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Abstract

Three of the four fundamental forces in nature are described by the Standard model

of particle physics. While particles in some sectors only interact weakly and can be

studied using perturbative expansions, other sectors, e.g. quantum chromodynamics,

exhibit strong interactions. Lattice gauge theory, a discretized version of quantum

field theories on the lattice, offers a computational framework for a non-perturbative

treatment. The conventional approach to lattice gauge theories is based onMonte Carlo

simulations of the Euclidean path-integral. However, studying real-time dynamics and

theories with a finite chemical potential are challenging due to the sign-problem which

prevents efficient Monte Carlo simulations.

Hamiltonian methods have provided new insights into sign-problem affected phe-

nomena in lattice gauge theories, in particular in one dimension. This includes quan-

tum simulation, where quantum systems are designed to mimic the behaviour of com-

plex many-body systems, but also classical, variational methods such as tensor net-

works.

The central goal of this thesis is the development of Hamiltonian methods to study

sign-problem affected regimes in higher-dimensional lattice gauge theories, using both

classical and quantum simulation techniques. Lattice gauge theories in two and more

spatial dimensions are qualitatively different from one dimension as it is possible in one

dimension to integrate out the gauge field. Higher-dimensional lattice gauge theories,

even without fermions, have non-trivial interactions and an infinite-dimensional gauge

field Hilbert space that needs to be taken into account. Thus, one needs to find methods

that avoid truncating the Hilbert space or at least allow to control this truncation.

The methods in this thesis are specifically designed for continuous gauge groups in

order to avoid such truncations. They are demonstrated by studying the two prime ex-

amples for sign-problem affected phenomena, real-time dynamics and theories at finite

chemical potential. Since the presented methods are based on the variational principle,

they are thoroughly benchmarked against other methods, e.g. Euclidean Monte Carlo

simulations in regimes where the sign-problem is absent. Moreover, reformulations of

Hamiltonian lattice gauge theories are provided which eliminate gauge-redundancies

and thus allow to save resources, relevant for both classical and quantum algorithms.

First, we present a gauge-invariant reformulation of lattice quantum electrodynam-

ics with dynamical fermions. A unitary transformation of the Hamiltonian is performed

which allows to decouple the fermionic degrees of freedom from the local gauge con-

straints. The remaining local redundancies, involving only gauge fields, can be incor-

porated in a gauge-invariant formulation by changing from a link-based description of

the gauge field to a plaquette-based description.

Secondly, we present a variational method based on complex periodic Gaussian

states which allows to study real-time dynamics in (2+1)-dimensional lattice quantum

electrodynamics. The idea of the ansatz is to take into account the compact nature of

the 𝑈(1) gauge group by constructing a periodic Gaussian wavefunction in the gauge

field plaquette variables. Periodicity is achieved by an infinite sum over Gaussian
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wavefunctions where the sums can be shown to be evaluated efficiently numerically.

The method is benchmarked against exact solutions known for the one-plaquette case,

against a EuclideanMonte Carlo study and against exact diagonalization for a truncated

𝑈(1) gauge field Hilbert space. The method is then demonstrated in a sign-problem af-

fected regime by studying global quench dynamics for various types of quenches, e.g.

the real-time evolution of a strongly confined flux tube between two static charges

after a quench to weak coupling.

Finally, we present a variational Monte Carlo algorithm that enables the study of

lattice gauge theories with continuous gauge groups at finite density, exemplary shown

for (2 + 1)-dimensional lattice quantum eletrodynamics. The method is benchmarked

against various limiting cases, including the pure gauge theory and a Euclidean Monte

Carlo simulation for two fermion flavors at zero chemical potential where the sign-

problem is absent. The method is then demonstrated in a sign-problem affected regime

by studying density-induced phase transitions for two fermion flavors at varying flavor-

dependent chemicial potentials.
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Zusammenfassung

Drei der vier fundamentalen Wechselwirkungen der Natur werden durch das Standard-

modell der Teilchenphysik beschrieben. Während die Teilchen in einigen Bereichen nur

schwach wechselwirken und mit Hilfe von Störungstheorie untersucht werden können,

weisen andere Bereiche, z. B. die Quantenchromodynamik, starke Wechselwirkungen

auf. Gittereichtheorie, eine diskretisierte Version der Quantenfeldtheorien auf dem Git-

ter, bietet den Rahmen für eine computergestützte, nicht-perturbative Behandlung. Der

herkömmliche Ansatz für Gittereichtheorien basiert auf Monte-Carlo Simulationen des

euklidischen Pfadintegrals. Die Untersuchung von Echtzeitdynamik und Theorien mit

einem endlichen chemischen Potenzial sind jedoch aufgrund des Vorzeichenproblems,

das effiziente Monte-Carlo-Simulationen verhindert, eine Herausforderung.

Methoden basierend auf der Hamiltonschen Formulierung von Gittereichtheorien

haben neue Einblicke in die vom Vorzeichenproblem betroffenen Phänomene ermög-

licht, insbesondere in einer Dimension. Dazu gehören Quantensimulationen, bei denen

Quantensysteme das Verhalten komplexer Vielteilchensysteme nachahmen sollen, aber

auch klassische Variationsmethoden wie Tensornetzwerke.

Das zentrale Thema dieser Arbeit ist die Entwicklung von Hamiltonschen Methoden

zur Untersuchung von Regimen mit Vorzeichenproblemen in höherdimensionalen Git-

tereichtheorien, basierend auf sowohl klassischen als auch Quantensimulationstech-

niken. Gittereichtheorien in zwei und mehr räumlichen Dimensionen unterscheiden

sich qualitativ von eindimensionalen Theorien, da es in einer Dimension möglich ist,

das Eichfeld zu eliminieren. Höherdimensionale Gittereichtheorien, auch ohne Fermio-

nen, haben nicht-triviale Wechselwirkungen, und es muss ein unendlich dimensionaler

Hilbert-Raum für das Eichfeld berücksichtigt werden. Daher muss man es entweder

ganz vermeiden den Hilbert-Raum künstlich abzuschneiden oder dieses Abschneiden

zumindest kontrollieren.

Die in dieser Arbeit vorgestellten Methoden sind speziell für kontinuierliche Eich-

gruppen entwickelt worden, um solche Abschneidungen zu vermeiden. Sie werden

anhand von zwei Beispielen für vorzeichenbehaftete Phänomene demonstriert: Echt-

zeitdynamik und Theorien mit endlichem chemischem Potential. Da die vorgestellten

Methoden auf dem Variationsprinzip beruhen, werden sie ausführlich mit anderen Me-

thoden verglichen, z. B. mit euklidischen Monte-Carlo Simulationen in Regimen, in de-

nen das Vorzeichenproblem nicht auftritt. Darüber hinaus werden Umformulierungen

von Hamiltonschen Gittereichtheorien bereitgestellt, die Eichredundanzen eliminieren

und somit Ressourcen einsparen, was sowohl für klassische als auch für Quantenalgo-

rithmen von Bedeutung ist.

Zunächst stellen wir eine eichinvariante Reformulierung der Gitterquantenelektro-

dynamik mit dynamischen Fermionen vor. Es wird eine unitäre Transformation des

Hamiltonians durchgeführt, die es erlaubt, die fermionischen Freiheitsgrade von den

lokalen Eichtransformationen zu entkoppeln. Die verbleibenden lokalen Redundanzen,

die nur Eichfelder betreffen, können in eine eichinvariante Formulierung gebracht wer-

den, indem von einer link-basierten Beschreibung des Eichfeldes zu einer plaketten-
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basierten Beschreibung gewechselt wird.

Zweitens stellen wir eine Variationsmethode vor, die auf komplexen periodischen

Gaußschen Zuständen basiert und es ermöglicht, die Echtzeitdynamik in der (2 + 1)-
dimensionalen Gitterquantenelektrodynamik zu untersuchen. Die Idee des Ansatzes be-

steht darin, die kompakte Natur der 𝑈(1)-Eichgruppe zu berücksichtigen, indem eine

periodische Gaußsche Wellenfunktion in den Eichfeld-Plakettenvariablen konstruiert

wird. Die Periodizität wird durch eine unendliche Summe über die Gaußschen Wellen-

funktionen erreicht, wobei gezeigt werden kann, dass die Summen effizient numerisch

ausgewertet werden können. Die Methode wird mit exakten Lösungen verglichen, die

für den Ein-Plakette Fall bekannt sind, mit einer euklidischen Monte-Carlo Studie und

mit exakter Diagonalisierung für einen abgeschnittenen 𝑈(1)-Eichfeld Hilbert-Raum.

Die Methode wird dann in einem vomVorzeichenproblem betroffenen Regime demons-

triert, indem die globale Quench-Dynamik für verschiedene Arten von Quenches unter-

sucht wird, z.B. die Echtzeitentwicklung eines stark eingesperrten Eichfelds zwischen

zwei statischen Ladungen nach einem Quench zu schwacher Kopplung.

Schließlich stellen wir einen variationellen Monte-Carlo Algorithmus vor, der die

Untersuchung von Gittereichtheorien mit kontinuierlichen Eichgruppen bei endlichem

chemischen Potenzial ermöglicht, wie am Beispiel der (2 + 1)-dimensionalen Gitter-

quantenelektrodynamik gezeigt wird. Die Methode wird mit verschiedenen Grenzfäl-

len verglichen, einschließlich der reinen Eichtheorie und einer euklidischen Monte-

Carlo Simulation für zwei Fermionenflavors bei einem chemischen Potential von null,

bei dem das Vorzeichenproblem nicht auftritt. Die Methode wird dann in einem vom

Vorzeichenproblem betroffenen Regime demonstriert, indem dichteinduzierte Phasen-

übergänge für zwei Fermionenflavors bei unterschiedlichen flavorabhängigen chemi-

schen Potenzialen untersucht werden.
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1 Introduction

The quest to understand all phenomena in nature in terms of only a few fundamental

principles has been a central goal of physicists throughout centuries. This idea dates

back to Newton who introduced in 1687 his law of universal gravitation that described

gravity as an attractive force between massive objects, providing a foundational under-

standing of the motion of such objects. Subsequently, physicists formulated theories

for other fundamental forces and attempted to unify them into a single framework,

one prominent example being Maxwell’s formulation of electromagnetism which uni-

fied the description of electric and magnetic phenomena. This effort is continuing to

this day, where to our current understanding there are four fundamental forces: grav-

ity, electromagnetism, the weak nuclear force and the strong nuclear force. While

the gravitational force is described by Einstein’s general theory of relativity, the other

three forces are explained within the Standard Model of particle physics [5]. Unifying

these two theories is an active frontier in modern physics [6].

There is, however, another aspect of our understanding of these theories that arises

from the recognition that while we may be able to explain the interactions of indi-

vidual objects it does not necessarily guarantee that we fully understand the interplay

between many of them, which is crucial for comprehending emergent phenomena such

as magnetism or superconductivity. This challenge is particularly severe in quantum

theories with strong interactions, as they cannot be easily treated using perturbative

expansions unlike weakly coupled theories. Moreover, the quantum nature of these

systems leads to an exponential scaling of computational resources with system size,

making it impractical to compute emergent phenomena exactly. This is known as the

many-body problem.

The Standard Model of particle physics falls into this category as it is a quantum

field theory (QFT) that becomes strongly coupled in certain regimes, e.g. in the sector

describing the strong force, quantum chromodynamics (QCD). Significant efforts have

been dedicated to the development of numerical methods to approximate the behavior

of non-perturbative quantum field theories. A computational framework is provided

by lattice gauge theory (LGT), a discretized version of quantum field theory on the

lattice [7, 8]. Besides its relevance for the Standard Model of particle physics, lattice

gauge theories also emerge in condensed matter physics as low-energy effective theo-

ries of strongly correlated electron systems [9, 10]. Thus, developing methods for the

study of lattice gauge theories is quintessential for our understanding of fundamen-

tal physical phenomena ranging from the confinement of quarks in particle physics to

quantum spin liquids with fractionalized excitations in condensed matter physics.

The conventional approach to lattice gauge theories is based on the path integral for-

mulation where the theory is defined by an action. Expectation values are computed

by integrating over all possible paths, with each path being weighted by the exponen-

tial of the corresponding action. A Wick rotation is performed from real to imaginary

time to render the path integral convergent. The exponential of the action in this Eu-

clidean formulation can be interpreted as a probability distribution. This enables the
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use of Monte Carlo techniques, where an integral is approximated by sampling from

a probability distribution and taking an average over all sampled configurations. As

a result, numerous intriguing aspects of non-perturbative quantum field theories have

been revealed [11].

However, in certain regimes of quantum field theories the implementation of this

approach becomes difficult. First, gaining insights into real-time dynamics, necessary

to study phenomena out-of-equilibrium, can be challenging due to the formulation in

Euclidean space-time. Secondly, for fermionic theories with a finite chemical potential

the Euclidean action can become complex preventing an interpretation as a probability

distribution and thus Monte Carlo sampling to evaluate the path integral. This problem

is known as the sign-problem [12]. Hence, alternative approaches are necessary to

investigate regimes where Euclidean Monte Carlo techniques are not applicable.

Over the last decades, new techniques have emerged to tackle this problem which

are connected to the second quantum revolution [13]. The first quantum revolution is

often referred to discoveries in the field of quantum mechanics during the early 20th

century, where ideas by pioneers like Planck, Bohr, Heisenberg and Einstein funda-

mentally changed our understanding of the physical world, laying the foundations for

modern quantum physics. The second quantum revolution is referred to more recent

developments where quantum systems in laboratories have become controlled to such

a degree that quantum phenomena can be utilized for different applications. This has

resulted in the emergence of new research areas such as quantum computing, quantum

cryptography, quantum sensing or quantum communication. One application, origi-

nally proposed by Feynman [14], is quantum simulation, where quantum systems are

designed to mimic the behaviour of complex many-body systems, providing new in-

sights into phenomena which are otherwise difficult to access due to the many-body

problem. Since sign-problem affected regimes of lattice gauge theories can in principle

be studied using quantum simulation, a lot of efforts have been made both theoreti-

cally and experimentally to use quantum technologies for problems in high-energy

physics [15].

This requires a different formulation compared to the traditional action-based ap-

proach mentioned above since quantum devices are described by Hamiltonians. As a

result, there has been a renewed interest in Hamiltonian formulations of lattice gauge

theories which also stimulated the development of new Hamiltonian-based classical

algorithms, such as tensor networks or variational Monte Carlo methods [15].

Hamiltonian simulation methods, both quantum and classical, have been applied

to lattice gauge theories, with the main focus being one-dimensional models. The

central theme of this thesis will be the development of Hamiltonian methods to study

sign-problem affected regimes in higher-dimensional lattice gauge theories, using both

classical and quantum simulation techniques.

Lattice gauge theories in two and more spatial dimensions are qualitatively different

from one dimension as it is possible in one dimension to integrate out the gauge field

degrees of freedom and to remain with a purely fermionic theory, whose degrees of

freedom can be mapped to spins by a Jordan-Wigner transformation [16, 17]. On the

other hand, higher-dimensional lattice gauge theories, even without fermions, have

non-trivial interactions and exhibit interesting phenomena such as confinement [18].

This poses a different level of difficulty compared to one dimension as the gauge field

degrees of freedom have to be taken into account which is complicated by the fact

that the gauge field Hilbert space is infinite-dimensional. Thus, special care needs to
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1.1 Outline

be paid in the development of higher-dimensional methods to the description of gauge

fields in order to avoid truncating the Hilbert space or to at least control this truncation.

In this thesis, different numerical methods for the study of lattice gauge theories

are presented, specifically suited for the study of higher-dimensional theories as the

infinite-dimensional Hilbert space of continuous gauge groups is incorporated in these

methods. The methods are demonstrated by computing sign-problem affected phenom-

ena, such as real-time evolution and quantities at finite chemical potential. Moreover,

reformulations of Hamiltonian lattice gauge theories are provided which eliminate

gauge-redundancies and thus allow to save resources, relevant for both classical and

quantum algorithms.

1.1 Outline

The central goal of this thesis is to provide new techniques to study higher-dimensional

lattice gauge theories in regimes which are difficult to access with conventional Eu-

clidean Monte Carlo simulations due to the sign-problem, with a particular focus on

lattice gauge theories with continuous gauge groups so as not to be required to truncate

the gauge field Hilbert space or to be restricted to finite gauge groups.

The two prime examples for phenomena in lattice gauge theories affected by the

sign-problem are real-time evolution and finite chemical potential. A natural candi-

date for a physically relevant lattice gauge theory in higher dimensions is (2 + 1)-
dimensional lattice quantum electrodynamics, characterized by the gauge group 𝑈(1).
We thus demonstrate the methods presented in this theses by studying real-time dy-

namics and ground state properties at finite chemical potential for (2 + 1)-dimensional

lattice QED. Since the presented methods are based on the variational principle, they

are thoroughly benchmarked against other methods, e.g. Euclidean Monte Carlo sim-

ulations in regimes where the sign-problem is absent.

In addition to the numerical methods we present reformulations of lattice QED with

dynamical fermions in terms of gauge-invariant degrees of freedom, allowing for a

wider range of possible variational ansatz states and a reduction in computational

resources.

The thesis is structured as follows. In chapter 2, we motivate the work presented

in this thesis by reviewing various methods to study strongly coupled quantum field

theories and their limitations. First, we give a short review on quantum field theories,

explain the concept of running coupling which explains why non-perturbative meth-

ods are required in certain regimes. We then show how lattice gauge theories serve

as non-perturbative regularizations of quantum field theories. We discuss the conven-

tional approach to lattice gauge theories, employing EuclideanMonte Carlo techniques,

and explain how the sign-problem arises for real-time evolution and finite densities.

Additionally, we present the Hamiltonian formulation of lattice gauge theory, which is

used throughout this thesis. Finally, we discuss Hamiltonian methods for lattice gauge

theories and their limitations.

In chapter 3, we present a gauge-invariant reformulation of lattice quantum elec-

trodynamics with dynamical fermions. A unitary transformation of the Hamiltonian is

performed which allows to decouple the fermionic degrees of freedom from the local

Gauss’ law constraints. The remaining local redundancies, involving only gauge de-

grees of freedom, can be incorporated in a gauge-invariant formulation by changing

3



1.1 Outline

from a link-based description of the gauge field to a plaquette-based description.

In chapter 4, we present a variational method based on complex periodic Gaussian

states which allows to study real-time dynamics in (2+1)-dimensional lattice QED. The

idea of the ansatz is to take into account the compact nature of the 𝑈(1) gauge group by
constructing a periodic Gaussian wavefunction in the gauge field plaquette variables.

Periodicity is achieved by an infinite sum over Gaussian wavefunctions where the sums

can be shown to be evaluated efficiently numerically. The method is benchmarked

against exact solutions known for the one-plaquette case, against a Euclidean Monte

Carlo study and against exact diagonalization for a truncated 𝑈(1) gauge field Hilbert

space. The method is then demonstrated by studying global quench dynamics for

various types of quenches, e.g. the real-time evolution of a strongly confined flux tube

between two static charges after a quench to weak coupling.

In chapter 5, we present a variational Monte Carlo algorithm that enables the study

of lattice gauge theories with continuous gauge groups at finite density, exemplary

shown for (2 + 1)-dimensional lattice QED. The method is benchmarked against var-

ious limiting cases, including the pure gauge theory, and a Euclidean Monte Carlo

simulation for two fermion flavors at zero chemical potential where the sign-problem

is absent. The method is then demonstrated in a sign-problem affected regime by

studying density-induced phase transitions for two fermion flavors at varying flavor-

dependent chemicial potentials.
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2 Preliminaries

In this chapter, we present a comprehensive overview of the models and methods

employed throughout the thesis. The guiding principle is to explain why, starting

from the Standard model of particle physics and recognizing limitations of existing

methods, new approaches are desirable for investigating higher-dimensional lattice

gauge theories with continuous gauge groups in regimes affected by the sign-problem.

We first explain in the context of the Standard model of particle physics why non-

perturbative methods are needed in quantum field theories and how this naturally leads

to lattice gauge theories. Subsequently, we describe the conventional approach in lat-

tice gauge theories based on the action formulation and Euclidean Monte Carlo simu-

lations. We discuss its limitations by explaining in more detail what the sign-problem

is and how it arises in certain regimes. In the next step, we present the Hamiltonian

formulation of lattice gauge theory which forms the basis of alternative approaches.

Two significant approaches, namely quantum simulation and variational methods, are

discussed in detail. For both approaches conceptual challenges are emphasized when

going from one to two dimensions, mainly related to the infinite-dimensional gauge

field Hilbert space, and why this poses a challenge to currently available Hamiltonian

methods.

2.1 Perturbative quantum field theories and

running coupling

To our current understanding, three of the four fundamental forces in nature can be de-

scribed within the Standard model of particle physics: the electromagnetic, weak and

strong force, excluding gravity. It is a widely accepted theory that has been extensively

tested and validated through experiments at particle accelerators [5]. Usually, one is

not interested in the full Standard model but in a certain sector of it depending on the

physical phenomena that one wants to study. If the strength of the interactions of that

particular sector is small enough one can treat the theory in a perturbative series.

In the following we want to explain the running coupling, i.e. the dependence of the

coupling strength on the energy scale, and show why in certain regimes a peturbative

treatment is not possible. An example for a perturbative sector of the Standard model

is quantum electrodynamics with the Lagrangian

ℒQED = ̄𝜓0(𝑖𝛾𝜇𝜕𝜇 − 𝑚0)𝜓0 − 1
4

𝐹𝜇𝜈,0𝐹 𝜇𝜈
0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=ℒfree

− 𝑒0
̄𝜓0𝛾𝜇𝜓0𝐴𝜇,0⏟⏟⏟⏟⏟⏟⏟
=ℒint

(2.1)

with the field strength tensor 𝐹𝜇𝜈,0 = 𝜕𝜇𝐴𝜈,0 − 𝜕𝜈𝐴𝜇,0. 𝐴𝜇,0 denotes the 𝑈(1) gauge
field, the photon field, and 𝜓0 a Dirac spinor field, describing a fermion with spin

1/2. 𝛾𝜇 are the usual gamma matrices. One can separate the Lagrangian in a free

part ℒfree and an interacting part ℒint. The interaction strength is characterized by

5



2.1 Perturbative quantum field theories and running coupling

the bare coupling parameter 𝑒0. However, the bare quantities denoted by a subscript

0 do not actually correspond to physical quantities measured in experiments. This is

because if one naively tries to compute quantum corrections in perturbation theory

due to virtual-particle loops one typically obtains loop integrals that are divergent. To

address these divergences, the theory needs to be regulated and renormalized.

Regularization can be thought of as introducing an ultraviolet (UV) cutoff Λ to ren-

der the divergent loop integrals finite. Renormalization amounts then to redefining

the bare parameters in the Lagrangian in such a way that the infinities arising in the

limit of removing the regulator (Λ → ∞) are absorbed, resulting in finite predictions

for physical observables 𝑂. The redefinition of the bare parameters can also be viewed

as introducing counterterms in the Lagrangian to cancel out the divergencies. A cru-

cial feature of renormalizable quantum field theories is that the predictions will be

independent of the choice of regularization scheme.

To make this procedure a bit more explicit, we schematically show it for the QED

Lagrangian above. We focus in our discussion mainly on the coupling constant (which

for QED is the electric charge) as it quantifies the strength of the interactions and

indicates whether a perturbative treatment is possible. As mentioned above, with a

finite bare electric charge 𝑒0 expressions for physical observables become infinite due

to UV divergences. To approach that problem, one first regulates the theory, i.e. a UV

cutoff Λ is introduced. The bare coupling constant is then modified as a function of

the cutoff, denoted as 𝑒0(Λ). This process is called renormalization. This modification

is performed in such a way that as the cutoff is removed (Λ → ∞), the resulting

predictions for physical observables become finite and meaningful.

In the limit of removing the cutoff the bare coupling will become infinite, which

is, however, not a problem since the bare coupling 𝑒0 has no physical meaning. In

modern understanding of quantum field theories due to Wilson [19], this is related to

the concept of viewing quantum field theories as effective field theories. The central

idea of this concept is that such theories have an intrinsic cutoff, beyond which their

descriptions are no longer valid, and a more fundamental theory is required to explain

the phenomena at higher energy scales.

For the renormalization procedure, one splits the behavior of the bare coupling into

a singular part absorbing the divergences, the renormalization factor 𝑍𝑒(Λ, 𝜇), and a

regular part, the effective coupling 𝑒(𝜇):

𝑒0(Λ) = 𝑍𝑒(Λ, 𝜇)𝑒(𝜇). (2.2)

Note that renormalization introduces a new scale, the renormalization scale 𝜇, which
is in principle arbitrary and does not influence physical observables. In practice, how-

ever, one chooses the renormalization scale to be close to the energy 𝑄 of the physical

process that one is interested in. In that case, the calculations for physical observables

simplify and the coupling 𝑒(𝑄) gives a good estimate for the effective coupling strength

and whether perturbation theory is valid.

Eq. (2.2) defines a renormalization scheme. Note that there are many different

choices for such schemes as the renormalization factor 𝑍𝑒 is only required to absorb

the divergencies but the finite part of 𝑍𝑒 can be chosen arbitrarily. However, all renor-

malization schemes are supposed to give the same predictions for physical observables

𝑂𝑗 in the limit of Λ → ∞:

𝑂∞
𝑗 ≡ lim

Λ→∞
𝑂𝑗(𝑒(𝜇), 𝑍𝑒(Λ, 𝜇), ...). (2.3)

6



2.1 Perturbative quantum field theories and running coupling

The dots denote that there are typically several renormalization factors 𝑍𝑖 involved

in a renormalization scheme. For QED one needs to define in addition to the electric

charge also similar renormalization relations for the mass, the photon field and the

fermion field. A theory is said to be renormalizable if 𝑂∞
𝑗 is finite for all physical

observables even though only a finite number of 𝑍𝑖 are adjusted. Note that there are

infinitely many observables 𝑂𝑗 making the above a non-trivial statement.

Since also every choice of renormalization scale 𝜇 should lead to the same predictions

for physical observables, one can derive equations that relate the effective couplings

at different renormalization scales. These equations are called renormalization group

equations [5]. An essential part of them are the so called beta-functions that are defined

for every effective coupling 𝛼(𝜇) and quantify the change in coupling strength with

energy scale 𝜇:

𝛽(𝛼(𝜇)) ≡ 𝑑𝛼(𝜇)
𝑑 ln𝜇

. (2.4)

For QED one obtains for the beta function in first-order perturbation theory [5]:

𝛽(𝑒(𝜇)) = 𝑒3(𝜇)
12𝜋2 . (2.5)

What enters the expressions for physical observables is actually not the electric charge

but the fine-structure constant, which are related in natural units ℏ = 𝑐 = 1 as

𝛼QED(𝜇) = 𝑒2(𝜇)
4𝜋 . The beta-function written in terms of 𝛼QED takes the form:

𝛽(𝛼QED(𝜇)) =
2𝛼2

QED(𝜇)
3𝜋2 . (2.6)

By solving the differential equation given by the beta-function one can relate effective

couplings at two energy scales 𝜇1 and 𝜇2:

𝛼QED(𝜇2) =
𝛼QED(𝜇1)

1 − 1
3𝜋𝛼QED(𝜇1) ln 𝜇2

2
𝜇2

1

. (2.7)

In order to get absolute values for the coupling, one needs to perform an experiment at

some energy scale which allows to fix the coupling at this scale. For QED one typically

fixes the coupling in the low-energy limit where 𝛼QED is the well-known fine-structure

constant at zero momentum transfer, given by 𝛼 ≈ 1
137 . This results in the expression:

𝛼QED(𝜇) = 𝛼
1 − 1

3𝜋𝛼 ln 𝜇2

𝑚2

. (2.8)

where 𝑚 is the mass of the electron which also needs to be determined experimentally.

One can then compute the fine-structure constant at higher energy scales, e.g. at the

mass of the Z boson, 𝑚𝑍 ≈ 91.188GeV, and obtains a slightly higher value 𝛼QED(𝑚𝑍) ≈
1

127 .

An intuitive explanation why the interaction strength depends on the energy scale

is given by charge screening: at low energies, i.e. long distances far away from an

electron, the electron can attract virtual positively charged particles from the vac-

uum, which effectively screen the electric charge. This screening reduces the coupling

strength. This behavior is also reflected in the positive value of the beta-function. How-

ever, for all energy scales where it is known that quantum electrodynamics is a valid

7



2.1 Perturbative quantum field theories and running coupling

description, the increase in coupling strength is only moderate so that perturbation

theory can still be applied.

The situation is drastically different in quantum chromodynamics which is based on

the gauge group 𝑆𝑈(3) instead of 𝑈(1) as in quantum electrodynamics. The Lagrangian

has the form

ℒQCD = −1
4

𝐺𝑎
𝜇𝜈,0𝐺𝜇𝜈

𝑎,0 + ̄𝜓𝑖,0(𝑖𝛾𝜇𝜕𝜇 − 𝑚0)𝜓𝑖,0 − 𝑔0
̄𝜓𝑖,0𝛾𝜇(𝑇𝑎)𝑖𝑗𝐴𝑎

𝜇,0𝜓𝑗,0 (2.9)

with 𝐺𝑎
𝜇𝜈,0 = 𝜕𝜇𝐴𝑎

𝜈,0 − 𝜕𝜈𝐴𝑎
𝜇,0 + 𝑔0𝑓𝑎𝑏𝑐𝐴𝑏

𝜇,0𝐴𝑐
𝜈,0. The subscript 0 denotes again bare

quantities which need to be renormalized to get finite predicition for physical obersv-

ables. 𝜓𝑖,0 (𝑖 = 1, 2, 3) are the three quark fields, 𝑇𝑎 are the 𝑆𝑈(3) generators in the

fundamental representation. 𝐺𝑎
𝜇𝜈,0 denotes the gluon field strength tensor, constructed

out of the gluon fields 𝐴𝑎
𝜇,0 with 𝑓𝑎𝑏𝑐 being the structure constants of 𝑆𝑈(3).

In analogy to the QED case, one can carry out the regularization and renormalization

procedure and compute the beta-function for the effective coupling 𝛼𝑠(𝜇) = 𝑔2(𝜇)
4𝜋 to

first order in perturbation theory:

𝛽(𝛼𝑠(𝜇)) = (
2𝑛𝑓

3
− 11) 𝛼2

𝑠(𝜇)
2𝜋

≡ −𝛽0
𝛼2

𝑠(𝜇)
2𝜋

(2.10)

with 𝑛𝑓 the number of flavors. Hence, the beta-function is negative for 𝑛𝑓 < 17 which

includes the case of the standard model with six quark flavors. Since the beta-function

is negative, the strength of the coupling in QCD increases for lower energies, leading to

the confinement of quarks and gluons within hadrons. On the other hand, the coupling

strength becomes small at large energy scales. This phenomenon is known as asymptotic

freedom.

As in QED, one can compute the running of the effective coupling by solving the

corresponding differential equation given by the beta-function. In QCD, however,

it is not possible to fix the coupling at low energy as the theory becomes strongly

coupled. Instead, one chooses a different scale, typically the scale of the Z boson

(𝑚𝑍 ≈ 91.188GeV) where the strong coupling strength is experimentally determined

as 𝛼𝑠(𝑚𝑍) = 0.1179(10) [20]. One can then compute the running of the strong coupling

as

𝛼𝑠(𝜇) = 𝛼𝑠(𝑚𝑍)
1 + 𝛼𝑠(𝑚𝑍)𝛽0

4𝜋 ln 𝜇2

𝑚2
𝑍

. (2.11)

By computing the point at which the denominator in the above relation blows up, one

can estimate the scale Λ𝑄𝐶𝐷 at which perturbation theory breaks down in QCD [21]:

Λ𝑄𝐶𝐷 = 𝑚𝑍 exp(− 2𝜋
𝛽0𝛼𝑠(𝑚𝑍)

) ≈ 0.2GeV (2.12)

Below that energy scale QCD becomes strongly coupled, requiring new approaches

beyond perturbation theory. This naturally gives rise to the formulation of lattice

gauge theory, a non-perturbative regularization of quantum field theories.
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2.2 Path-integral formulation of lattice gauge theory

2.2 Path-integral formulation of lattice gauge

theory

Finding a gauge-invariant, non-perturbative regularization of quantum field theories,

in particular for QCD, led to the invention of lattice gauge theories. The theory is

placed on a lattice, thus naturally introducing a UV cutoff at a scale 1/𝑎 where 𝑎 is the

lattice spacing. Moreover, by using a finite lattice the theory can also be regulated in

the infrared. One remains with a finite number of degrees of freedom, making lattice

gauge theories amendable to numerical simulations.

To simplify the discussion, we will initially focus on the pure gauge sector of quan-

tum electrodynamics. Subsequently, we discuss the incorporation of fermions and the

extension to non-abelian gauge groups. The action of pure gauge quantum electrody-

namics is given by

𝑆QED[𝐴𝜇] = −1
4

∫ 𝑑4𝑥𝐹𝜇𝜈(𝑥)𝐹 𝜇𝜈(𝑥) (2.13)

with the usual definition of the field strength tensor, 𝐹𝜇𝜈(𝑥) = 𝜕𝜇𝐴𝜈(𝑥) − 𝜕𝜈𝐴𝜇(𝑥).
To find a lattice discretization one needs to define a lattice analogue of the gauge

field 𝐴𝜇(𝑥), a vector field. A natural candidate is a lattice gauge field 𝑈𝜇(𝑥) residing
on the links of the lattice, where 𝑥 denotes a lattice site and 𝜇 the direction in which

the link emanates. The connection between the continuum and the lattice is made by

the concept of a parallel transporter [22], given for neighboring lattice sites as

𝑈𝜇(𝑥) = 𝑒𝑖𝑔 ∫𝑎
0

𝑑𝑡𝐴𝜇(𝑥+𝑒𝜇𝑡) (2.14)

where 𝑒𝜇 denotes the unit vector in direction 𝜇 and 𝑔 the coupling constant. In contrast
to the continuum, where the gauge field 𝐴𝜇 takes values in the Lie algebra, 𝑈𝜇 is

described by elements of the compact gauge group. For the 𝑈(1) gauge group of QED

this means that the lattice gauge field 𝑈𝜇 takes values in 𝑈(1) whereas the gauge field
𝐴𝜇 takes values in ℝ.
The analogue of the field strength tensor 𝐹𝜇𝜈(𝑥) is a plaquette variable 𝑈𝜇𝜈(𝑥), con-

structed as the clockwise multiplication of the four link variables around the plaquette:

𝑈𝜇𝜈(𝑥) = 𝑈𝜇(𝑥)𝑈𝜈(𝑥 + 𝑒𝜇)𝑈†
𝜇(𝑥 + 𝑒𝜈)𝑈†

𝜈 (𝑥) (2.15)

In the following we will often denote the plaquette variables as 𝑈p. Out of these pla-

quette variables one can construct a lattice action that recovers the continuum action

in the limit of vanishing lattice spacing 𝑎 → 0:

𝑆cQED[𝑈𝜇] = 1
𝑔2 ∑

p

Re (1 − 𝑈p) = 1
𝑔2 ∑

p

(1 − cos(𝜃p)) (2.16)

where 𝜃p ∈ [0, 2𝜋) is the angle that describes 𝑈p = 𝑒𝑖𝜃p . The model defined by the

lattice action 𝑆cQED is known as compact QED, due to the compact nature of the gauge

link variables 𝑈𝜇(𝑥).
In analogy to the discussion for QED, one can define a lattice action for the pure

gauge sector of quantum chromodynamics by assigning to the link variables 𝑈𝜇(𝑥)
elements of the gauge group 𝑆𝑈(3). One arrives at an action of a similar form

𝑆QCD[𝑈𝜇] = 1
𝑔2 ∑

p

ReTr (1 − 𝑈p) . (2.17)
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2.2 Path-integral formulation of lattice gauge theory

where the trace is required to make the plaquette variable gauge-invariant. This action

is also known as the Wilson action [7].

Corrections to the continuum action come in at order 𝒪(𝑎2). Note that the choice

of lattice action is not unique, one can construct more complicated actions to improve

the convergence towards the continuum limit.

Given a lattice action 𝑆[𝑈𝜇], one can compute observables with the path-integral

formalism. Since the gauge field on the lattice takes values in a compact Lie Group

(here either 𝑈(1) or 𝑆𝑈(3)) there is a well-defined measure given by the Haar measure,

𝐷𝑈 = ∏𝑥,𝜇 𝑑𝑈𝜇(𝑥). Expectation values are of the form

⟨𝑂[𝑈𝜇]⟩ =
∫ 𝐷𝑈𝑂[𝑈𝜇]𝑒𝑖𝑆[𝑈𝜇]

∫ 𝐷𝑈𝑒𝑖𝑆[𝑈𝜇] . (2.18)

Since the oscillatory behavior of the action complicates the numerical evaluation, one

performs a Wick-rotation to imaginary time in order to get a convergent behavior:

𝑡 → −𝑖𝜏
𝑖𝑆[𝑈𝜇] → −𝑆𝐸[𝑈𝜇].

(2.19)

With the Euclidean action 𝑆𝐸[𝑈𝜇], the path-integral can be interpreted in terms of a

well-defined probability distribution 𝑝[𝑈𝜇]:

⟨𝑂[𝑈𝜇]⟩ =
∫ 𝐷𝑈𝑂[𝑈𝜇]𝑒−𝑆𝐸[𝑈𝜇]

∫ 𝐷𝑈𝑒−𝑆𝐸[𝑈𝜇] ≡ ∫ 𝐷𝑈𝑂[𝑈𝜇]𝑝[𝑈𝜇] (2.20)

with

𝑝[𝑈𝜇] = 𝑒−𝑆𝐸[𝑈𝜇]

∫ 𝐷𝑈𝑒−𝑆𝐸[𝑈𝜇] . (2.21)

This form of the path-integral is well-suited for Monte Carlo simulations [23, 24]. The

interpretation in terms of a probability distribution allows to generate a certain number

of samples 𝑈𝑖 (𝑖 = 1, .., 𝑁) from 𝑝(𝑈) and approximate the expectation values as

⟨𝑂⟩ = ∫ 𝑂(𝑈)𝑝(𝑈) ≈ 1
𝑁

𝑁
∑
𝑖=1

𝑂(𝑈𝑖). (2.22)

Over the last decades, advanced Monte Carlo algorithms have been developed to

sample the probability distributions corresponding to path-integrals in lattice gauge

theories. Their effectiveness in computing static properties in high-energy physics is

unmatched, as evidenced by the remarkable agreement between experimentally mea-

sured hadronic particle masses and their numerically computed values [11]. However,

the use of the action formalism comes with a limitation: because the action is defined

in Euclidean spacetime, simulating real-time evolution becomes extremely difficult.

For the study of dynamic phenomena, such as string-breaking in a confining theory,

other methods must be employed.

Moreover, additional problems arise upon the inclusion of fermions. We first discuss

free lattice fermions and then their coupling to a gauge field. To include fermions in the

path-integral, one uses the so-called Grassmann algebra which involves anticommuting

variables 𝜂𝑖 (𝑖 = 1, .., 𝑁) characterized by the anticommutation relations

{𝜂𝑖, 𝜂𝑗} = 𝜂𝑖𝜂𝑗 + 𝜂𝑗𝜂𝑖 = 0. (2.23)
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Importantly, one can formally define integration as

∫ 𝑑𝜂𝑖 = 0, ∫ 𝑑𝜂𝑖𝜂𝑖 = 1, ∫ 𝑑𝜂𝑖𝑑𝜂𝑗𝜂𝑖𝜂𝑗 = −1. (2.24)

Fermion fields can then be defined by assigning to every spacetime point 𝑥 two inde-

pendent Grassmann variables Ψ𝑥 and Ψ̄𝑥. An instructive integral to perform is

∫ 𝑑Ψ̄𝑥𝑑Ψ𝑥 exp (−𝑚Ψ̄𝑥Ψ𝑥) = ∫ 𝑑Ψ̄𝑥𝑑Ψ𝑥 (1 − 𝑚Ψ̄𝑥Ψ𝑥) = 𝑚 (2.25)

where we used the fact that the exponential terminates after the first order as Ψ2
𝑥 =

Ψ̄2
𝑥 = 0. Generalizing this integral to the whole spacetime lattice, results in expressions

of the form

∫ 𝐷Ψ̄𝐷Ψ exp (−Ψ̄𝑀Ψ) ≡ ∏
𝑥

∫ 𝑑Ψ̄𝑥𝑑Ψ𝑥 exp (−Ψ̄𝑥𝑀𝑥𝑦Ψ𝑦) = det𝑀. (2.26)

These types of Grassmann integrals can be used to construct discretized fermion ac-

tions.

One would like to approximate the Euclidean action of free Dirac fermions, whose

action is given by

𝑆Dirac[ ̄𝜓, 𝜓] = ∫ 𝑑4𝑥 ̄𝜓(𝑥) (𝛾𝜇𝜕𝜇 + 𝑚) 𝜓(𝑥). (2.27)

A straightforward, naive lattice discretization where the derivative is replaced by a

finite difference is

𝑆naive[Ψ̄, Ψ] = 𝑎4 ∑
𝑥,𝜇

1
2𝑎

(Ψ̄𝑥𝛾𝜇Ψ𝑥+𝑒𝜇
− Ψ̄𝑥+𝑒𝜇

𝛾𝜇Ψ𝑥) + ∑
𝑥

𝑚Ψ̄𝑥Ψ𝑥 (2.28)

where the Grassmann variables Ψ𝑥 and Ψ̄𝑥 implicitly have an additional spinor index

in analogy to the continuum Dirac spinor which has four components in four spacetime

dimensions. If one computes the lattice propagator for a fermion with momentum 𝑝𝜇

one obtains

⟨Ψ̄−𝑝Ψ𝑝⟩ = 1
𝑖
𝑎 ∑𝜇 𝛾𝜇 sin (𝑝𝜇𝑎) + 𝑚

. (2.29)

In the continuum limit one recovers the expected pole at 𝑝𝜇 = (𝑚, 0, 0, 0). However,
there are additional poles located at the corners of the Brillouin zone where the com-

ponents of the momentum vector can take the value 𝜋/𝑎 such that sin(𝑝𝜇𝑎) = 0. There-
fore, there are extra states in the spectrum that are not present in the continuum theory

and do not vanish in the continuum limit. This means that the naive lattice fermion ac-

tion does not result in the accurate continuum theory. The appearance of these extra

states in the lattice dispersion relation gives rise to 2𝑑 − 1 additional physical parti-

cles called fermion doublers, so in four spacetime dimensions there are 15 additional

fermion flavors.

When regularizing a continuum theory on the lattice one tries to preserve as many

symmetries of the continuum theory as possible. One of the strengths of lattice gauge

theory is its ability to preserve gauge invariance. Moreover, although space-time sym-

metries are explicitly broken down to discrete translations and rotations on the lattice,
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this is not a major issue as the full Poincaré symmetry of the continuum is recovered in

the continuum limit 𝑎 → 0. Additionally, discrete symmetries such as parity and charge

conjugation can be easily maintained on the lattice. The problem of fermion doubling

as described above is related to preserving chiral symmetry on the lattice. The core of

the problem is the Nielsen-Ninomiya theorem [25] which states that a chirally symmet-

ric free fermion lattice action, which is local, translation invariant and real necessarily

has fermion doubling. Hence, there are different formulations for fermions in lattice

gauge theory corresponding to different violations of the conditions of the theorem.

One can either prevent fermion doubling by explicitly breaking chiral symmetry. The

most prominent formulation in this regard are Wilson fermions [7]. On the other hand,

on can preserve chiral symmetry but partially break translational symmetry and reduce

the number of additional fermion flavors emerging in the continuum but not remove

them entirely. This description is known as staggered fermions [8]. Other fermion

formulations include Ginsparg-Wilson fermions [26] or domain wall fermions [27].

To give an explicit example of how fermion doubling can be prevented, we present

the formulation of Wilson fermions. The action is similar to the naive fermion action

but includes an additional term to cure the fermion doubling:

𝑆𝑊[Ψ̄, Ψ] = 𝑎4 ∑
𝑥,𝜇

1
2𝑎

(Ψ̄𝑥𝛾𝜇Ψ𝑥+𝑒𝜇
− Ψ̄𝑥+𝑒𝜇

𝛾𝜇Ψ𝑥) + ∑
𝑥

𝑚Ψ̄𝑥Ψ𝑥

+ 𝑎4 ∑
𝑥,𝜇

1
2𝑎

(2Ψ̄𝑥Ψ𝑥 − Ψ̄𝑥Ψ𝑥+𝑒𝜇
− Ψ̄𝑥+𝑒𝜇

Ψ𝑥) .
(2.30)

The fermion propagator corresponding to that action is slightly modified compared to

the naive action:

⟨Ψ̄−𝑝Ψ𝑝⟩ = 1
𝑖
𝑎 ∑𝜇 𝛾𝜇 sin (𝑝𝜇𝑎) + 𝑚 + ∑𝜇

2
𝑎 sin2 (𝑝𝜇𝑎

2 )
. (2.31)

The additional term in the action, the Wilson term, has the effect of a momentum-

dependent mass term. For small momenta the Wilson term is negligible, and thus

does not significantly impact the dispersion of the physical fermion, particularly in the

continuum limit. However, for the fermion doublers, which possess higher momenta,

the Wilson term becomes non-negligible and assigns a mass to them of the same order

as the lattice cutoff, 1/a. As a result, in the continuum limit, the fermion doublers are

effectively removed from the theory’s spectrum.

So far we have only considered free fermions. The same minimal coupling proce-

dure in the continuum to create gauge-invariant interactions between gauge fields and

fermions can also be applied on the lattice. The finite difference, approximating the

derivative in the fermion action, corresponds on the lattice to fermion hopping to a

neighboring site. The coupling procedure includes now the gauge field on the link in

that hopping process. To give an explicit example for this coupling procedure we give

the minimally coupled gauge-matter action for Wilson fermions which now involves a

gauge field 𝑈𝜇:

𝑆𝑊[Ψ̄, Ψ, 𝑈] = 𝑎4 ∑
𝑥,𝜇

1
2𝑎

(Ψ̄𝑥𝛾𝜇𝑈𝑥,𝜇Ψ𝑥+𝑒𝜇
− Ψ̄𝑥+𝑒𝜇

𝛾𝜇𝑈†
𝑥,𝜇Ψ𝑥) + ∑

𝑥
𝑚Ψ̄𝑥Ψ𝑥

+ 𝑎4 ∑
𝑥,𝜇

1
2𝑎

(2Ψ̄𝑥Ψ𝑥 − Ψ̄𝑥𝑈𝑥,𝜇Ψ𝑥+𝑒𝜇
− Ψ̄𝑥+𝑒𝜇

𝑈†
𝑥,𝜇Ψ𝑥) .

(2.32)
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2.3 Hamiltonian formulation of lattice gauge theory

The minimally coupled action above can be written in the very general form

𝑆𝑊[Ψ̄, Ψ, 𝑈] = Ψ̄𝑥𝑀𝑊[𝑈]𝑥𝑦Ψ𝑦. (2.33)

We will use this general form of the gauge-matter action, which also includes other

fermion formulations if the matrix 𝑀[𝑈] is adapted, to discuss the path-integral for the
full lattice gauge theory which will also include a pure gauge contribution 𝑆pg[𝑈] as
discussed above.

In order to evaluate an observable 𝑂[𝑈] which only depends on the gauge field 𝑈𝜇,

one needs to evaluate the path integral

⟨𝑂[𝑈]⟩ =
∫ 𝐷Ψ̄𝐷Ψ𝐷𝑈𝑂[𝑈]𝑒−𝑆pg[𝑈]−𝑆[Ψ̄,Ψ,𝑈]

∫ 𝐷Ψ̄𝐷Ψ𝐷𝑈𝑒−𝑆pg[𝑈]−𝑆[Ψ̄,Ψ,𝑈]

=
∫ 𝐷𝑈𝑂[𝑈]det𝑀[𝑈]𝑒−𝑆pg[𝑈]

∫ 𝐷𝑈det𝑀[𝑈]𝑒−𝑆pg[𝑈]

(2.34)

where we used in the second row the rules for Grassmann integrations from eq. (2.26).

We can in principle still interpret the path-integral in terms of a probability distribution

𝑝(𝑈):

𝑝(𝑈) = det𝑀[𝑈]𝑒−𝑆pg[𝑈]

∫ 𝐷𝑈det𝑀[𝑈]𝑒−𝑆pg[𝑈] . (2.35)

However, this is only possible if the determinant of 𝑀 is real-valued. When one modi-

fies the action to include a finite chemical potential for the fermions, this determinant

becomes complex, 𝑀[𝑈] ∈ ℂ. This results in the well-known sign-problem [12], and

the Monte Carlo approximation fails to converge. Instead of converging to the true

mean in 𝒪(1/
√

𝑁), the convergence becomes exponentially slow. This prevents the

study of many interesting non-perturbative pheonomena in quantum field theories, in

particular in quantum chromodynamics where it obstructs the understanding of parts

of the phase diagram related to high baryon density.

It is thus natural to look for frameworks beyond the path-integral formalism to study

lattice gauge theories. This leads us to the Hamiltonian formulation of lattice gauge

theory.

2.3 Hamiltonian formulation of lattice gauge

theory

At first sight, a Hamiltonian formulation of lattice gauge theorymight not seem suitable

as Lorentz symmetry is explicitly broken. However, it is eventually restored as the

system approaches the continuum limit. Moreover, the Hamiltonian formalism can be

directly connected to the path-integral formalism by the transfer matrix [28] which

provides a natural way to define a Hamiltonian from a Lagrangian or an action.

Before we demonstrate this procedure for lattice gauge theory, we provide some

intuition for the transfer matrix technique through its application to the simple example

of a harmonic oscillator. The Lagrangian for a harmonic oscillator is given by

ℒ[𝑥, ̇𝑥] = 1
2

̇𝑥2 − 1
2

𝜔𝑥2 (2.36)
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2.3 Hamiltonian formulation of lattice gauge theory

We discretize the time direction and perform a Wick rotation (as presented in the

previous section for convergence in the path-integral) to obtain a Euclidean action:

𝑆𝐸[𝑥, ̇𝑥] = 𝑎 ∑
𝑖

(1
2

(
𝑥𝑖+1 − 𝑥𝑖

𝑎
)

2
+ 𝜔2

2
𝑥2

𝑖 ) (2.37)

where 𝑥𝑖 denotes the coordinate of the harmonic oscillator on the 𝑖-th imaginary time

slice. The path integral has the form

𝑍 = ∫ ∏
𝑖

𝑑𝑥𝑖𝑒−𝑆𝐸[𝑥,�̇�]. (2.38)

Since the action is local in (imaginary) time the exponential factor only connects neigh-

boring time slices and can be written in the factorized way:

𝑍 = ∫ ∏
𝑖

𝑑𝑥𝑖𝑇𝑥𝑖+1𝑥𝑖
. (2.39)

The matrix 𝑇 is called the transfer matrix.

To connect to the Hamiltonian framework, one now constructs a Hilbert space. The

basis of the Hilbert space can be naturally chosen as the one corresponding to the

variables in which the path integral is formulated, here the position basis:

̂𝑥 |𝑥⟩ = 𝑥 |𝑥⟩ . (2.40)

By considering the operator that generates translations in that basis, here the momen-

tum operator ̂𝑝,
𝑒−𝑖�̂�𝑥0 |𝑥⟩ = |𝑥 + 𝑥0⟩ , (2.41)

one obtains a pair of canonical variables, [ ̂𝑥, ̂𝑝] = 𝑖. In this Hilbert space one can define
the transfer operator ̂𝑇 via the matrix elements 𝑇𝑥𝑖+1𝑥𝑖

as

𝑇𝑥𝑖+1𝑥𝑖
= ⟨𝑥𝑖+1∣ ̂𝑇∣𝑥𝑖⟩ (2.42)

For a lattice that is finite in the time direction with 𝑁 time slices and periodic boundary

conditions one can therefore describe the path-integral with the transfer operator as

𝑍 = Tr( ̂𝑇 𝑁) (2.43)

The path-integral formulation is recovered from the equation above by inserting 𝑁
times the identity represented in the position basis. If we take the continuum limit in

the imaginary time direction, 𝑎 → 0, the path-integral can be related to a Hamiltonian

by

𝑍 = Tr(𝑒−𝛽𝐻). (2.44)

This allows to identify the linear term in 𝑎 when taking the logarithm of the transfer

operator as the Hamiltonian:

̂𝑇 = exp (−𝑎𝐻 + 𝒪(𝑎2)) . (2.45)

The transfer matrix for the harmonic oscillator is easily constructed by rewriting the

kinetic term in the action as

̂𝑇 = ∫ 𝑑𝑥0 𝑒− 1
2𝑎 𝑥2

0𝑒−𝑖�̂�𝑥0𝑒−𝑎𝜔2�̂�2/2

=
√

2𝜋𝑎 𝑒−𝑎�̂�2/2𝑒−𝑎𝜔2�̂�2/2

=
√

2𝜋𝑎 𝑒−𝑎𝐻+𝒪(𝑎2)

(2.46)
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2.3 Hamiltonian formulation of lattice gauge theory

with 𝐻 = 1
2 ( ̂𝑝2 + 𝜔2 ̂𝑥2) the standard Hamiltonian for the harmonic oscillator.

We now turn to lattice gauge theory. For simplicity, we restrict ourselves to the

pure gauge sector of compact QED. First, it is necessary to partially fix the gauge. In

the path-integral formalism this was not required since all integrals over the gauge

fields are over a compact domain as the gauge group is compact. Hence, no infinites

arise from integrating over all gauges. In a Hamiltonian framework, due to the need to

quantize, we need to fix the gauge. The appropriate choice, as will become clear in a

moment, is the temporal gauge 𝐴0 = 0, respectively 𝑈0 = 1. Thus, from now on we will

label the unfixed gauge fields along the spatial directions as 𝑈𝑖 (𝑖 = 1, 2, 3). We also

explicitly separate the (imaginary) time dependence 𝜏 from the spatial dependence

⃗𝑥, denoting gauge links as 𝑈𝑖(𝜏, ⃗𝑥). Moreover, we will use the description of 𝑈(1)
elements in terms of the compact angles 𝜃𝑖(𝜏, ⃗𝑥) ∈ [0, 2𝜋),

𝑈𝑖(𝜏, ⃗𝑥) = 𝑒𝑖𝜃𝑖(𝜏,�⃗�). (2.47)

If we write the Euclidean action for compact QED, as given in eq. (2.16), in the

temporal gauge, we obtain

𝑆cQED[𝜃𝑖] = 𝑎0
𝑎𝑔2 ∑

p,spacelike
(1 − cos(𝜃p)) + 𝑎

𝑎0𝑔2 ∑
𝜏,�⃗�,𝑖

(1 − cos (𝜃𝑖(𝜏, ⃗𝑥) − 𝜃𝑖(𝜏 + 𝑎0, ⃗𝑥)))

(2.48)

where 𝑎0 is the lattice spacing in time direction and 𝑎 in space directions. We choose

them anisotropically as we want to take the limit 𝑎0 → 0 at the end. This splits the

action into two parts. The first part involves spacelike plaquettes which only contain

gauge fields on spatial links and has the same form as the original action in eq. (2.16)

without gauge fixing. The second part involves timelike plaquettes that contain two

spatial links and two links in the time direction. Since the links in time direction are

fixed to the identity due to the temporal gauge, only two unfixed spatial gauge fields

remain.

We now want to identify the transfer operator ̂𝑇cQED in analogy to the harmonic

oscillator example above:

𝑍 = ∫ 𝐷𝜃 𝑒−𝑆cQED[𝜃𝑖] = Tr( ̂𝑇 𝑁
cQED). (2.49)

For that we first construct the Hilbert space, considering for the moment only the

Hilbert space of a single link. We choose, in analogy to the position basis, the group

element basis {|𝑈⟩} with 𝑈 ∈ 𝑈(1), respectively {|𝜃⟩} with 𝜃 ∈ [0, 2𝜋), such that:

̂𝜃 |𝜃⟩ = 𝜃 |𝜃⟩
̂𝑈 |𝑈⟩ = 𝑈 |𝑈⟩ .

(2.50)

Similarly to the momentum operator, one can define an operator ̂𝐸 that generates shifts

in 𝜃 such that
𝑒−𝑖�̂�𝑎 |𝜃⟩ = |𝜃 + 𝑎⟩ (mod 2𝜋)

𝑒−𝑖�̂�𝑎 ∣𝑈 = 𝑒𝑖𝜃⟩ = ∣𝑈 ′ = 𝑒𝑖(𝜃+𝑎)⟩ .
(2.51)

̂𝜃 and ̂𝐸 fulfill the canonical commutation relations [ ̂𝜃, ̂𝐸] = 𝑖. To extend the above

discussion from a single link Hilbert space ℋx,𝑖 to the gauge field Hilbert space ℋ𝑔 for

the whole lattice, we construct a tensor product of all spatial links,

ℋ𝑔 = ⨂
x,𝑖

ℋx,𝑖. (2.52)
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2.3 Hamiltonian formulation of lattice gauge theory

Note that the tensor product only involves spatial links x, 𝑖 with 𝑖 = 1, 2, 3 as the

temporal links were eliminated by gauge fixing. We can write down the more general

commutation relations for gauge field operators on the whole lattice:

[ ̂𝜃x,𝑖, ̂𝐸y,𝑗] = 𝑖𝛿xy𝛿𝑖𝑗

[ ̂𝑈x,𝑖, ̂𝐸y,𝑗] = − ̂𝑈x,𝑖𝛿xy𝛿𝑖𝑗.
(2.53)

From now on we will sometimes use the shorthand notation |𝜃⟩ ≡ ⊗x,i ∣𝜃x,𝑖⟩ to denote

the state of the gauge field on the whole lattice in the group element basis.

The transfer matrix can be written as

⟨𝜃′| ̂𝑇cQED|𝜃⟩ = exp(− 𝑎0
𝑎𝑔2 ∑

p,spacelike
(1 − cos(𝜃p))) ×

exp(− 𝑎
𝑎0𝑔2 ∑

�⃗�,𝑖
(1 − cos (𝜃𝑖( ⃗𝑥) − 𝜃′

𝑖( ⃗𝑥))))
(2.54)

We can now, in analogy to the harmonic oscillator example, use the momentum oper-

ator, here the electric field operator, to express the transfer operator as

̂𝑇cQED = exp(− 𝑎0
𝑎𝑔2 ∑

p,spacelike
(1 − cos( ̂𝜃p))) ×

∏
x,𝑖

∫ 𝑑𝑎x,𝑖 exp (−𝑖 ̂𝐸x,𝑖𝑎x,𝑖) exp(− 𝑎
𝑎0𝑔2 ∑

x,𝑖
(1 − cos (𝑎x,𝑖)))

(2.55)

If 𝑎0 → 0 the integrals over 𝑎x,𝑖 are dominated by 𝑎x,𝑖 near the maximum at 𝑎x,𝑖 = 0,
thus allowing to Taylor expand,

cos (𝑎x,𝑖) = 1 − 1
2

(𝑎x,𝑖)2 + 𝒪 ((𝑎x,𝑖)4) , (2.56)

and approximate the integrals as

∏
x,𝑖

∫ 𝑑𝑎x,𝑖 exp (−𝑖 ̂𝐸x,𝑖𝑎x,𝑖) exp(− 𝑎
𝑎0𝑔2 ∑

x,𝑖
(1 − cos (𝑎x,𝑖)))

→
𝑎0→0

∏
x,𝑖

∫ 𝑑𝑎x,𝑖 exp (−𝑖 ̂𝐸x,𝑖𝑎x,𝑖) exp(− 𝑎
2𝑎0𝑔2 ∑

x,𝑖
𝑎2
x,𝑖) ∼ 𝑒−𝑎0

𝑔2
2𝑎 ∑

x,𝑖 𝐸2
x,𝑖

(2.57)

Reading off the Hamiltonian as the first order in 𝑎0 in the logarithm of ̂𝑇cQED, results

in the well-known Kogut-Susskind Hamiltonian [8]:

𝐻cQED = 𝑔2

2𝑎
∑
x,𝑖

̂𝐸2
x,𝑖 + 1

𝑔2𝑎
∑
p

(1 − cos( ̂𝜃p)) (2.58)

The transfer matrix method shows that the Euclidean path integral formulation and the

Hamiltonian formalism are intimately related. At first sight this was not necessarily

obvious as the Hamiltonian is not Lorentz invariant. Therefore, computations can be

performed equivalently in each framework.
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2.3 Hamiltonian formulation of lattice gauge theory

A few comments are in order regarding gauge transformations. In the beginning, we

fixed the temporal gauge 𝐴0 = 0 which eliminated time-dependent gauge transforma-

tions. However, there is a residual gauge freedom corresponding to space-dependent

gauge transformations. Intuitively, one can think about it with the analogy of the

photon, which is described by a vector field 𝐴𝜇 having four components. However,

there are only two physical degrees of freedom, the two transverse polarizations. After

having eliminated the timelike component by 𝐴0 = 0, there is still an unphysical part

present in form of the longitudinal component of the photon. The lattice gauge theory

analogue that restricts our theory to the physical, transverse subspace is the Gauss law

which needs to be fulfilled for states to be physical. For the pure gauge sector, it is

defined by the Gauss law operators 𝐺x:

̂𝐺x =
3

∑
𝑖=1

( ̂𝐸x,𝑖 − ̂𝐸x−e𝑖,𝑖) . (2.59)

Physical states |phys⟩ must be eigenstates of all Gauss law operators

̂𝐺x |phys⟩ = 𝑞x |phys⟩ ∀x (2.60)

where eigenvalues 𝑞x correspond to different static charge configurations.

The transfer matrix method can be performed in an analogous way for the Wilson

action of lattice QCD, 𝑆QCD[𝑈𝜇], given in eq. (2.17). The Hilbert space is constructed

in a similar way with the 𝑈(1) gauge group replaced by 𝑆𝑈(3). The shifts, or rather

roations on 𝑆𝑈(3), are generated by the generators 𝑇 𝑎 of 𝑆𝑈(3) which allows to define
conjugate momentum operators analogous to the electric operator ̂𝐸 for the 𝑈(1) case.
The resulting Hamiltonian formulation for the pure gauge sector of lattice QCD is

𝐻QCD = 𝑔2

2𝑎
∑
x,𝑖

𝐿2
x,𝑖 − 1

𝑔2𝑎
∑
p

Tr ( ̂𝑈p + ̂𝑈†
p) (2.61)

where 𝐿2 corresponds to the quadratic Casimir operator for 𝑆𝑈(3).
The transfer matrix method can also be used to connect the path-integral and the

Hamiltonian formulation in the presence of dynamical fermions. The discussion of

fermions on the lattice in the previous section applies in the same way to the Hamil-

tonian framework with the slight difference that the severity of the fermion doubling

problem is reduced as the dimensionality is reduced from 𝐷 = 𝑑 + 1 to 𝑑.
In the following, we will focus on one specific formulation of lattice fermions, namely

staggered fermions as that formulation will be used quite extensively throughout the

thesis. In the staggered fermion discretization, each lattice point is associated with a

single fermionic degree of freedom, as opposed to the four degrees of freedom associ-

ated with a Dirac spinor. The staggered fermions have a reduced symmetry compared

to the continuum Dirac basis, but still retain a residual chiral symmetry, which al-

lows to study interesting observables such as chiral condensates. By using a staggered

structure, such that the model is only invariant under shifts by two lattice sites, the

fermion doubling problem can be reduced. In one dimensions it can even be resolved

completely.

We consider staggered fermions in the context of compact QED, whose Hamiltonian

for the pure gauge sector is given in eq. (2.58). Upon coupling to several flavors 𝜓𝛼 of
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2.4 Existing methods and limitations

staggered fermions, the Hamiltonian takes the form:

𝐻 =𝑔2

2𝑎
∑
x,𝑖

̂𝐸2
x,𝑖 + 1

𝑎𝑔2 ∑
p

(1 − cos( ̂𝜃p))

− 𝑡 ∑
x,𝑖,𝛼

𝜓†
x,𝛼𝑒𝑖 ̂𝜃x,𝑖𝜓x+e𝑖,𝛼 + ℎ.𝑐.

+ ∑
x,𝛼

(𝑚(−1)x + 𝜇𝛼) 𝜓†
x,𝛼𝜓x,𝛼

(2.62)

It includes a staggered mass term with mass 𝑚 and chemical potentials 𝜇𝛼 for the

different fermion flavors 𝜓𝛼. Due to the appearance of dynamical charges, the Gauss

law operator for pure gauge in eq. (2.59) is modified as

̂𝐺x = ∑
𝑖

( ̂𝐸x,𝑖 − ̂𝐸x−e𝑖,𝑖) − �̂�stag,x (2.63)

with the staggered charge �̂�stag,x defined as

�̂�stag,x =
𝑁𝑓

∑
𝛼=1

(𝜓†
x,𝛼𝜓x,𝛼 − 1

2
(1 + (−1)x)) . (2.64)

This Hamiltonian provides the possibility due to the finite chemical potentials to study

regimes which are in a Euclidean Monte Carlo simulation affected by the sign-problem.

Thus, this formulations provides in principle the possibility to use Hamiltonian many-

body methods to overcome the sign-problem, as will be discussed in the next section.

2.4 Existing methods and limitations

Having discussed the Hamiltonian framework, we proceed to examine different tech-

niques that have been employed within it and the difficulties that emerge when work-

ing in higher dimensions, which is the primary focus of this thesis. Two types of

Hamiltonian methods are distinguished: quantum simulation methods which are based

on recent developments in building powerful quantum devices, and classical methods

based on the variational principle that involve constructing efficient ansatz states to

capture the relevant physical behavior of the model.

2.4.1 Quantum simulation

We begin with an exploration of quantum simulation methods, discussing the basic

idea and various schemes that can be employed to simulate lattice gauge theories. The

objective of quantum simulation is to achieve a better understanding of intricate phys-

ical quantum systems that are computationally challenging or unfeasible to solve on

classical computers. In the 1980’s, Richard Feynman laid the foundation for this inter-

disciplinary field, where he predicted the enormous potential of precisely controllable

quantum systems to solve complex quantum physics problems. Quantum simulation

has diversified into various fields, including quantum optics, condensed matter physics

and high-energy physics, which will be our focus here. Researchers are investigating
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2.4 Existing methods and limitations

and utilizing different systems for quantum simulation, such as ion chains, supercon-

ducting circuits or ultracold atoms in optical lattices [29].

Quantum simulations can be divided based on their simulation scheme into analog

and digital quantum simulations. An analog quantum simulator is a physical system

that can mimic the behavior of the quantum system that one wants to study by engi-

neering the interactions between its constituent particles. In other words, an analog

quantum simulator does not implement a specific quantum algorithm but rather repli-

cates the behavior given by the full Hamiltonian one is interested in.

On the other hand, digital simulation schemes simulate the Hamiltonian in a sequen-

tial order which is based on the Trotter formula [30]. For a Hamiltonian consisting of

two parts, 𝐻 = 𝐻1 + 𝐻2, the unitary evolution can be rewritten as

𝑒−𝑖(𝐻1+𝐻2)𝑡 = lim
𝑁→∞

(𝑒−𝑖𝐻1𝑡/𝑁𝑒−𝑖𝐻2𝑡/𝑁)𝑁 . (2.65)

Quantum devices that can implement 𝐻1 and 𝐻2 separately, can in this way also ap-

proximate the behavior of the full Hamiltonian 𝐻. A quantum device that can imple-

ment a universal set of Hamiltonians, more specifically that can perform an arbitrary

quantum operation on a set of qubits, is called a quantum computer [31]. Quantum

computers require, due to the sensitivity of quantum devices to noise and decoherence,

an error correction procedure, called quantum error correction, crucial for building

large-scale, fault-tolerant quantum computers [32]. However, the current capabili-

ties of quantum devices are often summarized in the term NISQ, standing for noisy,

intermediate-scale quantum era [33]. They contain on the order of 100 qubits and are

not yet advanced enough for fault-tolerance.

Current experiments aiming for quantum simulations of lattice gauge theories are

thus mainly based on analog quantum simulation schemes. The implementation of

quantum simulators has been demonstrated in one dimension using trapped ions and

ultracold atoms [34–38].

The problems in higher dimensions are related to the magnetic interaction term in

the Hamiltonian, given for compact QED as (see eq. (2.58)):

𝐻𝐵 = 1
𝑔2𝑎

∑
p

Re (1 − 𝑈p) (2.66)

where the plaquette interactions 𝑈p = 𝑈1𝑈2𝑈†
3 𝑈†

4 involves all four gauge fields around

the plaquette. Such four-body interactions are difficult to implement in quantum sim-

ulators or quantum computers as typically two-body interactions or two-qubit gates

are available. One can thus obtain the four-body interactions effectively in perturba-

tion theory but this allows typically only to reach low coupling strength [39, 40]. An

alternative is to introduce auxiliary degrees of freedom which allows to mediate the

four-body interactions at higher coupling strength but this requires more experimental

effort [4, 41, 42].

Another problem for quantum simulation techniques is that quantum platforms, in

particular the ones aiming to build quantum computers, are based on a local Hilbert

space of dimension two, representing a qubit. This is suitable for studying many mod-

els in condensed matter systems, as the degrees of freedom are often spins. However,

in high-energy physics the local Hilbert space of the gauge field is infinite-dimensional,

posing a significant challenge for quantum simulators. One can aim at building quan-

tum devices that have a larger local Hilbert space, but ultimately some kind of trunca-

tion is required. This can either mean to truncate the Hilbert space in the Hamiltonian
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formulation presented in the previous section, or define a new Hamiltonian formula-

tion of lattice gauge theories that is from the beginning based on finite-dimensional

Hilbert spaces, such as quantum link models [43–46]. Both approaches will require

an extrapolation procedure to a limit with an infinite-dimensional Hilbert space. Clas-

sical, variational methods, where the infinite-dimensional gauge field Hilbert space

can in principle be captured, can provide valuable assistance in this regard, allow-

ing to benchmark different truncation methods for quantum simulators directly in the

Hamiltonian framework.

2.4.2 Variational methods

Another way to overcome the issue of exponential scaling in computational methods is

through variational approaches. Rather than examining the entire Hilbert space, these

methods consider a parameterized subset of the space, with the aim of finding the

closest approximation to the ground state (variational states can also be used to study

real-time dynamics and other phenomena). Ansatz states, which are parameterized by

a set of parameters 𝛾, are optimized to minimize the energy expectation value, i.e.

min
𝛾

𝐸𝛾 = min
𝛾

⟨Ψ𝛾∣𝐻∣Ψ𝛾⟩
⟨Ψ𝛾∣Ψ𝛾⟩

. (2.67)

The variational principle ensures that the approximated energy can never be lower than

the actual ground state. The quality of the approximation of the minimized variational

ground state energy to the exact ground state is heavily reliant on the choice of ansatz

states. Hence, it is crucially important, to heavily benchmark a variational method in

regimes where the ground state is known (e.g. for very small system sizes or regimes

where other methods give reliable results).

In the following, we will discuss one common type of variational ansatz, namely

tensor networks, which have been successfully applied in many areas of many-body

physics. In the context of lattice gauge theory, they have shown great results in par-

ticular in the study of one-dimensional lattice gauge theories, even in regimes which

are otherwise affected by the sign-problem.

We will therefore focus on their one-dimensional version, matrix product states

(MPS). Similarly as quantum simulators, they are constructed for theories with a local

Hilbert space with finite dimension 𝑑. We will therefore denote it by a spin variable

𝑠𝑖. A general state in that basis can be defined as

|Ψ⟩ = ∑
𝑠1,..,𝑠𝑁

𝑐𝑠1..𝑠𝑁
|𝑠1..𝑠𝑁⟩ . (2.68)

The resources to describe such a state exactly scale exponentially with system size. An

MPS approximates the coefficients 𝑐𝑠1..𝑠𝑁
as

|Ψ𝑀𝑃𝑆⟩ = ∑
𝑠1,..,𝑠𝑁

∑
𝑎1,..,𝑎𝑁

𝐴𝑠1𝑎1𝑎2𝐴𝑠2𝑎2𝑎3 ..𝐴𝑠𝑁−1𝑎𝑁−1𝑎𝑁𝐴𝑠𝑁𝑎𝑁𝑎1 |𝑠1..𝑠𝑁⟩ (2.69)

where the matrices 𝐴𝑠𝑖𝑎𝑖𝑎𝑖+1 define the MPS, hence the name matrix product states. We

assumed periodic boundary conditions for the matrices 𝐴. The upper index 𝑠𝑖 corre-

sponds to the physical index, having 𝑑 entries. The virtual indices 𝑎𝑖 have 𝐷 entries

and are only used to construct the MPS as they are summed over, often referred to as
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contraction of the MPS. The parameter 𝐷 is called the bond dimension, quantifying

the extent of variational parameters that one wants to include, which can in turn be

related to the entanglement properties of the state |Ψ𝑀𝑃𝑆⟩. The scaling of the number

of parameters with system size is 𝒪(𝑁𝑑𝐷2) instead of a scaling of 𝒪(𝑑𝑁) for the number

of coefficients 𝑐𝑠1..𝑠𝑁
. This demonstrates the general concept in variational methods

of trying to describe the exponentially many parameters of a state in terms of a set of

physically relevant parameters, that only scale polynomially with system system size.

Further details on matrix product states and tensor networks can be found in [47].

The way in which matrix product states were used for one-dimensional lattice gauge

theories was by first reformulating the lattice gauge theory in terms of gauge-invariant

variables. The local Gauss’ law constraints for the physical subspace of the Hilbert

space allow in one dimension to completely fix the gauge field in terms of the charge

configuration. One remains with a purely fermionic theory that exhibits long-range

interactions. Using a Jordan-Wigner transformation, one can map the fermions to

spins, resulting in a formulation very suitable for matrix product states [17].

In higher dimensions such a reformulation will only be able to reduce the number

of gauge fields but not eliminate them completely, as will be shown in chapter 3. This

reestablishes the requirement to deal with the infinite-dimensional gauge field Hilbert

space in two and more spatial dimensions, making higher-dimensional lattice gauge

theories qualitatively different to one dimensional theories.

Hence, for higher-dimensional lattice gauge theories new variational methods are

desirable that do not require any kind of truncation, which will be one of the central

goals of this thesis.
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3 Gauge-redundancy free
formulations of compact QED
with dynamical fermions in
higher dimensions

3.1 Motivation

Gauge theories form a fundamental aspect of modern physics, serving as the mecha-

nism for mediating interactions in the standard model of particle physics [5, 48]. De-

spite their crucial role in physics, they pose a significant challenge due to their strongly

coupled nature that necessitates the use of non-perturbative techniques. Lattice gauge

theories [7, 8] have been a useful tool for studying gauge theories for decades by dis-

cretizing them on a lattice, thus providing a non-perturbative framework for numerical

simulations using quantum Monte Carlo. The numerical computations are performed

in a Wick-rotated, Euclidean spacetime. There are two significant restrictions related

to this approach. One such limitation is the inability to observe real-time dynamics

directly in Euclidean spacetime. The other limitation is the sign-problem [12] that ob-

structs the study of various crucial physical phases in gauge theories such as quantum

chromodynamics with a finite chemical potential [49, 50].

As discussed in section 2, lattice gauge theories can be formulated either on a dis-

cretized spacetime or a discretized space [7, 8]. The former is suitable for the path

integral, action formalism, which is widely used for Monte-Carlo computations [11].

The latter is better suited for a Hamiltonian approach.

Over the past decade, there has been increased interest in Hamiltonian formulations

of lattice gauge theories, partly due to the development of new techniques in quantum

many-body physics that may help overcome the limitations of the action formalism.

One such technique involves quantum simulation [14, 29], which maps lattice gauge

theories into controllable quantum devices, such as cold atoms, trapped ions, or super-

conducting qubits, enabling laboratory experiments that could potentially overcome

the difficulties posed by strongly coupled nature and the sign-problem [15, 35–38, 51–

53]. Classical computation with variational ansatz states, such as tensor networks, is

another approach that aims to find efficiently computable classes of states that capture

the relevant features of the theory [15, 53, 54].

Gauge theories impose local constraints, known as Gauss’ laws, on physical states.

These constraints have important implications for both quantum simulations and clas-

sical computations with variational states. In quantum simulations, experimental er-

rors must be carefully controlled to prevent violations of gauge invariance [55, 56].

In classical computations, the local constraints must be incorporated into the varia-

tional ansatz, which can make it more challenging to find suitable ansatz states. While

these constraints can be helpful in some cases for constructing variational states, they
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3.1 Motivation

generally make the process more difficult.

One way to avoid issues related to local constraints in gauge theories is to formulate

them directly in terms of gauge-invariant variables. This approach would ensure that

gauge invariance is robust against experimental errors in quantum simulations and

would provide a wider class of ansatz states for variational computations. In addition,

the required computational resources related to the full Hilbert space are reduced to the

physical subspace. It would be advantageous to find gauge-invariant formulations that

preserve the original symmetries as much as possible. Previous works in this area have

primarily focused on (1 + 1)-dimensional lattice gauge theories with dynamical matter

and pure gauge theories in 2+1 dimensions [57–61]. The local gauge constraints have

also been used to eliminate the matter degrees of freedom from the theory, including

in the Abelian Higgs model [62, 63], where unitary gauge fixing is used, as well as in

recent extensions to fermionic scenarios [64, 65].

The work presented in this chapter aims at extending these gauge-redundancy-free

descriptions to higher dimensions including dynamical matter for compact quantum

electrodynamics while preserving most of the symmetries of the original theory, in

particular translational invariance. We demonstrate a method of expressing compact

QED in two and three space dimensions using dual plaquette variables, which helps to

reduce the number of local constraints. This method allows for the removal of all local

constraints in two space dimensions, and for the constraints to not involve matter in

three dimensions. It utilizes a decomposition of lattice vector fields into longitudinal

and transverse parts, enabling the decoupling of matter from the constraints by a uni-

tary transformation. The gauge-invariant matter degrees of freedom after the unitary

transformation interact according to a lattice analogue of Coulomb’s law.

The content of this chapter is based on Ref. [1].
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3.2 Executive summary

Hamiltonian methods, both classical and quantum simulations, for lattice gauge the-

ory, face the problem of dealing with the local gauge constraints, the Gauss’ law con-

straints. Gauge-invariant formulations can help on the classical side by enlarging the

set of possible classes of variational states and on the quantum simulation side by re-

moving the need for making sure that gauge invariance is not broken experimentally.

We extend the range of gauge-invariant formulations to higher-dimensional theories

with dynamical matter, whereas previous gauge-invariant descriptions were formu-

lated either in one dimension or, when considering higher dimensions, were focused

on the pure gauge theory without dynamical fermions. The presentedmethod can elim-

inate gauge-redundancies in compact quantum electrodynamics coupled to dynamical

matter in two and three spatial dimensions, while preserving translational invariance.

In a first step, the Hamiltonian undergoes a unitary transformation to a rotating

frame, in which the matter degrees of freedom become decoupled from the gauge

constraints. The intuition behind this unitary transformation lies in the structure of

the Gauss law, which involves charges on lattice sites and gauge fields on adjacent

links. By examining this relation, it becomes apparent that the longitudinal part of the

gauge field is completely determined by the charge configuration. The longitudinal

component on the lattice can be defined in similar way to the continuum version where

it is given by the Helmholtz decomposition. The separation of a vector field on the

lattice, i.e. a field defined on the links of a lattice, into a longitudinal (curl-free) part

and a transverse (divergence-free) component will be a key ingredient of the gauge-

invariant formulation.

Even though the longitudinal part of the gauge field is not dynamical, it still ap-

pears in several places in the Hamiltonian. Note that in contrast to static charges,

incorporating dynamical matter poses an additional challenge due to the presence of

gauge-matter interactions that involve the longitudinal component of the gauge field,

whereas only the transverse component contributes to the magnetic Hamiltonian. The

frame the unitary transformation rotates to is therefore one in which the longitudinal

part of the gauge field vanishes in the Hamiltonian, i.e. we rotate to a frame where

Coulomb gauge holds in the physical subspace. Such a transformation is not required

in pure gauge theories.

After the transformation the Hamiltonian only depends on the transverse part of the

gauge field. This alone, however, is not useful for a gauge-invariant description as the

definition of transverse degrees of freedom is non-local in terms of the original degrees

of freedom.

Therefore, in a second step, it is shown how the transverse degrees of freedom can be

represented by dual variables residing on the plaquettes. We present two versions of

such a dual formulation. The intuition is again similar to the continuum where trans-

verse components of a vector field can be represented as curls of the vector potential.

The lattice analogue is a plaquette field, for which one can define a lattice curl, such

that the tranverse component on a link can be expressed by the difference between

the plaquette field corresponding to the two neighboring plaquettes of that link. One

can show that these plaquette variables have similar properties as the link variables

w.r.t. the Hilbert space and commutation relations. Formulating the Hamiltonian in

terms of these new plaquette variables leads to a gauge-invariant description in two

dimensions. In three dimensions, these plaquette variables still have to fulfill some
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constraints related to all plaquettes of the same cube. The matter degrees of freedom,

however, are completely gauge-invariant.

The rest of the chapter is structured as follows: in section 3.3, we provide some

lattice vector calculus that is required for our procedure, in particular how the lattice

analogue of the Helmholtz decomposition is constructed. In section 3.4, we explain in

more detail the unitary transformation that enables the separation of the longitudinal

and transverse components of the gauge field, eliminating the matter from the con-

straints. In section 3.5, we demonstrate in two dimensions how to express the trans-

formed model using dual variables and describe the interactions between the dual,

gauge-invariant variables. In section 3.6, we discuss the extension of the model to

three spatial dimensions and compare it to the two-dimensional case, highlighting the

differences between them.
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3.3 Lattice vector calculus for compact QED

We focus for the moment on (2+1)-dimensional compact QED with dynamical matter,

i.e. a compact 𝑈(1) gauge field coupled to some dynamical fermions, such as in Kogut

and Susskind’s formulation [8] as presented in section 2.3. The discussion is applica-

ble to both periodic and open boundary conditions. In the following, we will use an

𝑁 × 𝑁 lattice sites with periodic boundary conditions. Any differences that arise with

open boundary conditions, where the lattice is made up of (𝑁 + 1) × (𝑁 + 1) sites,

corresponding to 𝑁 × 𝑁 plaquettes, will be mentioned throughout the chapter.

3.3.1 The Lattice

The matter degrees of freedom reside on the sites of the lattice, labeled for periodic

boundary conditions by integers x = (𝑥1, 𝑥2) ∈ {0, .., 𝑁 − 1}2 (for open boundary

conditions (𝑥1, 𝑥2) ∈ {0, .., 𝑁}2), while the gauge fields - on the links, labeled by the

site x from which they emanate and a direction 𝑖 = 1, 2 to which they extend. The link

labeled by x, 𝑖 connects the site x with the site x+ ̂e𝑖, where ̂e𝑖 is a unit vector pointing

in the positive 𝑖 direction.
We consider three different kinds of lattice fields: Fields 𝑓 (x), residing on the lattice

sites x (such as matter fields or scalar fields), vector fields F (x), whose components

𝐹𝑖 (x) reside on the links of the lattice (such as vector potentials and electric fields)

and pseudovector fields 𝐵(x) (such as the magnetic field), residing on the plaquettes

(denoted by the site x at the bottom left corner).

We define difference operators - forward

Δ(+)
𝑖 𝑓 (x) = 𝑓 (x + ̂e𝑖) − 𝑓 (x) (3.1)

and backward

Δ(−)
𝑖 𝑓 (x) = 𝑓 (x) − 𝑓 (x − ̂e𝑖) (3.2)

(acting similarly on vector and pseudovector fields). Out of those, we can construct

the lattice versions of the central differential operators in vector calculus:

1. The gradient of a scalar field on the lattice sites is a vector field on the links,

involving the field’s value on the links ends:

(∇𝑓 (x))𝑖 = Δ(+)
𝑖 𝑓 (x) = 𝑓 (x + ̂e𝑖) − 𝑓 (x) (3.3)

2. The divergence of a vector field on the links is a scalar field on the lattice sites.

Its value on a site involves the values of the vector components of all the links

surrounding it:

∇ ⋅ F (x) = Δ(−)
𝑖 𝐹𝑖 (x) = ∑

𝑖
(𝐹𝑖 (x) − 𝐹𝑖 (x − ̂e𝑖)) (3.4)

3. The Laplacian of a scalar field or a component of another field is given by com-

bining the gradient and the divergence (see Fig. 3.1):

∇2𝑓 (x) = Δ(−)
𝑖 Δ(+)

𝑖 𝑓 (x) = ∑
𝑖

(𝑓 (x + ̂e𝑖) + 𝑓 (x − ̂e𝑖)) − 4𝑓 (x) (3.5)
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−4𝑓(x) 𝑓(x + e1)

𝑓(x + e2)

𝑓(x − e2)

𝑓(x − e1)

𝐹1(x)

−𝐹2(x)

−𝐹1(x + e2)

𝐹2(x + e1)

Figure 3.1: Illustration of the lattice Laplacian ∇2𝑓(x) of a scalar field 𝑓(x) (left) and the lattice
curl ∇×F (x) of a vector field 𝐹𝑖(x) (right). The lattice Laplacian at a site x involves all adjacent
sites. The resulting field resides again on the sites. The lattice curl transforms a vector field,

a field on the links, into a field on the plaquettes, where the plaquette is labeled by the site at

its bottom left corner.

4. The curl of a vector field gives rise to a pseudovector residing on the plaquettes

(dual lattice sites) as illustrated in Fig. 3.1,

∇ × F (x) = 𝜖𝑖𝑗Δ
(+)
𝑖 𝐹𝑗 (x) (3.6)

5. The curl of a pseudovector field on the plaquettes gives rise to a vector field on

the links,

(∇ × 𝐿 (x))𝑖 = 𝜖𝑖𝑗Δ
(−)
𝑗 𝐿 (x) (3.7)

where 𝜖𝑖𝑗 is completely antisymmetric.

As in the continuum, each vector field F (x) may be decomposed into the sum of

longitudinal and transverse parts, F𝐿 (x) and F𝑇 (x) respectively,

F (x) = F𝐿 (x) + F𝑇 (x) (3.8)

The longitudinal part is the gradient of some scalar function 𝑓 (x), and therefore, using
the definitions above and similar to the continuous case, it is curl-free:

F𝐿 (x) = −∇𝑓 (x) ⟺ ∇ × F𝐿 (x) = 0 (3.9)

Similarly, the transverse part is the curl of some pseudovector, and its divergence

vanishes:

F𝑇 (x) = ∇ × 𝐿 (x) ⟺ ∇ ⋅ F𝑇 (x) = 0 (3.10)

The decomposition into transverse and longitudinal parts (illustrated in Fig. 3.2), nor-

mally referred to as the Helmholtz decomposition, is proven similarly to its continuum

version, as discussed in Appendix 3.B. This decomposition will be crucial in separat-

ing the dynamical (transverse) from the gauge-constrained (longitudinal) degrees of

freedom.
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𝐿(x)

−𝐿(x − e2)

𝑓(x) −𝑓(x + e1)𝐹 𝐿
1 (x)𝐹 𝑇

1 (x)

Figure 3.2: Illustration of the Helmholtz decomposition on the lattice. Analogous to the contin-

uum, a vector field can be split into a transverse component (left) and a longitudinal component

(right). The transverse component can be expressed as the lattice curl of a field 𝐿 on the pla-

quettes (the analog of a vector potential), whereas the longitudinal component is generated as

the (negative) gradient of a scalar field 𝑓 on the sites. For details on this decomposition see

Appendix 3.B.

3.3.2 The Matter

Matter particles reside on the lattice sites x. At each site we define an operator 𝑄 (x)
which measures the local charge. The charge operators commute with one another,

[𝑄 (x) , 𝑄 (y)] = 0 (3.11)

We define, on each site, matter field operators Ψ (x) which lower the local charge, and

their hermitian conjugate which raise it:

[𝑄 (x) , Ψ (y)] = −𝛿 (x,y) Ψ (x)
[𝑄 (x) , Ψ† (y)] = 𝛿 (x,y) Ψ† (x)

(3.12)

where 𝛿 (x,y) is the Kronecker delta function for the lattice discrete coordinates (sites).
There are various options to achieve these fairly general commutation relations. In

the most common choice, the matter will be fermionic, and each site may host a single

species, that is,

{Ψ (x) , Ψ† (y)} = 𝛿 (x,y) ; {Ψ (x) , Ψ (y)} = 0 (3.13)

Then, following Susskind [66], we can define staggered charges, which split the lattice

into two sublattices (even and odd) of particles and anti-particles,

𝑄 (x) = { Ψ† (x) Ψ (x) , x is even

Ψ† (x) Ψ (x) − 1, x is odd
(3.14)

On even sites, the charges can be 0 or 1 while on odd ones they are −1 or 0, depending
on whether a fermion is absent or present. Otherwise, one can use naive or Wilson

fermions [67], in which several spin components (two or four) are introduced at each

site, and charges are defined with some choice of Dirac matrices implementing the

Dirac-Clifford algebra. In all these fermionic options, the desired commutation rela-

tions (3.11) and (3.12) are satisfied.
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Typical Hamiltonian terms that involve only the matter will commute with the

charge operators. For example, in the case of staggered fermions, one typically uses

the mass Hamiltonian [66],

𝐻𝑚 = 𝑚∑
x

(−1)𝑥1+𝑥2 Ψ† (x) Ψ (x) . (3.15)

3.3.3 The Gauge Field

As already explained in section 2.3, on each link of the lattice we introduce the Hilbert

space of a particle on a ring, where the canonical pair of an angular, compact coordi-

nate 𝜃𝑖 (x) and its conjugate 𝑈(1) angular momentum operator 𝐸𝑖 (x), which takes an

integer, non-bounded spectrum, is defined, satisfying the canonical relation

[𝜃𝑖 (x) , 𝐸𝑗 (y)] = 𝑖𝛿𝑖𝑗𝛿 (x,y) . (3.16)

𝜃 plays the role of the (compact) vector potential while 𝐸 is the electric field. The

pure-gauge parts of the Hamiltonian [8, 68] are the electric energy term

𝐻𝐸 = 𝑔2

2
∑
x,𝑖

𝐸2
𝑖 (x) = 𝑔2

2
∑
x

𝐸𝑖 (x) 𝐸𝑖 (x) (3.17)

(with 𝑔2 the coupling constant) and the magnetic energy,

𝐻𝐵 = − 1
𝑔2 ∑

x

cos (𝜃1 (x) + 𝜃2 (x + e1) − 𝜃1 (x + e2) − 𝜃2 (x)) (3.18)

involving plaquette interactions. The argument of the cosine is nothing but the curl of

the vector potential, which is the magnetic field - a pseudovector residing at the center

of plaquettes (dual lattice sites):

𝐵 (x) = ∇ × 𝜃 (x) = 𝜖𝑖𝑗Δ
(+)
𝑖 𝜃𝑗 (x) (3.19)

where 𝜖𝑖𝑗 is the completely antisymmetric symbol. Therefore,

𝐻𝐵 = − 1
𝑔2 ∑

x

cos (𝐵 (x)) (3.20)

The remaining piece of the Hamiltonian couples the matter to the gauge fields. Con-

ventional interaction terms (the result of standard minimal coupling procedures) in-

volve charge hopping to the nearest neighbor site, combined with the increase or de-

crease of the electric field on the connecting link,

𝐻𝑖𝑛𝑡 = ∑
x,𝑖

𝑡x,𝑖Ψ† (x) 𝑒𝑖𝜃𝑖(x)Ψ (x + ̂e𝑖) + ℎ.𝑐. (3.21)

with 𝑡x,𝑖 the tunneling amplitude (which might be position and/or direction depen-

dent). In the case of naive/Wilson fermions, spin components are included, requiring

to add some Dirac matrix coupling between them. In all these interactions, the gauge

field on the links mediates the movement of the charge to maintain gauge invariance,

as shall be discussed now.
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3.3.4 Gauge Invariance and the Gauss Law

The full Hamiltonian of a lattice gauge theory as the one discussed above is

𝐻 = 𝐻𝐸 + 𝐻𝐵 + 𝐻𝑖𝑛𝑡 + 𝐻𝑚 (3.22)

It has a local gauge symmetry; that is, there exist local operators 𝒢 (x), which all

commute with the Hamiltonian

[𝒢 (x) , 𝐻] = 0 ∀x (3.23)

These local symmetry generators are nothing but the Gauss law operators, defined by

the difference between the electric field divergence on a site and the local charge,

𝒢 (x) = ∇ ⋅ E (x) − 𝑄 (x) = Δ(−)
𝑖 𝐸𝑖 (x) − 𝑄 (x)

= ∑
𝑖

(𝐸𝑖 (x) − 𝐸𝑖 (x − ̂e𝑖)) − 𝑄 (x) (3.24)

The commutation of all the local constants of motion 𝒢 (x) with the Hamiltonian

splits the Hilbert space to different sectors, disconnected by the Hamiltonian dynamics,

classified by the eigenstates of these operators 𝑞 (x) which are nothing but static charge
configurations, and thus these sectors are simply a formulation of a charge superselection

rule; so-called physical states satisfy

𝒢 (x) |phys⟩ = 𝑞 (x) |phys⟩ ∀x (3.25)

or

Δ(−)
𝑖 𝐸𝑖 (x) (x) |phys⟩ = (𝑄 (x) + 𝑞 (x)) |phys⟩ ∀x (3.26)

Below, we will always assume that the static charges 𝑞 (x) are fixed, which we can

do due to the superselection rule.

3.4 Decoupling the dynamical matter

In order to arrive at a redundancy-free formulation, it is necessary to identify the de-

grees of freedom which are constrained by the Gauss law. Examining eq. (3.26), it is

evident that in the physical Hilbert space the longitudinal part of the electric field is

completely determined by the charge configuration. The transverse part of the electric

field is unaffected by these constraints.

In contrast to previous works that only dealt with static charges, constructing a

Hamiltonian in terms of transverse gauge field degrees of freedom in the presence of

dynamical matter is more challenging. This is because gauge-matter interactions 𝐻𝑖𝑛𝑡
appear that involve the longitudinal component of the gauge field, whereas only the

transverse component contributes to the magnetic Hamiltonian 𝐻𝐵.

Hence, a central part of the gauge-invariant formulation is to find a unitary trans-

formation to a frame in which the longitudinal part of the gauge field disappears from

the Hamiltonian (one can intuitively think about it as rotating to a frame such that

Coulomb gauge holds in the physical subspace, Δ(−)
𝑖 𝜃𝑖 (x) = 0). A unitary transforma-

tion 𝒰, which accomplishes that, can be defined as

𝒰 = exp(−𝑖∑
x

𝜃𝑖 (x) 𝛽𝑖 (x)) (3.27)
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with

𝛽𝑖 (x) = −∑
y

Δ(+)
𝑖,x 𝐺 (x,y) (𝑄 (y) + 𝑞 (y)) (3.28)

where 𝐺 (x,y) is the Green’s function of the (negative) lattice Laplacian (see Appendix

3.A). Δ(+)
𝑖,x denotes the lattice forward derivative in direction ̂e𝑖 with respect to the

variable x. 𝛽𝑖(x) is nothing but the longitudinal electric field in the physical Hilbert

space before the transformation, 𝛽𝑖(x) |phys⟩ = 𝐸𝐿
𝑖 (x) |phys⟩ (see Appendix 3.B for

details).

We start by studying the effect of this transformation on the Gauss law in eq. (3.26).

It is clear that the charge operator 𝑄(x) commutes with the transformation:

𝒰𝑄 (x) 𝒰† = 𝑄 (x) . (3.29)

The electric field gets shifted by 𝛽:

𝒰𝐸𝑖 (x) 𝒰† = 𝐸𝑖 (x) + 𝛽𝑖 (x) (3.30)

Thus, the divergence of the electric field gives

𝒰Δ(−)
𝑖 𝐸𝑖 (x) 𝒰† = Δ(−)

𝑖 𝐸𝑖 (x) − ∑
y

Δ(−)
𝑖,x Δ(+)

𝑖,x 𝐺 (x,y) (𝑄 (y) + 𝑞 (y))

= Δ(−)
𝑖 𝐸𝑖 (x) + 𝑄 (x) + 𝑞 (x)

(3.31)

Hence, the physical states in the rotated frame, ∣p̃hys⟩ ≡ 𝒰 |phys⟩, obey the trans-

formed matter-free Gauss law,

Δ(−)
𝑖 𝐸𝑖 (x) ∣p̃hys⟩ = 0 ∀x (3.32)

or, in other words, the electric field in the physical subspace is transverse (divergence-

free) after the unitary transformation 𝒰. This was to be expected since we removed

the longitudinal part of the electric field (in the physical subspace).

It is worth noting that the spectrum of 𝐸𝑖 (x) changes in the rotated physical sub-

space, with the integer spectrum becoming fractional. As demonstrated in [2, 57],

each charge configuration results in a constant shift in the original integer spectrum of

the electric field in the physical Hilbert space. However, in the presence of dynamical

matter, the various static charge sectors are mixed due to gauge-matter interactions,

resulting in a shifted integer spectrum where the shift is not constant but varies with

the charge configuration.

In the next step, we consider the transformation of the electric part of the Hamil-

tonian. Using (3.30) and (3.28), we obtain that the transformed electric Hamiltonian

has three parts,

�̃�𝐸 = 𝒰𝐻𝐸𝒰† = 𝑔2

2
∑
x,𝑖

(𝐸𝑖(x) − ∑
y

Δ(+)
𝑖,x 𝐺 (x,y) (𝑄 (y) + 𝑞 (y)))

2

≡ �̃�𝑇
𝐸 + �̃�𝐿

𝐸 + �̃�𝑇 𝐿
𝐸

(3.33)

The first term will have the same mathematical form as the pre-transformed Hamilto-

nian, but now, in the physical Hilbert space, it will only correspond to the transverse

parts of the field (which no longer possess an integer spectrum),

�̃�𝑇
𝐸 = 𝑔2

2
∑
x,𝑖

𝐸2
𝑖 (x) = 𝑔2

2
∑
x

𝐸𝑖 (x) 𝐸𝑖 (x) (3.34)
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3.4 Decoupling the dynamical matter

The second part is the purely longitudinal one, taking the form

�̃�𝐿
𝐸 = −𝑔2

2
∑

x,y,y′,𝑖
Δ(−)

𝑖,x Δ(+)
𝑖,x 𝐺 (x,y) (𝑄 (y) + 𝑞 (y)) ×

× 𝐺 (x,y′) (𝑄 (y′) + 𝑞 (y′))

= 𝑔2

2
∑
x,y

(𝑄 (x) + 𝑞 (x)) 𝐺 (x,y) (𝑄 (y) + 𝑞 (y))

(3.35)

where in the first row we used a lattice analogue of integrating by parts (which is valid

for both periodic and open boundary conditions) and in the second row the definition of

the Green’s function. The resulting interaction between the charges (both dynamical

and static) is of Coulomb-type, since the Green’s function 𝐺(x,y) is nothing but the

lattice Coulomb potential generated by a unit charge at y experienced by another unit

charge at x.

The third part involves the cross terms. If we write it as

�̃�𝑇 𝐿
𝐸 = −𝑔2 ∑

x,y,𝑖
𝐸𝑖(x)Δ(+)

𝑖,x 𝐺 (x,y) (𝑄 (y) + 𝑞 (y))

= 𝑔2 ∑
x,y,𝑖

Δ(−)
𝑖,x 𝐸𝑖(x)𝐺 (x,y) (𝑄 (y) + 𝑞 (y))

(3.36)

it becomes clear that it vanishes in the physical Hilbert space using the transformed

Gauss law in eq. (3.32). Intuitively, it can be understood since it corresponds to the

scalar product of the longitudinal and transverse component of the electric field. We

are only interested in the physical subspace and will therefore neglect this term in the

following.

To study the transformation of the matter degrees of freedom it is useful to rewrite

the transformation 𝒰 in the following way:

𝒰 = exp(𝑖∑
x,y

𝜃𝑖 (x) Δ(+)
𝑖,x 𝐺 (x,y) (𝑄 (y) + 𝑞 (y)))

= exp(−𝑖∑
x,y

(𝑄 (x) + 𝑞 (x)) 𝐺 (x,y) Δ(−)
𝑖,y 𝜃𝑖 (y))

(3.37)

(where we used again the lattice analog of integrating by parts). Using (3.11) and

(3.12), we obtain the transformation rule of the charge raising operator,

𝒰Ψ† (x) 𝒰† = Ψ† (x) exp(−𝑖∑
y

𝐺 (x,y) Δ(−)
𝑖,y 𝜃𝑖 (y)) (3.38)

and thus the gauge-matter interactions in the transformed picture are

�̃�𝑖𝑛𝑡 = 𝒰𝐻𝑖𝑛𝑡𝒰†

= ∑
x,𝑖

𝑡x,𝑖Ψ† (x) exp[𝑖 (𝜃𝑖 (x) + ∑
y

Δ(+)
𝑖,x 𝐺 (x,y) Δ(−)

𝑖,y 𝜃𝑖 (y))] Ψ (x + ̂e𝑖) + ℎ.𝑐.

(3.39)
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Using the Helmholtz decomposition (see Appendix 3.B for details), one obtains that

the longitudinal part of 𝜃𝑖 (x) is given by

𝜃𝐿
𝑖 (x) = −Δ(+)

𝑖,x ∑
y

𝐺 (x,y) Δ(−)
𝑖,y 𝜃𝑖 (y) (3.40)

and hence we remain only with the transverse, divergence free field in the transformed

interaction Hamiltonian,

�̃�𝑖𝑛𝑡 = ∑
x,𝑖

𝑡x,𝑖 (Ψ† (x) 𝑒𝑖𝜃𝑇
𝑖 (x)Ψ (x + ̂e𝑖) + ℎ.𝑐.) (3.41)

This can also easily be checked by taking the lattice divergence of the argument in the

exponential in eq. (3.39).

𝐻𝐵 does not change under the transformation, because it commutes with 𝒰, i.e.
�̃�𝐵 = 𝐻𝐵. It depends on the curl of the vector potential 𝜃 so that only the transverse

part of 𝜃 contributes (since the longitudinal one is curl-free). Therefore, �̃�𝐵 can be

formulated with the transverse field only,

�̃�𝐵 = − 1
𝑔2 ∑

x

cos (𝜖𝑖𝑗Δ
(+)
𝑖 𝜃𝑇

𝑗 (x)) (3.42)

𝐻𝑚 commutes with 𝒰 as well, and thus �̃�𝑚 = 𝐻𝑚.

Hence, after the transformation, the Hamiltonian depends only on the transverse

component of the vector potential, 𝜃𝑇, so that we indeed transformed to a frame where

the lattice version of Coulomb gauge holds. We can therefore proceed to formulate the

remaining transverse degrees of freedom in terms of dual variables. For that, we will

restrict ourselves from now on to the physical Hilbert space.

3.5 Dual formulation

In the transformed picture, the Gauss law (3.26) becomes decoupled from the matter

degrees of freedom, leaving the electric field transverse (3.32). Therefore it makes

sense to change from the gauge field variables on the links to another set of variables

that will respect this transverse nature of the electric field. This will allow us to directly

incorporate the Gauss law constraint (3.32), making the formulation manifestly gauge-

invariant.

Since the electric field in the physical Hilbert space of the transformed frame is

transverse, we may express it as the curl of a pseudovector field 𝐿 (x) defined on the

plaquettes (dual lattice sites), ∇ × 𝐿 (x). If we apply the lattice curl again, this gives

rise to a Poisson equation for 𝐿 (x) in terms of 𝐸𝑖(x), whose solution is

𝐿 (x) = ∑
y

𝐺 (x,y) 𝜖𝑖𝑗Δ
(+)
𝑖,y 𝐸𝑗 (y) (3.43)

Using that, one can show that 𝐿 (x) is canonically conjugate to the magnetic field (see

Appendix 3.C for details),

[𝐵 (x) , 𝐿 (y)] = 𝑖𝛿(x,y) (3.44)

The idea behind these variables is that all transverse configurations of the electric

field are made out of loops and the local 𝐵/𝐿-variables are a good basis to construct
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OBC

PBC

Figure 3.3: Illustration of the dual formulation in the transformed frame for a 3 × 3 lattice with

both open boundary conditions (upper row) and periodic boundary conditions (lower row). In

the left column, the original formulation is shown in terms of the matter degrees of freedom

on the sites (blue) and the gauge degrees of freedom on the links (green). In the right column,

the degrees of freedom of the dual formulation are shown: the matter still resides on the

lattice sites, but the gauge degrees of freedom are described in terms of plaquette variables.

While in the original formulation there were gauge constraints for every site, there are no

local gauge constraints left in the dual formulation. For open boundary conditions, there are

no gauge constraints in the dual formulation and for periodic boundary conditions there is

a global constraint left involving all plaquette variables. Since periodic boundary conditions

allow closed loops around the lattice, there are two global gauge variables, one for each spatial

direction (green circles in the figure).

these loops. This geometric picture is also the basis for the dual formulation in [60].

However, with periodic boundary conditions there are two global loops (up to modi-

fications by plaquette operators, similar to the toric code) that can not be created out

of the 𝐵/𝐿-variables (they do not appear in the case of open boundary conditions).

These are independent variables, denoted as 𝐵1, 𝐿1 and 𝐵2, 𝐿2. We choose the 𝐵1/𝐿1-

variable to wind around the torus along the ̂e1-axis whereas the 𝐵2/𝐿2-variable is

chosen to wind around the torus along the ̂e2-axis. The sets of degrees of freedom in

the dual formulation for both periodic and open boundary conditions are illustrated in

Fig. 3.3, exemplary for a 3 × 3 lattice. Therefore, to express the electric field in terms

of 𝐿-variables for periodic boundary conditions, we need in addition to the curl of 𝐿
the contributions of the global loops, i.e.

𝐸𝑖 (x) = 𝜖𝑖𝑗Δ
(−)
𝑗 𝐿 (x) + 𝛿𝑥𝑗,0𝐿𝑖 (3.45)

with 𝑖 ≠ 𝑗. The second term is only present on the two axes and vanishes completely

for open boundary conditions. By formulating the theory in terms of dual variables,

there are no local constraints left. However, there is a global constraint left (in case of

periodic boundary conditions, this is not the case for open boundary conditions) which

can be seen by summing eq. (3.19) over the whole lattice:

∑
x

𝐵(x) |phys⟩ = 0 (3.46)
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This is intuitively clear since raising the electric flux around every plaquette should

give the same state (on a lattice with periodic boundary conditions). To convince us

that the number of physical degrees of freedom in the dual formulation matches the

number in the original formulation we can do a short counting of degrees of freedom.

We can neglect the matter degrees of freedom in this calculation since it is the same

in both cases.

Starting with periodic boundary conditions, there are in the original formulation

2𝑁2 links and 𝑁2 − 1 Gauss laws (the constraint at one lattice site is redundant).

The number of physical degrees of freedom is thus 𝑁2 + 1. In the dual formulation,

we have 𝑁2 plaquette variables, two global loop variables and one global constraint,

which amounts also to 𝑁2 + 1 physical degrees of freedom.

With open boundary conditions, there are originally 2𝑁(𝑁 +1) links and (𝑁 +1)2 −1
Gauss law constraints, i.e. 𝑁2 physical degrees of freedom. In the dual formulation,

there are 𝑁2 plaquette variables which are not subject to any constraints, thus giving

the same number of physical degrees of freedom.

We can now rewrite the transformed Hamiltonian in terms of the dual variables.

This does not change �̃�𝑚 and �̃�𝐿
𝐸 ; the magnetic part will now be non-interacting,

�̃�𝐵 = − 1
𝑔2 ∑

x

cos (𝐵 (x)) . (3.47)

Following eq. (3.45), the transverse electric part will involve some local interactions,

�̃�𝑇
𝐸 = 𝑔2

2
∑
x,𝑖

(𝜖𝑖𝑗 (𝐿 (x) − 𝐿 (x − ̂e𝑗)) + 𝛿𝑥𝑗,0𝐿𝑖)
2

(3.48)

where the last term denotes the contribution of the two global loops which is only

present on the axes (𝑥1 = 0 or 𝑥2 = 0). This term drops out in the case of open

boundary conditions.

To rewrite the gauge-matter interactions in terms of dual variables, we express the

transverse part of the gauge field in terms of the magnetic field 𝐵(x) (the calculation
of the shifts 𝑠x,𝑖(y) is presented in Appendix 3.B)

𝜙𝑇
𝑖 (x) = ∑

y

𝑠x,𝑖(y)𝐵(y) (3.49)

(note that the sum over y also contains the two global loops 𝐵1 and 𝐵2). The gauge-

matter interactions then take the form

�̃�𝑖𝑛𝑡 = ∑
x,𝑖

𝑡x,𝑖Ψ† (x) 𝑒𝑖 ∑
y

𝑠x,𝑖(y)𝐵(y)Ψ (x + ̂e𝑖) + ℎ.𝑐. (3.50)

The hopping of a matter degree of freedom from some site x to an adjacent site

x + ̂e𝑖 introduces shifts 𝑠x,𝑖(y) (−1/2 < 𝑠x,𝑖(y) ≤ 1/2) in the 𝐿(y) operators since 𝐵 is

canonically conjugate to 𝐿. This can be understood in the following way: the hopping

changes the electric field configuration (by raising/lowering the electric field on that

link) and the change in the transverse part of the electric field is characterized by the 𝑠-
shifts. Although the size of these shifts decays with distance to the link where hopping

occurs, the interaction involves many degrees of freedom which might be difficult to
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deal with, in particular for a quantum simulation. Summing up, the whole transformed

Hamiltonian in the dual formulation with 𝐵/𝐿-variables takes the form

�̃� =𝐻𝑚 + 𝑔2

2
∑
x,𝑖

(𝜖𝑖𝑗 (𝐿 (x) − 𝐿 (x − ̂e𝑗)) + 𝛿𝑥𝑗,0𝐿𝑖)
2

+ 𝑔2

2
∑
x,y

(𝑄 (x) + 𝑞 (x)) 𝐺 (x,y) (𝑄 (y) + 𝑞 (y))

− 1
𝑔2 ∑

x

cos (𝐵 (x)) + ∑
x,𝑖

𝑡x,𝑖Ψ† (x) 𝑒𝑖 ∑
y

𝑠x,𝑖(y)𝐵(y)Ψ (x + ̂e𝑖) + ℎ.𝑐.

(3.51)

with 𝑖 ≠ 𝑗. In the case of open boundary conditions, the global loop contributions in

�̃�𝑇
𝐸 and �̃�𝑖𝑛𝑡 vanish.

We proceed to define another canonical pair of operators which makes the gauge-

matter interactions local again. The idea is to carry out the same procedure as before

but now with the transverse component of the gauge field 𝜃𝑇
𝑖 (x) as a starting point,

instead of the electric field.

In complete analogy to eq. (3.45), we can express 𝜃𝑇
𝑖 (x) by a compact field on the

plaquettes 𝜙 (x) (and for periodic boundary conditions two additional global loops 𝜙1
and 𝜙2), such that

𝜃𝑇
𝑖 (x) = 𝜖𝑖𝑗Δ

(−)
𝑗 𝜙 (x) + 𝛿𝑥𝑗,0𝜙𝑖 (3.52)

with 𝑖 ≠ 𝑗. As before, the global loop contribution vanishes for open boundary condi-

tions. The expression for 𝜙 in terms of 𝜃 has the same form as the expression for 𝐿 in

terms of 𝐸 in eq. (3.43):

𝜙 (x) = ∑
y

𝐺 (x,y) 𝜖𝑖𝑗Δ
(+)
𝑖,y 𝜃𝑗 (y) (3.53)

The canonically conjugate variable to 𝜙 is the curl of the electric field,

𝑀 (x) = 𝜖𝑖𝑗Δ
(+)
𝑖 𝐸𝑗 (x) (3.54)

Since 𝐸𝑖(x) is integer-valued, 𝑀(x), as the sum of integer-valued operators, will also

have an integer spectrum. Using the expression for 𝜙 in terms of 𝜃 from eq. (3.53), the

definition of 𝑀 in terms of 𝐸 in eq. (3.54), one can show that also 𝜙 and 𝑀 fulfill the

canonical commutation relations,

[𝜙 (x) , 𝑀 (y)] = 𝑖𝛿(x,y). (3.55)

Analogous to the 𝐵/𝐿-variables, there are two global non-contractible loops denoted

as 𝜙1/𝑀1 and 𝜙2/𝑀2 winding along the respective axis (again, this is only the case for

periodic boundary conditions, not for open ones). Since both dual formulations share

the same locations on the lattice, the counting of degrees of freedom can be done in the

same way as for the 𝐵/𝐿-variables. The relation between the two sets of dual variables
is illustrated in Fig. 3.4.

If we express the gauge-matter interactions in terms of the newly introduced field

𝜙 (x), we arrive at

�̃�𝑖𝑛𝑡 = ∑
x,𝑖

𝑡x,𝑖Ψ† (x) 𝑒𝑖(𝜖𝑖𝑗Δ(−)
𝑗 𝜙(x)+𝛿𝑥𝑗,0𝜙𝑖)Ψ (x + ̂e𝑖) + ℎ.𝑐. (3.56)
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𝜙(x) 𝐿(x)

𝑀(x)𝐵(x)

𝜃𝑇
𝑖 (x) 𝐸𝑇

𝑖 (x)

∇×

∇×

∇×

∇×ca
n.c

on
j.

can.conj.

Figure 3.4: Illustration of the two dual formulations in terms of 𝐵/𝐿-variables and 𝜙/𝑀-

variables. Both formulations are based on expressing the transverse part of either the gauge

field 𝜃𝑖(x) or the electric field 𝐸𝑖(x). While the transverse component of the electric field,

𝐸𝑇
𝑖 (x), can be obtained as the lattice curl ∇× of the plaquette field 𝐿, the lattice curl of the

plaquette field 𝜙 gives rise to 𝜃𝑇
𝑖 (x). It can then be shown that the curl of 𝜃, which is the mag-

netic field 𝐵, is canonically conjugate to 𝐿. In the same way, it can be shown that the curl of 𝐸
is canonically conjugate to 𝜙. Thus, the two dual formulations are based on the same principle

and complement each other.

with 𝑖 ≠ 𝑗, a local interaction again (up to the contribution of the global loops 𝜙𝑖
which is only present on the two axes and vanishes in the case of open boundary

conditions). It has the following interpretation: when a matter charge hops from site

x to a neighboring site, say x+ ̂e1, the curl of the electric field on the plaquette above

the link gets raised by one and the curl of the electric field on the plaquette below the

link gets lowered by one.

To express the transverse part of the electric energy in terms of the 𝑀-variables, we

need to find a relation between the 𝑀- and 𝐿-variables which can then be inserted

in the formula for �̃�𝑇
𝐸 in terms of 𝐿, eq. (3.48). Such a relation can be obtained by

plugging the electric field in terms of 𝐿, eq. (3.45), into the definition of 𝑀, eq. (3.54):

𝑀(x) = −∇2𝐿(x) + 𝜖𝑖𝑗Δ
(+)
𝑖 𝛿𝑥𝑖,0𝐿𝑗 (3.57)

The second term is a boundary term coming from the global loops (only present for

periodic boundary conditions). For open boundary conditions, the relation contains

only the first term, leading to a Poisson equation on the plaquettes. Thus, for open

boundary conditions, 𝐿 can be expressed in terms of 𝑀 by the Green’s function. In-

serting this in eq. (3.48) and using the lattice analog of integrating by parts, gives a

Coulomb interaction between the 𝑀-variables. For periodic boundary conditions, this

interaction potential is slightly modified by boundary effects due to the second term

in eq. (3.57), i.e.

�̃�𝑇
𝐸 = 𝑔2

2
∑
x,y

𝑀 (x) 𝐺 (x,y) 𝑀 (y) (3.58)

where 𝐺 (x,y) denotes the modified interaction potential. Note that it also includes

interactions with the two global variables, i.e. the sum above contains also 𝑀1 and 𝑀2
(for its exact form see Appendix 3.D). For open boundary conditions, 𝐺 (x,y) reduces to
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𝐿(x − e𝑗) 𝑀(x) 𝑀(y)𝑉Coul(x,y)

Figure 3.5: Illustration of the interactions in the Hamiltonian for a 3 × 3 lattice with open

boundary conditions in the original formulation (left column), the dual formulation in terms

of 𝐵/𝐿-variables (middle column) and the dual formulation in terms of 𝜙/𝑀-variables (right

column). We consider the electric Hamiltonian (upper row), the magnetic Hamiltonian (middle

row) and the gauge-matter interactions (lower row). While the electric Hamiltonian in the

original formulation is the sum over the square of the electric field on every link, in the dual

picture it is split into a longitudinal part and a transverse part. The longitudinal part of the

electric field gives rise to Coulomb interactions 𝑉Coul(x,y) between charges 𝑄(x) and 𝑄(y). The
transverse part depends on the dual formulation: For the 𝐵/𝐿-variables the transverse electric
field is just the lattice curl of 𝐿 so that the electric Hamiltonian on a link involves only the

two neighboring plaquettes. For the 𝜙/𝑀-variables one can show that the transverse electric

Hamiltonian leads to Coulomb interactions among the𝑀-variables, thus generating very similar

interactions as between the charges. The magnetic Hamiltonian in the original formulation is

a four-body interaction among the links: it is the sum of a raising and a lowering operator of

the electric field around the plaquette (in the figure we show the effect of the raising operator

in the electric basis). In terms of the 𝐵/𝐿-variables, since 𝐵 is the lattice curl of the gauge field

around a plaquette, it is a one-body term, raising the 𝐿-variable by one. In terms of the 𝜙/𝑀-

variables, it is a five-body interaction, corresponding to the (negative) Laplacian of 𝜙, which
raises the 𝑀-variable in the center by four and lowers it on the neighboring plaquettes by one.

The gauge-matter interactions in the original formulation raise the electric field along the link

by one. In the rotated frame, only changes in the transverse part of the electric field need to be

taken into account. In terms of the 𝐵/𝐿-variables, this change can be expressed by shifting the

𝐿-variables by 𝑠x,𝑖(y) as shown in the figure. They decay away from the link where hopping

occurs, which can already be seen on the 3 × 3 lattice. In terms of the 𝜙/𝑀-variables, since the

curl of the electric field is only affected on the two neighboring plaquettes, the gauge-matter

interactions become local.
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3.5 Dual formulation

𝐺 (x,y). Thus, the interactions between the curls of the electric field on the plaquettes

are of Coulomb type; it shows some strong similarity with the longitudinal part �̃�𝐿
𝐸

in eq. (3.35) where exactly the same interaction appears between the matter degrees

of freedom. The last remaining part is the magnetic Hamiltonian. If we express 𝐵 in

terms of 𝜙 in the same way as we did for 𝑀 in terms of 𝐿 in eq. (3.57), we can write

down �̃�𝐵 in terms of 𝜙, following eq. (3.47):

�̃�𝐵 = − 1
𝑔2 ∑

x

cos (−∇2𝜙 (x) + 𝜖𝑖𝑗Δ
(+)
𝑖 𝛿𝑥𝑖,0𝜙𝑗) (3.59)

= − 1
𝑔2 ∑

x

cos(4𝜙 (x) − 𝜙 (x + ̂e1) − 𝜙 (x + ̂e2)

− 𝜙 (x − ̂e1) − 𝜙 (x − ̂e2)

+ (𝛿𝑥2,0 − 𝛿𝑥2,−1) 𝜙1 − (𝛿𝑥1,0 − 𝛿𝑥1,−1) 𝜙2)

where the contributions of the global variables 𝜙1 and 𝜙2 are only present on plaquettes

sharing a link with the ̂e1- or ̂e2-axis. They vanish completely for open boundary

conditions and the magnetic Hamiltonian becomes a local interaction - a five-body

one, involving a plaquette and its neighbors. The action of �̃�𝐵 in the electric basis is

illustrated in Fig. 3.5, for both the original and the dual formulations.

Analogous to the dual formulation with 𝐵 and 𝐿, there is also a global constraint

for the formulation in terms of 𝜙 and 𝑀. This constraint on physical states can be

obtained if we sum eq. (3.54) over the whole lattice (again, this only holds true for

periodic boundary conditions, it is not the case for open boundary conditions),

∑
x

𝑀 (x) |phys⟩ = 0 (3.60)

Overall, the original formulation of the lattice gauge theory has been replaced in

this dual formulation of the transformed picture by (assuming periodic boundary con-

ditions)

�̃� =𝐻𝑚 + 𝑔2

2
∑
x,y

[(𝑄 (x) + 𝑞 (x)) 𝐺 (x,y) (𝑄 (y) + 𝑞 (y)) + 𝑀 (x) 𝐺 (x,y) 𝑀 (y)]

− 1
𝑔2 ∑

x

cos (−∇2𝜙 (x) + 𝜖𝑖𝑗Δ
(+)
𝑖 𝛿𝑥𝑖,0𝜙𝑗)

+ ∑
x,𝑖

𝑡x,𝑖Ψ† (x) 𝑒𝑖(𝜖𝑖𝑗Δ(−)
𝑗 𝜙(x)+𝛿𝑥𝑗,0𝜙𝑖)Ψ (x + ̂e𝑖) + ℎ.𝑐.

(3.61)

with 𝑖 ≠ 𝑗. The link variables, the angle 𝜃𝑖 (x) and the integer-valued 𝐸𝑖 (x), and
the multiple local constraints imposed by the Gauss law (3.26) are replaced by the

dual plaquette variables, the angle 𝜙 (x) and the integer-valued 𝑀 (x), and the single

global constraint (3.60). For open boundary conditions, the formulation simplifies

since the modified interaction potential 𝐺 (x,y) reduces to 𝐺 (x,y) and the global loop
contributions corresponding to 𝜙1 and 𝜙2 drop out of the gauge-matter interactions

and the magnetic interactions, rendering them completely local. Moreover, there is no

global constraint left, making the formulation manifestly gauge-invariant. The reason

why periodic boundary conditions are more difficult to deal with in the presence of
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dynamical matter as compared to static matter is that the two global loops around the

torus become dynamical due to the appearance of gauge-matter interactions. Thus,

the choice of open boundary conditions should be preferred, in particular for quantum

simulations as open boundary conditions are much more natural from an experimental

point of view. To summarize, the required interactions for open boundary conditions

in the original approach, the formulation in terms of 𝐵/𝐿-variables and in terms of

𝜙/𝑀-variables are illustrated in Fig. 3.5, exemplary for a 3 × 3 lattice.

3.6 Three space dimensions

In this section we consider the generalization of the previous discussion to 3 + 1𝑑, i.e.
three space dimensions. Difference operators are defined exactly in the same manner

as in the two dimensional settings of section 3.3.1, as well as the gradient and the

divergence. The Laplacian’s definition changes by a numerical factor, to

∇2𝑓 (x) = Δ(−)
𝑖 Δ(+)

𝑖 𝑓 (x) = ∑
𝑖=1,2,3

(𝑓 (x + ̂e𝑖) − 𝑓 (x − ̂e𝑖)) − 6𝑓 (x) (3.62)

We need to generalize the definitions of the curl. The curl of a vector field on the links

will be a pseudovector field residing at the centers of plaquettes,

(∇ × F (x))𝑖 = 𝜖𝑖𝑗𝑘Δ(+)
𝑗 𝐹𝑘 (x) (3.63)

while the curl of a pseudovector will be a regular vector field on the links,

(∇ × L (x))𝑖 = 𝜖𝑖𝑗𝑘Δ(−)
𝑗 𝐿𝑘 (x) (3.64)

If we fix 𝑖 = 3, we recover the expressions for two space dimensions.

The original Hamiltonian 𝐻 in eq. (3.22) is straightforwardly generalized: 𝐻𝑚 still

runs over all lattice sites, 𝐻𝐸 and𝐻𝑖𝑛𝑡 run over all links (each vector now contains three

components) and 𝐻𝐵 now includes three differently oriented plaquette interactions

(not a single one as for two space dimensions), taking the form

𝐻𝐵 = − 1
𝑔2 ∑

x,𝑖
cos (𝜖𝑖𝑗𝑘Δ(+)

𝑗 𝜃𝑘 (x)) (3.65)

which we will express in terms of the magnetic field variables

𝐵𝑖 (x) = 𝜖𝑖𝑗𝑘Δ(+)
𝑗 𝜃𝑘 (x) (3.66)

The Gauss law takes the same form (3.26), this time with the three-dimensional diver-

gence.

Decoupling the matter can be done with the same transformation 𝒰 used in section

3.4, now in a three dimensional space and with the 𝑑 = 3 Green’s function (see Ap-

pendix 3.A) instead of the two dimensional one used above. Most of the transformed

parts of the Hamiltonian (�̃�𝑇
𝐸, �̃�𝐿

𝐸 and �̃�𝑖𝑛𝑡) will have an identical form as in the 𝑑 = 2
case with the straightforward dimensional generalization, see eqs. (3.34), (3.35) and

(3.41). Also the Gauss law transforms in the same manner, i.e. it gets decoupled from

the matter degrees of freedom as in eq. (3.32). 𝐻𝑚 and 𝐻𝐵 still commute with the

transformation 𝒰.
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3.6 Three space dimensions

The crucial difference in three space dimensions appears when formulating the trans-

formed Hamiltonian in terms of dual variables. We start with the dual formulation in

terms of the 𝐵- and 𝐿-variables in section 3.5. From eq. (3.66) it is clear that the di-

vergence of 𝐵 is zero, i.e. Δ(+)
𝑖 𝐵𝑖(x) = 0 ∀x holds on the operator level. Since this

is an operator identity it is satisfied by any state; however, when building a classical

or quantum simulation it cannot be assumed to be satisfied a priori and thus physical

states need to fulfill a constraint for every cube:

Δ(+)
𝑖 𝐵𝑖(x) |phys⟩ = 0 ∀x (3.67)

One can intuitively think about it in the electric basis, as raising the electric flux on all

faces of a cube should leave the state invariant. Therefore, in three dimensions there

are local constraints left. However, they do not involve the matter degrees of freedom.

Note that for periodic boundary conditions these local constraints are not independent,

since the sum over all local constraint gives zero, i.e. there are 𝑁3 − 1 independent

constraints. This is not the case for open boundary conditions. In addition there are

three global constraints, which are a generalization of the single global constraint in

two dimensions (again, only for periodic boundary conditions):

∑
𝑥𝑖=0
𝑥𝑗,𝑥𝑘

𝐵𝑖(x) |phys⟩ = 0 for 𝑖 = 1, 2, 3 (3.68)

with 𝑖 ≠ 𝑗 ≠ 𝑘 and x = (𝑥1, 𝑥2, 𝑥3). These global constraints correspond to slices

through the lattice. There are only three independent ones since all other slices can be

obtained by deforming them with the plaquette constraints from eq. (3.67).

We express the (transverse) electric field 𝐸𝑖 (x) after the transformation as the curl

of a pseudovector 𝐿𝑘 (x). Thus, the definition of eq. (3.45) is replaced by

𝐸𝑖 (x) = 𝜖𝑖𝑗𝑘Δ(−)
𝑗 𝐿𝑘 (x) + 𝛿𝑥𝑗,0𝛿𝑥𝑘,0𝐿𝑖. (3.69)

with 𝑖 ≠ 𝑗 ≠ 𝑘. The 𝐵1/𝐿1-, 𝐵2/𝐿2- and 𝐵3/𝐿3-variables correspond to the three

global loops winding around the lattice along a specific axis (only present for periodic

boundary conditions). A discussion of the arising topological phenomena due to these

global loops can be found in [62].

One can show that, similar to the two-dimensional case, the 𝐵- and 𝐿-variables fulfill
canonical commutation relations,

[𝐵𝑖 (x) , 𝐿𝑗 (y)] = 𝑖𝛿𝑖𝑗𝛿(x,y). (3.70)

Similar to the two dimensional case, we can perform a counting of degrees of free-

dom. For that we can neglect the matter degrees of freedom since their number is the

same in both formulations. In the case of periodic boundary conditions, we have in

the original link formulation 3𝑁3 links and 𝑁3 sites, thus 𝑁3 − 1 independent Gauss

laws, leading to 2𝑁3 + 1 physical gauge degrees of freedom. In the dual formulation,

there are 3𝑁3 plaquettes, three global loop variables winding around the lattice, 𝑁3−1
independent cube constraints as in eq. (3.67) and three global constraints, giving also

a total of 2𝑁3 + 1 physical gauge degrees of freedom.

In the case of open boundary conditions, we have in the original formulation 3𝑁(𝑁 +
1)2 links and (𝑁 + 1)3 sites, i.e (𝑁 + 1)3 − 1 Gauss law constraints and thus 2𝑁3 + 3𝑁2

physical gauge degrees of freedom. In the dual formulation, we have 3𝑁2(𝑁 + 1)

41



3.6 Three space dimensions

plaquettes and 𝑁3 cube constraints, resulting also in 2𝑁3 +3𝑁2 physical gauge degrees

of freedom.

The (transverse) electric Hamiltonian written in terms of the 𝐿-variables takes a
similar form as in the two-dimensional case,

�̃�𝑇
𝐸 = 𝑔2

2
∑
x,𝑖

(𝜖𝑖𝑗𝑘Δ(−)
𝑗 𝐿𝑘(x) + 𝛿𝑥𝑗,0𝛿𝑥𝑘,0𝐿𝑖)

2
(3.71)

with 𝑖 ≠ 𝑗 ≠ 𝑘 (the second term vanishes for open boundary conditions). The difference

in three dimensions is that 𝐿-variables on four plaquettes (the ones containing the

link) are required to express the transverse part of the electric field. The magnetic

Hamiltonian is still a one-body term, as in two dimensions, which can be seen from eq.

(3.65) and (3.66). The gauge-matter interactions have the same form as in (3.50) with

the difference that the shifts 𝑠x,𝑖(y) in the 𝐿(y) variables in (3.49) are computed with

the three-dimensional Green’s function (see Appendix 3.A). Although this interaction

involves many degrees of freedom, the shifts decay away from the link (x, 𝑖) (and even

faster in three dimensions) which might allow one to neglect contributions above some

certain distance.

The dual formulation in terms of the 𝜙- and 𝑀-variables can be generalized in a

similar fashion. We first define a pseudovector field on the plaquettes, 𝜙𝑘 (x), whose
curl generates the transverse part of the gauge field (in addition to the global loop

variables 𝜙𝑖):

𝜃𝑇
𝑖 (x) = 𝜖𝑖𝑗𝑘Δ(−)

𝑗 𝜙𝑘 (x) + 𝛿𝑥𝑗,0𝛿𝑥𝑘,0𝜙𝑖. (3.72)

with 𝑖 ≠ 𝑗 ≠ 𝑘 (the second term vanishes for open boundary conditions). We also

define 𝑀-variables as the curl of the electric field

𝑀𝑖 (x) = 𝜖𝑖𝑗𝑘Δ(+)
𝑗 𝐸𝑘 (x) (3.73)

With the same reasoning as for the 𝐵-variables, we obtain similar local constraints as

in eq. (3.67) for the 𝑀-variables

Δ(+)
𝑖 𝑀𝑖(x) |phys⟩ = 0 ∀x (3.74)

and the commutation relations

[𝜙𝑖 (x) , 𝑀𝑗 (y)] = 𝑖𝛿𝑖𝑗𝛿(x,y). (3.75)

As in the two dimensional case, the operators 𝑀𝑖 (x) have an integer spectrum. For

periodic boundary conditions, the physical states need to fulfill the global constraints

in eq. (3.68), with 𝐵 replaced by 𝑀. The counting of degrees of freedom can be

performed in the same way as for the 𝐵/𝐿-variables.
The gauge-matter interactions written in terms of the 𝜙-variables result again in

local interactions (up to contributions from the global loop variables 𝜙𝑖 which are only

present for periodic boundary conditions and then only on the axes),

�̃�𝑖𝑛𝑡 = ∑
x,𝑖

𝑡x,𝑖Ψ† (x) 𝑒𝑖(𝜖𝑖𝑗𝑘Δ(−)
𝑗 𝜙𝑘(x)+𝛿𝑥𝑗,0𝛿𝑥𝑘,0𝜙𝑖)Ψ (x + ̂e𝑖) + ℎ.𝑐. (3.76)

with 𝑖 ≠ 𝑗 ≠ 𝑘. In three dimensions four plaquettes are contributing compared to two

in the two-dimensional case. If we express the magnetic interactions in terms of the

𝜙-variables, we obtain
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𝐻𝐵 = − 1
𝑔2 ∑

x,𝑖
cos (𝜖𝑖𝑗𝑘𝜖𝑘𝑙𝑚Δ(+)

𝑗 Δ(−)
𝑙 𝜙𝑚(x)) . (3.77)

The magnetic interaction on a plaquette involves all 𝜙-variables which share a link

with the respective plaquette.

To conclude, in three space dimensions, the matter degrees of freedom can be decou-

pled from the gauge constraints, so that only the gauge field variables on the plaquettes

are subject to constraints. However, compared to two dimensions, the remaining con-

straints are local, i.e. every cube on the lattice defines such a constraint. It involves

six plaquette variables, compared to six link variables and the charge on the site in

the original Gauss law. On the other hand, due to the additional dimension more de-

grees of freedom participate in the interactions, making the dual formulation in three

dimensions more difficult to study compared to the two-dimensional version.

3.7 Conclusion

In this chapter, we have demonstrated a method for unitarily transforming compact

QED with dynamical matter into a frame that allows for the expression of physical

states through dual, gauge-invariant variables while preserving translational invari-

ance. The transformation relies on the Helmholtz decomposition of lattice vector

fields into transverse and longitudinal components. In the original formulation, the

gauge constraints (known as Gauss laws) for physical states constrain the longitudi-

nal component of the electric field based on the given charge configuration, while

leaving the transverse component unaffected. However, since the gauge-matter inter-

actions involve the longitudinal part of the gauge field, we rotate to a new frame where

Coulomb gauge holds, and only the transverse component of the gauge field appears

in the Hamiltonian. In this transformed formulation, the matter degrees of freedom

become decoupled from the Gauss laws, and the physical (transverse) part of the gauge

field and electric field can be expressed using a new set of canonical variables on the

plaquettes, thus making the formulation manifestly gauge-invariant.

The transformation can be applied in both two and three spatial dimensions. Al-

though the unitary transformation for two and three dimensions is quite similar, the

formulation in terms of dual variables differs significantly. In two dimensions, the dual

plaquette variables are entirely free of any local constraints. In contrast, in three di-

mensions, a local constraint exists for every cube on the lattice, involving all plaquette

variables on that cube. This is due to the fact that every closed surface imposes a con-

straint on these dual variables because the integral of a transverse field (a curl field)

over a closed surface must be zero. However, these local constraints solely involve the

gauge field and do not affect the matter degrees of freedom.

The transformation is also applicable to systems with both periodic and open bound-

ary conditions. The primary difference between the two is that in the case of periodic

boundary conditions, there are global loop variables around the lattice for each spatial

direction that do not exist in open boundary conditions. The introduction of dynami-

cal charges and gauge-matter interactions makes these variables dynamic, which is a

significant contrast to the case of static matter where these variables would only fix a

topological sector [59]. Furthermore, periodic boundary conditions lead to an addi-

tional closed surfaces, as the lattice becomes a torus in 2+1𝑑, which generates a global
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constraint on the dual plaquette variables.

After performing the unitary transformation, there are two sets of dual variables that

can be used to represent the transverse part of the gauge field and electric field. The

dual variables have the same locations for their degrees of freedom, but they differ in

the complexity of the different terms in the Hamiltonian. The terms not involving the

(transverse) gauge field, such as the mass term for the matter and the (longitudinal)

electric Hamiltonian, are the same for both sets of dual variables. The mass term is

not altered at all and the electric Hamiltonian containing the longitudinal electric field

mediates Coulomb interactions between charges.

However, the gauge-matter interactions differ significantly: they become more com-

plex in the dual formulation using 𝐵/𝐿-variables, as the hopping of a matter degree

of freedom affects numerous plaquette variables on the lattice. In contrast, the dual

formulation in terms of 𝜙/𝑀-variables makes the gauge-matter interactions local, in-

volving only the plaquette variables containing the link where the hopping occurs.

It is the other way around for the magnetic term: in two dimensions, the magnetic

interaction using 𝜙/𝑀-variables is a five-body interaction among a plaquette and its

four neighbors while, using 𝐵/𝐿-variables, the magnetic term is only a one-body term.

The last term, the transverse electric Hamiltonian is a Coulomb interaction among the

plaquette variables for the 𝜙/𝑀-variables and a local two-body interaction between

neighboring plaquettes for the 𝐵/𝐿-variables.
Both dual formulations could be advantageous for classical variational studies and

quantum simulation/computation of lattice gauge theories. They provide descriptions

with reduced or no gauge redundancies, thereby minimizing the resources required

and avoiding possible violations of gauge-invariance. The absence of constraints in

these dual formulations also permits one to examine a wider range of potential ansatz

states, making them useful for variational studies.

The 𝐵/𝐿-formulation could be used to extend variational ansatz states for compact

QED with static fermions (as presented in chapter 4 to study real-time dynamics, based

on ref. [2]) to dynamical fermions to design ansatz states similar to the one presented

in chapter 5 (based on ref. [3]), allowing the study of lattice gauge theories at finite

density.

The 𝜙/𝑀-formulation may be useful in designing a quantum simulation, as the chal-

lenging terms in its implementation are the Coulomb interactions and the five-body

interaction of the magnetic Hamiltonian. However, the latter is merely the ordinary

four-body (plaquette) interaction in the Kogut-Susskind Hamiltonian, with an addi-

tional degree of freedom in the center of the relevant plaquette. In recent years, there

has been significant effort to implement this interaction in a quantum simulation, e.g.

with the use of optical lattices [4, 41, 69]. These efforts can serve as a starting point

for implementing the interaction above. The more challenging aspect is generating a

Coulomb potential using quantum devices. This challenge is also present in the quan-

tum simulation of quantum chemistry, where a Coulomb potential is a crucial building

block. In the last years, there have been proposals to implement such a potential using

ultracold atoms [70], which may also be useful in lattice gauge theory. To further

reduce the necessary resources for a quantum simulation, one could combine our ap-

proach with a truncation scheme for the gauge field Hilbert space of the dual variables,

e.g. according to ref. [61]. Note that this approach is much more efficient compared

to truncating already in the original, gauge-constrained theory.

The method can be straightforwardly extended to ℤ𝑁 groups, which are subgroups of
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𝑈(1). However, for non-Abelian groups, decomposing the gauge field and electric field

in a similar manner to the Abelian case into a longitudinal and transverse part, results

in non-linear equations, preventing the construction of a unitary transformation similar

to the Abelian case. Other methods for separating the constrained and unconstrained

parts of the gauge field exist, such as the maximal tree approach [71], but do not

preserve translational invariance.
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Appendix

3.A The lattice Poisson equation

In this section, we discuss the calculation of the lattice Green’s function 𝐺(x,y) for

both periodic and open boundary conditions, defined by the equation

−∇2𝐺 (x,y) = 𝛿 (x,y) . (3.78)

The solutions to Poisson’s equation

−∇2𝑓 (x) = 𝑄 (x) (3.79)

can be constructed out of it as a superposition,

𝑓(x) = ∑
y

𝐺(x,y)𝑄(y). (3.80)

Starting with periodic boundary conditions in 𝑑 space dimensions, the (negative) Lapla-

cian takes the form

−∇2𝑓 (x) = 2𝑑𝑓 (x) −
𝑑

∑
𝑖=1

(𝑓 (x + ̂e𝑖) + 𝑓 (x − ̂e𝑖)) . (3.81)

We define the Fourier transformation on the lattice as

ℱ [𝑓 (x)] = ̃𝑓 (k) = 1
𝑁𝑑/2 ∑

x

𝑒𝑖 2𝜋
𝑁 k⋅x𝑓 (x) . (3.82)

We can now obtain the lattice Green’s function by Fourier transformation of eq. (3.78),

𝐺(x,y) = 𝐺(x − y) = ∑
k≠0

𝑒𝑖 2𝜋
𝑁 (x−y)k

2 (𝑑 − ∑𝑖 cos (2𝜋
𝑁 𝑘𝑖))

(3.83)

with x = (𝑥1, .., 𝑥𝑑), k = (𝑘1, .., 𝑘𝑑) and 𝑥𝑖, 𝑘𝑖 ∈ {0, .., 𝑁 − 1}. The k = 0 mode can be

neglected, since the total charge on the lattice is always zero due to gauge invariance.

The Green’s function in two and three dimensions differs only by an additional term

in the denominator in eq. (3.83) due to the additional dimension.

For open boundary conditions, one cannot obtain such an explicit formula due to

boundary effects. The lattice sites on the corners only have half the number of neigh-

boring sites compared to the bulk so that the Laplace operator looks different (3.81)

(say e.g. the bottom left corner, x = 0):

−∇2𝑓(0) = 𝑑𝑓(0) −
𝑑

∑
𝑖=1

𝑓(0 + ̂e𝑖) (3.84)

The Laplace operator on the edges is modified in an analogous way. Therefore, the

operator cannot be diagonalized by a discrete Fourier transform but needs to be in-

verted numerically. Since the Laplace matrix is singular one needs to fix a condition,

e.g. ∑
x

𝐺(x,y) = 0. By fixing y for different lattice positions and inverting the Laplace
matrix, one can then obtain the Green’s function 𝐺(x,y).
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3.B The lattice Helmholtz decomposition

With the Green’s function from the previous section, we canwrite down the (Helmholtz)

decomposition of a lattice vector field into transverse and longitudinal components, as

written in eq. (3.8). For that, we will need the double curl identity

[∇ × (∇ × F)]𝑖 (x) = 𝜖𝑖𝑗𝑘Δ(−)
𝑗 𝜖𝑘𝑙𝑚Δ(+)

𝑙 𝐹𝑚 (x)

= (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙)Δ
(−)
𝑗 Δ(+)

𝑙 𝐹𝑚(x)

= Δ(+)
𝑖 Δ(−)

𝑗 𝐹𝑗(x) − Δ(−)
𝑗 Δ(+)

𝑗 𝐹𝑖(x)
= ∇𝑖 (∇ ⋅ F (x)) − ∇2𝐹𝑖 (x) .

(3.85)

One should note that for periodic boundary conditions there is an additional contribu-

tion in the double curl coming from global loops around the lattice which need to be

taken into account.

3.B.1 Periodic boundary conditions

We can now derive the Helmholtz decomposition in an analogous way to the continuum

version (for periodic boundary conditions):

𝐹𝑖 (x) = ∑
y

𝛿 (x,y) 𝐹𝑖 (y) = −∇2
x∑

y

𝐺 (x,y) 𝐹𝑖 (y) (3.86)

Inserting the double curl identity (3.85), we get the separation into a longitudinal and

a transverse component. The longitudinal component has the form

𝐹 𝐿
𝑖 (x) = −Δ(+)

𝑖 𝜙(x) (3.87)

with the scalar field 𝜙 on the sites

𝜙 (x) = ∑
y

Δ(−)
𝑗,x 𝐺 (x,y) 𝐹𝑗 (y)

= ∑
y

𝐺(x,y)Δ(−)
𝑗,y 𝐹𝑗(y)

(3.88)

The transverse component is a little more complicated since we also need to take into

account the contributions from the global loops 𝐿𝑖 around the lattice. Without the

global part, we obtain for the transverse component

𝐹 𝑇
plaq,𝑖(x) = 𝜖𝑖𝑗𝑘Δ(−)

𝑗 𝐿plaq,𝑘(x) (3.89)

with the pseudovector field 𝐿 on the plaquettes

𝐿plaq,𝑘 (x) = ∑
y

𝜖𝑘𝑙𝑚Δ(+)
𝑙,x 𝐺 (x,y) 𝐹𝑚 (y)

= ∑
y

𝐺 (x,y) 𝜖𝑘𝑙𝑚Δ(+)
𝑙,y 𝐹𝑚 (y) .

(3.90)

If we look at the field generated by the scalar field 𝜙 and the pseudovector field 𝐿plaq

in Fourier space, it is clear that all momentum modes of 𝐹 can be obtained apart from
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3.B The lattice Helmholtz decomposition

the k = 0 mode, i.e. a constant field. For that, the global loop 𝐿𝑖 is required, which

needs to be fixed to

𝐿𝑖 = 1
𝑁

∑
x

𝐹𝑖(x). (3.91)

This gives the correct k = 0 mode but in order to get a constant field this contribution

needs to be equally distributed over the lattice. Thus, we define an additional 𝐿const-

field on the plaquettes, on top of 𝐿plaq (exemplary for 𝐿1, the other spatial directions

follow analogously):

𝐿const,3(x) =
∑

y
𝐹1(y)

𝑁2 𝑥2 if 𝑥3 = 0

𝐿const,2(x) = −
∑

y
𝐹1(y)

𝑁3 𝑥3.
(3.92)

𝐿const,3 distributes the field of the global loop 𝐿1 in the ̂e2-direction and 𝐿const,2 from

the ̂e1, ̂e2-plane in the ̂e3-direction over the whole lattice, giving us a constant field

in the ̂e1-direction. The total plaquette field of the 𝐿-variables is then 𝐿 ≡ 𝐿plaq +

𝐿const and the total transverse component 𝐹 𝑇
𝑖 (x) ≡ 𝐹 𝑇

plaq,𝑖(x) +
∑

y
𝐹𝑖(y)

𝑁3 . The Helmholtz

decomposition of 𝐹 can thus be written as

𝐹𝑖(x) = −Δ(+)
𝑖 𝜙(x) + 𝜖𝑖𝑗𝑘Δ(−)

𝑗 (𝐿plaq + 𝐿const)𝑘(x) + 𝛿𝑥𝑗,0𝛿𝑥𝑘,0𝐿𝑖.

= −Δ(+)
𝑖 𝜙(x) + 𝜖𝑖𝑗𝑘Δ(−)

𝑗 𝐿𝑘(x) + 𝛿𝑥𝑗,0𝛿𝑥𝑘,0𝐿𝑖.

= 𝐹 𝐿
𝑖 (x) + 𝐹 𝑇

plaq,𝑖(x) +
∑

y
𝐹𝑖(y)

𝑁3

= 𝐹 𝐿
𝑖 (x) + 𝐹 𝑇

𝑖 (x)

(3.93)

with 𝑖 ≠ 𝑗 ≠ 𝑘.

3.B.2 Open boundary conditions

For open boundary conditions, one can perform a similar decomposition, with the

major difference that there is no global loop participating. It can be written as

𝐹𝑖(x) = −Δ(+)
𝑖 𝜙(x) + 𝜖𝑖𝑗𝑘Δ(−)

𝑗 𝐿𝑘(x) (3.94)

where the scalar field 𝜙 has the same form as in eq. (3.88), with the Green’s function

replaced by the one for open boundary condition. The plaquette field 𝐿 also has the

same form as in eq. (3.90), but the sum goes only over all plaquettes (not all lattice

sites) and the Green’s function 𝐺plaq(x,y) is determined by a modified Laplace operator

∇2
plaq on the plaquettes:

−∇2
plaq𝑓(x) = 2𝑑𝑓(x) −

𝑑
∑
𝑖=1

(𝑓(x + ̂e𝑖) + 𝑓(x − ̂e𝑖)) (3.95)

where the difference is the constant factor of 2𝑑, also at the boundaries, e.g. at x = 0:

−∇̃2𝑓(0) = 2𝑑𝑓(0) −
𝑑

∑
𝑖=1

𝑓(0 + ̂e𝑖) (3.96)

All the above discussion applies immediately to the 𝑑 = 2 case, by embedding it in

𝑑 = 3.
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3.B.3 The shifts 𝑠x,𝑖(y)
As a result of the Helmholtz decomposition, we obtain the shifts 𝑠x,𝑖(y) discussed in

section 3.5, which describe the shifts in the electric plaquette variables 𝐿(x) when a

matter degree of freedom hops to an adjacent site. We just need to replace the general

field 𝐹𝑖(x) with a field which is zero everywhere and one on the link where hopping

occurs. The resulting values for 𝐿 computed by eq. (3.90), (3.91) and (3.92) adapted

to two dimensions give exactly the shifts 𝑠x,𝑖(y) (analogously for open boundary con-

ditions), e.g. for a shift in ̂e1-direction:

𝑠plaq,x,1 (y) = 𝐺 (y, x) − 𝐺 (y, x − ̂e2)

𝑠const,x,1 (y) = 1
𝑁2 𝑦2

𝑠x,1(1) = 1
𝑁

(3.97)

so that 𝑠x,1 (y) = 𝑠plaq,x,1 (y) + 𝑠const,x,1 (y) and with 𝑠x,1(1) the shift in the global loop

variable 𝐿1.

3.C Canonical commutation relations

In this section we show that the dual 𝐵/𝐿-variables fulfill canonical commutation re-

lations as stated in eq. (3.44). Using the expression of 𝐿(y) in terms of the original

electric field 𝐸𝑖(y) on the links (see eq. (3.43)), the expression of 𝐵(x) as the lattice

curl of the gauge field 𝜃𝑗(x) (see eq. (3.19)) and the original canonical commutation

relations in eq. (3.16), we obtain

[𝐵(x), 𝐿(y)] = 𝜖𝑖𝑗𝜖𝑘𝑙 ∑
y′

Δ(+)
𝑘,y𝐺(y,y′) [Δ(+)

𝑖,x 𝜃𝑗(x), 𝐸𝑙(y′)]

= 𝜖𝑖𝑗𝜖𝑘𝑙 ∑
y′

Δ(+)
𝑘,y𝐺(y,y′)𝑖𝛿𝑗𝑙 (𝛿x+ ̂e𝑖,y′ − 𝛿x,y′)

= 𝜖𝑖𝑗𝜖𝑘𝑗𝑖Δ
(+)
𝑘,yΔ(+)

𝑖,x 𝐺(y, x)

= −𝑖Δ(−)
𝑖,x Δ(+)

𝑖,x 𝐺(y, x)
= 𝑖𝛿x,y

(3.98)

canonical commutation relations also for 𝐵 and 𝐿. In a completely analogous way one

can derive the canonical commutation relations for 𝜙 and 𝑀.

3.D The modified Coulomb potential between the

dual 𝑀-variables for periodic boundary

conditions

If we consider periodic boundary conditions in the dual formulation in terms of the

𝜙/𝑀-variables, the electric Hamiltonian gives rise to Coulomb-type interactions be-

tween the 𝑀-variables. The interaction potential 𝐺(x,y) is slightly modified compared

to the potential for the matter degrees of freedom due to the global loops as discussed
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conditions

in section 3.5 in eq. (3.58). They change the Laplace operator (here in two dimensions)

on the plaquettes to, see eq. (3.57):

𝑀(x) = − ∇2𝐿(x) + 𝜖𝑖𝑗Δ
(+)
𝑖 𝛿𝑥𝑖,0𝐿𝑗

− ∇2𝐿(x) + (𝛿𝑥2,0 − 𝛿𝑥2,−1) 𝐿1 − (𝛿𝑥1,0 − 𝛿𝑥1,−1) 𝐿2
(3.99)

The plaquettes where the Laplace operator is altered are the ones sharing a link with

one of the two axes. The relation between the global 𝑀-variables 𝑀1 and 𝑀2 and 𝐿 is

𝑀1 = 𝑁𝐿1 + ∑
𝑥2=0

𝑥1

(𝐿(x) − 𝐿(x − ̂e2))

𝑀2 = 𝑁𝐿2 − ∑
𝑥1=0

𝑥2

(𝐿(x) − 𝐿(x − ̂e1))
(3.100)

If one defines an 𝑀-vector out of the plaquette variables 𝑀(x) and the global variables
𝑀1 and 𝑀2, 𝑀 ≡ (𝑀(x), 𝑀1, 𝑀2), and analogously for 𝐿, one can construct a system

of linear equations for 𝑀 and 𝐿 out of eq. (3.99) and eq. (3.100), denoted by 𝐷, i.e

𝐷𝐿 ≡ 𝑀, which can be inverted (after fixing some condition), resulting in

𝐿(x) = ∑
y

𝐷−1 (x,y) 𝑀(y). (3.101)

Note that the sum over y also contains 1 and 2, corresponding to the global loop vari-

ables 𝑀1 and 𝑀2. Inserting this relation in the electric Hamiltonian in terms of 𝐿 in

eq. (3.48), gives eq. (3.58)

𝐻𝑇
𝐸 = 𝑔2

2
∑
x,y

𝑀(x)𝐺 (x,y) 𝑀(y) (3.102)

with

𝐺(x,y) = ∑
x′,𝑖

(𝜖𝑖𝑗Δ
(−)
𝑖,x′𝐷−1 (x′, x) + 𝛿𝑥𝑗,0𝐷−1 (𝑖, x))

× (𝜖𝑖𝑘Δ(−)
𝑖,x′𝐷−1 (x′,y) + 𝛿𝑥𝑘,0𝐷−1 (𝑖,y))

(3.103)

with 𝑖 ≠ 𝑗 and 𝑖 ≠ 𝑘. Since x and y also include the global variables 𝑀1 and 𝑀2
(denoted by 1 and 2, as for example in 𝐷−1(𝑖, x)), there are non-trivial interactions be-
tween the global variables and the plaquette variables. For open boundary conditions,

the above equation expression for 𝐺(x,y) reduces to 𝐺(x,y).
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4 Real-time dynamics in 2+1d
compact QED using complex
periodic Gaussian states

4.1 Motivation

Gauge theories play a crucial role in fundamental physics, with the standard model of

particle physics being a prominent example that describes electromagnetic, weak, and

strong interactions. While perturbative expansions can be used to treat interactions in

some regimes, the coupling in quantum field theories varies with scale, which means

that non-perturbative methods are necessary in certain cases, such as in low-energy

QCD [5, 72].

Lattice gauge theory is a method of discretizing either spacetime or space, which

allows for the investigation of non-perturbative quantum field theories while main-

taining gauge invariance [7, 8]. Monte-Carlo simulations have been instrumental in

uncovering many interesting features of these theories [73]. However, there are cer-

tain challenges associated with this approach. For instance, fermionic theories with

finite chemical potentials may be affected by the sign problem [12], and accessing time

dynamics can be challenging since Monte-Carlo simulations require a formulation in

Euclidean spacetime.

To address the challenges faced in action-based formulations of lattice gauge the-

ories, other approaches have been proposed based on the Hamiltonian formulation.

Kogut and Susskind were the first to propose this approach [8], which has inspired

also other Hamiltonian formulations like the quantum link model [43–46] or the pre-

potential approach [74]. Recent advances have shown that these Hamiltonians can be

simulated on quantum devices like ultracold atoms, trapped ions, and superconduct-

ing qubits [15]. Additionally, variational ansatz states can be designed to efficiently

capture the most relevant features of the theory.

Both quantum simulation and classical numerical methods have been successfully ap-

plied to one-dimensional lattice gauge theories. The feasibility of quantum simulation

has been demonstrated with trapped ions and ultracold atoms [34–38]. On the numer-

ical side, matrix product state (MPS) methods have been applied to (1+1)-dimensional

Abelian and non-Abelian lattice gauge theories [75–82]. These MPS methods enable

the study of finite chemical potential scenarios and out-of-equilibrium dynamics, which

are difficult to access with Monte-Carlo simulations of Euclidean lattice gauge theory.

In higher spatial dimensions, the presence of magnetic interactions leads to the ap-

pearance of four-body plaquette interactions on the lattice, making the situation more

challenging. For quantum simulators solutions to this problem have been proposed,

based on digital or analog simulation schemes, but they are currently beyond exper-

imental capabilities. In two spatial dimensions, tensor network methods have been

successfully applied to ground state problems in pure gauge theories with a finite-
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dimensional gauge field Hilbert space, which can be achieved either by truncating the

𝑈(1) gauge group to ℤ3 [83] or using a 𝑈(1) quantum link formulation [84, 85].

This chapter focuses on (2+1)-dimensional compact quantum electrodynamics, which

has an infinite-dimensional gauge field Hilbert space and shares some characteristics

with (3+1)-dimensional quantum chromodynamics. It is a suitable starting point for

the investigation of higher-dimensional lattice gauge theories since it is in a confined

phase for all values of the coupling constant [18]. To explore physics that is chal-

lenging to simulate using Monte-Carlo simulations of Euclidean lattice gauge theories,

we investigate not only ground state properties but also real-time dynamics after a

quantum quench.

As system sizes increases, exact diagonalization methods become more and more

impractical. However, due to the infinite-dimensional local Hilbert space of the gauge

field, they are already impractical for the study of compact QED on a single plaquette.

Therefore, one needs to resort to variational techniques. In one spatial dimension, the

infinite dimension can be circumvented by integrating out the gauge field [16, 17, 86],

which becomes impossible in two and more spatial dimensions.

In this chapter, a new class of variational ansatz states is presented that is suitable

to capture the infinite-dimensional Hilbert space of compact QED. These states are

complex periodic Gaussian states, which are a generalization of the periodic Gaussian

states introduced in a previous study [57]. It is a Gaussian state in the gauge field

plaquette variables, which is made periodic by an infinite summation over integer-

valued variables. The periodicity is crucial to capture the compactness of the 𝑈(1)
gauge field. A numerical approximation scheme is developed to evaluate these infinite

sums so that the states can be efficiently evaluated for all variational parameters. By

extending the variational manifold to include complex periodic Gaussian states, it is

possible to study real-time dynamics and thus the non-equilibrium dynamics after a

global quench. Since these states do not require any truncation in Hilbert space, it also

allows to investigate truncation effects and determine in which coupling regimes such

truncations are justified.

The content of this chapter is based on Ref. [2].
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4.2 Executive summary

As opposed to lattice gauge theories in one dimension, it is not possible to integrate

out the gauge field in two and more spatial dimensions. Therefore, one needs to find

a way how to deal with the infinite-dimensional Hilbert space of the gauge field.

One way is to use a truncated formulation which requires to justify the truncation for

every scenario that one considers (a truncation might work for ground state problems

but might fail for out-of-equilibrium dynamics). Another approach is to find variational

methods that do not need such a truncation which will be pursued in this chapter. This

also allows to guide other methods which only work for finite-dimensional Hilbert

spaces to guide the search for possible truncation schemes.

Such variational states, so called complex periodic Gaussian states, will be presented

for the study of (2+1)-dimensional comapct QED, i.e. a lattice gauge theory based on

the compact 𝑈(1) gauge group. The gauge field on every link can be characterized

either by a compact angular variable 𝜃 ∈ [0, 2𝜋) or an integer-valued electric field

variable. The compact nature of the gauge field is crucial to observe certain non-

perturbative effects on the lattice such as confinement. It is known that in the contin-

uum limit compact QED becomes a free theory and the ground state of the gauge field

can be described by a Gaussian.

The intuition behind the construction of the variational ansatz is to take a Gaussian

state in the gauge field and make it periodic to account for the compactness of the

𝑈(1) gauge group. Periodicity can be achieved by infinite sums over integer-valued

variables. A numerical scheme is presented that can evaluate these infinite sums effi-

ciently. A major reason for its efficiency is that a periodic Gaussian state is self-similar

in the sense that the infinite sum over a very slowly decaying Gaussian state can be

rewritten as the sum over a very strongly decaying Gaussian state. This allows to find

a form of the variational state that where it is possible to truncate the infinite sums

after a rather small finite order. Hence, the ansatz can be efficiently evaluated for all

variational parameters.

The variational method is used to study ground state properties and real-time dy-

namics. First, for the one plaquette case, where an exact solution of the ground state

is known, the variational ground state energy is compared to the exact result, showing

very good agreement over the whole coupling region, with a maximal relative error of

0.005. Secondly, ground state properties are studied, in particular confinement. The

string tension, is computed with two methods, via the area law of Wilson loops and

the potential between two static charges, showing that confinement persists through-

out the whole coupling region, in agreement with theory [18]. Moreover truncation

effects in the gauge field hilbert space are investigated, showing that a common trun-

cation in the electric basis is justified for the ground state at strong coupling but fails

for the ground state in the weak-coupling region.

For the study of real-time dynamics the ansatz is first benchmark against exact di-

agonalizaton in the strong coupling region where a truncation can be justified, thus

enabling exact diagonalization methods. We observe relatively good agreement. We

then study out-of-equilibrium dynamics by considering various quantum quenches.

First, the variational ground state at a certain coupling is prepared and then the cou-

pling constant is changed to a different regime. We can observe rather long, stable

time dynamics where the variational energy stays constant to very high accuracy. All

quenches show equilibrating behavior. One interesting such quench is the real-time
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evolution of a strongly confined flux tube after a quench to weak-coupling where we

see equilibration to a state where no remnant of confinement is present, indicating

possible thermalization at a temperature above the confinement-deconfinement tran-

sition [87].

The following sections are structured as follows: section 4.3 presents the variational

ansatz, along with a numerical scheme for its evaluation. The first part of section 4.4

examines the ground state energy density and string tension across the entire coupling

range. In the second part, truncation effects are explored by comparing the variational

ground state energy with exact diagonalization results obtained by truncating the local

Hilbert space in the electric basis. Section 4.5 focuses on real-time dynamics following

a quantum quench, using the time-dependent variational principle.
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4.3 The variational method: complex periodic

Gaussian states

4.3.1 (2+1)-dimensional compact QED

We briefly review (2+1)-dimensional compact QED on a square lattice of extent 𝐿×𝐿
with periodic boundary conditions. The gauge fields reside on the links; 𝑈x,𝑖 denotes

the gauge field operator on the link emanating from site x in direction e𝑖. The Hamil-

tonian in lattice units takes the following form, originally proposed by Kogut and

Susskind [8]:

𝐻𝐾𝑆 = 𝑔2

2
∑
x,𝑖

𝐸2
x,𝑖 + 1

2𝑔2 ∑
p

2 − (𝑈p + 𝑈†
p) (4.1)

with 𝑔2 being the coupling constant and 𝑈p = 𝑈x,1𝑈x+e1,2𝑈†
x+e2,1𝑈†

x,2 where x is the

bottom left corner of plaquette p. 𝑈x,𝑖 is in the fundamental representation of 𝑈(1),
it can also be written in terms of an angle 𝜃x,𝑖, 𝑈x,𝑖 = 𝑒𝑖𝜃x,𝑖 with −𝜋 < 𝜃x,𝑖 ≤ 𝜋. The
restriction of the gauge field to this compact interval is the reason why the model is

called compact QED and why it exhibits interesting features such as confinement in

contrast to the non-compact theory [88]. 𝐸x,𝑖 is the electric field operator fulfilling

the following commutation relations:

[𝐸x,𝑖, 𝑈y,𝑗] = 𝛿x,y𝛿𝑖,𝑗𝑈x,𝑖

[𝜃x,𝑖, 𝐸y,𝑗] = 𝑖𝛿x,y𝛿𝑖,𝑗
(4.2)

Since we work in the temporal gauge, there is a residual spatial gauge symmetry de-

fined by the Gauss law operators 𝐺x. All physical states need to be eigenstates of

them:

𝐺x |phys⟩ =
2

∑
𝑖=1

(𝐸x,𝑖 − 𝐸x−ei,𝑖) |phys⟩ = 𝑄x |phys⟩ ∀x (4.3)

where the eigenvalue 𝑄x gives the static charge configuration at x.
These local constraints put quite severe restrictions on the choice of variational

states. Thus, we change to a gauge-invariant description of compact QED as presented

in chapter 3, but restricted to the case of static charges as opposed to the general dis-

cussion of chapter 3 involving dynamical fermions. This allows, without performing

a unitary transformation, to change to variables where gauge invariance is already in-

corporated (at least up to a global constraint) using the splitting of the electric field

𝐸x,𝑖 into a transvere part 𝐸𝑇
x,𝑖, which is dynamical, and a longitudinal part 𝐸𝐿

x,𝑖 which

is fixed by the static charge configuration. Since the transverse part of the electric field

can be expressed by a plaquette field 𝐿p (the lattice analogue of a solenoidal vector

field), the remaining dynamical degrees of freedom {𝐿p, 𝑈p = 𝑒𝑖𝜃p} reside on pla-

quettes, having the same Hilbert space structure and fulfilling the same commutation

relations as the link variables:

[𝐿p, 𝑈p′ ] = 𝛿p,p′𝑈p′

[𝜃p, 𝐿p′ ] = 𝑖𝛿p,p′ .
(4.4)

The operator 𝑈p creates an electric flux excitation around plaquette p. However, to

construct all possible gauge-invariant flux configurations two global non-contractible
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flux loops around the torus (one for each spatial direction) are required, their opera-

tors are denoted as {𝜃1, 𝐿1} and {𝜃2, 𝐿2} specifying the topological sector of the flux

configuration. 𝐿1 and 𝐿2 commute with the Hamiltonian and we will restrict our-

selves to the topological sector with 𝐿1 = 𝐿2 = 0 which corresponds to no electric

flux loops winding around the torus. This is in stark contrast to compact QED with

dynamical fermions as the appearance of gauge-matter interactions makes the global

loop variables dynamical. For more details see Appendix 4.A or chapter 3. Writing the

Hamiltonian in terms of these new variables, reads

𝐻𝐾𝑆 =𝐸𝐶 + 1
𝑔2 ∑

p

(1 − cos 𝜃p)

+𝑔2

2
∑
p

2
∑
𝑖=1

(𝐿p − 𝐿p−e𝑖
+ 𝜖p − 𝜖p−e𝑖

)
2

(4.5)

where 𝐸𝐶 is an energy offset given by the lattice Coulomb energy (note that upon the

inclusion of dynamical fermions this term will involve interactions between dynamical

charges as discussed in chapter 3) and 𝜖p accounts for the transversal part of the electric
field caused by the static charges only, i.e 𝜖p = 0 in case of no static charges. Even in

this formulation there is one remaining global constraint left which is intuitively clear

since raising the electric flux around all plaquettes should return the same state due to

the periodic boundary conditions. Thus,

∏
p

𝑈p |phys⟩ = |phys⟩ . (4.6)

An explicit formula for the calculation of 𝜖p and 𝐸𝐶 depending on the static charge

configuration can be found in Appendix 4.A.

4.3.2 The variational ansatz

We formulate our variational ansatz states in terms of the 𝜃p-variables defined above

such that it only needs to fulfill the global constraint (4.6). Starting from periodic

Gaussian states introduced in [57], we extend the variational wavefunction to have an

imaginary part in order to account for real-time dynamics. The ansatz is based on a

complex Gaussian state:

Ψ𝐶𝐺({𝑥p}) ≡ 𝑒− 1
2 ∑

p,p′ 𝑥p𝐴pp′𝑥p′−𝑖 ∑
p

𝜖p𝑥p (4.7)

with 𝑥p ∈ ℝ and p = (𝑝1, 𝑝2), 𝑝1, 𝑝2 ∈ [0, .., 𝐿 − 1]. The linear part in the exponent, i.e.

𝜖p, is fixed by the static charge configuration (see section 4.3.1 and Appendix 4.A) and

𝐴pp′ ≡ 1
𝜋𝐿2

𝐿−1
∑

𝑘1,𝑘2=0
𝑒2𝜋𝑖 (𝑝1−𝑝′

1)𝑘1+(𝑝2−𝑝′
2)𝑘2

𝐿 (𝛾𝑅
k + 𝑖𝛾𝐼

k) (4.8)

is defined by the variational parameters {𝛾𝑅
k } and {𝛾𝐼

k}. In the following, we will

use the shorthand notation pk ≡ 2𝜋𝑝1𝑘1+𝑝2𝑘2
𝐿 . Since the disorder introduced by static

charges is incorporated in 𝜖p, the quadratic part 𝐴 is assumed to be translationally

invariant. The factor of 1/𝜋 is chosen for later convenience. Written in terms of
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4.3 The variational method: complex periodic Gaussian states

Fourier components 𝑥k = 1
𝐿 ∑

p
𝑒𝑖pk𝑥p, the quadratic part in the exponential becomes

∑
p,p′ 𝑥p𝐴pp′𝑥p′ = 1

𝜋 ∑
k

|𝑥k|2 (𝛾𝑅
k + 𝑖𝛾𝐼

k). Thus, to guarantee convergence of Ψ𝐶𝐺 we

need to require 𝛾𝑅
k > 0 ∀k. Since |𝑥k|2 = |𝑥−k|2, the variational parameters 𝛾𝑅/𝐼

k and

𝛾𝑅/𝐼
−k are redundant. We define the equivalence relation

k ∼𝑘 k
′ if 𝑘1 = −𝑘′

1 (mod 𝐿)
and 𝑘2 = −𝑘′

2 (mod 𝐿)
(4.9)

With the quotient set 𝒦 ≡ {[0, .., 𝐿 − 1]2 (0, 0)} /∼𝑘 we can define a set of indepen-

dent variational parameters, {𝛾𝑅/𝐼
k }

k∈𝒦
. Choosing a set of independent parameters

will be important later on for applying the time dependent variational principle (see

section 4.5.1).

To construct a suitable ansatz state for compact 𝑈(1) gauge fields (𝜃p ∈ [−𝜋, 𝜋]) we
sum over complex Gaussian states, thus ensuring periodicity:

Ψ𝐶𝑃𝐺 ({𝜃p}) ≡ ∏
p

(
+∞

∑
𝑁p=−∞

)Ψ𝐶𝐺 ({𝜃p − 2𝜋𝑁p}) 𝛿 (∑
p

𝜃p − 2𝜋𝑁p) . (4.10)

The delta function needs to be included in order to satisfy condition (4.6) for physical

states. To shorten notation, we will denote the product over infinite sums ∏
p

∑+∞
𝑁p=−∞

by ∑{𝑁p} and the product over integrals ∏
p

∫𝜋
−𝜋

𝑑𝜃p by ∫𝜋
−𝜋

𝐷𝜃. The Gaussian nature

of the wavefunction is exploited when evaluating expectation values of observables 𝑂
by combining the integral over 2𝜋 with one of the two infinite sums to an integration

over the real axis

⟨Ψ𝐶𝑃𝐺|𝑂|Ψ𝐶𝑃𝐺⟩ = ∑
{𝑁p}

𝛿 (∑
p

𝑁p) 𝑓𝑂({𝑁p}) (4.11)

with

𝑓𝑂({𝑁p}) ≡
+∞

∫
−∞

𝐷𝜃Ψ𝐶𝐺 (𝜃p − 2𝜋𝑁p) 𝑂 (𝜃p) Ψ𝐶𝐺 (𝜃p) 𝛿 (∑
p

𝜃p) . (4.12)

The integral 𝑓𝑂({𝑁p}) can be carried out analytically and the remaining infinite sum

needs to be evaluated numerically.

Exemplary, we show this procedure for the norm of the variational state, ⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩.
The computation of observables follows analagously; details on their exact form can

be found in Appendix 4.C. After carrying out the integrals, the remaining function

𝑓1 ({𝑁p}) is

𝑓1({𝑁p}) = ∏
k≠0

√
𝜋

𝛾𝑅
k

𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k

|𝑁k|2𝛾k (4.13)

with𝑁k ≡ 1
𝐿 ∑

p
𝑒𝑖pk𝑁p the discrete Fourier transform of𝑁p and 𝛾k ≡ 𝛾𝑅

k +(𝛾𝐼
k)2(𝛾𝑅

k )−1.

The 𝛾k parameters determine how fast contributions to the sum in eq. (4.11) decrease

exponentially with increasing |𝑁k|2.
We group the configurations 𝑁p of this sum in different orders such that within one

order the configurations only change up to permutations. Since all relevant configu-

rations will contain mostly zeros, we will denote orders by its non-zero elements, e.g.
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4.3 The variational method: complex periodic Gaussian states

{𝑁}1 is the set of all permutations of the configuration 𝑁 ′ defined by 𝑁 ′
p=0 = 1 and

𝑁 ′
p≠0 = 0, i.e. {𝑁}1 ≡ 𝑆𝑁′ . If the parameters 𝛾k are large enough, the sum can be ap-

proximated by orders having small Euclidean norm, ||𝑁p||22 = ∑
p

|𝑁p|2 = ||𝑁k||22. The
higher number of permutations in orders with larger norm cannot compensate for the

exponential suppression (this would not be the case if the 𝛾k were arbitrarily small).

Using this scheme, the constraint 𝛿 (∑
p

𝑁p) is useful since it excludes many orders,

e.g. {𝑁}1 or {𝑁}−1. The order with the lowest non-zero norm is therefore {𝑁}1,−1.

In fact, the sum in eq. (4.11) can be expanded in orders containing only pairs of 1, −1:

⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩ = ∏
k≠0

√
𝜋

𝛾𝑅
k

∑
{𝑁k=0=0}

𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k

|𝑁k|2𝛾k

= ∏
k≠0

√
𝜋

𝛾𝑅
k

⎛⎜
⎝

1 + ∑
{𝑁}1,−1

𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k

|𝑁k|2𝛾k

+ ∑
{𝑁}1,1,−1,−1

𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k

|𝑁k|2𝛾k + ..⎞⎟
⎠

. (4.14)

∑{𝑁k=0=0} denotes the sum over the set of all 𝑁p configurations with 𝑁k=0 = 0, i.e. ful-
filling the global constraint. For sufficiently large 𝛾k higher orders of the type {𝑁}2,−2
or {𝑁}−2,1,1 are exponentially suppressed as well as orders with a large number of 1, −1
pairs. Thus, the above expansion can be truncated after the first few terms. Each of the

remaining orders is evaluated numerically. The fact that configurations only change

up to permutations within one order can be used to highly parallelize the computation.

On an 8×8 lattice we are able to compute the first three orders exactly. This procedure

is sufficient for most configurations of variational parameters with 𝛾k ≳ 1. However,
in the intermediate regime 𝛾k ≈ 1 more orders are required to obtain good conver-

gence. In these cases, higher orders are computed using uniform sampling. Since for

all our purposes the different 𝛾k parameters were of the same order of magnitude and

the 𝑁p configurations only change up to a permutation within an order, a uniform

probability distribution is a suitable ansatz for the exponential in eq. (4.13). This is

only the case for sampling within one order; it would fail if one tried to sample the

whole sum. This combined approach of exact evaluation and uniform sampling has the

advantage that it introduces almost no error for most of the variational manifold (up

to truncated orders which are exponentially suppressed) and even for regions where

uniform sampling is required the error is still suppressed since it only occurs in higher

orders. For a detailed error analysis due to truncating orders and uniform sampling

see Appendix 4.B.

When the 𝛾k become small, the above approximation fails. In that case, one can

exploit the fact that ⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩ can be written as a multidimensional Riemann

theta function [89] which is defined as

𝜃(𝑧|Ω) = ∑
𝑁∈ℤ𝑔

𝑒2𝜋𝑖(𝑧⋅𝑁+ 1
2 𝑁⋅Ω⋅𝑁) (4.15)

where 𝑧 ∈ ℂ𝑔, Ω ∈ ℂ𝑔×𝑔, such that Ω = Ω𝑇 and Im(Ω) is strictly positive definite.

To bring ⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩ into this form one can rewrite the delta function as the limit

of a Gaussian and exchange the limit with the infinite sum due to uniform conver-

gence. One can now exploit invariance of the Riemann theta function under modular
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4.3 The variational method: complex periodic Gaussian states

transformations, in particular the following relation holds (for details see [89]):

𝜃 (𝑧|Ω) = 1
√det(−𝑖Ω)

𝑒−𝑖𝜋𝑧⋅Ω⋅𝑧𝜃 (Ω−1𝑧| − Ω−1) (4.16)

If we insert this relation and take the limit, we obtain:

⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩ = ∏
k≠0

√
𝜋

𝛾𝑅
k 𝛾k

∑
{𝑁p}

𝑒−𝜋 ∑
k

|𝑁k−𝜖k|2𝛾−1
k

≡ ∑
{𝑁p}

𝑓inv,1 ({𝑁k≠0}) . (4.17)

with 𝛾−1
0 = 0. The exponential weight depends now on 𝛾−1

k which allows in principle to

approximate the sumwith only a very limited number of orders for sufficiently small 𝛾k.
However, the sum is not well defined since all constant configurations𝑁p = 𝑐(1, 1, ..., 1)
have weight one for 𝑐 ∈ ℤ. Fortunately, since all 𝑓inv,𝑂({𝑁k≠0}) are independent of

𝑁k=0 (as a result of the global constraint on physical states), all these configurations

can be factored out such that they cancel when calculating expectation values. This can

be formulated rigorously by defining an equivalence relation for 𝑁p configurations:

𝑁p ∼1 𝑁 ′
p if ∃ 𝑐 ∈ ℤ s.t. 𝑁p − 𝑁 ′

p = 𝑐(1, 1, ..., 1) (4.18)

When calculating expectation values of observables only a sum over representatives of

this equivalence relation is required:

⟨Ψ𝐶𝑃𝐺|𝑂|Ψ𝐶𝑃𝐺⟩
⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩

=
∑{𝑁p}/∼1

𝑓inv,𝑂({𝑁k≠0})

∑{𝑁p}/∼1
𝑓inv,1({𝑁k≠0})

(4.19)

If we choose the representative to be the one closest in norm to the 𝑁p = 0 config-

uration, we can expand the sum again in orders having mostly 0’s. In this case we

have no constraint so that all orders must be taken into account. For more details see

Appendix 4.B.

A nice way to check the validity of both numerical approximation schemes presented

above is to see whether they agree in the parameter region 𝛾k ≈ 1. This check has

been carried out throughout this work since it also indicates that the whole variational

manifold can be accessed which is required in order to study the whole coupling region.

To illustrate that both approximation schemes complement each other, we give the

variational energy of Ψ𝐶𝑃𝐺 with respect to the Kogut-Susskind Hamiltonian given in

eq. (4.5), written both in the infinite sum representation for high and for low 𝛾k:

⟨Ψ𝐶𝑃𝐺|𝐻𝐾𝑆|Ψ𝐶𝑃𝐺⟩
⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩

=𝐸𝐶 + 𝑔2

4𝜋
∑
k

𝛾k (4 − 2 cos(2𝜋𝑘1
𝐿

) − 2 cos(2𝜋𝑘2
𝐿

))

− 𝑔2

2
∑
k

𝛾2
k (4 − 2 cos(2𝜋𝑘1

𝐿
) − 2 cos(2𝜋𝑘2

𝐿
)) ⟨|𝑁k|2⟩

+ 1
𝑔2 ∑

p

(1 − 𝑒− 𝜋
4𝐿2 ∑

k≠0(𝛾𝑅
k )−1

⟨(−1)𝑁p cosh(𝜋 ∑
k

Re (𝑁k𝑏pk))⟩)

(4.20)
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with 𝑏pk = 1
𝐿𝛾𝐼

k (𝛾𝑅
k )−1 𝑒−𝑖pk. The brackets denote an infinite sum for the electric energy

⟨|𝑁k|2⟩ ≡
∑{𝑁k=0=0} 𝑒2𝜋𝑖 ∑

p
𝜖p𝑁p𝑒−𝜋 ∑

k′ |𝑁k′ |2𝛾k′ |𝑁k|2

∑{𝑁k=0=0} 𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k′ |𝑁k′ |2𝛾k′

= 1
2𝜋

𝛾−1
k (4 − 2 cos(2𝜋𝑘1

𝐿
) − 2 cos(2𝜋𝑘2

𝐿
))

− 𝛾−2
k

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k′ |𝑁k′−𝜖k′ |2𝛾−1
k′ |𝑁k − 𝜖k|2

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k′ |𝑁k′−𝜖k′ |2𝛾−1
k′

and the following infinte sum for the magnetic energy

⟨(−1)𝑁p cosh(𝜋 ∑
k

Re (𝑁k𝑏pk))⟩

=
∑{𝑁k=0=0}(−1)𝑁p cosh (𝜋 ∑

k
Re (𝑁k𝑏pk)) 𝑒2𝜋𝑖 ∑

p
𝜖p𝑁p𝑒−𝜋 ∑

k
|𝑁k|2𝛾k

∑{𝑁k=0=0} 𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k

|𝑁k|2𝛾k

=
∑{𝑁p}/∼1

𝑒−𝜋 ∑
k
(|𝑁k−𝜖k− 1

2
p

k
|2− 1

4 |𝑏pk|2)𝛾−1
k cos (𝜋 ∑

k
𝛾−1
k Re [(𝑁k − 𝜖k − 1

2
p

k
)𝑏pk])

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k

with 1
2
p

k
= 1

2𝐿𝑒−𝑖pk. If we set 𝛾𝐼
k = 0 ∀k the expressions for high 𝛾𝑅

k , i.e. with the

sums ∑{𝑁k=0=0}, agree with the results given in [57] up to redefinitions. It is im-

portant to emphasize that the convergence of infinite sums is determined by 𝛾k =
𝛾𝑅
k + (𝛾𝐼

k)2 (𝛾𝑅
k )−1

or 𝛾−1
k , respectively. For real-time evolutions, e.g. a quantum

quench, (𝛾𝐼
k)2

will typically become large and so will 𝛾k, irrespective of the real part
𝛾𝑅
k . This allows to truncate the expansion in eq. (4.14) already after the first term such

that everything can be evaluated without resorting to sampling. This property makes

the ansatz well suited for real-time evolution compared with other methods where

sampling at all times often makes it difficult to reach long times.

4.4 Ground state properties

In this section, we study the variational ground state of 2+1d compact QED over the

whole coupling region. To minimize the energy we applied a gradient descent algo-

rithm (the formula for the gradient can be found in Appendix 4.C). We used different

initial seeds to prevent the possibility of getting stuck in local minima. To make sure

that our variational state can approximate the ground state, we compare it first to

known exact results. One should note that exact diagonalization methods cannot be

applied to the full theory since the local Hilbert space is infinite. However, for the

case of a single plaquette exact analytical solutions are known, namely the Mathieu

functions.
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Figure 4.4.1: Benchmark of the variational ground state energy for one plaquette against the

value of the exact ground state, given by the Mathieu function with the lowest characteristic

value. The inset shows the relative error of the variational ground state energy with respect to

the exact goundstate energy.

4.4.1 Benchmark for one plaquette

For benchmarking our variational ansatz, we will restrict ourselves to the sector with-

out static charges. The Hamiltonian given in the formulation of the previous chapter,

written in the basis of 𝜃, reads:

𝐻1plaq = −2𝑔2 𝜕2

𝜕𝜃2 + 1
𝑔2 (1 − cos 𝜃). (4.21)

The corresponding Schroedinger equation for 𝜉(𝜃) can be written as a Mathieu equa-

tion:

( 𝜕2

𝜕𝑧2 + 𝑎 − 2𝑞 cos(2𝑧)) ̃𝜉(𝑧) = 0 (4.22)

with 𝑞 ≡ − 1
𝑔4 , 𝑎 ≡ 2

𝑔2 (𝐸 − 1
𝑔2 ) and ̃𝜉(𝑧) ≡ 𝜉(𝜃/2). ̃𝜉 is therefore not 2𝜋-periodic but 𝜋-

periodic. The 𝜋-periodic solutions are usually separated into even 𝑐𝑒2𝑟(𝑧, 𝑞) (𝑟 ≥ 0) and
odd 𝑠𝑒2𝑟(𝑧, 𝑞) (𝑟 ≥ 1) solutions. The lowest energy, i.e. the lowest characteristic value
𝑎, corresponds to the solution 𝑐𝑒0(𝑧, 𝑞). In Fig. 4.4.1, this exact ground state energy

is plotted against the minimized variational energy. They agree very well over the

whole coupling region, even in the regime where the difference is maximal (𝑔2 ∼ 0.7)
the relative error is still around 0.5%.

4.4.2 Confinement and string tension

In this section, we study the properties of the varational ground state for an extended

lattice and investigate its finite size effects. We start by studying the ground state

energy density 𝑒0(𝐿) for lattice sizes up to 8 × 8 plaquettes without static charges. We

see that for couplings 𝑔2 ≳ 1.0 this size is already enough to get a linear scaling with
1

𝐿2 . The thermodynamic limit 𝑒0(𝐿 = ∞) is then extracted with the following fit

𝑒0(𝐿) = 𝑒0(𝐿 = ∞) + 𝑎
𝐿2 . (4.23)
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Figure 4.4.2: (Left): Groundstate energy density extrapolated to the thermodynamic limit. The

available lattice sizes are 8 × 8 for couplings 𝑔2 ≥ 1.0, 14 × 14 for 𝑔2 = 0.8, 0.9 and 20 × 20 for

𝑔2 ≤ 0.7. (Right): Finite size scaling for the ground state energy density at 𝑔2 = 0.5 (a) and

𝑔2 = 2.0 (b). For 𝑔2 = 2.0, the ground state energy density for 𝐿 = 8, 7, 6 is fitted according to

eq. (4.23). The remaining data points correspond to 𝐿 = 5, 4, 3. For 𝑔2 = 0.5, lattice sizes of
𝐿 = 20, 18, 16 are used for the fit, the remaining data points correspond to 𝐿 = 14, 12, 10.

For large couplings the thermodynamic limit can be reached with even smaller lattice

sizes. The region which limits the evaluation of our variational state to 8 × 8 is around

𝑔2 ∼ 1.1 since the variational parameters are of order one (𝛾𝑅
k ∼ 1 , 𝛾𝐼

k = 0) and thus

both approximation schemes agree (see Appendix 4.B). Hence, for couplings below this

transition region we can simulate larger lattices, namely 14 × 14 for 𝑔2 = 0.8, 0.9 and

20 × 20 for 0.1 ≤ 𝑔2 ≤ 0.7. For such lattice sizes, the finite size effects become again

small enough to extrapolate to the thermodynamic limit. The result for the ground state

energy density in the thermodynamic limit over the whole coupling region is shown

in Fig. 4.4.2, including the extrapolation to the thermodynamic limit for 𝑔2 = 0.5 and

𝑔2 = 2.0.
In the next step, we study the string tension over the whole coupling region. We can

measure it in two ways: First, we place static charges and analyze the scaling of the

ground state energy depending on the distance between static charges. We will fit the

potential with the following function:

𝑉 (𝑑) = 𝜎𝑑 + 𝑏𝑉𝐶𝑜𝑢𝑙(𝑑) (4.24)

where 𝜎 is the string tension and 𝑉𝐶𝑜𝑢𝑙 is the lattice Coulomb potential in two di-

mensions which becomes a logarithmic potential in the continuum limit. The values

for 𝑉 (𝑑) are computed as the difference between the ground state energy with static

charges separated by a distance 𝑑 and the ground state energy without static charges.

In the second approach we use the scaling of spatial Wilson loops to extract the

string tension. This works at zero temperature since on the Euclidean lattice spatial

and temporal Wilson loops are related by 𝑂(4) symmetry. At finite temperature this

symmetry is broken due to a compactified temporal dimension [90]. The formula to

calculate Wilson loops of arbitrary size with complex periodic Gaussian states in both

the low and high 𝛾k approximation can be found in Appendix 4.C. On 8×8 lattices, we
consider all rectangular loops 𝑅1 × 𝑅2 with 𝑅1, 𝑅2 ≤ 4 (four is the maximal physical

length due to the periodic boundary conditions). Furthermore, we require |𝑅1−𝑅2| ≤ 1
to avoid additional finite size effects coming from an asymmetry in the edges. For weak

couplings, where larger lattices are accessible, we extend the allowed maximal edge
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Figure 4.4.3: (Left): the static potential 𝑉 (𝑑) of two charges separated by a distance 𝑑 at 𝑔2 =
2.0. The data points are computed on an 8 × 8 lattice as the difference between the ground

state energy with the respective static charge configuration and the ground state energy without

static charges. The red line is a fit to the potential according to eq. (4.24) with 𝜎 = 1.001 and

𝑏 = 0.146. (Right): the data points show different spatial Wilson loops ⟨𝑊(𝑅1, 𝑅2)⟩ in the

ground state at 𝑔2 = 0.5, computed on a 20 × 20 lattice, as a function of the area 𝑅1 × 𝑅2. The
maximally used edge length of a Wilson loops is 10 (𝑅1, 𝑅2 ≤ 10), with a maximum difference

between the edges of one (|𝑅2 − 𝑅1| ≤ 1). The red line is a fit to the exponential decay of

Wilson loops according to eq. (4.25) with 𝜎 = 0.013, 𝑎 = 0.132 and 𝑐 = 0.349.

length to 7 and 10 (for 14 × 14, resp. 20 × 20). We fit the Wilson loop scaling according

to the following formula:

𝑊(𝑅1, 𝑅2) = 𝑒−𝜎𝑅1𝑅2−2𝑎(𝑅1+𝑅2)+𝑐 (4.25)

The first term corresponds to area law scaling with string tension 𝜎 and the second term

to perimeter law scaling. Both procedures to extract the string tension are illustrated

in Fig. 4.4.3, the extraction via the static potential at 𝑔2 = 2.0 and the extraction via

Wilson loops at 𝑔2 = 0.5. We also tried to extract the string tension via Creutz ratios

[91] but the results were less reliable than the Wilson loop fits.

The result for both approaches over the whole coupling region is shown in Fig. 4.4.4.

For large values of the coupling constant, the fit for the static potential works well

and agrees with the strong-coupling prediction 𝑔2

2 . Since a large coupling implies a

significant distance from the continuum limit, moderate lattice sizes are sufficient to

observe the onset of the linear part of the potential. The scaling of Wilson loops is

prone to errors in that regime as expectation values of large Wilson loops become

close to machine precision. However, for small couplings the Wilson loop scaling is

the better method since expectation values of Wilson loops do not decay as fast due

to the small string tension. Since both methods complement each other we chose to

make the string tension data for the static potential transparent for couplings 𝑔2 ≤ 1.5
and the ones extracted by Wilson loops scaling for 𝑔2 > 1.5. The remaining full data

points in Fig. 4.4.4 are the most reliable estimates for the string tension.

For small couplings an exponential decay of the string tension is expected according

to the formula [92]:

𝜎 = 𝑐√ 𝑔2

𝜋2 𝑒− 𝜋2
𝑔2 𝜈0 . (4.26)
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Figure 4.4.4: (Left): String tension fitted via the static potential (blue) and via the decay of spa-

tial Wilson loops (orange). For larger couplings (𝑔2 ≥ 1.5) the static potential fit performs better

than the fit of Wilson loops and agrees with the strong-coupling prediction 𝑔2/2. For small cou-

plings (𝑔2 ≤ 1.4) Wilson loop fits are more suitable. The more reliable method is shown with

full data points while data points of the other method are made transparent. (Right): String

tension in the weak-coupling regime. While the Wilson loop fits show exponential decay of the

string tension close to the theoretical value (𝜈0 = 0.318 compared to 𝜈0,theo = 0.321), the static
potential fits become unreliable for couplings 𝑔2 ≤ 0.6.

If we fit this formula to the string tension data of the Wilson loop fits between 0.5 ≤
𝑔2 ≤ 0.9 (see Fig. 4.4.4) we obtain 𝑐 = 23.53 and 𝜈0 = 0.318 which is close to the

theoretical prediction (𝜈0,theo = 0.321) [93].

4.4.3 Truncation effects

Since our wave function does not require a truncation, we can study truncation effects

of other methods. Here, we will focus on a truncation in the electric basis. To see

these effects we will study the variance of the electric field operator. For simplicity,

we will look at this effect without static charges, since they only introduce 𝜖-shifts
(−1/2 < 𝜖 < 1/2) in the electric field. Since the expectation value of the electric field

vanishes in the absence of static charges, we can write the variance in terms of the

electric energy

Var(𝐸x,𝑖) = ⟨𝐸2
x,𝑖⟩ − ⟨𝐸x,𝑖⟩

2 = 1
𝐿2𝑔2 ⟨𝐻𝐸⟩ . (4.27)

The variance is plotted in the inset of Fig. 4.4.5 for the ground state which was com-

puted in the last section. To quantitatively show the difference, we compare our vari-

ational state to an exact diagonalization calculation of a ℤ3 lattice gauge theory. To

reduce the required Hilbert space dimension, we formulate it in terms of plaquette vari-

ables, in the same style as we did for the 𝑈(1) theory. The Hilbert space is truncated
in the eigenbasis of 𝐿p to three states (corresponding to the eigenvalues 𝑚 = 0, 1, −1).
To make this a consistent theory we define the gauge field operators cyclically:

𝑈†
𝑝 |𝑚⟩ = |𝑚′⟩ with 𝑚′ = 𝑚 + 1 (mod 3). (4.28)
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Figure 4.4.5: Comparison of the ground state energy density on a 3 × 3 lattice without static

charges, computed for a ℤ3 lattice gauge theory by exact diagonalization (orange) and for the

full 𝑈(1) theory by minimizing the variational energy (blue). The inset shows the variance of

the electric field on a link in the variational ground states.

This is equivalent to a ℤ3 lattice gauge theory formulated in link variables:

𝐻𝑍3 = 𝑔2

6
∑
x,𝑖

(2 − 𝑃x,𝑖 − 𝑃 †
x,𝑖) + 1

2𝑔2 ∑
p

(2 − 𝑄p − 𝑄†
p) (4.29)

with 𝑄p ≡ 𝑄x,1𝑄x+e1,2𝑄†
x+e2,1𝑄†

x,2 where x is the vertex at the bottom left corner of

plaquette p and 𝑄x,𝑖 the cyclic raising operator of the electric field on link (x, 𝑖), such
that (see [94] for details)

𝑃 𝑁
x,𝑖 = 𝑄𝑁

x,𝑖 = 1 𝑃 †
x,𝑖𝑃x,𝑖 = 𝑄†

x,𝑖𝑄x,𝑖 = 1

𝑃 †
x,𝑖𝑄x,𝑖𝑃x,𝑖 = 𝑒𝑖 2𝜋

3 𝑄x,𝑖 . (4.30)

The maximal lattice size we can achieve in our ED calculation for a reasonable amount

of time is 3 × 3 plaquettes. We calculate the ground state energy density for this lat-

tice size with ED and our variational ansatz. The result is shown in Fig. 4.4.5. The

two approaches exhibit good agreement in the strong coupling regime. For intermedi-

ate couplings differences becomes more pronounced leading to qualitatively different

results in the weak-coupling limit 𝑔 → 0 .

Since the electric Hamiltonian becomes bounded in the truncated theory, it does

not contribute in the weak coupling limit. In the 𝑈(1) theory, however, the electric

Hamiltonian is unbounded and the growth in electric energy leads to a finite result for

the ground state energy in the continuum limit.

4.5 Real-time dynamics

In this section, we study out-of-equilibrium dynamics by applying the following quench

protocol: We prepare the ground state for the compact QED Hamiltonian at some cou-

pling 𝑔2, quench to a Hamiltonian with a different coupling constant 𝑔2
quench and observe

the subsequent time evolution. The observables we track during the evolution are Wil-

son loops and the electric field (their expectation values in terms of the variational

parameters can be found in Appendix 4.C). In addition we check whether the energy

is conserved throughout the whole time evolution.
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Figure 4.5.1: Benchmark of the variational time evolution of the 1 × 1 Wilson loop after a

quench from 𝑔2 = 2.5 to 𝑔2 = 4.0 on a 3 × 3 lattice. It is compared with the time evolution

of ℤ3 lattice gauge theory computed by exact diagonalization (the truncation from 𝑈(1) to ℤ3
should only play a minor role in the strong-coupling regime).

4.5.1 Time-dependent variational principle

To study dynamical phenomena, we employ the time-dependent variational principle.

The equations of motion are projected onto the tangent plane of our variational man-

ifold. For every variational parameter 𝛾𝑅/𝐼
k we define a corresponding tangent vector

∣Ψ𝑅/𝐼
k ⟩ ≡ ℙΨ ( 𝜕

𝜕𝛾𝑅/𝐼
k

|Ψ𝐶𝑃𝐺⟩) where ℙΨ ensures orthogonality to |Ψ𝐶𝑃𝐺⟩:

ℙΨ(|𝜓⟩) ≡ |𝜓⟩ − ⟨Ψ𝐶𝑃𝐺|𝜓⟩ |Ψ𝐶𝑃𝐺⟩ (4.31)

If we restrict the momenta k of the variational parameters to the set 𝒦 defined in

eq. (4.9), all tangent vectors become linearly independent. This allows to invert the

Grammatrix 𝐺k′k ≡ ⟨Ψ𝑅
k′ ∣Ψ𝑅

k ⟩ with k,k′ ∈ 𝒦. Since our variational manifold is Kähler,

we can express the time evolution of the variational parameters 𝛾𝑅/𝐼
k (k ∈ 𝒦) in the

following way [95]:

𝑖 ( ̇𝛾𝑅
k + 𝑖 ̇𝛾𝐼

k) = 1
2

∑
k′∈𝒦

(𝐺−1)kk′ ( 𝜕𝐸
𝜕𝛾𝑅

k′

+ 𝑖 𝜕𝐸
𝜕𝛾𝐼

k′
) (4.32)

with 𝐸 ≡ ⟨Ψ𝐶𝑃𝐺|𝐻𝐾𝑆|Ψ𝐶𝑃𝐺⟩
⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩ the variational energy in eq. (4.20) and ̇𝛾 ≡ 𝜕𝛾

𝜕𝑡 . The formula

for the calculation of the Gram matrix and the gradient of the variational energy can

be found in Appendix 4.C.

4.5.2 Benchmark of variational ansatz

Since we are dealing with a variational ansatz, one should try to test it against exact

results. For a comparison, we use the exact diagonalization results of the ℤ3 theory.

Since the truncation in the electric basis led to significant differences in the ground

state energy already for intermediate coupling and time-dynamics increase the vari-

ance in the electric field, we can only expect reasonable agreement for a quench within

the strong coupling region. We choose to quench the Hamiltonian from 𝑔2 = 2.5 to

𝑔2 = 4.0. The result is shown in Fig. 4.5.1. Even though truncation effects might still

play a minor role in that quench, the comparison shows that the variational state can

approximate amplitude and frequency of the oscillation.
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Figure 4.5.2: (Left): Variational time evolution after a quench from 𝑔2 = 0.8 to 𝑔2 = 0.5 for

lattice sizes of 8 × 8, 10 × 10 and 12 × 12. The inset shows the relative error in energy 𝐸 with

respect to the initial energy 𝐸0 after the quench. (Right): Variational time evolution after a

quench from 𝑔2 = 0.6 to 𝑔2 = 0.3 for lattice sizes of 16 × 16, 18 × 18 and 20 × 20. The inset

shows the relative error in energy 𝐸 with respect to the initial energy 𝐸0 after the quench.

4.5.3 Quench dynamics

We start with quenches in the weak-coupling regime where finite-size effects are most

pronounced. We are interested in the maximal time up to which we can extract physics

in the thermodynamic limit before boundary effects due to our finite lattice start to play

a role. To compute that point in time, we perform the same quench on different lattice

sizes and check where they start to deviate from each other. In order to easily compare

observables for different lattice sizes, we restrict ourselves to the sector without static

charges. We will focus on tracking the 1 × 1 Wilson loop during time evolution. We

probed two different quenches, one from 𝑔2 = 0.8 to 𝑔2 = 0.5 for an 8 × 8, 10 × 10 and

12 × 12 lattice and another one from 𝑔2 = 0.6 to 𝑔2 = 0.3 for lattice sizes of 16 × 16,
18 × 18 and 20 × 20 (shown in Fig. 4.5.2).

In the first quench, the time evolution on the 8×8 lattice agrees with the 12×12 lattice
up to 𝑡max,8 ∼ 3.8, the 10×10 lattice up to 𝑡max,10 ∼ 4.8. The energy is conserved for all
lattice sizes up to a relative error of the order 10−3. During the time spans where we can

reliably extract the time evolution, the Wilson loops indicate equilibrating behavior.

This statement is supported by the second quench, where the smaller coupling con-

stants allow us to reach larger lattices. The 16 × 16 and 18 × 18 lattice agree with the

20 × 20 lattice up to 𝑡max,16 ∼ 8.5 and 𝑡max,18 ∼ 9.5. The energy is conserved up to a

relative error of 10−6. We can only make a statement about the equilibration of Wilson

loops since we do not have access to thermal expectation values. An interesting direc-

tion for future research would be to check whether the Wilson loops thermalize. For

the calculation of thermal expectation values one could use Monte-Carlo simulations

which have been proven successful in computing thermal properties in lattice gauge

theory [96, 97].

In the next step, we look at a quench from weak to strong coupling (𝑔2 = 0.5 to

𝑔2 = 4.0) for an 8 × 8 lattice without static charges. We track the time evolution of

quadratic Wilson loops with edge sizes ranging from one to four. The result is shown in

Fig. 4.5.3. All Wilson loops equilibrate at zero on short time scales (between 𝑡eq,4 ∼ 0.2
for the 4 × 4 Wilson loop and 𝑡eq,1 ∼ 0.5 for the 1 × 1 Wilson loop). We carried out the

same evolution on a 7×7 lattice and found the same behavior. The coupling constant at

𝑔2 = 4.0 is large enough to approximate the spectrum by the strong-coupling limit 𝑔2 →

67



4.5 Real-time dynamics

0.0 0.2 0.4 0.6 0.8
t

0.0

0.2

0.4

0.6

〈W
(R

1,
R

2)
〉

1× 1
3× 3

2× 2
4× 4

0.0 0.2 0.4 0.6 0.8
t

0

1

E
−E

0
E 0

×10−6

Figure 4.5.3: Variational time evolution of the 1 × 1, 2 × 2, 3 × 3 and 4 × 4 Wilson loop after

a quench from 𝑔2 = 0.5 to 𝑔2 = 4.0 on an 8 × 8 lattice. The inset shows the relative error in

energy 𝐸 with respect to the initial energy 𝐸0 after the quench.

∞, where the eigenstates |𝑛⟩ become diagonal in the electric basis (this can be seen

e.g. in the spectrum of the ℤ3 theory which is available due to exact diagonalization).

In this limit the thermal expectation value of Wilson loops vanishes trivially:

⟨𝑊(𝐶)⟩
th

= 1
𝑍

∑
𝑛

𝑒−𝛽𝐸𝑛 ⟨𝑛∣∏
p∈𝐶

1
2

(𝑈p + 𝑈†
p)∣𝑛⟩ = 0. (4.33)

For this special quench, we can thus verify that the Wilson loops equilibrate at their

thermal expectation value.

The next quench we will study is from strong to weak coupling. We quench on an

8×8 lattice from 𝑔2 = 4.0 to 𝑔2 = 0.5 with static charges horizontally separated by four
links. Besides the 1 × 1 Wilson loop at the origin, we observe how the electric field of

the ground state at 𝑔2 = 4.0, a strongly confined fluxtube, evolves after the quench, in

particular the electric field 𝐸1(𝑥1 = 2, 𝑥2 = 4) (one of the links inside the fluxtube, see
Fig. 4.5.4). It starts close to one, the strong-coupling value of the electric field, and

decreases rapidly to 𝐸𝐶
1 (2, 4) = 0.322, the value of the Coulomb electric field on that

link (shown in the red dashed line). The Wilson loop seems to equilibrate on longer

time scales. The energy is conserved up to a relative error of 10−2. The larger error

compared to previous quenches can be explained by the fact that around 𝑡 ∼ 0.25 the

approximation method of the infinite sums appearing in the evaluation of expectation

values changes from the low 𝛾k to the high 𝛾k approximation (see section 4.3.2). In

that transition region higher orders need to be calculated using uniform sampling (see

Appendix 4.B) which introduces additional errors. However, the relative error is still

small and observables have no visible jump in this region, indicating that the two

approximation schemes work. After the transition region the energy is well conserved

due to the fact that the variational parameters 𝛾𝐼
k increase, making the approximation

of the infinite sums involved in the calculation of expectation values very easy (see

section 4.3.2).

The spreading of the electric field from inside the flux tube between the two charges

towards the Coulomb configuration of the electric field is illustrated in Fig. 4.5.4. An

interesting question is whether the state becomes deconfined at long times. We cannot

use the scaling of spatial Wilson, this only serves as an indicator for confinement in the

ground state [90]. Since in our formulation the value of the longitudinal (Coulomb)

part of the electric field is fixed and only the transversal part is dynamical (see Ap-
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Figure 4.5.4: Variational time evolution on an 8 × 8 lattice after a quench from 𝑔2 = 4.0 to

𝑔2 = 0.5 with a positive charge placed at (𝑥1 = 2, 𝑥2 = 4) (blue dot) and a negative charge

at (𝑥1 = 6, 𝑥2 = 4) (red dot). (Left): the expectation value of the electric field is shown at

𝑡 = 0.0, 𝑡 = 0.2 and 𝑡 = 2.0. At 𝑡 = 0.0, the state is in the variational ground state for 𝑔2 = 4.0
where the electric flux is confined between the two charges. After the quench, the electric

field starts to spread over the lattice (𝑡 = 0.2) and equilibrates at the Coulomb value for this

charge configuration (𝑡 = 2.0). (Right): (a) the 1 × 1 Wilson loop at the origin 𝑊(1, 1) and
(b) the electric field on a link between the two charges 𝐸1(2, 4) is shown. The red dashed line

represents the Coulomb value of the electric field. The inset shows the relative error in energy

𝐸 with respect to the initial energy 𝐸0 after the quench.

pendix 4.A), we can measure precisely how much an electric field configuration dif-

fers from the Coulomb configuration. At 𝑡 = 2.0, in the last of the three pictures in

Fig. 4.5.4, the difference to the Coulomb configuration is of order 10−12 for the whole

lattice, with no remnant of an electric flux tube between the two charges. This is a

strong indication that the state becomes deconfined, corresponding possibly to a ther-

mal state with a temperature above the confinement-deconfinement transiton [87, 98].

4.6 Conclusion

In this chapter, we presented a novel class of variational states called complex periodic

Gaussian states, which can be used to investigate ground state properties and real-time

dynamics in (2+1)-dimensional 𝑈(1) lattice gauge theory. The evaluation of expecta-

tion values is performed in a first step analytically, such that it remains to numerically

compute an infinite sum. We propose an approach to approximate these sums for all

variational parameters on an 8×8 lattice and up to 20×20 in the weak-coupling regime.

This enables us to study the variational ground state over the entire coupling range and

extract the thermodynamic limit. Our ansatz is validated against the exact ground state

for the one-plaquette case. We compute the string tension using two methods: firstly,

by fitting the static potential between two charges with a two-dimensional Coulomb

potential and a linear potential, and secondly, by fitting the exponential decay of Wil-

son loops with an area and a perimeter law. The two approaches are complementary, as

Wilson loops become challenging to fit in the strong-coupling regime due to the small

value of large Wilson loops. Conversely, the static potential approach works well as

energy differences become larger. In the weak-coupling regime, the string tension is

too small to extract the linear part of the potential on the given lattice sizes, but Wil-

son loops decay modestly, enabling reliable fits. We confirm the expected exponential

decay of the string tension in the weak-coupling regime.

As complex periodic Gaussian states do not require truncation in the local Hilbert
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space, we compare our 𝑈(1) ground state data to exact diagonalization results for a

ℤ3 theory to investigate truncation effects in the electric basis. The comparison shows

agreement for strong couplings but significant differences for intermediate couplings.

While the ground state energy of the truncated theory approaches zero in the contin-

uum limit 𝑔2 → 0 (due to the bounded electric energy), the variational ground state

energy tends towards a finite value because of the unbounded growth of the electric

field’s variance.

Based on the time-dependent variational principle, we explored the out-of-equilibrium

dynamics after a global quench, i.e. a sudden change in the coupling constant. We first

benchmarked the variational time evolution in the strong-coupling regime with exact

diagonalization results of the ℤ3 theory. Seeing reasonable agreement, we proceeded

to investigate quenches in the weak-coupling regime, where we anticipate finite size

effects to be significant. To assess at what time scales smaller lattices begin to deviate

from the thermodynamic limit, we compared the time evolution of a Wilson loop af-

ter the same quench for various lattice sizes. The temporal intervals we attained are

extensive enough to indicate the equilibration of Wilson loops.

We also investigated the time evolution after a quench from weak (𝑔2 = 0.5) to
strong coupling (𝑔2 = 4.0), for which we monitored Wilson loops of different size. We

found that all Wilson loops equilibrate at zero, which is the thermal expectation value

in the strong-coupling limit (𝑔2 → ∞). This suggests that the Wilson loops equilibrate

at their thermal expectation values since the spectrum at 𝑔2 = 4.0 is close to the strong-
coupling limit.

Additionally, we explore a quench from strong to weak coupling with two static

charges, one positively charged, the other negatively charged. In the strong-coupling

ground state the electric field is perfectly confined between the two charges. We ob-

serve that after the quench the electric field now spreads over the entire lattice and

equilibrates at the Coulomb value for the electric field with high accuracy, a deconfined

state.

Throughout all the studied quenches, we observe equilibration of observables up

until the point where boundary effects become significant. Comparing the equilibrated

expectation values with thermal expectation values, which can be calculated through

Monte Carlo simulations [96, 97], would be an interesting future direction. Monte

Carlo methods could also be used to numerically evaluate the variational ansatz by

approximating the infinite sums, enabling simulations of larger system sizes. These

simulations must be highly accurate to carry out evolution over reasonable time scales

and ensure energy conservation.

The ansatz can in principle be extended to three dimensions, even though additional

constraints arise in three dimensions compared to two dimensions as discussed in chap-

ter 3. One would need to find more advanced numerical schemes for the evaluation of

the sums appearing in that case.

Another possible extension of this work is the inclusion of dynamical matter, which

requires finding a gauge-invariant formulation of the theory that admits the same

gauge-invariant variables used in this study for static matter. A formulation for this

theory was proposed in chapter 3, based on Ref. [1]. Combining a periodic Gaussian

state for the gauge field with a fermionic ansatz state describing dynamical matter

could be achieved using this formulation.

What we will see in chapter 5 is that there is also another application: knowing

that periodic Gaussian states are well suited for compact QED with static charges, we
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4.6 Conclusion

constructed a variational ansatz, which can be shown to be related by the Villain ap-

proximation [99], that is more amendable to Monte Carlo sampling, thus allowing an

efficient variational Monte Carlo algorithm. More generally, complex periodic Gaus-

sian states provide a useful benchmark for the static charge sector of compact QED

with the full, untruncated 𝑈(1) gauge field Hilbert space. This will be used in chap-

ter 5 and has also been used recently to benchmark certain neural-network ansatz states

for lattice gauge theories [100].

Extending the ansatz to non-Abelian gauge theories is more challenging since they do

not permit a translationally invariant formulation in terms of gauge-invariant plaque-

tte variables. However, constructing similar ansatz states using other gauge-invariant

variables is in principle possible [71].
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Appendix

4.A Formulation in terms of plaquette variables

In this section, we want to give a short review on the separation of gauge fields into

(almost) gauge invariant plaquette variables and a static part corresponding to the lon-

gitudinal Coulomb field. For simplicity and since this is the charge configuration used

throughout the chapter, we will focus on a situation with two static charges placed ver-

tically at 𝑥2 = 𝑑2 separated horizontally by a distance 𝑑. Other charge configurations
follow analogously. We want to split the electric flux line between the two charges

into a transversal component, generated by the lattice curl of a field 𝜖 on the plaque-

ttes and into a longitudinal component, generated by the lattice gradient of a scalar

field 𝜙 on the vertices. All other electric flux configurations can be created on top of

it by exciting an electric flux loop around a plaquette or around the whole lattice.

The longitudinal part is by definition of the form

𝐸𝐿
𝑖 (x) = −∇(+)𝜙(x) ≡ −(𝜙(x + 𝑒𝑖) − 𝜙(x)) (4.34)

where ∇(+) is the lattice forward derivative. Using Gauss law,

∑
𝑖

∇(−)
𝑖 𝐸𝐿

𝑖 (x) = ∑
𝑖

𝐸𝐿
𝑖 (x) − 𝐸𝐿

𝑖 (x − e𝑖) = 𝑄(x) (4.35)

with ∇(−) the lattice backward derivative, we arrive at a lattice version of Poisson’s

equation:

−∇(−)∇(+)𝜙(x) = 𝑄(x) (4.36)

The solution for 𝜙 is

𝜙(x) = 1
𝐿

∑
y

𝑄(y) ∑
k≠0

𝑒2𝜋𝑖 𝑘1(𝑥1−𝑦1)+𝑘2(𝑥2−𝑦2)
𝐿

4 − 2 cos (2𝜋𝑘1
𝐿 ) − 2 cos (2𝜋𝑘2

𝐿 )
(4.37)

with x = (𝑥1, 𝑥2) and 𝑥1, 𝑥2 ranging from 0 to 𝐿 − 1. The same applies to y and k.
There is no k = 0 contribution since the total charge on a periodic lattice needs to be

zero because of gauge invariance. 𝐸𝐿
𝑖 (x) then follows straightforwardly from (4.34).

We write the transversal part as the curl of an 𝜖-field on the plaquettes,

𝐸𝑇
𝑖 (x) = ∇(−) × 𝜖 ≡ 𝜖𝑖𝑗∇

(−)
𝑗 𝜖(x) (4.38)

where the plaquette corresponding to x is the one having x as its the bottom left corner.

We take the curl of the above expression and use a lattice analog of the vector identity

∇ × ∇ × 𝐴 = ∇(∇ ⋅ 𝐴) − Δ𝐴, here in two dimensions, to obtain a Poisson equation for

the 𝜖-field:
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4.A Formulation in terms of plaquette variables

−∇(+)∇(−)𝜖(x) = 𝜖𝑖𝑗∇
(+)
𝑖 𝐸𝑗(x) (4.39)

where we sum over repeated indices. This equation is solved by

𝜖(x) = 1
𝐿

∑
y

𝜖𝑖𝑗∇
(+)
𝑖 𝐸𝑗(y) ∑

k≠0

𝑒2𝜋𝑖 𝑘1(𝑥1−𝑦1)+𝑘2(𝑥2−𝑦2)
𝐿

4 − 2 cos (2𝜋𝑘1
𝐿 ) − 2 cos (2𝜋𝑘2

𝐿 )
(4.40)

In our case, 𝜖𝑖𝑗∇
(+)
𝑖 𝐸𝑗(x) is 1 on the plaquettes above the electric string connecting

the charges and −1 below the string. However, since the sum over this expression

will always be zero, we cannot generate a constant electric field with the 𝜖-field which

is required since ̃𝐸1(k = 0) = 𝑑
𝐿 . It is important to also consider the Polyakov loop

winding horizontally around the lattice. We choose it to wind around the lattice at

𝑥2 = 𝑑2 and the electric field along it to be 𝜖poly,1 = 𝑑
𝐿 . We define an additional 𝜖-field

𝜖const on the plaquettes, on top of 𝜖:

𝜖const(x) = {
𝑑

𝐿2 (𝑥2 − 𝑑2) 𝑥2 ≥ 𝑑2
𝑑
𝐿 − (𝑑2 − 𝑥2) 𝑑

𝐿2 𝑥2 < 𝑑2
(4.41)

It is defined in such a way that

𝐸const,1(x) = ∇(−) × 𝜖const + 𝜖poly,1𝛿𝑥2,𝑑2
= 𝑑

𝐿2 (4.42)

giving us the k = 0 component of the electric field. We can now rewrite the electric

field operator as:

̂𝐸𝑖(x) =𝐸𝐿
𝑖 (x) + (∇(−) × (�̂�(x) + 𝜖(x) + 𝜖const(x)))

𝑖

+ 𝛿𝑖,1𝛿𝑥2,𝑑2
(�̂�poly,1 + 𝜖poly,1) + 𝛿𝑖,2𝛿𝑥1,𝑑1

�̂�poly,2.
(4.43)

𝑑1 is the 𝑥1-position where the Polyakov loop winds vertically around the lattice. The

operators �̂�(x) and �̂�poly measure the electric flux around a plaquette, resp. around the

lattice, on top of the contributions given by the charge configuration. Their eigenvalues

are integer-valued. If we insert the restriction to the topological sector with 𝐿poly,1 =
𝐿poly,2 = 0 and define 𝐸𝐶

𝑖 (x) = 𝐸𝐿
𝑖 (x) + 𝛿𝑖,1

𝑑
𝐿2 as the Coulomb electric field, we obtain

the electric Hamiltonian given in eq. (4.5):

𝐻𝐸 = 𝑔2

2
∑
x,𝑖

(𝐸𝐶
𝑖 (x) + 𝜖𝑖𝑗(𝐿(x) − 𝐿(x − e𝑗) + 𝜖(x) − 𝜖(x − e𝑗)))

2

= 𝐸𝐶 + 𝑔2

2
∑
x,𝑖

(𝐿(x) − 𝐿(x − e𝑖) + 𝜖(x) − 𝜖(x − e𝑖))2 (4.44)

with the Coulomb energy 𝐸𝐶 = 𝑔2

2 ( 𝑑2

𝐿2 + ∑
x,𝑖 𝐸𝐿

𝑖 (x)). Besides orthogonality between
longitudinal and transversal component of the electric field, we also used Plancherel’s

theorem which ensures orthogonality between the constant part and the other two

since their k = 0 component is zero.
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4.B Numerical evaluation of complex periodic Gaussian states

𝑘𝑥

𝑘𝑦 0 1 2 3 4 5 6 7

0 1.289 1.108 0.978 0.937 0.978 1.108 1.289

1 1.288 1.206 1.050 0.937 0.897 0.936 1.051 1.207

2 1.109 1.050 0.937 0.849 0.819 0.849 0.936 1.050

3 0.979 0.935 0.849 0.781 0.756 0.781 0.849 0.937

4 0.935 0.897 0.819 0.756 0.732 0.756 0.819 0.897

5 0.979 0.937 0.849 0.781 0.756 0.781 0.849 0.935

6 1.109 1.050 0.936 0.849 0.819 0.849 0.937 1.050

7 1.288 1.207 1.051 0.936 0.897 0.937 1.050 1.206

𝑘𝑥

𝑘𝑦 0 1 2 3 4 5 6 7

0 1.140 1.002 0.889 0.852 0.889 1.002 1.140

1 1.137 1.078 0.944 0.855 0.826 0.855 0.949 1.075

2 0.999 0.956 0.858 0.779 0.753 0.783 0.859 0.946

3 0.893 0.853 0.783 0.721 0.699 0.721 0.785 0.857

4 0.862 0.823 0.752 0.695 0.676 0.695 0.752 0.823

5 0.893 0.857 0.785 0.721 0.699 0.721 0.783 0.853

6 0.999 0.946 0.859 0.783 0.753 0.779 0.858 0.956

7 1.137 1.075 0.949 0.855 0.826 0.855 0.944 1.078

Figure 4.B.1: Variational parameters 𝛾𝑅
k for the variational ground state at 𝑔2 = 1.1 (left) and

𝑔2 = 1.2 (right).

4.B Numerical evaluation of complex periodic

Gaussian states

In this section, we review the numerical evaluation of complex periodic Gaussian states

in more detail. We saw in section 4.3.2 that the region with 𝛾k = 𝛾𝑅
k +(𝛾𝐼

k)2 (𝛾𝑅
k )−1 ≈ 1

is the most difficult to evaluate. Since the variational ground state (for which 𝛾𝐼
k = 0)

varies from high 𝛾𝑅
k for low couplings to low 𝛾𝑅

k for large couplings, there is a transition

region at 𝑔2 ∼ 1.1 where 𝛾k approaches one. We therefore want to study the approx-

imations to all infinite sums involved in the computation of the variational energy in

eq. (4.20) on an 8 × 8 lattice without static charges for the ground state at 𝑔2 = 1.1
which is the highest coupling where the high 𝛾k approximation is used and 𝑔2 = 1.2
which is the lowest coupling for which the low 𝛾k approximation is used. For all other

couplings the contributions to infinite sums decay faster with higher orders compared

to one of the two examples discussed below. The variational parameters 𝛾𝑅
k for these

states (rounded to three digits) are shown in Fig. 4.B.1. The values are displayed not

only for the independent 𝛾𝑅
k (k ∈ 𝒦), but are split between the dependent parameters

𝛾𝑅
k and 𝛾𝑅

−k, to illustrate that they lie in the transition region 𝛾k ≈ 1 between the two

approximation methods.

Using 𝛾𝐼
k = 0 and 𝜖p = 0, the expressions we need to compute for the variational

ground state at 𝑔2 = 1.1 simplify significantly:

𝐼𝑒𝑙 ≡ ∑
{𝑁k=0=0}

𝑒−𝜋 ∑
k

|𝑁k|2𝛾𝑅
k ∑

k

(𝛾𝑅
k )2 |𝑁k|2 (4 − 2 cos(2𝜋𝑘1

𝐿
) − 2 cos(2𝜋𝑘2

𝐿
))

(4.45)

for the electric energy,

𝐼𝑚𝑎𝑔 ≡ ∑
{𝑁k=0=0}

𝑒−𝜋 ∑
k

|𝑁k|2𝛾𝑅
k ∑

p

(−1)𝑁p (4.46)

for the magnetic energy and the normalization

𝐼0 = ∑
{𝑁k=0=0}

𝑒−𝜋 ∑
k

|𝑁k|2𝛾𝑅
k . (4.47)

We include orders with 𝑁p configurations of up to 8 pairs of {1, −1} and the rest zeros.
The first three are computed exactly and the remaining five by uniform sampling.

Additionally, we compute exactly the orders {𝑁}2,−1,−1 and {𝑁}−2,1,1 to show they

have negligible contributions. Orders like these, whose 𝑁p configurations differ only

by a minus sign can be evaluated together by evaluating for every permutation not
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4.B Numerical evaluation of complex periodic Gaussian states
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Figure 4.B.2: Contributions of different orders of 𝑁p configurations to the infinite sums 𝐼𝑒𝑙
(a) and 𝐼𝑚𝑎𝑔 (b) appearing in the high 𝛾k approximation of the variational energy. Due to the

constraint 𝑁k=0 = 0, the sum over all elements of 𝑁p needs to be zero. Every bar represents the

summed contributions of all 𝑁p configurations containing a certain number of (1,-1) pairs and

the remaining entries zero. Orders which are not of this type have a negligible contribution,

e.g. {𝑁}−2,1,1 has a summed contribution to 𝐼𝑒𝑙 of 0.076 and a summed contribution to 𝐼𝑚𝑎𝑔
of 0.23.

only the contribution of 𝑁p but also of −𝑁p. Therefore, from now on orders which

are not closed under reflection will also include all their permutations multiplied by

minus one. This will be heavily used in the low 𝛾k approximation.

The exact evaluation of orders is based on an algorithm which generates all permu-

tations of a multiset in 𝑂(1) time [101], i.e. the time to generate a new permutation

is independent of the permutation size. It is much smaller than the time needed to do

computations with a permutation which allows to highly parallelize the process and

reach higher orders. The evaluation of an observable with respect to a set of permuta-

tions {𝑁} with uniform sampling is based on the approximation:

∑
𝑁p∈{𝑁}

𝑂(𝑁p) ≈ 𝑝
𝑠

∑
𝑁p∈𝑆

𝑂(𝑁p) (4.48)

where 𝑆 is a set of 𝑠 randomly drawn 𝑁p configurations from {𝑁} and 𝑝 the number

of permutations within this order. For all orders which are computed with uniform

sampling we use 𝑠 = 108 in the high 𝛾k approximation and 𝑠 = 107 in the low 𝛾k
approximation. The contributions to 𝐼𝑒𝑙 and 𝐼𝑚𝑎𝑔 for the high 𝛾k approximation are

displayed in Fig. 4.B.2. We do not show this analysis for the normalization since its

contributions decay faster than the ones for 𝐼𝑒𝑙 and 𝐼𝑚𝑎𝑔. The errors due to uniform

sampling are too small to be shown in the plot, the biggest error occurs in the order

with four pairs of {1, −1} which has a contribution of 347.54(15) to 𝐼𝑒𝑙 and of 622.70(24)
to 𝐼𝑚𝑎𝑔.

For the variational ground state at 𝑔2 = 1.2, the infinite sums in eq. (4.20) reduce to

𝐽𝑒𝑙 = ∑
{𝑁p}/∼1

𝑒−𝜋 ∑
k

|𝑁k|2(𝛾𝑅
k )−1

∑
k

(4 − 2 cos(2𝜋𝑘1
𝐿

) − 2 cos(2𝜋𝑘2
𝐿

)) |𝑁k|2 (4.49)

for the computation of the electric energy,

𝐽𝑚𝑎𝑔 = ∑
{𝑁p}/∼1

∑
p

𝑒−𝜋 ∑
k

|𝑁k− 1
2
p

k
|2(𝛾𝑅

k )−1

(4.50)
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Figure 4.B.3: Contributions of different orders of 𝑁p configurations to the infinite sums 𝐽𝑒𝑙
(a) and 𝐽𝑚𝑎𝑔 (b) appearing in the low 𝛾k approximation of the variational energy. Due to

absence of a constraint, all 𝑁p configurations need to be considered. The orders are organized

in groups. 𝑃 denotes orders which contain a growing number of 1’s. Since 𝑁p and −𝑁p are

evaluated together, 𝑃 also represents orders with a growing number of −1’s. 𝑀(1)𝑃 contains

orders whose non-zero elements are a single −1 and a growing number of 1’s. The first order
in 𝑀(1)𝑃 contains a pair of (1,-1) as non-zero elements. 𝑀(2)𝑃 is structured in the same way

as 𝑀(1)𝑃 but with two −1’s. Analogously for the other groups. The 𝑁p = 0 configuration

(denoted as 0) has vanishing contribution to 𝐽𝑒𝑙 but a non-zero contribution to 𝐽𝑚𝑎𝑔.

with 1
2
p

k
= 1

2𝐿𝑒−𝑖pk for the computation of the magnetic energy and

𝐽0 = ∑
{𝑁p}/∼1

𝑒−𝜋 ∑
k

|𝑁k|2(𝛾𝑅
k )−1

(4.51)

for the normalization. Since we do not have a global constraint in the low 𝛾k ap-

proximation, more orders contribute to the infinite sums. The contributions to 𝐽𝑒𝑙
and 𝐽𝑚𝑎𝑔 of different orders are given in Fig. 4.B.3. The errors are again too small to

be displayed, the biggest one occurs in the order {𝑁}−1,1,1,1,1,1 with contributions of

15.22(1) to 𝐽𝑒𝑙 and of 44.07(4) to 𝐽𝑚𝑎𝑔.

Both approximation schemes decay reasonably well with higher orders and the trun-

cation of even higher orders can be justified. Moreover, the errors introduced due to

uniform sampling are small, in particular since the lowest orders were still calculated

exactly. The algorithm we applied during computations to decide with which approx-

imation method an expectation value should be evaluated was to select higher orders

and compute them by uniform sampling with a low sample size of 𝑠 = 105. This

allowed us to choose the scheme which had a better decay with higher orders.

4.C Observables

In this section, we provide formulas for important quantities which are too lengthy to

fit into the main body of the chapter. This includes formulas for expectation values of

observables, namely Wilson loops and electric field, and a formula for the gradient of

the energy with respect to the variational parameters which is essential to minimize

the variational energy and carry out the time-dependent varational principle. For the
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4.C Observables

latter, we present additionally a formula for the Gram matrix. For every infinite sum

appearing in the expressions, we provide both the high and low 𝛾k approximation.

We start with the expectation value of a Wilson loop along a contour 𝐶, where p ∈ 𝐶
denotes all plaquettes within this contour:

⟨Ψ𝐶𝑃𝐺|𝑊(𝐶)|Ψ𝐶𝑃𝐺⟩
⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩

=𝑒− 𝜋
4𝐿2 ∑

k≠0(𝛾𝑅
k )−1 ∑

p,p′ cos(k(p−p′)) ⟨∏
p∈𝐶

(−1)𝑁p cosh(𝜋 ∑
k

Re (𝑁k𝑏𝐶
k ))⟩

(4.52)

with 𝑏𝐶
k = 1

𝐿𝛾𝐼
k (𝛾𝑅

k )−1 ∑
p∈𝐶 𝑒−𝑖pk and

⟨∏
p∈𝐶

(−1)𝑁p cosh(𝜋 ∑
k

Re(𝑁k𝑏𝐶
k ))⟩

=
∑{𝑁k=0=0} ∏

p∈𝐶(−1)𝑁p cosh(𝜋 ∑
k
Re(𝑁k𝑏𝐶

k ))𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k

|𝑁k|2𝛾k

∑{𝑁k=0=0} 𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k

|𝑁k|2𝛾k

=
∑{𝑁p}/∼1

𝑒−𝜋 ∑
k
(|𝑁k−𝜖k− 1

2
𝐶
k

|2− 1
4 |𝑏𝐶

k |2)𝛾−1
k cos(𝜋 ∑

k
𝛾−1
k Re[(𝑁k − 𝜖k − 1

2
𝐶
k

)𝑏𝐶
k ])

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k

(4.53)

with 1
2

𝐶
k

= 1
2𝐿 ∑

p∈𝐶 𝑒−𝑖pk and 𝛾k = 𝛾𝑅
k + (𝛾𝐼

k)2 (𝛾𝑅
k )−1

. Another observable which is

used in the main part of this chapter is the electric field. We present for simplicity the

expectation value of a horizontal link emanating from vertex x, ⟨𝐸x,1⟩. The plaquette
above the link is denoted as ̃p.

⟨Ψ𝐶𝑃𝐺|𝐸x,1|Ψ𝐶𝑃𝐺⟩
⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩

(4.54)

=
∑{𝑁k=0=0} sin (2𝜋 ∑

p
𝜖p𝑁p)𝑒−𝜋 ∑

k
|𝑁k|2𝛾k 1

𝐿 ∑
k

𝛾kRe (𝑁k (𝑒−𝑖k ̃p − 𝑒−𝑖k( ̃p−e2)))

∑{𝑁k=0=0} 𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k

|𝑁k|2𝛾k

=𝜖 ̃p − 𝜖 ̃p−e2 +
∑{𝑁p}/∼1

𝑒−𝜋 ∑
k

|𝑁k−𝜖k|2𝛾−1
k (𝑁 ̃p−e2 − 𝑁 ̃p)

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k

(4.55)

The expectation value for a vertical link follows analogously. The next quantity we

present is the gradient of the variational energy with respect to the independent pa-

rameters 𝛾𝑅
k and 𝛾𝐼

k (k ∈ 𝒦). We split the energy into an electric and a magnetic part

to make the expressions less cumbersome. We start with the derivatives of the electric

energy with respect to 𝛾𝑅
k and 𝛾𝐼

k (k ∈ 𝒦):

77



4.C Observables

𝜕
𝜕𝛾𝑅

k

⟨Ψ𝐶𝑃𝐺|𝐻𝐸|Ψ𝐶𝑃𝐺⟩
⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩

= 𝑔2

4𝜋
𝑚k (1 −

(𝛾𝐼
k)2

(𝛾𝑅
k )2 ) (4 − 2 cos(2𝜋𝑘1

𝐿
) − 2 cos(2𝜋𝑘2

𝐿
))

−𝑔2𝑚k (𝛾𝑅
k −

(𝛾𝐼
k)4

(𝛾𝑅
k )3 ) (4 − 2 cos(2𝜋𝑘1

𝐿
) − 2 cos(2𝜋𝑘2

𝐿
)) ⟨|𝑁k|2⟩

+𝑔2𝜋
2

𝑚k (1 −
(𝛾𝐼

k)2

(𝛾𝑅
k )2 ) ∑

k′

𝛾2
k′ (4 − 2 cos(2𝜋𝑘′

1
𝐿

) − 2 cos(2𝜋𝑘′
2

𝐿
)) ×

× (⟨|𝑁k′ |2|𝑁k|2⟩ − ⟨|𝑁k′ |2⟩ ⟨|𝑁k|2⟩)

(4.56)

𝜕
𝜕𝛾𝐼

k

⟨Ψ𝐶𝑃𝐺|𝐻𝐸|Ψ𝐶𝑃𝐺⟩
⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩

= 𝑔2

2𝜋
𝑚k

𝛾𝐼
k

𝛾𝑅
k

(4 − 2 cos(2𝜋𝑘1
𝐿

) − 2 cos(2𝜋𝑘2
𝐿

))

−2𝑔2𝑚k (𝛾𝐼
k +

(𝛾𝐼
k)3

(𝛾𝑅
k )2 ) (4 − 2 cos(2𝜋𝑘1

𝐿
) − 2 cos(2𝜋𝑘2

𝐿
)) ⟨|𝑁k|2⟩

+𝑔2𝜋𝑚k

𝛾𝐼
k

𝛾𝑅
k

∑
k′

𝛾2
k′ (4 − 2 cos(2𝜋𝑘′

1
𝐿

) − 2 cos(2𝜋𝑘′
2

𝐿
)) ×

× (⟨|𝑁k′ |2|𝑁k|2⟩ − ⟨|𝑁k′ |2⟩ ⟨|𝑁k|2⟩)

(4.57)

with

⟨|𝑁k′ |2|𝑁k|2⟩ =
∑{𝑁k=0=0} 𝑒2𝜋𝑖 ∑

p
𝜖p𝑁p𝑒−𝜋 ∑

k
|𝑁k|2𝛾k |𝑁k|2|𝑁k′ |2

∑{𝑁k=0=0} 𝑒2𝜋𝑖 ∑
p

𝜖p𝑁p𝑒−𝜋 ∑
k

|𝑁k|2𝛾k

= 1
4𝜋2 𝛾−1

k 𝛾−1
k′ + 𝛾−2

k 𝛾−2
k′

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k |𝑁k − 𝜖k|2|𝑁k′ − 𝜖k′ |2

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k

− 1
2𝜋

𝛾−2
k′ 𝛾−1

k

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k |𝑁k′ − 𝜖k′ |2

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k

− 1
2𝜋

𝛾−2
k 𝛾−1

k′

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k |𝑁k − 𝜖k|2

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k

+ 𝛿k,k′
1

𝑚k

⎛⎜
⎝

1
2𝜋2 𝛾−2

k − 2
𝜋

𝛾−3
k

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k |𝑁k − 𝜖k|2

∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|𝑁k−𝜖k|2𝛾−1

k

⎞⎟
⎠
(4.58)
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We denote by 𝑚k the number of elements in the equivalence class k ∈ 𝐾 which is two

if k ≠ −k and one if k = −k. The expression for ⟨|𝑁k|2⟩ for both high and low 𝛾k
approximation can be found in eq. (4.21). The gradient of the magnetic energy with

respect to 𝛾𝑅
k and 𝛾𝐼

k takes the form:

𝜕
𝜕𝛾𝑅

k

⟨Ψ𝐶𝑃𝐺|𝐻𝐵|Ψ𝐶𝑃𝐺⟩
⟨Ψ𝐶𝑃𝐺|Ψ𝐶𝑃𝐺⟩

= 𝜋
𝑔2 𝑚k𝑒− 𝜋

4𝐿2 ∑
k≠0(𝛾𝑅

k )−1

∑
p
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4𝐿2 (𝛾𝑅

k )−2 ⟨(−1)𝑁p cosh(𝜋 ∑
k′

Re(𝑁k′𝑏pk′))⟩

+ 1
𝐿

𝛾𝐼
k

(𝛾𝑅
k )2 ⟨(−1)𝑁pRe(𝑁k𝑒−𝑖kp) sinh(𝜋 ∑

k′

Re(𝑁k′𝑏pk′))⟩

+ (1 −
(𝛾𝐼

k)2

(𝛾𝑅
k )2 ) (⟨(−1)𝑁p |𝑁k|2 cosh(𝜋 ∑

k′

Re(𝑁k′𝑏pk′))⟩

− ⟨(−1)𝑁p cosh(𝜋 ∑
k′

Re(𝑁k′𝑏k′))⟩ ⟨|𝑁k|2⟩)]

(4.59)

𝜕
𝜕𝛾𝐼

k
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with the usual definition of 𝑏pk and
1
2
p

k
from eq. (4.20) and the infinite sums

⟨(−1)𝑁p |𝑁k|2 cosh(𝜋 ∑
k′

Re(𝑁k′𝑏pk′))⟩
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2
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2
p

k
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2
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(4.61)
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⟨(−1)𝑁pRe(𝑁k𝑒−𝑖kp) sinh(𝜋 ∑
k′

Re(𝑁k′𝑏pk′))⟩

=
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−
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2
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|2− 1

4 |𝑏pk|2)𝛾−1
k sin (𝜋 ∑

k′ 𝛾−1
k′ Re [( ̃𝑁k′ − 1

2
p

k′
)𝑏pk′])Re [( ̃𝑁k − 1

2
p

k
)𝑒−𝑖kp]

𝛾k ∑{𝑁p}/∼1
𝑒−𝜋 ∑

k
|�̃�k|2𝛾−1

k
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with ̃𝑁k = 𝑁k − 𝜖k and the expression for ⟨(−1)𝑁p cosh (𝜋 ∑
k′ Re(𝑁k′𝑏pk′))⟩ can be

found in eq. (4.21). A crucial quantity for the time-dependent variational principle

is the Gram matrix. It is defined as the overlap between two tangent vectors on the

variational manifold. Therefore, it is not only the overlap between the derivatives of

the ansatz with respect to the variational parameters but it also needs to be projected

onto the variational manifold (see eq. (4.31)):

𝐺kk′ =𝜋2

4
𝑚k𝑚k′ (⟨|𝑁k|2|𝑁k′ |2⟩ − ⟨|𝑁k|2⟩ ⟨|𝑁k′ |2⟩)
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2 ) − 4
𝛾𝐼
k

𝛾𝑅
k

𝛾𝐼
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𝛾𝑅
k′

+ 2𝑖
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𝛾𝑅
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(𝛾𝐼
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2

(𝛾𝑅
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(𝛾𝐼
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(𝛾𝑅
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𝛾𝐼
k′

𝛾𝑅
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] + 𝛿k,k′𝑚k ( 1
8 (𝛾𝑅

k )2 − 𝜋
2

⟨|𝑁k|2⟩ ( 1
𝛾𝑅
k

+
(𝛾𝐼

k)2

(𝛾𝑅
k )3 ))

(4.64)
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5 Variational Monte Carlo
algorithm for lattice gauge
theories with continuous gauge
groups: a study of compact QED
at finite density

5.1 Motivation

Gauge theories are essential in various fields of physics. The standard model of parti-

cle physics, a gauge theory, describes three of the four fundamental forces in nature.

While perturbative methods can be applied to interactions at high energy scales, non-

perturbative techniques are required for lower energy regimes [5, 72]. This necessity

naturally leads to lattice gauge theories as they provide a non-perturbative and gauge-

invariant regularization of quantum field theories [7, 8]. Additionally, lattice gauge

theories can arise as effective theories for strongly correlated electron systems in con-

densed matter, such as quantum spin liquids or high-temperature superconductors [9,

10].

Lattice gauge theories have been extensively studied using Euclidean Monte Carlo

simulations, resulting in significant progress in both high-energy physics and con-

densed matter research [11]. However, there are still challenges in accessing certain

regimes within this framework. For example, fermionic theories with finite density or

an odd number of fermion flavors may be affected by the sign problem [12], and com-

puting real-time dynamics is challenging because Monte Carlo algorithms are typically

formulated in Euclidean spacetime.

To tackle the difficulty of simulating lattice gauge theories in certain regimes, var-

ious approaches have been explored in recent years. One of the prominent ones is

quantum simulation, which utilizes quantum devices such as ultracold atoms, trapped

ions, or superconducting qubits to implement lattice gauge theory Hamiltonians. In

one dimension, successful implementations have been demonstrated using trapped ions

and ultracold atoms [34–38]. However, in higher dimensions, the appearance of mag-

netic interactions, resulting in four-body plaquette terms on the lattice, poses a chal-

lenge. Several proposals have been made to overcome this problem in quantum simu-

lators, including digital [4, 41, 42, 102–104] and analog [39, 40] simulation schemes.

Nonetheless, experimental realization of these proposals is still pending.

Another significant strategy to tackle the problem of simulating lattice gauge the-

ories is the use of variational ansatz states which can efficiently capture the relevant

physics of the theory. In the case of lattice gauge theories, these states must either

satisfy the local gauge symmetries or require a reformulation of the theory in terms of

gauge-invariant variables, at the cost of more complex interactions [1, 61, 105]. One
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type of ansatz states are tensor networks that have been successfully applied to (1+1)-

dimensional Abelian and non-Abelian lattice gauge theories [17, 75, 76, 78–82, 106–

108]. These methods enable the study of out-of-equilibrium dynamics and finite chem-

ical potential scenarios, which are not accessible using Monte Carlo simulations of Eu-

clidean lattice gauge theory. In higher dimensions, tensor network methods have been

applied to lattice gauge theories with a finite-dimensional gauge field Hilbert space.

Other types of ansatz states can be formulated in the infinite-dimensional Hilbert space

of continuous gauge groups, including periodic Gaussian states [2] or neural network-

based ansatz states [100, 109].

In the realm of both high-energy and condensed matter physics, (2 + 1)-dimensional

compact QED with dynamical charges is a particularly intriguing model. It is signifi-

cant in high-energy physics because it is the simplest theory that can be used to explore

confinement and chiral symmetry breaking, which are fundamental to our understand-

ing of quantum chromodynamics. Even without dynamical fermions, the theory ex-

hibits non-trivial interactions owing to the presence of four-body magnetic terms and is

known to be confining for all couplings [18]. However, when dynamical fermions are

introduced, the confinement phenomenon becomes less apparent as the fermionic mat-

ter may lead to deconfinement. These phenomena also have relevance in condensed

matter physics since many low-energy effective theories of two-dimensional strongly

coupled electron systems can be described by massless dynamical fermions coupled

to a compact 𝑈(1) gauge field. Although sign-problem-free Monte Carlo simulations

were demonstrated for an even number of fermion flavors in ℤ2 lattice gauge theories,

even at non-zero density [110], for the 𝑈(1)-theory, the sign-problem is only resolved

for an even number of fermion flavors at half-filling [111].

In this chapter, a variational approach is presented that allows to investigate the sign-

problem affected regimes of compact QED with dynamical charges, while keeping the

full 𝑈(1) gauge field Hilbert space. The ansatz consists of a pure gauge part, which

captures the self-interactions of the gauge field, and a fermionic part that describes

the dynamics of the matter degrees of freedom coupled to the gauge field. The pure

gauge part is a Jastrow wave function that is constructed using gauge-invariant plaque-

tte variables, which is similar in form to certain neural network quantum states [112].

This choice is motivated by the variational method presented in chapter 4 that success-

fully approximated the ground states and real-time dynamics in compact QED with

static charges. The fermionic part is an infinite superposition of gauge-field depen-

dent fermionic Gaussian states, which are parametrized in a way that guarantees the

resulting state is gauge-invariant. Importantly, this parametrization ensures that the

number of parameters scales only polynomially with system size. Monte Carlo sam-

pling is used to compute expectation values and stochastic reconfiguration [113] to

optimize our variational states.

The variational method is extensively benchmarked. It is shown that in limiting cases

where the ground state of the theory is known, the variational ansatz can capture this

behavior. The pure gauge part of the ansatz is benchmarked against the variational

method based on complex periodic Gaussian states presented in chapter 4 by compar-

ing the variational ground state energies, showing agreement over the whole coupling

region. Moreover, for the full compact QED theory with dynamical fermions the whole

ansatz, including the fermionic part, is benchmarked for two fermion flavors at zero

chemcial potential against a Euclidean Monte Carlo study [111] since the sign-problem

is absent in that case. To demosntrate the capabilities of the variational method also
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in sign-problem affected regimes, density-induced phase transition for two fermion

flavors at non-zero chemcial potential are studied.

The content of this chapter is based on Ref. [3]
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5.2 Executive summary

The conventional approach of studying lattice gauge theories in the action-based for-

mulations using Euclidean Monte Carlo simulations is hindered by the sign-problem

in certain regimes, e.g. at finite chemical potential. To study these regimes with vari-

ational methods in a Hamiltonian framework one faces the challenge of an infinite-

dimensional gauge field Hilbert space and the need to find a suitable gauge-invariant

ansatz that couples dynamical fermions to gauge fields.

In the following sections a variational Monte Carlo algorithm for continuous gauge

groups is presented, i.e. the infinite-dimensional Hilbert space of the 𝑈(1) gauge field
can be captured without the need to truncate. The method is demonstrated for (2+1)-

dimensional compact QED with dynamical fermions at finite density, a regime plagued

by the sign-problem. The 𝑈(1) gauge field on every link can be characterized either by
a compact angular variable 𝜃 ∈ [0, 2𝜋) or an integer-valued electric field variable. The

construction of the variational ansatz is performed in terms of the compact angular

variables.

The ansatz comprises of two components. The first component is a Jastrow-type

ansatz state that is constructed out of gauge-invariant plaquette variables. It describes

the pure gauge dynamics of compact QED and is related to the variational method

presented in chapter 4 that successfully approximated ground states and real-time dy-

namics in pure gauge compact QED.

The second component describes the interactions of the gauge field with the dynam-

ical fermions. Formulated in terms of compact 𝑈(1) variables, one needs to specify

a fermionic state for every gauge field configuration in such a way that the overall

integral over all gauge field configurations is gauge-invariant. This is achieved by us-

ing gauge-field dependent fermionic Gaussian states based on the eigendecomposition

of the gauge-matter Hamiltonian. The gauge-matter Hamiltonian describes the inter-

actions between dynamical fermions and gauge fields and is by construction gauge-

invariant. Its eigenstates are gauge-field dependent fermionic Gaussian states and

gauge-invariant. If one fixes a gauge-field configuration in the gauge-matter Hamilto-

nian one obtains a quadratic operator that can be efficiently diagonalized. This allows

to construct a gauge-invariant ansatz that can capture gauge-matter interactions. Cru-

cially, the parametrization of these states is done in a way to guarantee that the number

of parameters increases only at a polynomial rate as the size of the system grows.

Since the gauge-field dependent fermionic Gaussian states retain some of their fermionic

Gaussian state properties, part of the variational ansatz can be evaluated analytically.

In particular, since fermionic Gaussian states are normalized, the fermion-gauge part

of the ansatz does not show up in the norm. This is advantageous as expectation values

are evaluated with Monte Carlo techniques and since only the pure gauge part appears

in the norm of the state and thus contributes to the probability distribution that needs

to be sampled, updates in the resulting Monte Carlo algorithm are not demanding nu-

merically. The exact diagonalization of the gauge-matter Hamiltonian is required at

every measurement step in the Monte Carlo scheme and can be performed efficiently

as it scales cubically with system size.

To verify the capabilities of the variational Monte Carlo method, several bench-

marks are conducted. First, it is demonstrated also numerically that gauge invariance

is indeed preserved. Secondly, the ansatz is tested in limiting cases, such as the weak-

coupling (𝑔2 → 0) and strong-coupling (𝑔2 → ∞) limits, where it is shown to be exact.
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The performance of the ansatz is also compared to other methods. For example, the

ground state energy for the pure gauge theory is compared to the variational method

presented in chapter 4 and a recent neural-network based study [100], demonstrat-

ing agreement over the entire coupling region. Additionally, for compact QED with

dynamical fermions, the flux energy per plaquette is computed and compared to a Eu-

clidean Monte Carlo study at zero chemical potential [111], which also agrees over

the whole coupling region. The degree of antiferromagnetic order in the ground state

is also examined, with the extrapolated value for a confinement-deconfinement transi-

tion found to be in qualitative agreement with the Monte Carlo study, although slightly

lower. To demonstrate the method’s effectiveness in sign-problem affected regimes, a

density-induced phase transition for two fermion flavors at non-zero chemical poten-

tial is studied, with qualitatively similar phenomena observed as in a previous tensor

network study in one dimension [75].

The following sections are structured as follows. Section 5.3 briefly reviews the com-

pact QED model with dynamical fermions. Then the variational Monte Carlo method

is presented, including the gauge-invariant construction of the variational state, the

numerical evaluation with Monte Carlo techniques, and the adaptation of variational

parameters. In section 5.4, we evaluate the performance of our ansatz by benchmark-

ing against limiting cases of the model with known ground states and other numeri-

cal methods. Section 5.5 investigates a sign-problem affected regime by studying the

density-induced phase transition for two fermion flavors at non-zero chemical poten-

tial.
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5.3 The variational Monte Carlo method

5.3.1 Short review of (2 + 1)-dimensional compact QED with

dynamical fermions

We study (2 + 1)-dimensional compact quantum electrodynamics (cQED3) coupled to

dynamical fermions. The model is defined on an 𝐿 × 𝐿 square lattice with periodic

boundary conditions. We work with staggered fermions [8] which are suitable for

studying chiral symmetry breaking. The fermions can appear in several species 𝛼which

can be subject to different chemical potentials 𝜇𝛼 (in some scenarios they are also given

a mass 𝑚). The Hamiltonian reads

𝐻 =𝑔2

2
∑
x,𝑖

̂𝐸2
x,𝑖 + 𝑔mag ∑

p

(1 − cos( ̂𝜃p))

− 𝑡 ∑
x,𝑖,𝛼

𝜓†
x,𝛼𝑒𝑖 ̂𝜃x,𝑖𝜓x+e𝑖,𝛼 + ℎ.𝑐.

+ ∑
x,𝛼

(𝑚(−1)x + 𝜇𝛼) 𝜓†
x,𝛼𝜓x,𝛼

≡ 𝐻𝐸 + 𝐻𝐵 + 𝐻𝐺𝑀 + 𝐻𝑀

(5.1)

where 𝜓x,𝛼 denotes the fermionic annihilation operator for site x and species 𝛼. The
gauge field operator ̂𝜃x,𝑖 and the electric field operator ̂𝐸x,𝑖 fulfill the canonical com-

mutation relations, [ ̂𝜃x,𝑖, ̂𝐸y,𝑗] = 𝑖𝛿𝑖𝑗𝛿x,y. Accordingly, the gauge field on a link can be

represented either by an integer-valued electric field variable, ̂𝐸x,𝑖 ∣𝐸x,𝑖⟩ = 𝐸x,𝑖 ∣𝐸x,𝑖⟩
(𝐸x,𝑖 ∈ ℤ), or by an element of the 𝑈(1) gauge group, ̂𝜃x,𝑖 ∣𝜃x,𝑖⟩ = 𝜃x,𝑖 ∣𝜃x,𝑖⟩ (𝜃x,𝑖 ∈
[0, 2𝜋)). Wewill mostly use the group element representation throughout themanuscript.

In this representation, the electric field operator has the form ̂𝐸x,𝑖 = −𝑖𝜕/𝜕𝜃x,𝑖. The

plaquette operator ̂𝜃p = ̂𝜃x,1 + ̂𝜃x+e1,2 − ̂𝜃x+e2,1 − ̂𝜃x,2 is the clockwise summation of link

operators around plaquette pwhere x is the site at the bottom left corner. The labelling

conventions are illustrated in Fig. 5.3.1. The magnetic coupling 𝑔mag is usually chosen

to be 1
𝑔2 but we keep it general for the moment.

The local symmetry of the model is generated by the Gauss law operators

̂𝐺x =
2

∑
𝑖=1

( ̂𝐸x,𝑖 − ̂𝐸x−e𝑖,𝑖) − �̂�stag (5.2)

where the staggered charge operator �̂�stag,x is defined as

�̂�stag,x =
𝑁𝑓

∑
𝛼=1

(𝜓†
x,𝛼𝜓x,𝛼 − 1

2
(1 + (−1)x)) . (5.3)

Physical states |phys⟩ must be eigenstates of all Gauss law operators

̂𝐺x |phys⟩ = 𝑞x |phys⟩ ∀x (5.4)

where eigenvalues 𝑞x correspond to different static charge configurations.
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Figure 5.3.1: Naming conventions on the periodic lattice: the gauge field degrees of freedom

𝜃x,𝑖, 𝐸x,𝑖 (blue) reside on the links x, 𝑖 while the fermionic degrees of freedom 𝜓†
x,𝛼 (red), which

can come in several species 𝛼, are located on the sites x. The circular arrows on the plaquettes

denote the plaquette variables 𝜃p. The global loops 𝜃𝑖 wind around the axis given by e𝑖 and
are illustrated by blue lines.

5.3.2 State construction

Since our method is based on variational Monte Carlo, we will explain it in several steps

(sketched in Fig. 5.3.2): we first discuss the state construction and motivate the choice

of our ansatz. In the second step, we explain the evaluation procedure of our ansatz

based onMonte Carlo sampling. In the third and final step, we discuss the adaptation of

variational parameters based on stochastic reconfiguration. We construct our ansatz

state in the gauge field basis where states are characterized by all 𝑈(1) gauge link

variables 𝜃x,𝑖, ∣{𝜃x,𝑖}⟩ ≡ ⊗x,𝑖 ∣𝜃x,𝑖⟩. A general gauge field state can then be defined by

|Ψ𝐺⟩ = ∏
x,𝑖

∫
2𝜋

0
𝑑𝜃x,𝑖 Ψ𝐺({𝜃x,𝑖}) ∣{𝜃x,𝑖}⟩ (5.5)

where Ψ𝐺({𝜃x,𝑖}) is a function over all gauge link variables 𝜃x,𝑖.

To extend the above to an arbitrary state |Ψ⟩ of the cQED3 model introduced in

section 5.3.1 (i.e. including fermions) we need to specify a fermionic Fock state

∣Ψ𝐹({𝜃x,𝑖})⟩ for every gauge field configuration {𝜃x,𝑖}:

|Ψ⟩ = ∏
x,𝑖

∫
2𝜋

0
𝑑𝜃x,𝑖 Ψ𝐺({𝜃x,𝑖}) ∣Ψ𝐹({𝜃x,𝑖})⟩ ∣{𝜃x,𝑖}⟩

≡ ∫ 𝐷𝜃 Ψ𝐺(𝜃) |Ψ𝐹(𝜃)⟩ |𝜃⟩
(5.6)

where we abbreviated for ease of notation the gauge field configurations {𝜃x,𝑖} as 𝜃
and the measure as ∫ 𝐷𝜃 = ∏

x,𝑖 ∫2𝜋
0

𝑑𝜃x,𝑖. This notation will be used throughout the

chapter.

One should note that an arbitrary state |Ψ⟩ as given above is a priori not gauge-

invariant. Thus, the gauge invariance condition for physical states in eq. (5.4) severely

restricts the possible choices for Ψ𝐺(𝜃) and |Ψ𝐹(𝜃)⟩.
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State Construction Monte Carlo Sampling

Computation of Observables

Update

Adaptation of  
variational parameters

1 2

3 Exact Diagonalization
of the 

gauge-matter interaction

Figure 5.3.2: Scheme of variational Monte Carlo procedure: the ansatz is formulated in the full

gauge field basis denoted by |𝜃⟩, in our case the 𝑈(1) gauge group, consisting of a pure gauge

part Ψ𝐺(𝜃) and gauge-field dependent fermionic Gaussian states |Ψ𝐹(𝜃)⟩. Expectation values

of observables 𝑂 can be carried out analytically w.r.t. the fermionic part (which involves the

eigendecomposition of the gauge-matter interactions for fixed 𝜃). The resulting expressions

𝑂loc(𝜃) are diagonal in 𝜃 and sampled with Monte Carlo techniques according to a probabil-

ity distribution 𝑝(𝜃) in which only Ψ𝐺(𝜃) appears since the gauge-field dependent fermionic

Gaussian states are normalized. The variational parameters are adapted according to stochastic

reconfiguration.

The state |Ψ⟩ defined above is completely general. From now on we will use the

form of |Ψ⟩ as the basis to construct our variational ansatz state which will be defined

by specifying the pure gauge part Ψ𝐺(𝜃) and the fermionic ansatz |Ψ𝐹(𝜃)⟩.
Intuitively, the role of Ψ𝐺(𝜃) and |Ψ𝐹(𝜃)⟩ in our construction can be motivated as

follows: Ψ𝐺(𝜃) is designed to approximate the ground state of the pure gauge model

𝐻KS ≡ 𝐻𝐵 + 𝐻𝐸 (the Kogut-Susskind Hamiltonian [8]) whereas |Ψ𝐹(𝜃)⟩ is designed to

approximate the low-energy physics of the fermionic Hamiltonian 𝐻fer ≡ 𝐻𝐸 +𝐻𝐺𝑀 +
𝐻𝑀 which neglects the self-interactions of the gauge field.

The pure gauge part of the ansatz

In this section we motivate and describe the pure gauge part Ψ𝐺(𝜃) of our variational
state. In chapter 4, based on ref. [2], it was shown that

𝜙𝐺(𝜃) =
+∞

∑
𝑁p=−∞

𝑒− 1
2 (𝜃p−2𝜋𝑁p)𝛼pp′(𝜃p′−2𝜋𝑁p′) (5.7)

is a good ansatz for the ground state of compact QED with static charges. It is a

Gaussian in the plaquette variables 𝜃p that is made periodic by an infinite sum over

the integer-valued variables 𝑁p (𝛼pp′ are variational parameters). The periodicity is

important to account for the compactness of the 𝑈(1) gauge field.
Here, we would like to find an ansatz which has a similar expressive power as the

states above but at the same time is suitable for a variational Monte Carlo simulation

directly in 𝜃 (without resorting to the sums above). A useful hint is given by the Villain

approximation [99] which states

𝑒𝛾(1−cos(𝜃)) → ∑
𝑁

𝑒− 1
2 𝛾(𝜃−2𝜋𝑁)2

(5.8)
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for 𝛾 → ∞. Therefore, a suitable ansatz state could be

𝑒− ∑
pp′ cos(𝜃p)𝛼p,p′ cos(𝜃p′)+∑

p
𝛽p cos(𝜃p)

(5.9)

with the matrix 𝛼 and the vector 𝛽 being variational parameters. We will choose 𝛼
and 𝛽 to be real since we are interested here in low-energy properties. For the study of

real-time dynamics (which will be investigated in a future work) we would choose the

variational parameters to be complex. Apart from the cosine terms we can add sine

terms, combine them in a vector 𝑏(𝜃) = (cos(𝜃p1
), .., cos(𝜃p𝑁

), sin(𝜃p1
), .., sin(𝜃p𝑁

))
and generalize the above state to

Ψ𝐺(𝜃) = 𝑒− 1
2 𝑏(𝜃)𝑇𝛼𝑏(𝜃)−𝛽𝑇𝑏(𝜃) (5.10)

which will be the variational ansatz for the pure gauge field dynamics entering the full

ansatz as in eq. (5.6).

In the case of periodic boundary conditions there are two inequivalent global non-

contractible loops (inequivalent in the sense that they can not be transformed into each

other by plaquette operations). We choose them to be 𝜃1 (winding around the lattice

along the 𝑥1-axis), and 𝜃2 (along the 𝑥2-axis), respectively (see Fig. 5.3.1). We incorpo-

rate them in our ansatz by expanding the vector 𝑏(𝜃) by the entries cos(𝜃1), cos(𝜃2), sin(𝜃1)
and sin(𝜃2). This is necessary because upon the coupling of compact QED to dynamical

fermions, 𝜃1 and 𝜃2 become dynamical variables due to the appearance of gauge-matter

interactions where the phase 𝑒𝑖𝜃x,𝑖 appears. If expressed in terms of gauge-invariant

variables, it contains contributions from both plaquette variables 𝜃p and the global

loops 𝜃1 and 𝜃2, as described in chapter 3. For static charges, the magnetic Hamilto-

nian is the only term depending on the gauge field variables 𝜃x,𝑖 which can be expressed

entirely in terms of plaquette variables 𝜃p such that the global loop variables only set

different topological sectors (similar to the toric code).

For all our purposes it turned out that all variational parameters in 𝛼 corresponding

to the global loop variables were not relevant and that it was sufficient to only keep

the global loop parameters in 𝛽 variational. After imposing translational invariance we

thus remained with 2𝑁 + 4 variational parameters for 𝛼 and 6 variational parameters

for 𝛽 (with 𝑁 = 𝐿2 the number of lattice sites).

Since 𝑏(𝜃) contains only closed loops the gauge field part Ψ𝐺(𝜃) as a function of 𝑏(𝜃)
automatically preserves gauge invariance.

The fermionic part of the ansatz: gauge-invariant fermionic Gaussian
states

The fermionic part of our variational ansatz |Ψ𝐹(𝜃)⟩ is a generalization of fermionic

Gaussian states that can incorporate interactions between fermions and gauge fields

while preserving gauge invariance. The overall state ∫ 𝐷𝜃 |Ψ𝐹(𝜃)⟩ |𝜃⟩ is an integral

over all gauge field configurations where for every gauge field configuration 𝜃 we de-

fine a fermionic Gaussian state |Ψ𝐹(𝜃)⟩. The motivation for this construction is that the

resulting state, an infinite superposition of Gaussian states, is a powerful ansatz state

as it is clearly not Gaussian anymore and can capture correlations beyond the Gaussian

realm. At the same time, we retain for every |Ψ𝐹(𝜃)⟩ the properties of fermionic Gaus-

sian states which allows us to compute part of the expectation values analytically. The

number of variational parameters is shown to scale only polynomially in the system

size and not exponentially as the number of gauge field configurations.
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Recalling that every pure fermionic Gaussian state can be represented by a unitary

operator 𝑈𝐺𝑆 acting on some reference state |Ψ0⟩ [114], we carry out an analogous

procedure for every gauge field configuration 𝜃 to construct gauge-field dependent

fermionic Gaussian states as

|Ψ𝐹 (𝜃)⟩ = 𝑈𝐺𝑆 (𝜃) |Ψ0⟩ (5.11)

In our method, the reference state |Ψ0⟩ will be chosen as the ground state of 𝐻fer =
𝐻𝐸 + 𝐻𝐺𝑀 + 𝐻𝑀 in the strong-coupling limit (𝑔2 → ∞), i.e. the regime where the

electric term dominates so that electric field excitations are strongly suppressed. In

the following we will refer to strong- and weak-coupling always w.r.t. the relative

strength of the electric Hamiltonian 𝐻𝐸 (quantified by its coupling constant 𝑔2). If

we only consider 𝐻𝐸 in the strong-coupling limit, |Ψ0⟩ will be a Fock state where

all fermions are fixed to certain sites (the exact form of the state will depend on the

number of fermion flavors and the configuration of background charges). However,

|Ψ0⟩ does not need to be Gaussian but one can also include perturbations induced

by gauge-matter interactions 𝐻𝐺𝑀, e.g. it is known that for two fermion flavors at

half-filling the strong-coupling ground state in second-order perturbation theory is the

ground state of the Heisenberg model. It can be shown that its properties can be

incorporated in the reference state |Ψ0⟩ which can even be kept variational (for details

see Appendix 5.C).

For simplicity of the discussion, we will assume in the following a Gaussian reference

state and only one flavor of staggered fermions (how the ansatz can be readily extended

to multiple flavors is described in Appendix 5.B). In the sector without background

charges the reference state is chosen to be the Dirac state |𝐷⟩

|Ψ0⟩ = ∏
x∈𝒪

𝜓†
x |0⟩ ≡ |𝐷⟩ (5.12)

i.e. with all odd sites 𝒪 occupied. This corresponds to the zero charge sector with no

electric field present.

The Gaussian operator 𝑈𝐺𝑆(𝜃) acting on |Ψ0⟩ is defined as

𝑈𝐺𝑆 (𝜃) = exp( 𝑖
2

∑
x,y

𝜓†
x𝜉(𝜃)xy𝜓y) (5.13)

where 𝜉(𝜃) is dependent on the gauge field and on the variational parameters. The

gauge-field dependence has to be chosen in a way that respects gauge invariance.

This can be achieved by defining 𝜉(𝜃) via the eigendecomposition of the gauge-matter

Hamiltonian which can be written as

𝐻𝐺𝑀 = ∫ 𝐷𝜃 |𝜃⟩ ⟨𝜃| ⃗𝜓†
xℎ𝐺𝑀(𝜃)xy ⃗𝜓y (5.14)

with ⃗𝜓x ≡ (𝜓x1
, ..., 𝜓x𝑁

)𝑇 a vector of all fermionic annihilation operators. The matrix

ℎ𝐺𝑀(𝜃) is hermitian and can be diagonalized for a specific gauge field configuration 𝜃
as ℎ𝐺𝑀(𝜃) = 𝑉 (𝜃)Λ(𝜃)𝑉 (𝜃)†. We use 𝑉 (𝜃) to rewrite 𝜉(𝜃) as

𝜉(𝜃)xy = 𝑉 (𝜃)x𝑖
̃𝜉𝑖𝑗𝑉 (𝜃)†

𝑗y (5.15)

with ̃𝜉 containing the variational parameters. Note that ̃𝜉 does not depend on the gauge
field configuration and thus the number variational parameters scales quadratically
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with the system size (linearly for our choice of parametrization, see Appendix 5.B).

Putting everything together, the fermionic part of the ansatz for one fermion flavor

takes the form

|Ψ𝐹(𝜃)⟩ = exp( 𝑖
2

∑
x,y

𝜓†
x𝑉 (𝜃)x𝑖

̃𝜉𝑖𝑗𝑉 (𝜃)†
𝑗y𝜓y) |𝐷⟩ (5.16)

and the whole variational ansatz state |Ψ⟩ is thus fully defined according to eq. (5.6).

Gauge invariance of |Ψ⟩ follows from the fact that 𝐻𝐺𝑀 and its eigenstates are gauge-

invariant since the construction of |Ψ𝐹(𝜃)⟩ given in eq. (5.16) is formulated in terms

of these eigenstates.

Since the gauge invariance condition in eq. (5.4) is local in 𝜃, every realization of the
state in a Monte Carlo simulation will be gauge-invariant, i.e. even with an imperfect

sampling algorithm the unphysical part of the Hilbert space is never accessed.

The motivation for the choice of ansatz above is on the one hand that it ensures gauge

invariance but more importantly, by choosing the matrix ̃𝜉 appropriately, the occupa-
tion of the eigenstates of 𝐻𝐺𝑀 can be tuned which allows to obtain good ground state

approximations even in regimes where strong gauge field fluctuations are present. This

has to be seen in contrast to mean-field descriptions where a certain gauge field pat-

tern is fixed and the resulting fermionic theory is studied. The latter has the problem,

which is particularly relevant in the study of quantum spin liquid states (where the lat-

tice gauge theory emerges as an effective low-energy description), that it often remains

unclear whether the spin liquid state is stable against gauge field fluctuations [9].

The cost of working with the ansatz is that the eigendecomposition of ℎ𝐺𝑀(𝜃) needs
to be carried out at every measurement step of the Monte Carlo algorithm. However,

ℎ𝐺𝑀(𝜃) is a hermitian 𝑁 ×𝑁 matrix where 𝑁 is the number of lattice sites such that the

cost is 𝒪(𝑁3) which can be done efficiently. Note that the number of fermion flavors

does not enter as the gauge-matter interaction is the same for all flavors.

The fermionic ansatz state in eq. (5.16) is normalized since the Gaussian operator

acting on the Dirac vacuum is unitary. This is beneficial for the variational Monte

Carlo simulation since it will not contribute to the probability distribution that needs

to be sampled. Thus, no sampling problems related to fermion determinants can occur

in this method as opposed to action-based Monte Carlo algorithms.

So far we have not specified the matrix ̃𝜉 in eq. (5.16) containing the fermionic vari-

ational parameters. For that we consider the eigendecomposition of ℎ𝐺𝑀(𝜃), denoted
as ℎ𝐺𝑀(𝜃) |𝑤𝑖(𝜃)⟩ = 𝜆𝑖(𝜃) |𝑤𝑖(𝜃)⟩, 𝑖 ∈ {1, .., 𝑁}. Assuming an 𝐿 × 𝐿 lattice with 𝐿
even, the spectrum of ℎ𝐺𝑀(𝜃) is symmetric around zero, i.e. we have 𝑁/2 pairs of

eigenvectors ∣𝑤𝑘+(𝜃)⟩ and |𝑤𝑘−(𝜃)⟩ (𝑘 ∈ {1, .., 𝑁/2}) such that ∣𝑤𝑘+(𝜃)⟩ corresponds

to the eigenvalue +𝜆𝑘(𝜃) and |𝑤𝑘−(𝜃)⟩ to the eigenvalue −𝜆𝑘(𝜃). A useful feature of

these pairs is their structure in the position basis as they can be written as two vec-

tors |𝑤𝑘𝑒(𝜃)⟩, |𝑤𝑘𝑜(𝜃)⟩ which are residing exclusively on even (respectively odd) lattice

sites:

∣𝑤𝑘+(𝜃)⟩ = 1√
2

(|𝑤𝑘𝑒(𝜃)⟩ + |𝑤𝑘𝑜(𝜃)⟩) (5.17)

|𝑤𝑘−(𝜃)⟩ = 1√
2

(|𝑤𝑘𝑒(𝜃)⟩ − |𝑤𝑘𝑜(𝜃)⟩) (5.18)

This allows us to write the strong-coupling state in eq. (5.12), where the fermions oc-

cupy all odd sites, as a product over all pairs 𝑘 where in each pair the odd superpositon
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is occupied, |𝑤𝑘−(𝜃)⟩ = 1√
2 (|𝑤𝑘𝑒(𝜃)⟩ − |𝑤𝑘𝑜(𝜃)⟩). The purpose of ̃𝜉 in eq. (5.16) is then

to smoothly transform this equal superposition of ∣𝑤𝑘+(𝜃)⟩ and |𝑤𝑘−(𝜃)⟩ into a state

where all |𝑤𝑘−(𝜃)⟩ are occupied, corresponding to the ground state of 𝐻𝐺𝑀. Thus, ̃𝜉
allows us to transform smoothly from the strong-coupling ground state to the weak-

coupling ground state. For more details on ̃𝜉 and the specific choice of parametrization

see Appendix 5.B.

5.3.3 Evaluating expectation values

In this section we describe how Monte Carlo techniques can be used to compute var-

ious expectation values for the variational ansatz presented in the previous section.

Throughout the following discussion the variational parameters are kept fixed, their

adaptation will be discussed in the next section.

For the computation of an observable 𝑂 with the full ansatz |Ψ⟩ from eq. (5.6) we

obtain
⟨Ψ|𝑂|Ψ⟩
⟨Ψ|Ψ⟩

=
∫ 𝐷𝜃 ⟨Ψ𝐹(𝜃)| Ψ𝐺(𝜃)𝑂Ψ𝐺(𝜃) |Ψ𝐹(𝜃)⟩

∫ 𝐷𝜃 |Ψ𝐺(𝜃)|2 ⟨Ψ𝐹(𝜃)|Ψ𝐹(𝜃)⟩⏟⏟⏟⏟⏟⏟⏟
=1

=
∫ 𝐷𝜃 𝑂loc(𝜃)|Ψ𝐺(𝜃)|2

∫ 𝐷𝜃 |Ψ𝐺(𝜃)|2
= ∫ 𝐷𝜃 𝑂loc(𝜃)𝑝(𝜃)

(5.19)

where |Ψ𝐹(𝜃)⟩ is absent in the norm since it is already normalized by construction

(see eq. (5.16)) so that the probability distribution 𝑝(𝜃) depends only on Ψ𝐺(𝜃). The
fermionic part of the ansatz thus only appears in the numerator for the evaluation of 𝑂
which is carried out analytically and only the remaining expression 𝑂loc(𝜃) is sampled

in a Monte Carlo simulation.

We split the calculation of 𝑂loc(𝜃) in two parts: since 𝑂 is a priori not diagonal in 𝜃
(e.g. all electric observables involve derivatives w.r.t. 𝜃) we first compute the action

of 𝑂 on our ansatz |Ψ⟩ which gives rise to an expression 𝑂fer(𝜃) that is diagonal in 𝜃 but
might still contain fermionic operators (e.g. due to derivatives of the fermionic ansatz

|Ψ𝐹(𝜃)⟩):
𝑂 ∫ 𝐷𝜃Ψ𝐺(𝜃) |Ψ𝐹(𝜃)⟩ |𝜃⟩ = ∫ 𝐷𝜃𝑂fer(𝜃)Ψ𝐺(𝜃) |Ψ𝐹(𝜃)⟩ |𝜃⟩ (5.20)

𝑂loc(𝜃) is then derived by evaluating 𝑂fer(𝜃) w.r.t. the fermionic ansatz

𝑂loc(𝜃) = ⟨Ψ𝐹(𝜃)| 𝑂fer(𝜃) |Ψ𝐹(𝜃)⟩ = ⟨Ψ𝐹(𝜃)| 𝑂Ψ𝐺(𝜃) |Ψ𝐹(𝜃)⟩
Ψ𝐺(𝜃) (5.21)

which is now a real-valued function that can be readily sampled in a Monte Carlo

simulation.

The probability distribution 𝑝(𝜃) according to which we need to sample is only de-

pendent on the gauge part Ψ𝐺(𝜃) defined in eq. (5.10):

𝑝(𝜃) = |Ψ𝐺(𝜃)|2

∫ 𝐷𝜃 |Ψ𝐺(𝜃)|2
= 𝑒−𝑏𝑇(𝜃)𝛼𝑏(𝜃)−2𝛽𝑇𝑏(𝜃)

∫ 𝐷𝜃 𝑒−𝑏𝑇(𝜃)𝛼𝑏−2𝛽𝑇𝑏(𝜃) ≡ 𝑒−𝑆(𝜃)

∫ 𝐷𝜃 𝑒−𝑆(𝜃) (5.22)

The method described above has to be contrasted with usual variational Monte Carlo

methods [115] where the whole trial wavefunction contributes to the probability dis-

tribution and the local quantities 𝑂loc(𝜃) do not involve taking expectation values w.r.t.
some part of the ansatz.
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Having discussed the general procedure, the computation of observables can be di-

vided into three groups by level of difficulty: the first group consists of observables

that are not diagonal in 𝜃 (all electric quantities such as 𝐻𝐸) and thus first need to

be brought into a diagonal form 𝑂fer(𝜃). These observables are the most involved.

The second group of observables are already of that form but since 𝑂fer(𝜃) is still a

fermionic operator it needs to be evaluated w.r.t. |Ψ𝐹(𝜃)⟩ to obtain 𝑂loc(𝜃) (e.g. 𝐻𝐺𝑀
or 𝐻𝑀). The third group of observables is already of the form 𝑂loc(𝜃) and can be readily
sampled in a Monte Carlo simulation (e.g. 𝐻𝐵).

Two things need to be shown to demonstrate that our variational ansatz can be used

efficiently: first, the efficient computation of 𝑂loc(𝜃) and secondly, efficient sampling

of the probability distribution 𝑝(𝜃). Thus, in the following, we first show exemplary

for the Hamiltonian how 𝑂loc(𝜃) is derived, i.e. we compute the local energy 𝐻loc(𝜃).
In a second step, we explain the Monte Carlo simulation, in particular how samples

from 𝑝(𝜃) are generated using Metropolis algorithm.

Computation of the local energy 𝐻loc(𝜃)

The electric Hamiltonian 𝐻𝐸 is the only term of the Hamiltonian defined in eq. (5.1)

that is not diagonal in 𝜃 (the most difficult type of observable to compute, as discussed

above). We thus focus on 𝐻𝐸 and discuss other terms briefly at the end of this section.

The electric Hamiltonian corresponds to second order derivatives in the gauge field

variables 𝜃x,𝑖. Since our ansatz consists of a fermionic part |Ψ𝐹(𝜃)⟩ and a pure gauge

part Ψ𝐺(𝜃), the electric energy has a solely fermionic contribution, a pure gauge con-

tribution and a crossterm between the two, denoted as:

⟨𝐻𝐸⟩ = ⟨𝐻𝐸⟩𝑓𝑓 + ⟨𝐻𝐸⟩𝑔𝑔 + ⟨𝐻𝐸⟩𝑓𝑔 (5.23)

We start by considering ⟨𝐻𝐸⟩𝑔𝑔, the part originating from taking twice the derivative

of Ψ𝐺(𝜃) whose construction is based on the vector 𝑏(𝜃) (see eq. (5.10)). Hence, we

need to compute the derivative of 𝑏(𝜃) with respect to 𝜃x,𝑖 which gives rise to the vector

𝑏x,𝑖(𝜃) = 𝛿p,(x,𝑖)(− sin(𝜃p1
), .., − sin(𝜃p𝑁

),

cos(𝜃p1
), .., cos(𝜃p𝑁

))
(5.24)

with

𝛿p,(x,𝑖) =
⎧{
⎨{⎩

1 if (x, 𝑖) ∈ p clockwise

−1 if (x, 𝑖) ∈ p anti-clockwise

0 else

(5.25)

where (x, 𝑖) ∈ p clockwise (anti-clockwise) means that the link (x, 𝑖) is contained in the
plaquette p and the orientation of the link is parallel (anti-parallel) to the orientation of
the plaquette. For periodic boundary conditions we have the additional entries cos(𝜃𝑗)
and sin(𝜃𝑗) in 𝑏(𝜃) corresponding to the global loops 𝜃1 and 𝜃2. They give rise to the

derivatives − sin(𝜃𝑗) and cos(𝜃𝑗) if (x, 𝑖) lies on the 𝑥𝑗-axis and otherwise zero.

The electric energy of the pure gauge part and the corresponding local quantity
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𝐻𝐸,𝑔𝑔,loc(𝜃) is then derived as

⟨𝐻𝐸⟩𝑔𝑔 =
∫ 𝐷𝜃𝑔2

2 ∑
x,𝑖

(𝑏𝑇(𝜃)𝛼𝑏x,𝑖(𝜃) + 𝛽𝑇𝑏x,𝑖(𝜃))2 𝑒−𝑆(𝜃)

∫ 𝐷𝜃 𝑒−𝑆(𝜃) ≡ ∫ 𝐷𝜃𝐻𝐸,𝑔𝑔,loc(𝜃)𝑝(𝜃)

(5.26)

with the probability distribution 𝑝(𝜃) and 𝑆(𝜃) = 𝑏𝑇(𝜃)𝛼𝑏(𝜃) + 2𝛽𝑇𝑏(𝜃), both defined in

eq. (5.22). The part of the electric Hamiltonian acting only on Ψ𝐺(𝜃) can therefore be

written in a simple diagonal form in the gauge field basis.

It is more difficult to compute 𝐻𝐸,𝑓𝑓,loc(𝜃), i.e. the local quantity corresponding to

derivatives of the fermionic ansatz |Ψ𝐹(𝜃)⟩. As discussed earlier, we first derive an

expression 𝐻𝐸,𝑓𝑓,fer(𝜃) that will be diagonal in 𝜃 but still contains fermionic operators

(see Appendix 5.A for details):

⟨𝐻𝐸⟩𝑓𝑓 =𝑔2

2
∫ 𝐷𝜃 𝑝(𝜃) ⟨Ψ𝐹 (𝜃)|∑

x,𝑖
− 𝜕2

𝜕𝜃2
x,𝑖

|Ψ𝐹 (𝜃)⟩

=𝑔2

2
∫ 𝐷𝜃 𝑝(𝜃) ∑

x,𝑖
⟨Ψ𝐹 (𝜃)| ⃗𝜓†𝑓x,𝑖(𝜃) ⃗𝜓 ⃗𝜓†𝑓x,𝑖(𝜃) ⃗𝜓|Ψ𝐹 (𝜃)⟩

≡ ∫ 𝐷𝜃 𝑝(𝜃) ⟨Ψ𝐹 (𝜃)|𝐻𝐸,𝑓𝑓,fer(𝜃)|Ψ𝐹 (𝜃)⟩

(5.27)

with

𝑓x,𝑖(𝜃) = 1
𝑖

(𝜕𝜃x,𝑖
𝑒𝑖𝜉(𝜃)) 𝑒−𝑖𝜉(𝜃). (5.28)

The form of 𝑓x,𝑖(𝜃) above is for a general gauge-field dependent fermionic Gaussian

state characterized by some 𝜉(𝜃). To get an expression explicitly diagonal in 𝜃 we insert
our ansatz 𝜉(𝜃) = 𝑉 (𝜃) ̃𝜉𝑉 †(𝜃) defined in eq. (5.15) which is based on the eigendecom-

position of the gauge-matter Hamiltonian, ℎ𝐺𝑀(𝜃) = 𝑉 (𝜃)Λ(𝜃)𝑉 †(𝜃). We obtain (see

Appendix 5.A for the derivation):

𝑓x,𝑖(𝜃) = ⃗𝜓†𝑉 (𝜃) (𝛼x,𝑖(𝜃) − 𝑒𝑖 ̃𝜉𝛼x,𝑖(𝜃)𝑒−𝑖 ̃𝜉) 𝑉 †(𝜃) ⃗𝜓 (5.29)

with 𝛼x,𝑖(𝜃) = −𝑖𝑉 †(𝜃)𝜕𝜃x,𝑖
𝑉 (𝜃). We can find an explicit expression for 𝛼x,𝑖(𝜃) which

amounts to finding the derivatives of the eigenvectors of ℎ𝐺𝑀(𝜃):

𝛼x,𝑖
𝑘𝑙 (𝜃) =

𝑉 †
𝑘x(𝜃)𝑒𝑖𝜃x,𝑖𝑉 (𝜃)x+e𝑖𝑙 − ℎ.𝑐.

𝜆𝑙(𝜃) − 𝜆𝑘(𝜃)
(5.30)

where 𝜆𝑖(𝜃) are the eigenvalues of ℎ𝐺𝑀(𝜃). The final expression for 𝐻𝐸,𝑓𝑓,fer(𝜃) is

thus diagonal in 𝜃 but still a quartic fermionic operator. This form of the electric

Hamiltonian intuitively illustrates that the gauge field mediates interactions between

the fermions.

In the following we want to evaluate these fermionic interactions w.r.t. the fermionic

state |Ψ𝐹(𝜃)⟩ as shown in the last row in eq. (5.27) to compute the local electric energy

𝐻𝐸,𝑓𝑓,loc(𝜃) that can then be measured in our Monte Carlo simulation.

As a side note we want to mention that |Ψ𝐹(𝜃)⟩ in its general form defined in

eq. (5.11) does not need to be Gaussian as one can also choose a Non-Guassian ref-

erence state |Ψ0⟩. This might be useful if one is particularly interested in the strong-

coupling regime (from the high-energy physics perspective one is usually interested in
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the weak-coupling region where the continuum limit is located). In the strong-coupling

regime the electric field is strongly suppressed and the Hilbert space effectively reduces

to a fermionic Fock space. Such models can be tackled by other many-body methods

(e.g. tensor networks) which are not suitable for lattice gauge theories with infinte-

dimensional local Hilbert spaces. One could combine our ansatz with such methods

by carrying out the unitary transformation given by the fermionic Gaussian operator

𝑈𝐺𝑆(𝜃) (acting on top of |Ψ0⟩) so that the remaining expression can be evaluated w.r.t.

the reference state |Ψ0⟩ whose fermionic correlation functions could be computed with

another method (in Appendix 5.C we demonstrate this for two fermion flavors at half-

filling where the effective model is the Heisenberg model).

If we focus, however, on the case of one fermion flavor and the Gaussian reference

state |𝐷⟩ as defined in eq. (5.16), we need to evaluate a fermionic Gaussian state for

every gauge field configuration 𝜃. The fermionic expectation values in eq. (5.27) can

then be computed as

⟨Ψ𝐹 (𝜃)| ⃗𝜓†𝑓x,𝑖(𝜃) ⃗𝜓 ⃗𝜓†𝑓x,𝑖(𝜃) ⃗𝜓|Ψ𝐹 (𝜃)⟩ =Tr ((1 − Γ𝜓𝜓†(𝜃)) 𝑓x,𝑖(𝜃))2

+Tr ((1 − Γ𝜓𝜓†(𝜃)) 𝑓x,𝑖(𝜃)Γ𝜓𝜓†(𝜃)𝑓x,𝑖(𝜃))
(5.31)

where Γ𝜓𝜓†(𝜃) = 𝑉 (𝜃)Γ̃𝑉 (𝜃)† is the covariance matrix of the Gaussian state |Ψ𝐹 (𝜃)⟩
and Γ̃ = 𝑒𝑖 ̃𝜉𝑉 (𝜃)†Γ0𝑉 (𝜃)𝑒−𝑖 ̃𝜉 with Γ0 the covariance matrix of the reference state |𝐷⟩
and ̃𝜉 containing the variational parameters (see eq. (5.15)). Inserting the expectation

values above in eq. (5.27) gives 𝐻𝐸,𝑓𝑓,loc(𝜃).
The last remaining part of the electric Hamiltonian, the crossterm ⟨𝐻𝐸⟩𝑓𝑔, involves

a quadratic expression in the fermions coming from |Ψ𝐹(𝜃)⟩ and a derivative in 𝑏(𝜃)
coming from Ψ𝐺(𝜃) and is thus easier to compute than the quartic expressions in the

pure fermionic contribution (for the explicit form see Appendix 5.A).

Other parts of the Hamiltonian are easier to evaluate since they are already diagonal

in the gauge field basis. For the sake of completeness we will provide them here briefly.

First, the magnetic part which is directly suitable for Monte Carlo sampling:

⟨𝐻𝐵⟩ = 𝑔mag ∫ 𝐷𝜃 ∑
p

(1 − cos(𝜃p)) 𝑝(𝜃) ≡ ∫ 𝐷𝜃𝐻𝐵,loc(𝜃)𝑝(𝜃) (5.32)

The gauge-matter interactions are already diagonal and only quadratic in the fermions:

⟨𝐻𝐺𝑀⟩ = −𝑡 ∫ 𝐷𝜃 ⃗𝜓†ℎ𝐺𝑀(𝜃) ⃗𝜓𝑝(𝜃)

= −𝑡 ∫ 𝐷𝜃Tr ((1 − Γ𝜓𝜓†(𝜃)) ℎ𝐺𝑀(𝜃)) 𝑝(𝜃)

≡ ∫ 𝐷𝜃𝐻𝐺𝑀,loc(𝜃)𝑝(𝜃)

(5.33)

where the quadratic expressions in the fermions are evaluated in analogy to the electric

part of the Hamiltonian. In the same fashion are other purely fermionic parts evaluated

such as the mass term 𝐻𝑀.

In terms of computational cost the local electric energy 𝐻𝐸,loc(𝜃) is the most difficult

part to evaluate. Naively, one expects the required number of operations for evaluating

it to be 𝒪(𝑁4) (𝑁 the number of lattice sites) but with the chosen parametrization of
̃𝜉 it can be shown to be 𝒪(𝑁3) (see Appendix 5.B).
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Monte Carlo algorithm

In the following we show how to efficiently evaluate an observable 𝑂 with our ansatz

|Ψ⟩ in a Monte Carlo simulation given an expression for 𝑂loc(𝜃). The expectation value
of 𝑂 is computed as an average over 𝑁 samples 𝜃𝑖 drawn from the probability distri-

bution 𝑝(𝜃):
⟨Ψ|𝑂|Ψ⟩
⟨Ψ|Ψ⟩

= ∫ 𝐷𝜃 𝑂loc(𝜃)𝑝(𝜃) ≈ 1
𝑁

𝑁
∑
𝑖=1

𝑂loc(𝜃𝑖) (5.34)

The samples 𝜃𝑖 are generated by a Markov chain 𝜃1 → … → 𝜃𝑖 → … → 𝜃𝑁 using

Metropolis algorithm [23].

One iteration in this procedure, i.e. 𝜃𝑖 → 𝜃𝑖+1, is described as follows: starting

from 𝜃𝑖 a new configuration 𝜃′ is proposed according to some update scheme. In our

case this involves sweeping through every link of the lattice and performing local up-

dates on the gauge variables 𝜃x,𝑖. At the same time, we also perform global updates to

switch between different monopole-like configurations which is hard to achieve with

local updates (for details on the update scheme see Appendix 5.D). Recalling from

eq. (5.22) the form 𝑝(𝜃) ∼ 𝑒−𝑆(𝜃) of our probability distribution, we compute the tran-

sition probability 𝑝(𝜃 → 𝜃′) = 𝑒−𝑆(𝜃′)/𝑒−𝑆(𝜃𝑖) = 𝑒−Δ𝑆. In the acceptance step, a random

number 𝑢 between zero and one is generated and the new configuration is accepted

if 𝑒−Δ𝑆 ≥ 𝑢, i.e. 𝜃𝑖+1 = 𝜃′. Otherwise, the configuration 𝜃′ is rejected and 𝜃𝑖+1 = 𝜃𝑖.

In the first phase of the Monte Carlo simulation (the warm-up phase) these iterations

are performed to equilibrate the system (i.e. reach configurations with sufficiently

low weight 𝑆(𝜃)) and only after that the configurations 𝜃𝑖 are used to compute the

expectation value in eq. (5.34).

The numerical cost of performing Metropolis algorithm depends on computing the

transition probability between the old configuration 𝜃 and the proposed configuration

𝜃′. For local updates they differ only in a single link variable 𝜃x,𝑖, respectively two

plaquette variables 𝜃p. The vector 𝑏(𝜃), constructed out of sin(𝜃p) and cos(𝜃p), is thus
changed in four places. Since 𝑆(𝜃) is bilinear in 𝑏(𝜃), the cost of computing Δ𝑆 is of

order 𝒪(𝑁) where 𝑁 is the number of lattice sites. Sweeping through the lattice with

this procedure is thus of order 𝒪(𝑁2). For the global updates the transition probability
requires 𝒪(𝑁2) operations but is only performed 𝒪(1) times so that the cost of a full

update is 𝒪(𝑁2).
Having such a low cost for updates has several advantages: we can perform mul-

tiple local and global updates to further decorrelate expensive measurements. The

acceptance probability in our simulations stays on a high level throughout the whole

coupling region (see Appendix 5.D). Moreover, if we parallelize the Monte Carlo sim-

ulation with multiple runners there is practically no overhead due to the warm-up

phase.

5.3.4 Adaption of variational parameters

In the last section we described the evaluation with our Monte Carlo scheme for a fixed

set of variational parameters. To study ground states and dynamical phenomena we

need to adjust the variational parameters accordingly. Here, we focus on the study of

ground state properties but the discussion can be readily extended to time-evolution

phenomena as we use an imaginary time-evoultion procedure (called stochastic recon-

figuration in the variational Monte Carlo language [113]) to find the optimal set of
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parameters. We project the equations of motion onto the tangent plane of our vari-

ational manifold. For every variational parameter 𝛾𝑖, either fermionic (in ̃𝜉) or pure
gauge (in 𝛼 and 𝛽) we define a corresponding tangent vector |Ψ𝑖⟩ ≡ ℙΨ (𝜕𝛾𝑖

|Ψ⟩) where
ℙΨ ensures orthogonality to |Ψ⟩:

ℙΨ(|𝜓⟩) ≡ |𝜓⟩ − ⟨Ψ|𝜓⟩ |Ψ⟩ (5.35)

All tangent vectors in our ansatz are linearly independent which allows to invert the

Gram matrix 𝐺𝑖𝑗 ≡ ⟨Ψ𝑖∣Ψ𝑗⟩. This can be intuitively explained by considering the

different types of tangent vectors: the ones corresponding to the fermionic parameters

are related to the single-particle eigenstates of the gauge-matter Hamiltonian and are

therefore orthogonal. The tangent vectors corresponding to the pure gauge part are

quadratic (for 𝛼) or linear (for 𝛽) in the entries of the vector 𝑏(𝜃)which are related to the
different plaquette variables 𝜃p, thus leading to linearly independent tangent vectors.

The imaginary time evolution of the variational parameters can then be expressed in

the following way:

− ̇𝛾𝑖 = 1
2

∑
𝑗

(𝐺−1)𝑖𝑗
𝜕𝐸
𝜕𝛾𝑗

(5.36)

with 𝐸 ≡ ⟨Ψ|𝐻|Ψ⟩
⟨Ψ|Ψ⟩ the variational energy (whose evaluation was described in the previ-

ous section) and ̇𝛾 ≡ 𝜕𝛾
𝜕𝜏 .

The gradient of the variational energy and the Gram matrix need to be measured in

a Monte Carlo simulation. The cost of both can be shown to scale in the same way

as the cost of computing the variational energy (see Appendix 5.E). Summarizing, the

computational complexity of our variational Monte Carlo algorithm is 𝒪(𝑁2) for the
update procedure and 𝒪(𝑁3) for the measurement procedure, thus allowing for an

efficient implementation.

5.4 Benchmarking of the variational method

Now, we have all the ingredients to apply our variational method: We constructed a

gauge-invariant state and showed how it can be efficiently evaluated for a fixed set of

parameters using Monte Carlo sampling. Additionally, we have a scheme to adapt the

parameters using stochastic reconfiguration.

In the following section, we investigate the validity of the variational method. It

will be threefold: first, to confirm the analytical arguments about gauge invariance

of the ansatz given in the previous section we will show numerically that our state is

gauge-invariant up to machine precision. Secondly, we investigate different limiting

cases of cQED3 where the ground states are known. In the last part, we benchmark

our results for the 𝑁𝑓 = 2 case at half-filling (in the sector of exactly one fermion per

lattice site) with a recent Monte Carlo simulation [111].

5.4.1 Gauge invariance

To also show numerically that gauge invariance is manifest in our ansatz we compute

the expectation value of the Gauss law operator ⟨𝐺x⟩ (as defined in eq. (5.2)) for every
site x and plot ⟨𝐺x⟩ − 𝑞x for the whole lattice since this quantity needs to be zero
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Figure 5.4.1: (Left): Gauss law violation ⟨𝐺x⟩ − 𝑞x for a 12 × 12 lattice at 𝑔2 = 0.25, 𝑡 = 1 and

𝑔mag = −1 with a random choice of variational parameters and a sampling size of 𝑁 = 10.
The Gauss law violation is of the order of machine precision even for a small sampling size,

demonstrating that the ansatz is inherently gauge-invariant. (Right): the flux 𝜃p per plaquette
is shown for the variational ground state at 𝑔2 = 0.0, 𝑡 = 1 and 𝑔mag = −1 for a 12 × 12 lattice.

The average deviation of 𝜃p from 𝜋 is on the order of 10−4. The global loops 𝜃1 and 𝜃2 (winding
around the axes of the lattice) also acquire a 𝜋-flux with a similar deviation as the plaquette

fluxes.

for a physical, gauge-invariant state, see eq. (5.4). We choose different variational

parameters, different lattice sizes and different sampling sizes but the violation of the

Gauss law is always found to be of the order of machine precision, i.e. ⟨𝐺x⟩−𝑞x ≲ 10−16.

One such configuration for a very small sampling size of 𝑁 = 10 and a system size

𝐿 = 12 is illustrated in Fig. 5.4.1.

5.4.2 Limiting cases

It is useful to consider the limiting cases of compact QED with fermionic matter and

convince ourselves that the ground state properties can be captured accurately by our

method. In the following, we consider massless fermions without chemical potentials.

We first study the limit 𝑔2 → 0 while keeping 𝑡 and 𝑔mag fixed: it is well known that

in this limit the gauge field forms a 𝜋-flux pattern and the fermions fill up the lower

band at half-filling [116]. A typical problem in mean-field theory is to investigate

the stability of the 𝜋-flux pattern against gauge field fluctuations. This can be studied

naturally in our ansatz by watching the parameter flow upon increasing the electric

coupling constant 𝑔2. The 𝜋-flux state itself is naturally incorporated in our ansatz

since we can fix the gauge field to a certain configuration by tuning the 𝛽-parameters

to a very high value such that the constraint cos 𝜃p = −1 is enforced for all plaquettes.

In addition, since we have periodic boundary conditions, we also need to choose the

optimal flux configuration for the global non-contractible loops which depends on the

size of the lattice. To accomplish that it is important to have a global update in our

update scheme since these global changes in the configuration can not be captured

by only updating plaquettes locally. Finding the 𝜋-flux state is in general a useful

test for our update scheme since the probability distribution needs to approximate a

delta distribution for which a good update scheme is required. The fermionic part is
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obtained by tuning the variational parameters of the fermions in such a way that for

all flux configurations the lower half of the band is occupied (which corresponds to

choosing all fermionic parameters 𝜉𝑖 = 1 as described in Appendix 5.B). The result

of our variational optimization is an accurate representation of the 𝜋-flux state with

an average deviation on the order of 10−8 from cos 𝜃p = −1, respectively an average

deviation on the order of 10−4 from 𝜃p = 𝜋 (depicted in Fig. 5.4.1).

Next we consider the opposite limit to the 𝜋-flux state, the strong-coupling limit with

large 𝑔2. In this limit, the electric energy dominates and some fluctuations are intro-

duced in second-order perturbation theory by the gauge-matter Hamiltonian. For one

fermion flavor this perturbation does not have a large effect and the ground state is

described by a Gaussian state. For two fermion flavors, however, one can have corre-

lated hopping processes which at half-filling give rise to the Heisenberg Hamiltonian.

Both cases can be captured by construction in our ansatz since we design the fermionic

part of the ansatz in such a way that our gauge-field dependent Gaussian operator acts

on a strong-coupling reference state |Ψ0⟩ (see eq. (5.11)) and we can choose that ref-

erence state according to our needs. We can either choose a Gaussian state for |Ψ0⟩ or
include more advanced methods, e.g. to approximate the Heisenberg ground state we

can include spin wave theory in |Ψ0⟩ (see Appendix 5.C).
We also benchmark for the limiting case that the gauge-matter interactions vanish

(𝑡 = 0) so that fermions and gauge-field decouple and we obtain the standard pure

gauge compact QED described by the Kogut-Susskind Hamiltonian 𝐻𝐾𝑆 = 𝐻𝐸 + 𝐻𝐵
with 𝑔mag = 1

𝑔2 [8]. We therefore only consider the pure gauge part of our ansatz

(setting our fermionic variational parameters to zero, ̃𝜉 = 0). We benchmark our ansatz

against the variational method presented in chapter 4 which has given good ground

state and real-time dynamics of compact QED (the results were recently confirmed

by another variational study [100]). We compare the ground state energy of both

methods for an 𝐿 = 8 × 8 for the whole coupling region of 𝑔2 (since 𝑔2 is the only

coupling constant in pure gauge compact QED). We find that our results agree very

well for the whole coupling region (with a maximal difference of half a percent) while

our method performs a tiny bit better at large couplings where the method in chapter 4

gives minimally better results for small 𝑔2. The benchmark is illustrated in Fig. 5.4.2.

5.4.3 Benchmark against Euclidean Monte Carlo

Benchmarking for cQED3 including dynamical fermions is in general difficult since in

most scenarios a sign-problem occurs so that no Euclidean Monte Carlo studies exist.

However, it was shown to be absent for an even fermion number at zero chemical

potential [111]. This was exploited in order to perform determinantal Monte Carlo

simulations. Thus, it is natural to compare our ansatz with the Monte Carlo simulations

for the case of 𝑁𝑓 = 2 fermionic species at half-filling. The analysis in ref. [111]

revolves around the question of whether a confinement-deconfinement transition takes

place and what the nature of this phase transitions is.

We fix the magnetic coupling and the gauge-matter coupling to 𝑔mag = −1 and 𝑡 = 1
and will mostly vary the electric coupling 𝑔2. The first observable that is compared

is the flux energy per plaquette cos(𝜃p) averaged over the whole lattice. Our results

are shown in Fig. 5.4.2. We see agreement over the whole coupling region of 𝑔2 with

Fig. 13 in ref. [111]. Note that in ref. [111] a different convention for the electric

coupling is used differing by a factor 4. Thus, the upper end of the coupling ranges is
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Figure 5.4.2: (Left): Benchmark for pure gauge compact QED3 of our ansatz (denoted by FG)

against the variational method in chapter 4 based on complex periodic Gaussian states (de-

noted by CPG): we compare the ground state energy 𝐸0 for an 8 × 8 lattice over the whole

coupling region and compute the relative error (see inset). (Right): Benchmark for compact

QED3 coupled to 𝑁𝑓 = 2 species of dynamical fermions at half-filling: the shown averaged

flux energy per plaquette cos(𝜃p) in the variational ground state is to be compared with results

obtained in an Euclidean Monte Carlo study shown in Fig. 13 in ref. [111]. The data agrees

over the whole coupling region, showing no evidence of a discontinuous phase transition.

the same while our lower end goes further down to 𝑔2 = 0. Since we also do not observe
finite-size effects it supports the claim in ref. [111] that there is no discontinuous phase

transition taking place.

In the second part we study fermionic observables, related to the fermionic corre-

lations of the ground state. These are used in ref. [111] to probe a phase transition

between a deconfined U(1) spin-liquid and a confined phase exhibiting antiferromag-

netic order (AFM). The observable that is computed is the spin structure factor 𝜒𝑆(k):

𝜒𝑆(k) = 1
𝐿4 ∑

x,y
∑

𝛼,𝛽=1,2
⟨𝑆𝛼

𝛽 (x)𝑆𝛽
𝛼(y)⟩ 𝑒𝑖k(x−y) (5.37)

with 𝑆𝛼
𝛽 (x) = 𝜓†

x,𝛼𝜓x,𝛽 − 1/2𝛿𝛼𝛽 ∑𝛾 𝜓†
x,𝛾𝜓x,𝛾. From the spin structure factor one can

compute the AFM correlation ratio defined as

𝑟AFM = 1 − 𝜒𝑆((𝜋, 𝜋) + 𝛿k)
𝜒𝑆((𝜋, 𝜋))

(5.38)

which quantifies the strength of AFM order (𝛿k = (2𝜋/𝐿, 0) denotes the smallest mo-

mentum vector). The question addressed in ref. [111] is whether in the thermody-

namic limit AFM order persists down to 𝑔2 = 0, in other words whether the 𝜋-flux
state is stable against gauge-field fluctuations. The AFM correlation ratio is computed

up to lattice sizes of 16 × 16 and the crossing points between neighboring lattice sizes

are extracted. The crossing points are extrapolated to the thermodynamic limit, re-

sulting in 𝑔2
𝑐,∞ = 0.15(2). The procedure is shown in Fig. 5.4.3 which is to be com-

pared with the Euclidean Monte Carlo study in ref. [111] where the extrapoled value is

𝑔2
𝑐,∞,EMC = 0.40(5). We thus obtain qualitatively similar results in the sense that both

extrapolated values are significantly larger than zero and indicate a possible phase

transition but the value in our method is lower compared to ref. [111].

Another interesting quantity are the spin-spin correlations as defined in eq. (5.37).

We compute the decay of spin correlations on a 16×16 lattice both in the weak-coupling
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Figure 5.4.3: Benchmark for compact QED3 coupled to 𝑁𝑓 = 2 species of dynamical fermions

at half-filling: we compute the AFM correlation ratio 𝑟AFM in the variational ground state for

lattice size up to 16×16 (left). The AFM correlation ratio is computed from the spin correlations

and quantifies the strength of antiferromagnetic order. The crossing points are extracted and

extrapolated to the thermodynamic limit, resulting in 𝑔2
𝑐,∞ = 0.15(2) (right). This is to be

compared with the Euclidean Monte Carlo study in ref. [111] where also a non-zero coupling

was extrapolated but at a higher value of 𝑔2
𝑐,∞,EMC = 0.40(5).

region (𝑔2 = 0.1) and in a more strongly-coupled region (𝑔2 = 0.85). The result for

both the full correlation function and only the connected part is shown in Fig. 5.4.4. At

stronger coupling the correlation function decays to a constant value which is lower

than predicted by the Heisenberg model (as to be expected since 𝑔2 = 0.85 is still

too small for a Heisenberg description). The connected correlation function decays

exponentially as expected. At weak coupling the connected correlation function rather

decays algebraically, as expected for a gapless spin liquid. The form of the decay is

very similar to one in the Euclidean Monte Carlo study (see Fig. 4 in ref. [111]).

We can thus, at least qualitatively, support the claim in ref. [111] that there is indeed

a deconfined phase which, however, only persists up to a smaller coupling of 𝑔2
𝑐,∞ =

0.15(2) in our case. One should note though that for the extrapolation of the AFM

correlation ratio and also the computation of the spin structure factor is very sensitive

to errors (as also mentioned in ref. [111]) so that a quantitative difference can be

expected.
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Figure 5.4.4: Benchmark for compact QED3 coupled to 𝑁𝑓 = 2 species of dynamical fermions

at half-filling: we compute the decay of spin correlations (both for the full correlation function

and the connected correlation function) in the variatonal ground state for a 16 × 16 lattice at

weak coupling (𝑔2 = 0.1) and at stronger coupling (𝑔2 = 0.85). Note that we only use odd

distances in 𝑟 to avoid oscillations. At strong coupling (where one expects behaviour similar

to the Heisenberg model) the full correlations decay to a constant while the connected part

decays exponentially. At weak coupling the decay is rather algebraically, similar to the decay

shown in the Euclidean Monte Carlo study in Fig. 4 in ref. [111].

5.5 Sign-problem affected regimes

In this section, we access regimes where the sign-problem is present in order to demon-

strate that our method does not suffer from the sign-poblem. Having benchmarked our

ansatz for the scenario of two flavors of fermions at half-filling, i.e. zero chemical po-

tential, it is natural to study this configuration at finite chemical potential.

We specifically want to look at a scenario that has been used in one dimension with

tensor networks [75] to demonstrate overcoming the sign-problem and extend it to

two dimensions. In the referenced work the authors study density-induced phase tran-

sitions due to varying flavor-dependent chemical potentials. Analogously to ref. [75],

we look at the case of massless and massive fermions.

We fix the parameters in the Hamiltonian given in eq. (5.1) to the values 𝑡 = 1,
𝑔mag = −1 and 𝑔2 = 0.2, similar to the benchmarked case in the previous section. Only

the staggered mass 𝑚 and the chemical potentials 𝜇1 and 𝜇2 will be changed. To make

this explicit we rewrite the Hamiltonian as

𝐻 =𝐻𝐸 + 𝐻𝐵 + 𝐻𝐺𝑀 + 𝐻𝑀(𝑚)
=𝐻0(𝑚) + 𝜇1𝑁1 + 𝜇2𝑁2

=𝐻0(𝑚) +
𝜇+
2

𝑁 − 𝜇−
2

Δ𝑁
(5.39)

with the conserved quantities 𝑁1 = ∑
x

𝜓†
x,1𝜓x,1 and 𝑁2 = ∑

x
𝜓†
x,2𝜓x,2. Alternatively,

one can also use the total number of fermions 𝑁 = 𝑁1 +𝑁2 and their imbalance (some-

times called isopsin number) Δ𝑁 = 𝑁1 − 𝑁2 as conserved quantities. Respectively,

one defines the chemical potentials 𝜇+ = (𝜇1 + 𝜇2) and 𝜇− = (𝜇1 − 𝜇2). The rest of the
Hamiltonian is contained in 𝐻0(𝑚) which only depends on 𝑚.

The Hamiltonian is block-diagonal and different sectors are labelled with 𝑁 and Δ𝑁.

In analogy to ref. [75], we fix the total number of fermions 𝑁 to the number of lattice
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Figure 5.5.1: Finite chemical potential study for compact QED3 coupled to 𝑁𝑓 = 2 species

of dynamical fermions: we compute the variational ground state energies (corrected by an

overall constant 𝜇𝑁/2) on an 8 × 8 lattice for different isospin numbers Δ𝑁 depending on the

chemical potential difference 𝜇 between the two species. We study both the case of massless

and massive fermions (see top row, (a,c)). By computing the crossing points between the

ground state energies we can extract the phase transitions between neighboring Δ𝑁 phases

(see bottom row, (b,d)).

sites and study the nature of the ground state (characterized by Δ𝑁) depending on 𝜇−,

the isospin chemical potential. Since the energy (up to a constant) only depends on

𝜇−, we set 𝜇2 = 0 so that 𝜇+ = 𝜇− = 𝜇1 ≡ 𝜇. The ground state energy for each sector

can then be written as

𝐸Δ𝑁,𝑁(𝜇, 𝑚) = 𝑁𝜇
2

− Δ𝑁𝜇
2

+ 𝐸0,Δ𝑁,𝑁(𝑚) (5.40)

where 𝐸0,Δ𝑁,𝑁(𝑚) is the ground state w.r.t. 𝐻0(𝑚) for fixed 𝑁 and Δ𝑁.

We ran our simulations on an 8 × 8 lattice where we saw that finite-size effects were

negligible for our purposes. To detect the phase transitions between different Δ𝑁
phases we compute the variational ground state energy for a given Δ𝑁 to determine

𝐸0,Δ𝑁,𝑁(𝑚). We plot the ground state energy of every Δ𝑁-sector subtracted by the

constant given by the total number of fermions, i.e. 𝐸Δ𝑁,𝑁(𝜇, 𝑚) − 𝑁𝜇
2 . The crossing

points between different Δ𝑁 energies give us the location of the phase transitions.

The result of that procedure for the massless case is shown in Fig. 5.5.1(a) which

then allows us to plot the Δ𝑁 phase transitions, illustrated in Fig. 5.5.1(b). For the

massive case we choose a staggered mass of 𝑚 = 1.0 and repeat the same procedure

as in the massless case. The result for the ground state energy is shown in Fig. 5.5.1(c)

whereas the phase transitions are shown in Fig. 5.5.1(d).

When comparing the massless and massive case it becomes clear that the phase tran-

sitions are all shifted to higher values of 𝜇. However, the extent of this shift depends
strongly on the isospin number. While phase transitions between smallΔ𝑁 are severely

affected by the staggered mass term (in particular the transition between Δ𝑁 = 0 and
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Δ𝑁 = 2 which shifted from 𝜇 = 0.5 to 𝜇 = 1.5), phase transitions for larger Δ𝑁 are

relatively unaffected (e.g. the phase transition between Δ𝑁 = 6 and Δ𝑁 = 8 shifts

only slightly from 𝜇 = 2.2 to 𝜇 = 2.3). This is in agreement with the results of the

tensor-network study in one dimension [75].

The reason for this behaviour lies in the different changes in ground state energy

𝐸0,Δ𝑁,𝑁(𝑚) for different Δ𝑁 if we go from 𝐻0(𝑚 = 0) to 𝐻0(𝑚 = 1). Qualitatively,
this can be explained with the fact that for larger isospin numbers Δ𝑁 the imbalance

in occupation between even and odd sites (the lattice analogue of the chiral conden-

sate) becomes smaller and thus gets more penalized by a staggered mass term. Hence,

the phase transitions shift to higher values in chemical potential. Since this effect is

stronger for smaller isospin number, it mostly affects transitions between such phases.

5.6 Conclusion

To investigate higher-dimensional lattice gauge theories with dynamical fermions with-

out truncating the gauge field Hilbert space, we propose a variational, sign-problem-

free Monte Carlo method and apply it to (2+1)-dimensional compact QED with dy-

namical fermions. We evaluate the performance of the ansatz by comparing it with

the limiting cases of the model, other variational methods [2], and a Euclidean Monte

Carlo study [111]. To explore sign-problem affected regimes, we study the model at

finite chemical potential and detect density-induced phase transitions for both mass-

less and massive staggered fermions, thus extending results from one dimension which

were obtained using tensor networks [75].

The variational ansatz consists of a Jastrow-type ansatz state that describes the

ground state of pure gauge compact QED (similar to the periodic Gaussian states pre-

sented in chapter 4) and a gauge-fermion part that is an infinite superposition of gauge-

field dependent fermionic Gaussian states. The fermionic Gaussian state is defined such

that its integral over all gauge field configurations is gauge-invariant and tractable. The

gauge-field dependent variational parameters are obtained by the eigendecomposition

of the gauge-matter Hamiltonian. We can reach large lattice sizes as exact diagonal-

ization can be performed efficiently (𝒪(𝑁3) in system size) at every measurement step

in the sampling algorithm.

In the future, we plan to extend the method to other higher-dimensional lattice gauge

theories, such as three-dimensional or non-Abelian lattice gauge theories. This only

requires changes in the pure gauge part of the ansatz, while the fermionic part can

remain the same. The presented method could also be helpful in controlling the errors

caused by truncation in the gauge field Hilbert space when simulating lattice gauge

theories on quantum devices.
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Appendix

5.A Details on the computation of the local

electric energy 𝐻𝐸,loc(𝜃)

The most difficult observables to compute in our variational Monte Carlo scheme are

electric quantites, with the electric energy being its most prominent representative.

In section 5.3.3, we discussed the computation of ⟨𝐻𝐸⟩ which according to eq. (5.23)

consists of three parts: ⟨𝐻𝐸⟩ = ⟨𝐻𝐸⟩𝑓𝑓 + ⟨𝐻𝐸⟩𝑔𝑔 + ⟨𝐻𝐸⟩𝑓𝑔. To evaluate them one

needs the local quantity 𝐻𝐸,loc(𝜃) that can sampled in a Monte Carlo simulation (see

eq. (5.21)). In the body of the manuscript we derived 𝐻𝐸,𝑔𝑔,loc(𝜃) and gave the final

result for 𝐻𝐸,𝑓𝑓,loc(𝜃). In the following we present some details on the derivation of

𝐻𝐸,𝑓𝑓,loc(𝜃) and give the final result for the crossterm 𝐻𝐸,𝑓𝑔,loc(𝜃).
The computation of 𝐻𝐸,𝑓𝑓,loc(𝜃) involves deriving the fermionic Gaussian operator

𝑈𝐺𝑆(𝜃) defined in eq. (5.16) w.r.t. 𝜃x,𝑖 which results in the form of 𝑓x,𝑖(𝜃) given in

eq. (5.28):

1
𝑖

(𝜕𝜃x,𝑖
𝑈𝐺𝑆(𝜃)) 𝑈†

𝐺𝑆(𝜃)

= ∫
1

0
𝑑𝑡 exp(𝑖𝑡 ∑

x,y
𝜓†
x𝜉(𝜃)xy𝜓y) ∑

x,y
𝜓†
x

𝜕𝜉(𝜃)xy
𝜕𝜃x,𝑖

𝜓y exp(−𝑖𝑡 ∑
x,y

𝜓†
x𝜉(𝜃)xy𝜓y)

= ∑
x,y,x′,y′

𝜓†
x ∫

1

0
𝑑𝑡 [exp (𝑖𝑡𝜉(𝜃))]

xx′ [𝜕𝜉(𝜃)
𝜕𝜃x,𝑖

]
x′y′

[exp (−𝑖𝑡𝜉(𝜃))]
y′y

𝜓y

= ⃗𝜓† ∫
1

0
𝑑𝑡 exp (𝑖𝑡𝜉(𝜃)) 𝜕𝜉(𝜃)

𝜕𝜃x,𝑖
exp (−𝑖𝑡𝜉(𝜃)) ⃗𝜓

= ⃗𝜓† 1
𝑖

(𝜕𝜃x,𝑖
𝑒𝑖𝜉(𝜃)) 𝑒−𝑖𝜉(𝜃) ⃗𝜓 ≡ ⃗𝜓†𝑓x,𝑖(𝜃) ⃗𝜓

(5.41)

where ⃗𝜓 is a vector of the fermionic annihilation operators 𝜓x and we used the identity:

𝜕𝜃𝑒𝑀(𝜃) = ∫
1

0
𝑑𝑡𝑒𝑡𝑀(𝜃) (𝜕𝜃𝑀(𝜃)) 𝑒−𝑡𝑀(𝜃)𝑒𝑀(𝜃). (5.42)

If we carry out the second derivative 𝜕𝜃x,𝑖
we obtain an additional term corresponding

to the derivative of 𝑓x,𝑖(𝜃) which vanishes. Thus, we remain with another contribu-

tion ⃗𝜓†𝑓x,𝑖(𝜃) ⃗𝜓 due to the derivative of 𝑈𝐺𝑆(𝜃), resulting in the fermionic operator

𝐻𝐸,𝑓𝑓,fer(𝜃) in eq. (5.27). Inserting 𝜉(𝜃) = 𝑉 (𝜃) ̃𝜉𝑉 †(𝜃) defined in eq. (5.15) we derive
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an explicit expression for 𝑓x,𝑖(𝜃):

𝑓x,𝑖(𝜃) = − 𝑖𝜕𝜃x,𝑖
(𝑒𝑖𝑉 (𝜃) ̃𝜉𝑉 †(𝜃)) 𝑒−𝑖𝑉 (𝜃) ̃𝜉𝑉 †(𝜃)

=𝑉 (𝜃)
⎛⎜⎜⎜
⎝

1
𝑖
𝑉 †(𝜃)𝜕𝜃x,𝑖

𝑉 (𝜃) + 𝑒𝑖 ̃𝜉 1
𝑖

𝜕𝜃x,𝑖
𝑉 †(𝜃)𝑉 (𝜃)⏟⏟⏟⏟⏟⏟⏟

=−𝑉 †(𝜃)𝜕𝜃x,𝑖𝑉 (𝜃)

𝑒−𝑖 ̃𝜉
⎞⎟⎟⎟
⎠

𝑉 †(𝜃)

=𝑉 (𝜃) (𝛼x,𝑖(𝜃) − 𝑒𝑖 ̃𝜉𝛼x,𝑖(𝜃)𝑒−𝑖 ̃𝜉) 𝑉 †(𝜃)

(5.43)

with 𝑉 (𝜃) defined by the eigendecomposition of ℎ𝐺𝑀(𝜃) = 𝑉 (𝜃)Λ(𝜃)𝑉 †(𝜃) and 𝛼x,𝑖(𝜃) =
−𝑖𝑉 †(𝜃)𝜕𝜃x,𝑖

𝑉 (𝜃) containing the derivatives of the eigenvectors of ℎ𝐺𝑀(𝜃). An ex-

plicit expression for 𝛼x,𝑖(𝜃) can be derived by using a connection with the derivative

of ℎ𝐺𝑀(𝜃):

𝛼x,𝑖
𝑘𝑙 (𝜃) = −𝑖

𝑉 †
𝑘x′(𝜃)𝜕ℎ𝐺𝑀(𝜃)x′x″

𝜕𝜃x,𝑖
𝑉 (𝜃)x″𝑙

𝜆𝑙(𝜃) − 𝜆𝑘(𝜃)

=
𝑉 †

𝑘x(𝜃)𝑒𝑖𝜃x,𝑖𝑉 (𝜃)x+e𝑖𝑙 − ℎ.𝑐.
𝜆𝑙(𝜃) − 𝜆𝑘(𝜃)

.

(5.44)

Since the derivative of ℎ𝐺𝑀(𝜃) is non-zero only for sites adjacent to the link x, 𝑖 the
expression for 𝛼x,𝑖(𝜃) simplifies significantly. With the diagonal expressions for 𝑓x,𝑖(𝜃)
as given above, 𝐻𝐸,𝑓𝑓,loc(𝜃) is straightforwardly computed as explained in the body of

the manuscript.

The derivation of 𝐻𝐸,𝑓𝑔,loc(𝜃) involves a derivative of Ψ𝐺(𝜃) which is expressed

via the vector 𝑏x,𝑖(𝜃) defined in eq. (5.24) and a derivative of |Ψ𝐹(𝜃)⟩ resulting in a

quadratic fermionic operator as discussed above:

⟨𝐻𝐸⟩𝑓𝑔 =𝑔2

2
∑
x,𝑖

∫ 𝐷𝜃 𝑝(𝜃)2 ⟨Ψ𝐹(𝜃)| ⃗𝜓†𝑓x,𝑖(𝜃) ⃗𝜓|Ψ𝐹(𝜃)⟩ (𝑖𝑏𝑇(𝜃)𝛼𝑏x,𝑖(𝜃) + 𝑖𝛽𝑇𝑏x,𝑖(𝜃))

=𝑔2

2
∑
x,𝑖

∫ 𝐷𝜃 𝑝(𝜃)2Tr ((1 − Γ𝜓𝜓†(𝜃)) 𝑓x,𝑖(𝜃)) (𝑖𝑏𝑇(𝜃)𝛼𝑏x,𝑖(𝜃) + 𝑖𝛽𝑇𝑏x,𝑖(𝜃))

≡ ∫ 𝐷𝜃 𝑝(𝜃)𝐻𝐸,𝑓𝑔,loc(𝜃)
(5.45)

where we used the covariance matrix of the fermionic Gaussian state Γ𝜓𝜓†(𝜃) as defined
in eq. (5.31). For ground state studies as considered in this manuscript the variational

parameters 𝛼 and 𝛽 are chosen real such that the electric energy of the cross term

vanishes.

5.B Details on the structure of ̃𝜉

In the following we provide details on the parametrization of the matrix ̃𝜉𝑖𝑗 containing

the fermionic variational parameters. Recall that ̃𝜉 is formulated in the eigenbasis of

the gauge-matter Hamiltonian, ℎ𝐺𝑀(𝜃)xy = 𝑉 (𝜃)x𝑖Λ(𝜃)𝑖𝑉 (𝜃)†
𝑖y. It allows to control the

fermionic state in terms of eigenstates of the gauge-matter Hamiltonian.

106



5.B Details on the structure of ̃𝜉

In principle one can keep all parameters variational, however, one can simplify the

structure of ̃𝜉 by considering the structure of the eigenstates as already discussed in

section 5.3.2. This can be emphasized by considering the two limits of the fermionic

Hamiltonian 𝐻fer = 𝐻𝐸 +𝐻𝐺𝑀, i.e. the strong-coupling limit (𝑔2 → ∞, 𝐻𝐸 dominates)

and the weak-coupling limit (𝑔2 → 0, 𝐻𝐺𝑀 dominates) and how this fermionic state

looks in terms of the eigenbasis of the gauge-matter Hamiltonian.

In the strong-coupling limit the ground state is in a positional eigenstate, e.g. for one

flavor all odd sites are occupied, |𝐷⟩ = ∏
x∈𝒪 𝜓x |0⟩. This is already incorporated in the

ansatz by setting the whole matrix ̃𝜉 to zero so that only the strong coupling reference
state |𝐷⟩ remains but it is instructive to think of this state in terms of eigenstates of the

gauge-matter Hamiltonian. Following the discussion in section 5.3.2 we can rewrite

the state as

|𝐷⟩ = ∫ 𝐷𝜃 ∏
𝑖

1√
2

(𝜓†
𝑖+(𝜃) − 𝜓†

𝑖−(𝜃)) |0⟩ (5.46)

where we used the labeling of the eigenstates as in section 5.3.2 where 𝜓†
𝑖+(𝜃) |0⟩ de-

notes the single-particle eigenstate of 𝐻𝐺𝑀 with eigenvalue 𝜆𝑖(𝜃) and, respectively,

−𝜆𝑖(𝜃) for 𝜓†
𝑖−(𝜃) |0⟩. On the other hand, in the weak-coupling limit the ground state is

described by the occupation of all eigenstates with negative eigenvalue, i.e. the lower

band,

∣Ψ0,𝐺𝑀⟩ = ∫ 𝐷𝜃 ∏
𝑖

𝜓†
𝑖−(𝜃) |0⟩ (5.47)

Thus, one can smoothly transform from the strong coupling ground state to the weak

coupling ground state by performing for every pair 𝑖 of single-particle eigenstates

(𝜓†
𝑖+(𝜃) |0⟩ and 𝜓†

𝑖−(𝜃) |0⟩) the transformation

1√
2

(𝜓†
𝑖+(𝜃) − 𝜓†

𝑖−(𝜃)) |0⟩ → 𝜓†
𝑖−(𝜃) |0⟩ . (5.48)

Viewed in terms of the covariance matrix for the single-particle eigenstates 𝜓†
𝑖+(𝜃) |0⟩

and 𝜓†
𝑖−(𝜃) |0⟩, this amounts to 1

2 (1 − 𝜎𝑥) → 1
2 (1 + 𝜎𝑧). This can be incorporated into

̃𝜉 by choosing the submatrix of ̃𝜉 related to the 𝜓†
𝑖+(𝜃) |0⟩ and 𝜓†

𝑖−(𝜃) |0⟩ eigenstates (a
2 × 2-matrix) as ̃𝜉|𝑖 = −𝜋

4 𝜎𝑦𝜉𝑖 (where 𝜉𝑖 is a variational parameter) so that changing 𝜉𝑖
from zero to one smoothly transforms from the weak-coupling to the strong-coupling

ground state. We thus end up with 𝑁/2 fermionic variational parameters (𝑁 = 𝐿2 the

number of lattice sites) and a block-diagonal form of ̃𝜉:

̃𝜉 =
⎛⎜⎜⎜⎜⎜
⎝

̃𝜉|1 0 … 0
0 ̃𝜉|2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 ̃𝜉|𝑁/2

⎞⎟⎟⎟⎟⎟
⎠

(5.49)

For the case of 𝑁𝑓 = 2 fermion flavors (and potentially even more flavors) one can

choose a similar block-diagonal structure where one now blocks the single-particle

eigenstates of both flavors together, i.e. 𝜓†
1,𝑖+(𝜃) |0⟩ , 𝜓†

1,𝑖−(𝜃) |0⟩ , 𝜓†
2,𝑖+(𝜃) |0⟩ , 𝜓†

2,𝑖−(𝜃) |0⟩ .
The individual blocks ̃𝜉|𝑖 are then 4×4-matrices (or more generally 2𝑁𝑓×2𝑁𝑓-matrices).

The variational parametrization of these blocks is kept general as this allows to control

certain properties between the two species, e.g. the imbalance Δ𝑁 between the two
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5.C Choosing a non-Gaussian reference state for the strong-coupling limit

species as was used for the study of sign-problem affected regimes in section 5.5. The

block-diagonal structure allows even for multiple fermion flavors to compute the local

energy 𝐻loc(𝜃), in particular 𝐻𝐸,loc(𝜃), (see section 5.3.3) with a computational cost of

only 𝒪(𝑁3).

5.C Choosing a non-Gaussian reference state for

the strong-coupling limit

Our fermionic state construction is based on a gauge-field dependent fermionic Gaus-

sian operator 𝑈𝐺𝑆(𝜃) acting on a strong-coupling reference state |Ψ0⟩ (see eq. (5.11)).
In this section we show that this reference state can also be chosen non-Gaussian, using

the example of 𝑁𝑓 = 2 fermionic species at half-filling as discussed in the body of the

manuscript. In the strong-coupling limit (𝑔2 >> 1) the lattice gauge theory reduces

to an effective fermionic theory where the electric field vanishes to zeroth order. In

second-order perturbation theory one can have virtual hopping processes between the

two fermion species in opposite directions. This gives effectively rise to fermionic in-

teractions as can be seen in our ansatz by the appearance of quartic expressions in

the fermions (see eq. (5.27)). In the considered sector of one fermion per site this

allows a mapping to a spin Hamiltonian, the Heisenberg model [117]. This can be

incorporated in the ansatz by using a good approximation of the ground state of the

effective fermionic theory (the Heisenberg model in our case) as reference state |Ψ0⟩.
This ground state approximation can be obtained using any method of choice, e.g.

tensor networks or spin wave theory (as was chosen in our case).

The most difficult terms to evaluate in this scenario involve again quartic fermionic

operators of the form

⟨Ψ0| ⃗𝜓†𝑓x,𝑖,𝑁𝑓=2(𝜃) ⃗𝜓 ⃗𝜓†𝑓x,𝑖,𝑁𝑓=2(𝜃) ⃗𝜓|Ψ0⟩ (5.50)

with ⃗𝜓 = ( ⃗𝜓1, ⃗𝜓2)𝑇 now containing annihilation operators of both fermionic species.

In the expression above we already performed the unitary transformation defined by

𝑈𝐺𝑆(𝜃) resulting in a slightly different form of 𝑓x,𝑖(𝜃) compared to eq. (5.28):

𝑓x,𝑖,𝑁𝑓=2(𝜃)

= ( 𝑉 (𝜃) 0
0 𝑉 (𝜃) ) [𝑒−𝑖 ̃𝜉 ( 𝛼x,𝑖(𝜃) 0

0 𝛼x,𝑖(𝜃) ) 𝑒𝑖 ̃𝜉 − ( 𝛼x,𝑖(𝜃) 0
0 𝛼x,𝑖(𝜃) )] ( 𝑉 †(𝜃) 0

0 𝑉 (𝜃)† )

≡ ( 𝑓(𝜃)11 𝑓(𝜃)12
𝑓(𝜃)†

12 𝑓(𝜃)22
)

(5.51)

For ease of notation we dropped the subscripts for the submatrices of 𝑓(𝜃) in the last

row. The fermionic operator ⃗𝜓†𝑓x,𝑖,𝑁𝑓=2(𝜃) ⃗𝜓 can be written in the individual compo-

nents of the fermionic species as

⃗𝜓†𝑓x,𝑖,𝑁𝑓=2(𝜃) ⃗𝜓 = ⃗𝜓†
1𝑓(𝜃)11

⃗𝜓1 + ⃗𝜓†
2𝑓(𝜃)22

⃗𝜓2 + ⃗𝜓†
1𝑓(𝜃)12

⃗𝜓2 + ⃗𝜓†
2𝑓(𝜃)†

12
⃗𝜓1. (5.52)

The fermionic expressions appearing in eq. (5.50) then take the general form (explic-

itly writing out the site dependence): ⃗𝜓†
𝛼x𝑓(𝜃)𝛼𝛼′,xx′ ⃗𝜓𝛼′x′ ⃗𝜓†

𝛽y𝑓(𝜃)𝛽𝛽′,yy′ ⃗𝜓𝛽′y′ . Since the

expression in eq. (5.50) is evaluated w.r.t. the strong coupling vacuum |Ψ0⟩ we can
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project this expression onto the spin subspace with ∑𝛼=1,2 𝜓†
𝛼x𝜓𝛼x = 1 for all x. This

simplifies the expression since only combinations of fermionic operators remain that

respect the single occupancy constraint, i.e. either x = x′ and y = y′ or x = y′ and

x′ = y. If we further keep only contributions that are known to be non-zero for the

Heisenberg ground state, we can express the expectation value in eq. (5.50) in terms

of the spin correlations:

⟨Ψ0| ⃗𝜓†𝑓x,𝑖,𝑁𝑓=2(𝜃) ⃗𝜓 ⃗𝜓†𝑓x,𝑖,𝑁𝑓=2(𝜃) ⃗𝜓|Ψ0⟩

= ∑
x,y

1
4

(|𝑓(𝜃)11,xy|2 + |𝑓(𝜃)22,xy|2 + 2|𝑓(𝜃)12,xy|2 + 𝑓(𝜃)11,xx𝑓(𝜃)11,yy

+𝑓(𝜃)22,xx𝑓(𝜃)22,yy + 2𝑓(𝜃)11,xx𝑓(𝜃)22,yy)

+ ∑
x,y

⟨𝑆𝑧
x⟩ (𝑓(𝜃)11,xx𝑓(𝜃)11,yy − 𝑓(𝜃)22,xx𝑓(𝜃)22,yy + 𝑓(𝜃)11,xx𝑓(𝜃)22,yy

−𝑓(𝜃)22,xx𝑓(𝜃)11,yy)

+ ∑
x,y

⟨𝑆𝑧
x𝑆𝑧

y⟩ (2|𝑓(𝜃)12,xy|2 − |𝑓(𝜃)11,xy|2 − |𝑓(𝜃)22,xy|2 + 𝑓(𝜃)11,xx𝑓(𝜃)11,yy

+𝑓(𝜃)22,xx𝑓(𝜃)22,yy − 2𝑓(𝜃)11,xx𝑓(𝜃)22,yy)

+ ∑
x,y

2 ⟨𝑆+
x 𝑆−

y ⟩ (𝑓(𝜃)12,xx𝑓(𝜃)12,yy − 𝑓(𝜃)11,xy𝑓(𝜃)22,yx)

(5.53)

where all spin correlations are evaluated w.r.t. |Ψ0⟩. We chose spin wave theory to

approximate the ground state of the Heisenberg model [118]. One can even make the

parameters of the spin waves variational and thus interpolate between a Gaussian state

(the Neel state) and spin wave theory.

5.D Update scheme of the Monte Carlo algorithm

In this section we provide some more details on the update scheme in our Monte Carlo

algorithm. As the cost of updates is quite low, we are free to perform various types of

updates.

For local updates we perform the update of a link 𝜃x,𝑖 which changes the two pla-

quette variables that contain the link, for one of them the value of 𝜃p is raised, for

the other, respectively, lowered. One can extend this update scheme if one changes a

second link variable in on one of the two plaquettes in such a way that it compensates

the change due to 𝜃x,𝑖 and 𝜃p is unchanged. Thus, only one of the two plaquettes con-

taining the link variable 𝜃x,𝑖 will be updated and another plaquette that is next-nearest

neighbor to it. Performing this procedure for all possible pairs, we update six pairs of

next-nearest neighbor plaquettes.

The global updates are related to changes in the gauge field configuration that are

hard to obtain by iteratively applying local updates. It turned out that one such con-

figuration is a change in all plaquettes 𝜃p by 2𝜋/𝑁 and a change in a specific plaquette
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Figure 5.D.1: The acceptance probability in the variational ground states of the 𝑁𝑓 = 2 model.

The acceptance probability is on a high level down to the lowest non-zero coupling and only

for 𝑔2 = 0.0 it sharply drops. This is expected since the ground state there is diagonal in 𝜃 with
all plaquettes 𝜃p having 𝜋 flux so that our variational probability, while approaching the delta

distribution, gets lower and lower in acceptance probability.

𝜃p′ by −2𝜋(1 − 1/𝑁) with 𝑁 the number of plaquettes. The corresponding link con-

figuration 𝜃x,𝑖 to create such a change in 𝜃p can be computed via the lattice Green’s

function:

𝜙glob
p = 1√

𝑁
∑
k

𝑒𝑖kp �̃�(k)
4 − 2 cos (𝑘𝑥) − 2 cos (𝑘𝑥)

𝜃globx,𝑖 = 𝜖𝑖𝑗Δ
(−)
𝑗 𝜙glob

p = 𝜖𝑖𝑗 (𝜙glob
p − 𝜙glob

p−e𝑗)
(5.54)

where �̃�(k) is the Fourier transform of 𝑄(p) which contains the desired changes in

plaquette variables 𝜃p that we want to create. In a first step a scalar field 𝜙glob
p on the

plaquettes is generated from 𝑄(p), from which one can derive the link variables 𝜃globx,𝑖
by applying the lattice curl to 𝜙glob which involves the plaquettes p and p − e𝑗 that

contain the link x, 𝑖. With the procedure above various kinds of global updates can be

performed by choosing 𝑄(p) appropriately.
As supporting evidence that our update scheme gives reasonable results we provide

in Fig. 5.D.1 the acceptance probability in the variational ground states of the 𝑁𝑓 = 2
model where we compared our results with Euclidean Monte Carlo results (see 5.4.3).

Throughout the whole coupling region the acceptance probability is on a high level,

except for 𝑔2 = 0.0 where it is expected since the ground state is the 𝜋-flux state and

our probability distribution approximates a delta distribution.

The Monte Carlo simulation for all data is performed with at least 100 full warm-up

updates where each update is performed as described above. More warm-up updates

are possible in principle, but have not improved the results. After the warm-up at least

10,000 measurement steps are performed. The errors of the Monte Carlo results are

estimated by a re-binning analysis.

5.E Details on gradient and Gram matrix

In this section we sketch the computation of the gradient of the variational energy and

the Gram matrix using Monte Carlo simulation as required for the adaptation of the

parameters with stochastic reconfiguration. Starting with the gradient, we first recall
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the form of the variational energy in terms of the local energy 𝐻loc(𝜃):

⟨Ψ|𝐻|Ψ⟩
⟨Ψ|Ψ⟩

=
∫ 𝐷𝜃 𝐻loc(𝜃)|Ψ𝐺(𝜃)|2

∫ 𝐷𝜃 |Ψ𝐺(𝜃)|2
=

∫ 𝐷𝜃 𝐻loc(𝜃)𝑒−𝑏𝑇(𝜃)𝛼𝑏(𝜃)−2𝛽𝑇𝑏(𝜃)

∫ 𝐷𝜃 𝑒−𝑏𝑇(𝜃)𝛼𝑏−2𝛽𝑇𝑏(𝜃) = ∫ 𝐷𝜃 𝐻loc(𝜃)𝑝(𝜃)

(5.55)

The gradient will involve derivatives of 𝐻loc(𝜃) w.r.t. all variational parameters and

derivatives of 𝑝(𝜃) but these only w.r.t. the pure gauge parameters 𝛼 and 𝛽. We

provide the latter (denoted by the subscript 𝑝(𝜃)) exemplary for the matrix element

𝛼pp′ (the expressions for 𝛽 are analogous but easier since the corresponding term in

the exponential is only linear in 𝑏(𝜃)):
𝜕 ⟨𝐸⟩𝑝(𝜃)

𝜕𝛼pp′
=

∫ 𝐷𝜃 𝐻loc(𝜃) (−𝑏(𝜃)p𝑏(𝜃)p′) 𝑒−𝑏𝑇(𝜃)𝛼𝑏(𝜃)−2𝛽𝑇𝑏(𝜃)

∫ 𝐷𝜃 𝑒−𝑏𝑇(𝜃)𝛼𝑏−2𝛽𝑇𝑏(𝜃)

− ⟨Ψ|𝐻|Ψ⟩
⟨Ψ|Ψ⟩

∫ 𝐷𝜃 (−𝑏(𝜃)p𝑏(𝜃)p′) 𝑒−𝑏𝑇(𝜃)𝛼𝑏(𝜃)−2𝛽𝑇𝑏(𝜃)

∫ 𝐷𝜃 𝑒−𝑏𝑇(𝜃)𝛼𝑏−2𝛽𝑇𝑏(𝜃)

(5.56)

where the first term is from the derivative of |Ψ𝐺(𝜃)|2 in the numerator and the second

term from the denominatior. Both can be efficiently evaluated. Regarding deriva-

tives of 𝐻loc(𝜃), only 𝐻𝐸,loc(𝜃) depends on the variational parameters 𝛼 and 𝛽 through

the expression 𝑏𝑇(𝜃)𝛼𝑏x,𝑖(𝜃) + 𝛽𝑇𝑏x,𝑖(𝜃). Therefore derivatives are easily calculated,

e.g. 𝑏(𝜃)p𝑏x,𝑖(𝜃)p′ for the matrix element 𝛼pp′ . The derivatives of 𝐻loc(𝜃) w.r.t. the

fermionic parameters 𝜉𝑖 are non-zero for 𝐻𝐸, 𝐻𝐺𝑀 and 𝐻𝑀 and can be shown to take

the schematic form

𝜕
𝜕𝜉𝑖

Tr(Γ̃ ( ̃𝜉) ∑
x,𝑖

𝐴x,𝑖(𝜃)) = 𝑖 ∑
𝑘𝑙

(
̃𝜉

𝜕𝜉𝑖
)

𝑘𝑙

(Γ̃ ( ̃𝜉) ∑
x,𝑖

𝐴x,𝑖(𝜃) − ∑
x,𝑖

𝐴x,𝑖(𝜃)Γ̃ ( ̃𝜉))
𝑇

𝑘𝑙
(5.57)

where Γ̃ ( ̃𝜉) is defined in eq. (5.31) and 𝐴x,𝑖(𝜃) is some gauge-field dependent matrix

containing a link dependence. Since only the right term (that is transposed) needs to be

computed in a Monte Carlo simulation and the whole derivative can be post-processed,

the computational cost of the derivatives scales the same as the computation of the

variational energy.

For the computation of the Gram matrix 𝐺𝑖𝑗 ≡ ⟨Ψ𝑖∣Ψ𝑗⟩ it is useful to look at the

tangent vectors first. The tangent vectors corresponding to the fermionic parameters

𝜉𝑖 are related to the single-particle eigenstates of the gauge-matter Hamiltonian and

can therefore be shown to be orthogonal. The tangent vectors corresponding to 𝛼 and

𝛽 are quadratic, respectively linear, in the vector 𝑏(𝜃) (defined for eq. (5.10)):

∣Ψ𝛼p,p′ ⟩ = ∫ 𝐷𝜃 𝑏(𝜃)p𝑏(𝜃)p′𝑒− 1
2 𝑏(𝜃)𝑇𝛼𝑏(𝜃)−𝛽𝑇𝑏(𝜃) |Ψ𝐹(𝜃)⟩ |𝜃⟩

∣Ψ𝛽p
⟩ = ∫ 𝐷𝜃 𝑏(𝜃)p𝑒− 1

2 𝑏(𝜃)𝑇𝛼𝑏(𝜃)−𝛽𝑇𝑏(𝜃) |Ψ𝐹(𝜃)⟩ |𝜃⟩
(5.58)

The local quantity 𝑂loc(𝜃) that needs to be sampled in a Monte Carlo simulation thus

takes a simple form that is very similar to the gradient of the norm ⟨Ψ|Ψ⟩ that needs
to be computed for the gradient of the variational energy (see eq. (5.56)). Since we

use translational invariance to parametrize 𝛼, the tangent vectors will be related to the
Fourier components ̃𝑏(𝜃)k and not 𝑏(𝜃)p𝑏(𝜃)p′ . The part of Gram matrix related to the

overlaps between 𝛼-tangent vectors will thus involve sampling �̃�(𝜃)k ̃𝑏(𝜃)k′ , thus being

of size 𝒪(𝑁2) and efficiently tractable.
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