham. https://doi.org/10.1007/s10817-022-09621-7
(2020)

37. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 2, pp. 1965–2012. Elsevier, Hoboken (2001)

38. Wischnewski, P.: Efficient reasoning procedures for complex first-order theories. PhD thesis, Saarland
University. https://doi.org/10.22028/D291-26406 (2012)

39. Weidenbach, C.: Automated reasoning building blocks. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.)
Correct System Design—Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th
Birthday, Oldenburg, Germany, September 8–9, 2015. Proceedings. Lecture Notes in Computer Science,
vol. 9360, pp. 172–188. Springer, Cham (2015)

40. Weidenbach, C., Wischnewski, P.: Contextual rewriting in SPASS. In: PAAR/ESHOL. CEURWorkshop
Proceedings, vol. 373, pp. 115–124 (2008)

41. Weidenbach, C., Wischnewski, P.: Subterm contextual rewriting. AI Commun. 23(2–3), 97–109 (2010).
https://doi.org/10.3233/AIC-2010-0459

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1023/A:1006376231563
https://doi.org/10.1007/978-3-642-81955-1_19
https://doi.org/10.1007/978-3-642-81955-1_19
https://doi.org/10.1007/978-1-4615-0292-0_7
https://doi.org/10.1007/978-1-4615-0292-0_7
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.22028/D291-27196
https://doi.org/10.1007/s10817-022-09621-7
https://doi.org/10.22028/D291-26406
https://doi.org/10.3233/AIC-2010-0459

	SCL(EQ): SCL for First-Order Logic with Equality
	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 The SCL(EQ) Calculus
	3.1 The SCL(EQ) Inference Rules

	4 Soundness and Completeness
	5 Discussion
	Acknowledgements
	Appendix: A Proofs and Auxiliary Lemmas
	Auxiliary Lemmas for the Proofs of Lemma 2
	Auxiliary Lemmas for the Proof of Lemma 6
	Auxiliary Lemma for the Proof of Lemma 19
	Auxiliary Lemma for the Proof of Lemma 9 and Theorem 2
	Auxiliary Lemma for the Proof of Lemma 9

	Further Examples
	References

