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A B S T R A C T

Public goods games between model agents with bounded rationality and a simple learning rule, which have been previously shown to represent experimentally 
observed human playing behavior, are studied by direct simulation on various lattices with different network topology. Despite strong coupling between playing 
groups, we find that average investments do not significantly depend upon network topology, but are determined solely by immediate local network environment. 
Furthermore, the dependence of investments on characteristic agent parameters factorizes into a function of individual cognitive budget, 𝐾, and a simple function 
1∕(1 + 𝑐(0)∕𝛽), where 𝑐(0) is the group centrality and 𝛽 = 12.5 for all networks investigated. Given the good agreement of agent behavior with available experiments, 
this seems to indicate that even complex societal networks of investment in public goods may be accessible to predictive simulation with limited effort.
1. Introduction

The sustainable management of the ecological niche of humankind 
on planet Earth is increasingly being recognized as a sizeable prob-

lem, attracting growing interest of scientific research across disciplines 
[1–3]. Aside from limited planet resources and rapidly changing climate 
conditions, a topic of major concern is the possible response of human 
societies to such stimuli [4,3,5]. In order to anticipate these responses, 
and to potentially advise policy makers to come up with appropriate 
legislatory precautions, a thorough understanding of the collective be-

havior of humans in dense societies needs to be achieved.

Given the complexity of the behavior even of a single human, this 
may seem entirely out of reach at first glance. However, it is well known 
that in systems consisting of sufficiently many similar entities in mutual 
interaction, quite precise predictions may be possible on collective phe-

nomena, even if little is known about the individual entities. We can 
precisely predict, e.g., the critical exponents of all singular quantities of 
a condensed matter system close to a phase transition solely from the 
number of degrees of freedom of the order parameter and its dimension-

ality, without even knowing which molecules the system is composed of 
[6]. Similar statements hold even if none of the many constituents (i.e., 
molecules) are identical, as may be the case in polymers [7]. In fact, 
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many similarities between phase transitions and collective phenomena 
in societies have been demonstrated [8–13]. Consequently, methods of 
statistical physics are meanwhile widely applied to social systems, with 
ever growing success [11,14,12,13]. The main challenge, and subject 
of lively debate [4,15,11,16–18,3,19,20,5], is to come up with model 
agents which are sufficiently simple to allow for large scale simula-

tions, and at the same time model traits of human interaction behavior

which are relevant for the respective study.

2. Public goods games

A well established, and much studied, paradigm of interaction of hu-

man agents in societies is the well-known public goods game (PGG). In 
its standard game-theoretic setting, the PGG is played among 𝑁 players 
over a total of 𝑇 periods, where 𝑇 is known to all players. In each pe-

riod 𝑡 ≤ 𝑇 , each player 𝑖 is given a fixed integer number, 𝜏 , of tokens, a 
fraction 𝑓𝑖,𝑡 ∈ [0, 𝜏] of which they can invest anonymously into a public 
pot1. The immediate reward of the 𝑖th player in that period is given by

𝐺𝑖,𝑡 = 𝛼
𝑁∑
𝑗=1

𝑓𝑗,𝑡 − 𝑓𝑖,𝑡 (1)
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where 𝛼 is multiplying factor which is known to all players.2 This can 
be written as

𝐺𝑖,𝑡 = 𝛼(𝑁 − 1)𝜇𝑖,𝑡 − (1 − 𝛼)𝑓𝑖,𝑡, (2)

where 𝜇𝑖,𝑡 =
∑
𝑘≠𝑖 𝑓𝑘,𝑡
𝑁−1 is the average contribution of other players. The 

total gain for the 𝑖th player can then be defined as 𝐺𝑖 =
∑𝑇

𝑡
𝐺𝑖,𝑡.

This game may be taken as a model of a vast number of real situ-

ations of human interaction. In a shared household, participants fulfill 
chores as an investment (𝑓𝑖) into a pleasant atmosphere as the common 
good (𝐺), members of a sports club invest donations (𝑓𝑖) for enjoying 
common goods such as a well-maintained playing court (𝐺), members 
of an association invest personal commitment (𝑓𝑖) in the common good 
of a thriving association (𝐺), and so on. A substantial fraction of so-

cietal interaction can, in this paradigm, be viewed as an enormously 
complex network of PGG, which interact through agents participating 
in several PGG simultaneously. Judging from the mentioned analogies 
to condensed matter systems, one might anticipate that the topology of 
this network has a major impact upon the collective investment behav-

ior of the agents.

Eq. (2) describes the gain for a given player playing in one period, in 
one group. In a network of interacting PGG groups, the corresponding 
gain becomes the sum of gains over all groups the agent plays in. Notice 
that the gains in each of these groups are independent. Therefore, in or-

der to find a favorable policy in a particular group, each agent needs to 
keep in mind the actions of other players in that group alone. The dy-

namical interaction between groups comes about through the learning 
of the agents, i.e., their gradually updating their internal model of other 
player’s behavior. We assume that each agent bears one such model for 
players in general, i.e., for the players of all groups it is playing in.

The PGG networks modeling a society are very complex as com-

pared to the networks of nearest-neighbor interaction in a condensed 
matter system. In the latter, interactions are all of one kind (or a few) 
and extend over a set of spatially nearest (perhaps including next near-

est) neighbors. Coordination numbers (i.e., network degrees) are small 
and homogeneous, and the topology of the network is strictly deter-

mined by the dimensionality. In contrast, the number of games agents 
participate in may vary strongly, and the topology of the network of in-

teractions between groups, the size of which may also vary vastly, does 
not need to bear any relation to a network of proximity in a space of 
fixed (integer) dimensions. Hence one must be prepared to find qual-

itative differences to collective behavior in condensed matter systems 
when simulating complex networks of PGG, and universality classes as 
in phase transitions may not hold. As we will show, the investment be-

havior of agents can most probably be anticipated solely on the basis of 
rather local network descriptors, and network topology is found to be 
surprisingly irrelevant.

2.1. PGG agents

We employ model agents we have developed before [20,22], guided 
by progress in intelligence research [23,24]. While it has been claimed 
that reinforcement learning is the essential ingredient of agents re-

producing experimentally observed PGG playing behavior [25,18], we 
could show that agents with bounded rational foresight with no learning 
capabilities at all may provide an even better account of experimental 
data [21,20]. Not only do they quantitatively reproduce the commonly 
observed downward trend of average investments during a game, they 

2 It can be seen from Eq. (1) that the game has very trivial optimal strategies 
for 𝛼 ≥ 1 (contribute everything) or 𝛼 ≤ 1

𝑁
(contribute nothing) and therefore 

the only “interesting” case where the personal and collective gains conflict and 
give rise to a social dilemma is the case when 1

𝑁
< 𝛼 < 1. Outside this range, 

𝛼 does not have much qualitative impact on game dynamics. Therefore we set 
2

𝛼 = 0.4 throughout this article, which is a value commonly found in literature.
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are also capable of accounting for the substantial period-to-period vari-

ance of these investments [21]. When bestowing a simple learning 
mechanism to these agents, as appears plausible for long-time play-

ing settings, we furthermore obtained complex dependencies of average 
investment upon group size [22], as had been observed in a number 
of real-world settings [26,27]. The resulting model agent is still suffi-

ciently simple to be used in large scale simulations such as those needed 
to investigate collective behavior in complex PGG networks.

Consequently, in the present paper we consider bounded learning 
and planning agents as described before [20,22], playing a spatially 
extended PGG (SPGG). The agent model is composed of two parts -

learning and planning. Learning refers to agents observing the past game 
behavior of other agents in order to make a predictive model of them, 
while planning refers to making use of this model to chart out an opti-

mal course of action in a particular game. In the following we describe 
the learning and planning mechanisms of an agent in a single group.

2.2. Planning mechanism

To describe the planning mechanism, we assume that agent 𝑖 has a 
predictive model of other agents incorporated as a transition function,

𝑄(𝜇𝑖,𝑡|𝜇𝑖,𝑡−1, 𝑓𝑖,𝑡−1) = 𝑔(𝜇𝑖,𝑡;𝑝, 𝜎). (3)

It describes the likelihood of other agents’ next action (expressed by 
𝜇𝑖,𝑡), given the previous state of the game (𝜇𝑖,𝑡−1, 𝑓𝑖,𝑡−1). 𝑔(𝜇; 𝑝, 𝜎) is the 
truncated Gaussian distribution on the interval [0, 𝜏], where 𝜎 is the 
variance of the distribution, which we fix to 𝜎 = 3 throughout the arti-

cle. 𝑝(𝜇𝑖,𝑡−1, 𝑓𝑖,𝑡−1) is the peak position of the distribution as given by

𝑝 =

{
𝜇𝑖,𝑡−1 + 𝜉𝑖+|𝜇𝑖,𝑡−1 − 𝑓𝑖,𝑡−1|, 𝜇𝑖,𝑡−1 − 𝑓𝑖,𝑡−1 < 0

𝜇𝑖,𝑡−1 − 𝜉𝑖−|𝜇𝑖,𝑡−1 − 𝑓𝑖,𝑡−1|, 𝜇𝑖,𝑡−1 − 𝑓𝑖,𝑡−1 > 0,
(4)

where 𝜉𝑖+ and 𝜉𝑖− parameterize 𝑄. As the 𝑖th agent can influence the 
actions of others solely through its contributions (because players play 
anonymously and do not interact otherwise), the parameters 𝜉𝑖+ and 𝜉𝑖−
describe to which degree agent 𝑖 believes to be able to encourage or 
discourage other agents to contribute. In that sense, 𝜉𝑖± is the model the 
agent has of the other agents. As far as planning is concerned, we do 
not bother about how the agent comes up with a particular set of values 
𝜉𝑖±, but rather what decisions does the agent come up with, given 𝑄.

Let us assume that the agent has a policy of its own actions from 
period 𝑡 until the end of the game (period 𝑇 ) given by 𝑃 (𝑓𝑇

𝑡
) =∏𝑇

𝑡′=𝑡 𝑃 (𝑓𝑖,𝑡′ |𝜇𝑖,𝑡′−1). By making use of 𝑄 and 𝑃 (𝑓𝑇
𝑡
) one can write the 

path probabilities of various game trajectories. Combining it with the 
gain of the agent associated with a trajectory, one can write down the 
expected utility for the policy as a path integral. This expected utility 
can then be maximized to find the optimal policy. Finally, the path in-

tegral maximization can be written in a recursive form, described by a 
Bellman equation [28] given by

𝑉 ∗
𝑡
= max
𝑃 (𝑓𝑇

𝑡
)

∑
𝑓𝑖,𝑡 ,𝜇𝑖,𝑡

𝑃 (𝑓𝑖,𝑡|𝜇𝑖,𝑡−1)[𝑄 ⋅𝐺𝑖,𝑡(𝑓𝑖,𝑡, 𝜇𝑖,𝑡) + 𝛾𝑄 ⋅ 𝑉𝑡+1
]
, (5)

where ∗ is to indicate a maximized quantity. 𝛾 ∈ [0, 1] represents a fore-

sight which exponentially ‘decays’ into the future, discounting for future 
rewards. If we also include bounds on the computational capabilities of 
the agent [20], an additional term appears in Eq. (5), which then be-

comes

𝑉 ∗
𝑡
= max
𝑃 (𝑓𝑇

𝑡
)

∑
𝑓𝑖,𝑡 ,𝜇𝑖,𝑡

𝑃 (𝑓𝑖,𝑡|𝜇𝑖,𝑡−1)[𝑄 ⋅𝐺𝑖,𝑡(𝑓𝑖,𝑡, 𝜇𝑖,𝑡) −
1
𝛽
log

𝑃 (𝑓𝑖,𝑡|𝜇𝑖,𝑡−1)
𝑃0(𝑓𝑖,𝑡|𝜇𝑖,𝑡−1)
+𝛾𝑄 ⋅ 𝑉𝑡+1

]
.

(6)

The Lagrange parameter 𝛽 comes about from the additional constraint 
1
𝛽
(𝐷𝐾𝐿 (𝑃 ∗(𝑓𝑖,𝑡|𝜇𝑖,𝑡−1)||𝑃0(𝑓𝑖,𝑡|𝜇𝑖,𝑡−1)) − 𝐾) = 0, where 𝐾 is the compu-
tational budget of the agent. Essentially, the additional term penalizes 
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high Kullback-Leibler (KL) divergence of the posterior (𝑃 ) and the prior 
(𝑃0) policies, for some given 𝑃0 for the agent. The solution of the opti-

mization problem in Eq. (6) then provides us with the bounded optimal 
policy 𝑃 (𝑓𝑇

𝑡
) =∏𝑇

𝑡′=𝑡 𝑃 (𝑓𝑖,𝑡′ |𝜇𝑖,𝑡′−1).
In conclusion, in period 𝑡, given a model 𝜉𝑖±, a prior policy 𝑃0, a 

computational budget 𝐾 and exponentially decaying foresight 𝛾 that 
describe agent 𝑖’s properties, the agent makes use of Eq. (6) to evaluate 
the best policy. Now we concern ourselves with how the agent comes 
up with its model of other agents i.e. 𝜉𝑖±.

2.3. Learning mechanism

Following [22] we consider the learning mechanism as a maximum 
likelihood estimation over the transitions observed by the agent. The 
task of learning for agent 𝑖 in period 𝑡 then is the task of finding the 
tuple 𝜉𝑖± that is most representative of the state transitions observed by 
the agent. This can be written as

𝜉𝑖±
∗(𝑡) = argmax

𝜉𝑖±(𝑡)

[ 2∑
𝑤=𝑡−1

𝛾𝑡−𝑤
𝑝

log𝑄(𝜇𝑖,𝑤|𝜇𝑖,𝑤−1, 𝑓𝑖,𝑤−1)
−(1 − 𝛾𝑝)(𝜉𝑖±(𝑡) − 𝜉

𝑖
±(𝑡− 1))2

]
.

(7)

The summation is over all observed past and the summand is the 
weighted log likelihood of having observed a particular transition from 
period 𝑤 − 1 to period 𝑤. The exponential weighting factor 𝛾𝑝 repre-

sents the recency bias or the bounded memory of the agent [29] as it 
weights recent transitions more than earlier transitions. Finally the last 
summand represents the tendency of the agent to not update its model. 
Therefore when 𝛾𝑝 = 0 the agent performs no learning and maintains its
previously believed model, and when 𝛾𝑝 = 1 the agent looks arbitrarily 
back in the past and performs the maximum likelihood estimation and 
updates its model.

As we are interested in collective effects here, we allow all players to 
play in multiple groups simultaneously. Their rewards in single playing 
groups are evaluated independently and then summed over all groups 
they play in. In this setting, beyond just the intra-group dynamics, the 
network of connections between groups and players also becomes of 
relevance through the fact that players play in several groups.

3. PGG networks

The interaction structure for players playing multiple PGGs simulta-

neously with different groups of players is best captured by hypergraphs. 
In what follows, we give a brief account of the concept hypergraphs, 
and how connects to our system of interest. We will then describe how 
to adapt the behavioral dynamics, as described for single groups in the 
previous section, to the spatially extended setting of an SPGG.

3.1. Hypergraphs

A hypergraph [30] is a graph whose edges are allowed to connect 
more than two nodes. An edge in a hypergraph is called a hyperedge. 
Hence a hypergraph  can be defined as a tuple  = (𝑉 , 𝐸), where 𝑉
is a finite set of nodes 𝑣𝑖 indexed by 𝑖 ∈ {1, … , |𝑉 |} and 𝐸 is a finite set 
of hyperedges 𝑒𝑗 indexed by 𝑗 ∈ {1, … , |𝐸|}, where each hyperedge is a 
non-empty subset of 𝑉 . One can completely specify a hypergraph by an 
incidence matrix 𝐻𝑖𝑗 where 𝑖 ∈ {1, … , |𝑉 |} and 𝑗 ∈ {1, … , |𝐸|} and

𝐻𝑖𝑗 =
{

1 𝑣𝑖 ∈ 𝑒𝑗 ,
0 else.

(8)

In this work, we identify the nodes in  as the agents and the edges 
are identified as the various groups the agents play in. As most literature 
3

on PGG considers four player games, in this work we consider agents 
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playing on 4-regular hypergraphs,3 but each agent is allowed to play in 
arbitrarily many groups. Other than this we consider no restrictions on 
the topology of the hypergraphs.

3.2. Agent dynamics on hypergraphs

Now that we have introduced the interaction structure, our task 
remains to adapt the agent behavioral dynamics from Sec. 2 to the 
spatially extended setting. Let us consider an SPGG being played on 
a hypergraph  with |𝑉 | =𝑁𝑝 players and |𝐸| =𝑁𝑔 groups. In order 
to carry out the discussion on the agent model we describe it from the 
perspective of an arbitrary agent given by an index 𝑖 ≤𝑁𝑝, which plays 
in 𝑘 ≤𝑁𝑔 different groups given by the indices 𝑖1, … , 𝑖𝑘.

As already mentioned, agent 𝑖 plans in each of the 𝑘 groups inde-

pendently. This means that agent 𝑖 in period 𝑡, makes use of Eq. (6) to 
find the optimal policy for itself and then, for each group it plays in, it 
independently samples an investment from the conditional distribution 
𝑃 (𝑓𝑖,𝑡|𝜇𝑖,𝑡−1) by conditioning on the observed 𝜇𝑖,𝑡−1 of that group.

Learning, on the other hand, is not done independently in each 
group. Essentially, the exponentially weighted log likelihood in Eq. (7)

is summed not only over all observed past of one group, but over all 
groups. By suitably modifying the notation to also include the group 
identity, one can write the analogous equation as

𝜉𝑖±
∗(𝑡) = argmax

𝜉𝑖±

𝑘∑
𝑚=1

[ 2∑
𝑤=𝑡−1

(
𝛾𝑡−𝑤
𝑝

log𝑄(𝜇𝑖,𝑖𝑚,𝑤|𝜇𝑖,𝑖𝑚,𝑤−1, 𝑓𝑖,𝑖𝑚,𝑤−1))
−(1 − 𝛾𝑝)(𝜉𝑖±(𝑡) − 𝜉

𝑖
±(𝑡− 1))2

]
,

(9)

where the subscript 𝑖𝑚 denotes that the quantity is being evaluated in 
group 𝑖𝑚 with 𝑚 ≤ 𝑘.

The learning and planning mechanisms can be then combined into a 
single agent which is defined by a quadruple of parameters, (𝑚, 𝐾, 𝛾, 𝛾𝑝), 
where 𝑚 parameterizes the prior policy of the agent.4 In each round 
𝑡 ∈ {2, 3, ...𝑇 }, the agent

1. plans: by considering the game state at 𝑡 − 1 in all the 𝑘 groups it 
plays in and 𝜉𝑖±(𝑡 −1), the agent making use of Eq. (6) finds the best 
policy for itself.

2. acts: by sampling an investment, 𝑓𝑖,𝑖𝑚,𝑡, from the evaluated pol-

icy, after conditioning on the observed 𝜇𝑖,𝑖𝑚,𝑡−1 of each group 
𝑚 ∈ {1, ⋯ , 𝑘}.

3. learns: after observing the state of the game in the current period 
𝑡 in all the 𝑘 groups the agent learns and updates its model of the 
players by evaluating 𝜉𝑖±(𝑡) from Eq. (9).

In period 𝑡 = 1 the investments of the agent are sampled from its prior

distribution 𝑃0(𝑓𝑖,1) for all the groups it plays in. In period 𝑡 = 2 there is 
certainly planning based on observed behavior, but there is no learning, 
as the agent has not yet observed a transition.

4. Topology and dynamics

In our previous studies [20,22] we focused on how agent character-

istics (𝑚, 𝐾, 𝛾, 𝛾𝑝) impact the behavioral dynamics in PGG. Here we have, 
as an additional feature, namely, the interaction structure imposed by 
the hypergraph. It is then natural to investigate the specific impact of 
the interaction network structure on the agent dynamics, and thereby 
on possible collective phenomena in the system. This will be the main 

3 A 𝑘-regular hypergraph 𝐻 is a hypergraph such that |𝑒𝑖| = 𝑘 for all 𝑖 ∈
{1, … , |𝐸|}.

4 We assume that the prior policy of the agent is given by the same distri-

bution 𝑃0(𝑓𝑖,𝑡) in each period 𝑡 and the distribution is a truncated Gaussian 

centered around 𝑚 and a fixed variance 𝜎𝑚 = 5.
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Fig. 1. Projecting a hypergraph to a line graph. The hyperedges (𝑒1, 𝑒2, 𝑒3) of 
the hypergraph correspond to the vertices of the line graph. Black pentagons 
correspond to agents, black circles correspond to groups.

question we pursue in the remainder of this article. Before we proceed, 
however, we need to clarify our concepts of “topology” and “dynamic-

s”, and to introduce the key descriptors of topology of the hypergraph 
as well as the relevant observables we will use to describe the agent 
behavioral dynamics.

4.1. Topological features

Hypergraphs (as opposed to graphs) provide the opportunity to con-

sider two distinct types of interactions: inter-group and intra-group. 
While our previous studies have focused primarily on intra-group in-

teractions, we focus here on inter-group interactions and their effect 
on contributions. The smallest unit of interest in this paradigm is a 
group. This allows us to project the uniform hypergraph to a corre-

sponding line graph .5 Fig. 1 shows a schematic of the projection of 
a hypergraph to the corresponding line graph. Notice that the hyper-

edges 𝑒1, 𝑒2, 𝑒3 become vertices in the line graph and the information 
about the location of vertices of the hypergraph (black pentagons) gets 
lost when performing this projection. Therefore in a line graph all of 
the intra-group structure is lost and it remembers only non-zero over-

laps between groups.

Our task now remains to choose the appropriate descriptor of the 
graph topology. Studying SPGG, we are interested in evaluating the 
degree of influence (measured through the dynamical observables) a 
particular group (i.e., a node in the line graph) has on other groups 
in the graph depending, e.g., on the distance between them. This is to 
determine how ‘far’ the influence of a group travels within the graph. 
Hence we need a suitable descriptor which represents the notion of a 
distance in a graph topology, and is suitable to quantify such propaga-

tion of influence.

A well-established class of such descriptors is the Bonacich-Katz class 
of centrality measures [31]. The Bonacich-Katz centrality of a node 𝑖 in 
the line graph  is parameterized by two parameters 𝜔, 𝜂 and is given 
by

𝑐𝑖(𝜔,𝜂) = 𝜔(𝐼 − 𝜂𝐽 )−1𝐽1, (10)

where 𝐼 is the identity matrix, 𝐽 is the adjacency matrix of  and 1 is a 
column vectors of all ones. Here 𝜔 is a constant multiplying factor and 
therefore doesn’t impact the centrality ranking of the nodes and can 
therefore be ignored via an appropriate normalization. 𝜂 parametrizes

the expected radius of influence a particular group has on other groups, 
which is proportional to (1 − 𝜂)−1. It will be the main parameter of 
concern for us in this article. While for 𝜂 → 0+, 𝑐𝑖 is equivalent to de-

gree centrality and it corresponds to eigenvector centrality if 𝜂→ 1
𝜆max

−, 
where 𝜆max is the largest eigenvalue of the adjacency matrix of  [32].

5 A line graph of a hypergraph  = (𝑉 , 𝐸) is a graph () = (𝑉, 𝐸), where 
4

𝑉 =𝐸 and two vertices 𝑒𝑖, 𝑒𝑗 in are connected in  iff. 𝑒𝑖 ∩ 𝑒𝑗 ≠ Ø.
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4.2. Dynamical features

In order to quantify cooperation in PGG, a natural observable of in-

terest is the average contribution of the group or player. Let us consider 
an agent 𝑖 where 𝑖 ≤𝑁𝑝. Let the set of groups the agent plays in be given 
by 𝑝𝑖 = {𝑘|𝐻𝑖𝑘 ≠ 0}. Then we define the average agent contribution as

𝐴
agent
𝑖,𝑡

=
∑
𝑗∈𝑝𝑖 𝑓𝑖,𝑗,𝑡|𝑔𝑖| , (11)

and the corresponding ensemble averaged quantity given by ⟨𝐴agent
𝑖,𝑡

⟩. 
The corresponding average group contribution for a group 𝑗 where 𝑗 ≤
𝑁𝑔 is defined as

𝐴
group
𝑗,𝑡

=

∑
𝑖∈𝑔𝑗 𝑓𝑖,𝑗,𝑡

4
, (12)

where 𝑔𝑗 = {𝑖|𝐻𝑖𝑗 ≠ 0} and the ensemble average quantity is given 
by ⟨𝐴group

𝑗,𝑡
⟩. For both these quantities the corresponding time average 

quantity is given by 𝐴′
𝑖
=

∑𝑇
𝑡=0 𝐴

′
𝑖,𝑡

𝑇
.

The above quantities are averaged over time, and therefore hold no 
information regarding the interactions between groups unfolding over 
time. The latter can be investigated by considering temporal correla-

tions between group trajectories. To this end, we consider the corre-

lation matrix 𝐶𝑖𝑗 , in which the 𝑖, 𝑗 entry is the correlation between 
trajectories of groups 𝑖 and 𝑗. It is given by

𝐶𝑖,𝑗 =
1
𝑇

𝑇∑
𝑡=0

𝜎
𝐴

group
𝑖,𝑡

𝐴
group
𝑗,𝑡

𝜎
𝐴

group
𝑖,𝑡

𝜎
𝐴

group
𝑗,𝑡

, (13)

where 𝜎𝑋𝑌 is the covariance of random variables 𝑋, 𝑌 given by ⟨𝑋𝑌 ⟩ −⟨𝑋⟩⟨𝑌 ⟩ and 𝜎𝑋 is the variance of 𝑋. Because the correlation between 
two group averaged trajectories is symmetric over the two groups, it 
is a natural measure for us as the coupling between groups which is 
mediated by the learning mechanism of the common player(s) also has 
no way to break the symmetry between the groups.

5. Results

As we intend to evaluate the specific impact of network topology on 
the dynamics, we will keep the agent characteristics homogeneous and 
consider heterogeneity only through graph topology. Therefore we con-

sider identical agents that are embedded on a random hypergraph (for 
details on how these random hypergraphs are generated see App. A).

For these agents we fix (𝑚, 𝛾) = (10, 0.9)6 and additionally, we con-

sider 𝛾𝑝 = 0.9. This choice reflects the fact that in our model the inter-

actions between neighboring groups are mediated by learning. Lower 
values of 𝛾𝑝 would weaken the group interactions, thereby rendering 
the network structure pointless. On the other hand for 𝛾𝑝 ≈ 1 it is ob-

served that something similar occurs for longer times [22], as every new 
observation has only a diminishing impact on the agents’ preferences. 
As we will see in the following, even though we create a setup (choice 
of parameters) that qualitatively maximizes the group interactions, the 
resulting dynamics still seems mostly independent of the various topo-

logical features.

We consider ten randomly generated hypergraphs with (𝑁𝑝, 𝑁𝑔) =
(64, 25) with all the agents described by (𝑚, 𝛾, 𝛾𝑝) = (10, 0.9, 0.9) and 
𝐾 ∈ {0, 1.5, 3, 4.5}. For each random hypergraph we perform the ensem-

ble average of 5000 simulation runs. Following the question asked in 
the beginning of Sec. 4 we investigate, in a random hypergraph with 
all identical agents, what topological descriptor is the most appropriate 
to predict average group contribution. As already mentioned we con-

sider the class of descriptors given by Bonacich-Katz centrality and we 

6 Both (𝑚, 𝛾) have only a trivial monotonic impact on average contribution 
(as shown in [20]) and therefore do not change the results of this article quali-
tatively.
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Fig. 2. Dependence of conditional expected contribution variance, 𝑀(𝜂), upon 
radial distance of influence, as expressed by (1 − 𝜂)−1 . The curves are averaged 
over ten hypergraphs of size (𝑁𝑝, 𝑁𝑔) = (64, 25) for agents with 𝐾 = 0 through 
𝐾 = 4.5.

consider the most “appropriate” centrality measure (or the most appro-

priate 𝜂) as the one that minimizes the function

𝑀(𝜂) = ∫ 𝜃⟨𝐴group
𝑗

⟩|(𝑐𝑗 (𝜂)=𝑐)𝑑𝑐. (14)

Here the variance is defined as

𝜃⟨𝐴group
𝑗

⟩|(𝑐𝑗 (𝜂)=𝑐) = VAR{⟨𝐴group
𝑗

⟩|𝑐 ≤ 𝑐𝑗 ≤ 𝑐 + 𝑑𝑐}, (15)

for some choice of discretization. Essentially, every value of 𝜂 is an as-

signment of a centrality to each node. We wish to find that assignment 
𝜂 such that given a centrality 𝑐(𝜂) = 𝑐0, the variance of the average con-

tributions corresponding to the nodes with the centrality close to 𝑐0 is 
minimal when integrated over all 𝑐0. In other words we wish to find 𝜂
for which the scatter of the scatter plot between ⟨𝐴group

𝑗
⟩ and 𝑐𝑗 (𝜂) is 

minimal.

In Fig. 2 we plot 𝑀(𝜂) curve averaged over 10 different random hy-

pergraphs as a function of 𝜂 and one can see that the global minimum 
of 𝑀(𝜂) is given by 𝜂 ≈ 0 for various values of agent parameters given 
by 𝐾 ∈ {0, 1.5, 3, 4.5} thereby indicating that the centrality measure with 
very small values of 𝜂 best predicts the group average contribution inde-

pendent of 𝐾 . Recalling the definition of Katz centrality, smaller values 
of 𝜂 correspond to smaller radii of influence. This then seems to indi-

cate that it is the local topological features (in this case, node centrality 
i.e. number of neighbors) that are the best predictors of average group 
contribution.

In the above analysis there is no “dynamics” as such, as we have only 
considered the distribution of ⟨𝐴group⟩ across nodes of varying central-

ity. Therefore any claims of groups have a smaller “radius of influence” 
could be misguided if the above result is considered in isolation. In or-

der to create a more robust picture of the radius of influence of a group, 
we consider how quickly do inter-group correlations decay as a function 
of the shortest distance between the groups.

Therefore, we proceed by comparing the correlation matrix 𝐶 with 
the distance matrix 𝐷7 to evaluate how the correlations between group 
average trajectories scale with the shortest distance between the groups. 
In Fig. 3 one can see that the correlation between group average trajec-

7 A distance matrix 𝐷 for a graph  = (𝑉 , 𝐸) is a matrix of size |𝑉 | × |𝑉 | where 
the 𝑖, 𝑗 entry 𝐷𝑖,𝑗 is the length of the shortest path between node 𝑖 and node 𝑗
5

in .
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Fig. 3. Group trajectory correlations as a function of the shortest distance be-

tween the groups for groups of agents with 𝐾 = 0 through 𝐾 = 4.5. Crosses are 
data points, polygons are exponential fits.

tories falls down exponentially with the (shortest) distance between the 
groups with correlation lengths 𝑙 < 1 (as shown in the inset). Thereby 
meaning that substantial correlations of a group’s behavior is only with 
its immediate neighbors. This further corroborates that group contribu-

tions in SPGG are mostly governed by local interactions.

The locality of interactions in SPGG is a good news for two major 
reasons. First and the more obvious reason is that locality simplifies 
the analysis of the system, thereby allowing for the possibility of devel-

oping simpler effective dynamics that replicate these observations. The 
second reason is that, if group contributions are mostly governed by lo-

cal interactions (in this case group centrality 𝑐(𝜂 = 0)), then even if we 
have graphs with different global structures but similar local structures 
we should observe similar behavior. The latter would seem to indicate a 
universality (i.e. global topology independent) in cooperation behavior 
across a large set of networks.

Fig. 4 presents the impact of group centrality (𝑐(𝜂 = 0)) on the 
group average contribution for different values of 𝐾 , for ten randomly 
generated hypergraphs. Different symbols correspond to different hy-

pergraphs. For each value of 𝐾 , the results are found not to differ 
significantly for different hypergraphs. This demonstrates that topolog-

ical features of the hypergraphs are irrelevant to this end. Cooperation 
levels of groups are predominantly determined by the number of neigh-

bors of the group. Quite surprisingly, one does not even need to consider 
how many players are shared between two neighbor groups (recall that 
𝑐(0) is measured from the line graphs and not the hypergraphs).

6. Discussion

Another observation from Fig. 2 is that 𝑀(𝜂) monotonically in-

creases with 𝐾 , attaining a minimal value at 𝜂 = 0 for all 𝐾 investi-

gated. Having a higher scatter for higher 𝐾 would seem to indicate 
that agents with higher 𝐾 accommodate their contributions to more 
details of topology rather than just the number of groups they play in.8

This is a view that also gets supported by looking at the variation of 
correlation lengths with 𝐾 . In the inset of Fig. 3, it can be seen that 
correlation lengths increase with 𝐾 , thereby indicating that as 𝐾 in-

creases, more distant neighbors become relevant as compared to lower 

8 The other end of the extreme is the case of 𝐾 = 0, where the agents disre-

gard any topological or dynamical features and play according to independent 

samples from a stationary prior distribution.
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Fig. 4. Impact of group centrality on the group average contribution for ten 
randomly generated hypergraphs. Left panel: results for 𝐾 = 4.5, with differ-

ent symbols corresponding to different hypergraphs. Right panel: same as left 
panel for different values of 𝐾 . Polygons connect averages over all hypergraphs, 
respectively.

values of 𝐾 . Hence agents with higher values of 𝐾 are more sensitive to 
the surrounding topology of the interaction network. However, the data 
suggest that the range of this sensitivity saturates at higher 𝐾 , with the 
decay length staying below unity.

This sensitivity can also be seen in Fig. 4. Note that group central-

ity has a positive impact on group contributions irrespective of agent 
parameters, although agents with higher values of 𝐾 experience an ap-

preciably bigger increase in their contributions as compared to their 
lower 𝐾 counterparts. In the following we quantify this sensitivity (to 
centrality) as a function of 𝐾 .

We consider 3 different hypergraphs (their corresponding line 
graphs can be seen in Fig. 5), two of them generated randomly and 
one uniform square lattice, all with (𝑁𝑝, 𝑁𝑔) = (64, 25). We consider 
identical agents with 𝐾 varying from 0.5 to 5 and average over 5000 
simulation runs for each configuration (i.e. a pair of a value of 𝐾 and 
one of the three hypergraphs). We then perform three-parameter fits on 
the average contribution curves with the ansatz,

ℎ(𝐾)
6

𝐴(𝑐(0),𝐾) =𝐴0(𝐾) −
1 + 𝑐(0)∕𝛽

. (16)
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Fig. 5. Line graphs corresponding to three hypergraphs. Top two correspond to 
random hypergraphs and the bottom corresponds to square lattice.

As it turns out, 𝐴0 does not vary appreciably with 𝐾 .9 Therefore we 
remove its dependence on 𝐾 and treat it as a constant. Therefore, pa-

rameters 𝐴0 and 𝛽 are obtained by performing a fit on all configurations 
and ℎ is fitted to each configuration separately. It turns out that setting 
𝐴0 = 12.25 and 𝛽 = 12.5, the (fitted) values of ℎ(𝐾) collapse onto a char-

acteristic curve independent of the network topology. In Fig. 7 we plot 
three curves ℎ(𝐾) for the corresponding hypergraphs as obtained from 
the fits. The empty symbols correspond to (𝐴0 −𝐴)∕(1 + 𝑐(0)𝛽) for each 
individual group, where 𝐴0 and 𝛽 take the aforementioned values. 𝐴
and 𝑐(0) for each group are obtained from the simulations. Within scat-

ter, the data are well represented by eq. (16). In a similar fashion we 
also show the characteristic value of 𝛽 to be well descriptive of the im-

pact of group centrality (see Fig. 6). To conclude, the deviation from 
the ‘trivial´ case 𝐾 = 0 seems to factorize as expressed by eq. (16), into 
a part depending on 𝑐(0) and a function ℎ(𝐾) which depends only on 𝐾 . 
The latter starts off roughly linearly but saturates at higher values of 𝐾 .

7. Conclusions

Based on previously developed model agents that boundedly learn 
and plan, we have explored collective behavior in SPGG on a variety 
of hypergraphs of different topology. What we find that collective in-

vestment behavior is determined essentially by local descriptors, with 
correlations decaying exponentially in space. Furthermore, the impact 
of local connectivity, 𝑐(0), and rationality of the agent, 𝐾 , on the ex-

pected average investment factorize in a universal way, independent of 
network topology. Its behavior can be quantified with a characteristic 
function as shown in Fig. 7 and lends itself to experimental test.

Finally, our work suggests that cooperation in SPGG can be driven 
by making the players more diverse i.e. increasing the number of groups 

9 Here we ignore the case of 𝐾 = 0, as it represents a qualitatively trivial 
case, and the corresponding fitting procedure has non-unique global minima 

(both ℎ(0) → 0 and 𝛽→∞ lead to a flat curve).
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Fig. 6. (𝐴0 − 𝐴)∕ℎ as a function of group centrality for the three hyper-

graphs. The corresponding data from the hypergraphs are represented by cir-

cles, triangle-up and triangle down. The solid line corresponds to the function 
(1 + 𝑐(0)∕𝛽)−1 for 𝛽 = 12.5.

Fig. 7. ℎ(𝐾) for three hypergraphs. Polygons (dashed, dash dotted and dotted) 
correspond to the best fit. The corresponding data from the hypergraphs are 
represented by circles, triangle-up and triangle down, respectively.

they play in and consequently increase inter-group connections. This 
observation is in line with results previously reported in [33], despite 
the fact that the authors follow a completely different modelling route.
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Appendix A. Generating a random hypergraph

In Algorithm 1 we show our method of generating a random hyper-

graph. The function takes as input (𝑁𝑝, 𝑁𝑔) and returns the incidence 
matrix for the hypergraph. It has to be kept in mind that 𝑁𝑝 ≥ 4 oth-

erwise we will not be able to generate a 4-regular hypergraph and 
also 𝑁𝑝 ≤ 4𝑁𝑔 , because if 𝑁𝑝 > 4𝑁𝑔 there will be at least one player 
which doesn’t play in any group, thereby effectively decreasing 𝑁𝑝 un-

til 𝑁𝑝 = 4𝑁𝑔 .

Algorithm 1 Random hypergraph generation

function HYPERGRAPH(𝑁𝑝, 𝑁𝑔 )

H = zeros(𝑁𝑝, 𝑁𝑔 ) ⊳ Incidence matrix

for 1 ≤ 𝑖 ≤𝑁𝑝 do ⊳ Each player gets a group

filled = 0
while filled = 0 do

𝑗 = random (1, 𝑁𝑔 ) ⊳ choose a random 𝑗 ∈ [1, 𝑁𝑔 ]
if
∑
𝑘 𝐻𝑘𝑗 < 4 then

𝐻𝑖𝑗 ← 1
filled ← 1

end if

end while

end for

for 1 ≤ 𝑗 ≤𝑁𝑔 do ⊳ Each group gets 4 players

while
∑
𝑘 𝐻𝑘𝑗 < 4 do

𝑖 = random(1, 𝑁𝑝)

𝐻𝑖𝑗 ← 1
end while

end for

RETURN H

end function
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