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Abstract

The focus of this thesis is on thermalization and equilibrium dynamics of
one-dimensional quantum many-body systems. In particular, we develop effective
numerical methods using the tensor network framework to explore their long time
dynamics in novel ways. We investigate to which extent this allows us to numerically
study fundamental problems in quantum statistical physics. Our methods are based
on a Gaussian filter with a superoperator, which we dub filtering technique. The
central topic of this thesis is the application of this filtering technique to different
dynamical systems, particularly isolated time-independent and periodically driven
systems. All in all this thesis aims to contribute to the understanding of the long
time dynamics of many-body systems, as well as the study of thermal states beyond
the conventional Gibbs ensemble.

First, we consider a generic time-independent Hamiltonian with non-degenerate
spectrum, in which the long time averaged state is the diagonal ensemble. We
approximate it by adapting a filtering technique with tensor networks. The filtering
idea is based on the application of a Gaussian filter with Hamiltonian commutator
to the initial density matrix. The result of this application converges to the
diagonal ensemble in the limit of vanishing width. Numerically, we simulate the
effect of this filter using Chebyshev expansions and provide numerical evidence
that local observables in the filtered state indeed converge to the values that
represent the long time average. Following the same idea of Gaussian filter, we
construct an alternative procedure for our numerics, in which the Gaussian filter
is approximated by a Cosine function. We demonstrate that the results are
quantitatively in agreement with the former approach, moreover it leads us to
further inquiries: we show that our filtering procedure can also be useful for the
characterization of diagonal ensembles independent of models and the investigation
of interesting intermediate-time dynamics beside long-time dynamics.

Second, we address many-body quantum systems described by time-periodic
Hamiltonians, namely Floquet systems. We make use of the filtering technique to
approximate the long stroboscopic-time average of local observables for isolated
periodically driven quantum many-body systems, which gives the expectation
value in the Floquet diagonal ensemble. Our numerical simulations detect that
before converging to the infinite temperature state, the system relaxes to a quasi-
stationary state, which can be interpreted as a prethermal regime. Our filtering
procedure shows its sensitivity to the intermediate-time effects by capturing a clear
signature of prethermalization in time-periodic systems as well.

Finally, we study the properties of an alternative thermodynamic ensemble to
the Gibbs ensemble, which easily allows the computation of thermal expectation
values with the use of tensor networks. We define the ensemble which maximizes
Rényi entropic quantities and show that this idea provides a practical, numerical
alternative to the Gibbs ensemble. We focus on a particular case which maximizes
the 2-Rényi entropy for the same mean energy and reproduces the local observables
of the corresponding Gibbs ensemble. We observe that this ensemble can be



efficiently represented by matrix product states and further employ variational
algorithms to obtain efficient approximations to it, based on gradient descent
optimization and non-linear evolution of the density operator.



Zusammenfassung

Der Schwerpunkt dieser Arbeit liegt auf der Thermalisierung und der Gleichgewichts-
dynamik von eindimensionalen Quanten-Vielteilchensystemen. Insbesondere en-
twickeln wir mithilfe von Tensornetzwerken effektive numerische Methoden, um
deren Langzeitdynamik auf neuartige Weise zu untersuchen. Wir untersuchen,
inwieweit dies uns erlaubt, fundamentale Probleme der statistischen Quantenphysik
numerisch zu erforschen. Unsere Methoden basieren auf einem Gauß-Filter mit
einem Superoperator, welche wir als Filtertechnik bezeichnen. Das zentrale Thema
dieser Arbeit ist die Anwendung dieser Filtertechnik auf verschiedene dynamis-
che Systeme, insbesondere isolierte zeitunabhängige und periodisch getriebene
Systeme. Insgesamt zielt diese Arbeit darauf ab, einen Beitrag zum Verständ-
nis der Langzeitdynamik von Vielteilchensystemen sowie zur Untersuchung von
thermischen Zuständen jenseits des herkömmlichen Gibbs-Ensembles zu leisten.

Zunächst betrachten wir einen generischen zeitunabhängigen Hamiltonoperator
mit nicht entartetem Spektrum, bei dem der langzeitgemittelte Zustand das diago-
nale Ensemble ist. Wir approximieren ihn durch Anpassung einer Filtertechnik mit
Tensornetzen. Die Idee der Filterung basiert auf der Anwendung eines Gauß-Filters
mit einem Hamiltonschen Kommutator auf die anfängliche Dichtematrix. Das
Ergebnis dieser Anwendung konvergiert im Grenzwert verschwindender Breite
gegen das diagonale Ensemble. Numerisch simulieren wir die Wirkung dieses
Filters mit Hilfe von Tschebyscheff-Entwicklungen und liefern numerische Beweise
dafür, dass die lokalen Observablen im gefilterten Zustand tatsächlich gegen die
Werte konvergieren, die den langfristigen Durchschnitt darstellen. In Anlehnung
an die Idee des Gauß-Filters konstruieren wir ein alternatives Verfahren für unsere
Numerik, bei dem der Gauß-Filter durch eine Cosinus-Funktion approximiert wird.
Wir zeigen, dass die Ergebnisse quantitativ mit dem erstgenannten Ansatz übere-
instimmen, darüber hinaus führt uns dies zu weiteren Forchungen: Wir zeigen,
dass unser Filterverfahren auch für die Charakterisierung von modellunabhängigen
diagonalen Ensembles und die Untersuchung interessanter Zwischenzeitdynamiken
neben der Langzeitdynamik nützlich sein kann.

Zweitens befassen wir uns mit Vielteilchen-Quantensystemen, die durch zeitpe-
riodische Hamiltonoperatoren beschrieben werden, nämlich Floquet-Systeme. Wir
nutzen die Filtertechnik, um das lang-stroboskopische Zeitmittel lokaler Observ-
ablen für isolierte periodisch getriebene Quanten-Vielteilchensysteme zu approx-
imieren, was den Erwartungswert im Floquet-Diagonalensemble ergibt. Unsere
numerischen Simulationen zeigen, dass das System vor Erreichen des Zustands
unendlicher Temperatur in einen quasistationären Zustand relaxiert, der als präther-
mischer Zustand interpretiert werden kann. Unser Filterverfahren zeigt seine
Empfindlichkeit gegenüber den Zwischenzeiteffekten, indem es auch in zeitperiodis-
chen Systemen eine klare Signatur der Präthermalisierung erfasst.

Schließlich untersuchen wir die Eigenschaften eines alternativen thermody-
namischen Ensembles zum Gibbs-Ensemble, das auf einfache Weise die Berech-
nung thermischer Erwartungswerte mit Hilfe von Tensornetzen ermöglicht. Wir



definieren das Ensemble, das die Rényi-Entropien maximiert und zeigen, dass diese
Idee eine praktische, numerische Alternative zum Gibbs-Ensemble darstellt. Wir
konzentrieren uns auf einen speziellen Fall, der die 2-Rényi-Entropie für dieselbe
mittlere Energie maximiert und die lokalen Observablen des entsprechenden Gibbs-
Ensembles reproduziert. Wir stellen fest, dass dieses Ensemble effizient durch
Matrixprodukt-Zustände dargestellt werden kann, und setzen Variationsalgorith-
men ein, um effiziente Annäherungen an dieses Ensemble zu erhalten, die auf einem
Gradientenverfahren und nichtlinearer Entwicklung des Dichteoperators basieren.
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Chapter 1

Motivation

Quantum statistical mechanics is one of the cornerstones of modern theoretical
physics [1], and even today remains a field of active research. This field was born
at the start of the 20th century, with a fundamental step taken by Gibbs [2] in his
book “Elementary principles in statistical mechanics” published in 1902, where he
introduced the concept of a statistical ensemble as:

“[...] imagine a great number of systems of the same nature, but differing
in the configurations and velocities which they have at a given instant
[...] we may set the problem, not to follow a particular system through its
succession of configurations, but to determine how the whole number of
systems will be distributed among the various conceivable configurations
and velocities at any required time [...]”

The realisation that collective dynamics, rather than individual trajectories of
particles, may govern the behaviour of complex phenomena in physics, led Gibbs
to define and calculate averages in statistical equilibrium. However, an outstanding
question that to this day remains open is why the ensembles proposed capture the
physics of thermodynamic equilibrium and why systems equilibrate.

Another fundamental realisation came from Jaynes [3, 4] in 1957, with the
maximum entropy principle, taking a conceptually different path compared to Gibbs’
approach. He introduced a postulate motivated by a subjective interpretation of
probability. According to it, when sufficient information is lacking to make a definite
prediction, then the best possible prediction is achieved by the distribution of a
state which maximizes the entropy. Furthermore, Jaynes demonstrates in Ref. [3]
that the usual computational rules as presented by Gibbs [2] are a consequence of
the maximum entropy principle, providing the union of these two perspectives, as
well as later the extension to particularly considering quantum systems [4].

Following this, significant efforts have been made to fundamentally understand
how statistical mechanics can emerge in a quantum system, in particular, how the
concepts of equilibration and thermalization appear at this fundamental level [5–
11]. The study of the equilibration necessarily involves a system’s non-equilibrium
dynamics, which is called thermalization, and will be the main motivating topic
behind this thesis.

3



One proposed framework of thermalization for a generic quantum many-body
system is the eigenstate thermalization hypothesis (ETH), independently introduced
by Deutsch [5] and Srednicki [6] at the beginning of the nineties. The ETH
postulates a concrete form for the matrix elements of physical observables in
the energy eigenbasis. One of the consequences of ETH is that, for generic non-
integrable Hamiltonians, the value of any local observable in the long-time limit
becomes equivalent to the thermal (Gibbs) ensemble, with differences that decrease
with increasing system size, which is considered to be a sensible requirement for
quantum states in thermal equilibrium.

The question of which quantum systems thermalize and how has been addressed
for many different kinds of systems. Theoretical studies have concluded that
non-integrable systems generally thermalize to ETH [9–16]. On the other hand,
integrable systems retain dependencies on their initial state even in the long time
limit due to an extensive number of conserved quantities. Therefore, they are not
expected to thermalize, but are argued to equilibrate to the so-called Generalized
Gibbs Ensemble (GGE) [9, 17–19]. Experimental studies have also considered
non-equilibrium dynamics of quantum many-body systems, e.g. by sudden changes
of the depth of an optical lattice [20–23] or by engineering specific initial states [24–
30], in which the particular interest is whether observables, under near-unitary
dynamics, relax to time independent thermal values which can be defined using
traditional statistical mechanics.

However, these theoretical studies experience a fundamental limitation: al-
though classical computers could, in principle, handle such systems exactly, simu-
lating a general system of N spin-1/2 particles on a classical computer requires
storing 2N coefficients. Then any calculation performed for such a system (e.g., the
computation of an observable) requires the execution of a number of operations
that depends exponentially on the system size. In practice, rendering simulation of
more than a few dozens of spins is not possible even on the largest super computers,
and as a consequence, exact calculations with classical resources are limited to
relatively small system sizes or short times.

Most recently, the growing interest in simulating large systems has necessitated
developing powerful numerical methods. While integrable models which are exactly
solvable provide instances for which the properties can be computed exactly even
for large sizes [31], many systems of interest are non-integrable models which are
not exactly solvable, and require the use of numerical algorithms. The foremost
algorithms of this kind are tensor network methods [32] and the density-matrix
renormalization group method [33], which have made possible to simulate the
dynamics of large quantum many-body systems for relatively long times while
methods for exact diagonalization have been brought to new levels [9, 16, 34],
complemented by quantum Monte Carlo techniques [35–37]. Since these methods
are very well-developed, their strengths have been identified as well as their
limitations. Quantum Monte Carlo methods have been very successful, but suffer
from a fundamental limitation, known as the sign problem [36], which commonly
appears in the simulation of fermions or frustrated spin systems. The density
matrix renormalization group algorithm has also enjoyed high success, in particular
in one-dimensional quantum systems [38]. Furthermore, the understanding of this
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algorithm in terms of tensor networks has provided remarkable insights about
the local structure of quantum states [39] as well as efficient algorithms to study
them [33].

The concept of tensor networks is very general and has led to significant
algorithmic progress in many different areas, ranging from simulations of one-
dimensional ground states [40, 41], thermal states [42–47] and time-evolution [42, 48–
59] to higher-dimensional quantum systems, their variational optimization and
computation of observables [50, 51, 60–71]. The success of these investigations as
well as deeper mathematical understanding of TN [72] demonstrate the potential
advantages of TN approach and, of novel algorithms to solve interesting problems
in quantum many-body systems.

The work presented in this thesis has been motivated by the long-standing
questions of non-equilibrium dynamics, equilibration and thermalization in quantum
many-body systems, as well as the growing interest in employing TN. Towards
this, we have developed novel methods harnessing the power of TN to tackle one-
dimensional many-body systems in and out of thermal equilibrium. In particular,
we describe isolated time-independent systems as well as periodically driven systems,
with a particular kind of one-dimensional TN, the matrix product states, which we
make use of in our computations both numerically and analytically.

5





Chapter 2

Basic Concepts

2.1 Tensor network basics

In this thesis, we make use of matrix product states (MPS), a particular kind of
tensor network (TN) in one dimension, in order to study dynamics in and out of
equilibrium of certain one-dimensional systems numerically. In this section we
summarize the basic concepts of MPS, and also introduce matrix product operators
(MPO) as a representation for operators such as the Hamiltonian describing the
system and local observables. Subsequently, we review numerical methods, that
are in particular efficient for simulating evolution of quantum systems with MPS.
Further discussions of TN can be found throughout this thesis: in Chapter 4 and 5
their application to time-independent systems, in Chapter 6 their application to
periodically driven systems and in Chapter 7 their application to the study of
ensembles beyond Gibbs ensemble.

2.1.1 Matrix product states

Consider a quantum lattice system composed of N d-dimensional quantum systems.
Any pure state of the system can then be written as

|Ψ⟩ =
d∑

i1···iN=1

ci1,···iN |i1⟩ ⊗ · · · ⊗ |iN⟩ , (2.1)

with a tensor ci1,···iN including dN complex entries. The state is fully characterized
by dN complex numbers and storing those would require an exponential amount
of memory. Matrix product states [48, 73, 74] are quantum states based on the
idea of decomposing this tensor, ci1,···iN , into a network of contracted local tensors
which construct the wave function. This decomposition is introduced in a graphical
notation in Fig. 2.1, representing each tensor as a box and each index as a leg
sticking out of the box. Links between the tensors correspond to a sum over the
corresponding indices of the tensors. The dimension of the tensor indices which
are contracted is called the bond dimension D.

The resulting tensor network representation is known as a matrix product

7



Figure 2.1: Illustration of the graphical notation described in the text, which
demonstrates the decomposition of the general tensor ci1,···iN representing the
wavefunction (Eq. (2.1)) into a one-dimensional TN known as MPS (Eq. (2.2)) in
open boundary conditions.

state [75] and this efficient ansatz for the many-body wave function |Ψ⟩ is given by

|Ψ⟩ =
d∑

i1···iN=1

Ai11 · · ·AiNN |i1⟩ ⊗ · · · ⊗ |iN⟩ . (2.2)

In this expression, the Aikk are complex matrices (D ×D) for k = 2, · · · , N − 1.
Ai11 and AiNN are D dimensional row and column vectors. Hence, the many-body
coefficients of an MPS are obtained as a product of finite-dimensional matrices.
Compared to the dN complex numbers required to fully characterize a generic
quantum state, this represents a huge simplification, as the number of parameters
scales only polynomially with the system size 1 instead of exponentially.

An important property of MPS: They satisfy an area law [76]. A state is
said to fulfill the area law if the entropy for a subsystem A, SA = Tr ρA log ρA –
described by the reduced density matrix ρA – scales as the boundary, ∂A, of the
subsystem SA = O(|∂A|). Note that MPS fulfill the area law by construction since
the entanglement entropy for a MPS with a fixed bond dimension D is upper
bounded by log2(D) [33]. This is constant, SA = O(1), i.e. independent of the
subsystem size for one-dimensional case.

It has been proven in many cases the states of interest satisfy the area law,
such as for models for which there is an energy gap between the ground state
and the excited states in one dimension, i.e. for local, gapped Hamiltonians in
1D [77], and for such gapped models satisfying some spectral conditions in arbitrary
dimension [78]. In particular, for the noted example in 1D above, one can show
that the area law also implies that the Schmidt values decay fast, which shows that

1The number of parameters in the ansatz is given O((N − 2) dD2 + 2Dd
)
= O

(
ND2d

)
.
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parametrization by MPS is a sensible and efficient way for one-dimensional ground
states of local, gapped Hamiltonians. On the other side, it has been also shown that
the thermal equilibrium states in any dimension can be efficiently approximated
with MPS [45]. Additionally, it has been also proven for free bosonic and fermionic
models [79, 80] as well as ground and thermal equilibrium states of frustration-free
spin models [76].

In a more general setting, it has been also shown that any quantum state for
which all Rényi entropies of order α for 0 < α < 1 fulfill the area law up to
logarithmic corrections can be efficiently approximated by a MPS [56, 81]. In
particular, these states also encompass ground states of critical systems [82, 83].

Matrix Product Operators

As any state can be cast into a MPS form in which the bond dimension necessary
to do so scales in general exponentially in the system size [49], similar to a quantum
state, it is also possible to represent any operator,

O =
d∑

i1···iN=1

d∑
j1···jN=1

cj1,···jNi1,···iN |i1⟩ ⟨j1| ⊗ · · · ⊗ |iN⟩ ⟨jN | (2.3)

as a matrix product operator [42, 84], if one allows for matrices of exponential size
in N ,

O =
d∑

i1···iN=1

d∑
j1···jN=1

M i1,j1
1 · · ·M iN ,jN

N |i1⟩ ⟨j1| ⊗ · · · ⊗ |iN⟩ ⟨jN | , (2.4)

where, M ik,jk
k are complex matrices and M i1,j1

1 and M iN ,jN
N are row and column

vectors, respectively. In the graphical notation, a MPO is a MPS in a certain
(operator) basis, hence, has an additional physical leg as shown in Fig. 2.2.(a).

One can always find a MPO representation for a Hamiltonian provided that
is local [85, 86], as well as for certain types of long-range interactions [84]. In
general, every operator of the form of Eq. (2.3) can be shown to correspond to
a complex-weighted finite automaton which allows for finding the corresponding
MPO representation with a bond dimension proportional to the number of internal
states of the automaton [86] as it is valid for MPS and equivalent statement applies
here for MPOs as well since MPOs are MPS in an operator basis.

In the MPS framework, one of the most important operations is the application
of an MPO to an MPS. This application results in a MPS again, which is also shown
in the graphical notation in Fig. 2.2.(b) by the direct application as regrouping the
contractions such that the resulting MPS tensor can be obtained as a product of
the individual site tensors. The bond dimension of the resulting MPS |ϕ⟩ = O |Ψ⟩
is given by the product of the bond dimension of the MPO and the initial MPS.

Alternatives to the direct application of an MPO to an MPS can be the varia-
tional optimization based on the same considerations, but variationally compressing
a state towards a target state or the zip-up method [87], based on the truncation
during the contraction process.
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Figure 2.2: (a) Example of a MPO for a system with 6 sites. (b) Direct application
of an MPO to an MPS yields a MPS again which is indicated with the tensors in
grey dashed boxes.

2.2 Numerical Algorithms

The MPS family is a powerful theoretical tool, and additionally provides very
efficient numerical approximations: to ground states [40, 41], thermal states [42–
44, 46, 47] as well as time-evolution [42, 48–59], in which the computational cost
of MPS algorithms for time-evolution scales as O(ND3) for N system sizes with
open boundary conditions.

In particular, the Trotterized time-evolution of MPS combined powerful time-
evolution schemes with the efficient truncation of the exponentially large Hilbert
space, e.g. by the DMRG and the Time Evolved Block Decimation based meth-
ods [49–51, 54–57, 60, 88]. These numerical methods were started to be intro-
duced around 2004, and since then, algorithms in particular for finite tempera-
ture [44, 51, 88] and real time-evolution [50, 60, 89] opened up the possibilities
to improve the understanding of in and out of equilibrium dynamics of quantum
many-body systems, which is the central interest of this thesis.

In this section, we briefly review these two aforementioned approaches for
finite temperature and real time-evolution as well as one recent approach that
we will make use of all throughout the rest of the thesis. First, we review two
well-known methods, purification and trotterization that are based on an identical
algorithm which we use for benchmarking while exploring systems in thermal
equilibrium and far-from-equilibrium. Later, we review a different approach based
on Chebyshev expansions, discuss how it is adapted into the quantum many-body
context, hence make use of it to investigate dynamical behaviours of non-equilibrium
systems in an alternative way to the conventional techniques. For details on other
computational techniques and applications, we refer the interested reader to the
review articles [32, 39, 48, 90–92].

2.2.1 Thermal states

From the point of view of thermodynamics, thermal states describe the equilibrium
properties of a system. Given a Hamiltonian H, the Gibbs state

ρG =
e−βH

tre−βH
, (2.5)
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describes the state of the system at a given temperature 1/β. On the other hand,
thermal states arise from the principle of maximum entropy [3, 4]: for a given
energy, the thermal ensemble is the one that maximizes the von Neumann entropy
SG(ρ) = −tr(ρ log ρ).

In the quantum many-body context, numerical approaches to thermal equilib-
rium do resort to different methods to approximate Eq. (2.5). Monte Carlo methods
use sampling to estimate very efficiently the physical properties from Eq.(2.5), but
they face difficulties in scenarios where a sign problem appears, as discussed in
Chapter 1.

In practice, TN are highly successful tools for studying thermal equilibrium [93–
97] since thermal states for a local Hamiltonian obey an area law for the mutual
information [45, 97] as discussed in the previous Section 2.1.1. In one spatial
dimension, although MPS ansatz by default can only represent pure states, it can
also be used to construct a representation of (mixed) Gibbs state with additional
ingredients: one of the efficient approaches is given by purification, which is a
purely mathematical procedure that allows to associate pure states with mixed
states [98]. The procedure used to purify a mixed state ρa of a quantum system a
is to define a pure state |ap⟩, where another system p is introduced for the joint
system ap such that ρa = trp(|ap⟩ ⟨ap|). This pure state |ap⟩ has the property that
the reduced state on system a is equal to ρa.

Based on the procedure above, by doubling the Hilbert space, as physical and
auxiliary degrees of freedom, H → Hp⊗Ha, the density matrix is then represented
by tracing over the auxiliary space of the purified quantum state Ψ ∈ Hp ⊗Ha:

ρ = tra |Ψ⟩ ⟨Ψ| , (2.6)

only if |Ψ⟩ is maximally entangled. To approximate the Gibbs state above in
Eq. (2.5) at finite temperature β, the infinite temperature initial state is time
evolved along the imaginary axis over β/2 as |Ψ⟩ ∝ e−βH/2

∑
k |k⟩ |k⟩, where k label

a basis of the system in the Hilbert space. Formally, this is an equivalent operation
to a time-evolution, hence, thermal equilibrium states can be approximated using
time-evolution techniques by writing a purification of Gibbs ensemble as above.

MPS family provides very powerful tools to explore dynamics in equilibrium,
while the investigation of the dynamics out of equilibrium is a more challenging
task as we will be discussing in the following section.

2.2.2 Time evolution

For a time-independent Hamiltonian, H, the time-evolution operator is U = e−iHt,
where ℏ has been set to unity throughout this thesis. Even if one can efficiently
represent the Hamiltonian as a MPO, it is generally not possible to find an efficient
MPO representation for U directly. However, this is made tractable through the
idea of breaking the total evolution time in small intervals [42, 48, 49, 53, 60] for
which one can find an efficient MPO approximation for the time-evolution operator
and compute the application of these operators to the initial MPS.

Explicitly, one can divide the time interval t in n intervals of size δ and can

11



compute the evolution as

|Ψ(t)⟩ =
(
e−iHδ

)n |Ψ(t = 0)⟩ .

The most popular and versatile choice to approximate MPO for e−iHδ is the
Suzuki-Trotter [99] decomposition which was developed initially in the context
of MPS [50, 51] and DMRG [60] in 2004 2 and remained as a frequently referred
time-evolution method in the ensuing years. One possible choice for e−iHδ is a
first-order Suzuki-Trotter decomposition as

e−iHδ = e−iHevenδe−iHoddδ +O
(
δ2
)
, (2.7)

for a nearest-neighbor H as H =
∑N−1

i−1 hi,i+1, with hi,i+1 acting on sites i and i+1.
In the above expression, the Hamiltonian is divided in two parts, one containing
the two-body terms starting at even sites, and the other one starting at odd sites,
H = Hodd +Heven with Hodd =

∑N−1
i=1,3··· hi,i+1 and Heven =

∑N−1
i=2,4··· hi,i+1. All the

two-body terms in Hodd (Heven) mutually commute since hi,i+1 has support on two
sites only. Accordingly, we can write

Uodd = e−iHodd δ = e−iδ
∑N−1

i=1,3,... hi,i+1 =
N−1∏

i=1,3,...

e−ihi,i+1δ

and similarly for Ueven = e−iHevenδ. Hence, one obtains a MPO form for the entire
operator after decomposing all the local terms appearing in Uodd and Ueven

3. In
this case (first-order Suzuki-Trotter decomposition), the time step error is of order
O (δ), which is controllable and can be estimated straightforwardly.

The time step error does not violate the unitarity of a real time-evolution since
each of the constructed operators is unitary. However, in the case of large time
step error, the energy and other conserved quantities are not necessarily expected
to be constant. In order to minimize this error, one can choose a smaller time
step size δ or higher-order decomposition formulas [99], which may nevertheless
not be optimal choices for all cases, since they typically result in more MPOs to
apply to the state sequentially for a single step. An alternative to higher-order
decomposition could be the combination of large-scale Trotter decomposition with
a small-scale Krylov-based approach [100].

Furthermore, the Trotter approach is not limited to the nearest-neighbor case
and can also be generalized to longer range interactions. However, for those cases,
the cost increases dramatically with the interaction range: in order to obtain sums of
mutually commuting terms, one in general needs to split the Hamiltonian into more
than two parts, which leads to a larger number of different MPOs to approximate
the evolution operator to do a single step. For each of those MPOs, the bond
dimension grows linearly with the range of the interactions in the corresponding

2In these papers, the method is introduced based on the application of quantum gates to
individual state tensors, not based on MPO/MPS formalism. Here, for the implementations we
use MPOs instead.

3Notice that this approach also applies to time-dependent Hamiltonians. One can simply take
the Hamiltonian constant on every interval and proceed the same way as described above.
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part of the Hamiltonian. To deal with long-range interactions directly, a different
decomposition scheme for the time-evolution operator specifically engineered to
construct an efficient representation as a MPO was introduced recently [101] which
generates smaller MPOs than the Trotter approach. However, its drawback is
that the time-evolution is not exactly unitary. Therefore, for practical numerical
computations one is typically limited to local, short-ranged interactions.

All these aspects show that MPS techniques are very useful to explore dynamics
close to equilibrium (as discussed in the previous section 2.2.1), but are funda-
mentally limited for out-of-equilibrium scenarios: the standard time-evolution of
a MPS requires a computation with the evolution by repeatedly applying this
trotterized MPO. It is pointed out in Section 2.1.1 as well that the application of
a MPO onto a MPS results again in a MPS with a bond dimension given by the
product of the bond dimension of the MPO and the initial MPS. Consequently,
this brings an exponential growth of bond dimension with the number of steps.

There has been analytical and numerical efforts to render the computation
feasible [33, 54–59, 102], in which the resulting MPS is approximated by another
MPS with a smaller bond dimension using certain algorithms. The idea is more
explicitly as follows: for a given MPS |Ψ⟩ with bond dimension D, one wants to
find a MPS |Ψ′⟩ with bond dimension D′ < D which maximizes the overlap with
the original MPS (or equivalently minimizing the norm distance). Based on this
idea, the time-evolution for an initially given MPS |Ψ(t = 0)⟩ can be computed as a
sequence of applying the MPOs approximating e−iHδ, and subsequently truncating
the result after a certain number of steps to a MPS of smaller bond dimension D′.

A crucial question is how large D′ should be considered to be able to find a
good approximation. The answer depends on the entanglement growth during the
evolution, and recall that the entanglement is upper bounded by log2(D

′) [33] for
a MPS with bond dimension D′, as it is stated in Section 2.1.1. While the method
is expected to work well with moderate D′ as long as the system stays close to the
ground state [56], however, in far-from-equilibrium scenarios, the entanglement
can grow linearly in time [54, 56, 103], hence in this case, D′ would need to grow
exponentially. Although there exist improved algorithms for these scenarios [102],
only short-time scales are available.

Addressing these consequences and limitations will form the motivation for
this thesis. Instead of simulating standard time-evolution, we will introduce novel
methods to address long-time dynamics and thermal properties of quantum systems.

2.3 Chebyshev Expansions

One of the recent approaches to simulate the evolution of quantum systems is given
by Chebyshev expansions of the exponential operators. In the context of many-body
numerics, they can be implemented in combination with any method that is able
to efficiently apply a Hamiltonian to a state [104]. Exact diagonalization [105, 106]
and Monte Carlo [107] methods have been pursued within this context as well
as its combination with tensor network states [108–115]. In particular, it has
been shown that Chebyshev expansions combined with TN applications offer
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efficient representations to study e.g. one-dimensional spectral functions [108],
time-evolution [109, 110, 112], density of states [114] as well as controlling the
entanglement with energy variance [115].

Let us start by summarizing the properties of Chebyshev polynomials of the
first kind, Tn(x), which are defined by the following recurrence relations

Tm+1(x) = 2xTm(x)− Tm−1(x), m > 0 (2.8)

T0(x) = 1, T1(x) = x. (2.9)

Any piecewise continuous function f(x) for −1 ≤ x ≤ 1 can be expanded as

f(x) =
∑
m

pmTm(x),

using orthogonality properties of the polynomials, in which the coefficients can be
calculated as

pm = C−1
m

∫
dxw(x)f(x)Tm(x),

over a weight function w(x) = (π
√

(1− x)2)−1, and Cm are the normalization
factors Cm =

∫ 1

−1
dxw(x)f(x)Tm(x)

2. Accordingly, the Chebyshev expansion can
be given as

f(x) = =
1

π
√
1− x2

[
µ0 + 2

∞∑
m=1

µmTm(x)

]
(2.10)

where µm are called Chebyshev moments and given by µm =
∫ 1

−1
dxf(x)Tm(x).

Making a cut-off at a finite number M of Chebyshev terms, in general, would
introduce artificial oscillations of period 1/M , called Gibbs oscillations. In this case,
the use of kernel polynomial method (KPM) [116] suppresses these oscillations
by introducing kernels and improves the convergence of the truncated series by
multiplying the coefficients with specific factors, γMm , e.g. the Jackson kernel which
is used throughout this thesis:

γMk =
(M − n+ 1) cos πn

M+1
+ sin πn

M+1
cos π

M+1

M + 1
. (2.11)

It puts most of the weight on the smallest order terms, and the actual number
of terms that contribute to the final result is much smaller than M . Within this
factor, the expansion in Eq. (2.10) is rewritten as,

f(x) =
1

π
√
1− x2

[
γ0µ0 + 2

∞∑
n=1

γnµnTn(x)

]
. (2.12)

The idea behind of this numerical strategy in simulating the evolution of
quantum many-body systems is based on the expansion of the Dirac delta function
in terms of Chebyshev polynomials, and the choice of Jackson kernel polynomial
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method (JKPM) leads the expansion in Eq. (2.12) to approximate Dirac delta
function δ(x−a) sitting at −1 < a < 1, in which all coefficients for odd polynomials
vanish, and the M − th order approximation reads,

f(x) ≈
M/2∑
m=0

(−1)m
2− δm0

π
γM2mT2m(x). (2.13)

The M order expansion of the function at x = 0 results in a broadened peak
of width σ = π/M , while near boundaries, it is σ = π/M3/2. This peak indeed
provides a good approximation to a Gaussian. Thus, the truncated sum above in
Eq. (2.13) can be used to approximate a Gaussian with σ ∼ π/M :

f(x) ≈ 1√
2πσ2

e−x
2/2σ2

. (2.14)

In the context of quantum many-body systems, the same truncated series in
Eq. (2.13) can be made use of in order to approximate a Gaussian (as in Eq. (2.14))
of any Hamiltonian H by rescaling it, H̃, such that the energy spectrum is contained
in [−1, 1]:

e−H
2/2σ2 ≈

M/2∑
m=0

(−1)m
2− δm0

π
γM2mT2m(H̃). (2.15)

The main element in this expansion which needed to be constructed for numerics
is Tm(H̃). In the MPS framework [39], fixed bond dimension MPO approximations
to the polynomials T (D)

m (H̃) ≃ T
(
mH̃) can be constructed for any Hamiltonian H

that can be represented as an MPO [51, 84, 88]. Thus, starting by the first two
Chebyshev polynomials in Eq. (2.10), which can be given by the exact MPOs [84]
with small bond dimension; T0(H̃) = 1 and T1(H̃) = H̃, one can apply the
recurrence relation between Chebyshev polynomials as given in Eq. (2.8).

In order to find a MPS approximation for the action of a Gaussian operator on
a given initial state |Ψ0⟩, one can recurrently apply each polynomial in the sum of
Eq. (2.15) to the initial MPS instead of acting with the full polynomials Tm(H̃) as
in [108–110, 112, 114, 115] since this leads to lower computational effort, allowing
to operate directly with MPS instead of working with more costly operators.

Based on the same conceptual and technical details, we will make use of
the Chebyshev expansions in combination with MPS techniques, in order to
approximate the diagonal ensembles in one-dimensional isolated quantum systems
with the purpose of exploring the long-time dynamics. Complementary discussions
can be found in Chapter 4.
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Chapter 3

Thermalization and Equilibration
Dynamics

In this chapter, before diving into the details, we will briefly outline the main con-
cepts discussed throughout this thesis, which are thermalization and equilibration
dynamics in isolated time-independent and periodically driven systems.

3.1 Time-independent systems
When an isolated quantum system is initialized in a pure state out of equilibrium,
the unitary character of the evolution ensures that the state remains pure at any
later times. However, if observations are restricted to a subsystem, thermalization
may occur, that is, the rest of the system can act as a bath for the observed
region [5, 9]. More explicitly, if expectation values reach and remain close to a
certain value for an extended period of time, one talks about equilibration [7, 10, 11].
And thermalization occurs if those values correspond to the expectation values at
the thermal equilibrium state consistent with the energy of the system [5, 6, 8, 9].

Let us consider a system governed by a (local) Hamiltonian H, and an initial
state |Ψ(0)⟩ =

∑
k ck |Ek⟩ in energy eigenbasis (where ck = ⟨Ek|Ψ(0)⟩), which

evolves unitarily under the Hamiltonian as

|Ψ(t)⟩ = e−iHt |Ψ(0)⟩ . (3.1)

The corresponding density operator is given as

ρ(t) = |Ψ(t)⟩ ⟨Ψ(t)| .
If equilibration happens, then it happens towards its time-averaged state which is
a mixed state given by

lim
T→∞

1

T

∫ T

0

ρ(t)dt = lim
T→∞

1

T

∫ T

0

∑
k,l

ckc
∗
l e

−it(Ek−El) |Ek⟩ ⟨El| dt

= lim
T→∞

1

T

∑
k,l,Ek=El

ckc
∗
l |Ek⟩ ⟨El|T

+ lim
T→∞

1

T

∑
k,l,Ek ̸=El

ckc
∗
l |Ek⟩ ⟨El|

1

−i(Ek − El)

(
e−iT (Ek−El) − 1

)
.
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The terms in the second sum become smaller as T grows, and in the limit of
infinitely long time the second sum will vanish and the long time-averaged state
will be given by only the first sum in the above.

For a generic Hamiltonian with non-degenerate spectrum, the long time limit
of time-averaged observables corresponds to the expectation value in the diagonal
ensemble [17], which is,

lim
T→∞

1

T

∫ T

0

ρ(t)dt =
∑
k

|ck|2 |Ek⟩ ⟨Ek| . (3.2)

To decide whether the system can thermalize it is thus enough to compare the
expectation values of any local observable O in the diagonal ensemble to those in
thermal equilibrium (as given in Eq. (2.5)) at the same energy:

⟨O⟩D :=
∑
k

|ck|2 ⟨Ek|O|Ek⟩ . (3.3)

But while the thermal state of a local Hamiltonian can be efficiently approximated
using tensor networks [93, 95, 97], simulating the out-of-equilibrium dynamics, and
thus directly constructing the diagonal ensemble, is a much harder problem [55, 56].
We notice that some numerical methods have been developed that can approximate
the diagonal ensemble with some restrictions, such as exact diagonalization (limited
to small systems) or the numerical linked cluster expansion [117–119] (for which
the expansion may fail to converge for some parameter choices, or initial states).

Generally speaking, integrable systems, due to their extensive number of con-
served local quantities, do not thermalize but are instead argued to relax or
equilibrate to the so-called generalized Gibbs ensemble (GGE) [9, 17–19], com-
patible with all the constraints. In contrast, non-integrable systems are typically
expected to thermalize [9, 11–16]. It is thus especially interesting to identify
non-integrable systems that fail to do so, as the current interest in systems with
many-body localization [120–122], quantum scars [123] or disorder-free localiza-
tion [124–126] makes evident. Nevertheless, the (absence of) thermalization of
non-integrable systems is hard to determine, since the applicability of analytical
tools for such models is limited, and numerical simulations of out of equilibrium
dynamics are restricted to small systems or short times.

Necessity of new tools has motivated the work presented in Part II of this
thesis. Part II is dedicated to improve the understanding on thermalization and
equilibration dynamics by taking a different route with the use of a filtering
technique. The concept of filtering in the MPS framework was first introduced
in the recent work [115] which focuses on understanding the connection between
entanglement resources and their energy variances for a local Hamiltonian in one-
dimensional spin chains by using the filtering technique (a Gaussian filter) with
different numerical strategies based on Chebyshev expansions 1 and Cosine functions.
Later, these filtering strategies applied to density of states calculations [114, 127]

1Notice that as discussed in Section 2.3, Chebyshev-based approaches combination with
the MPS techniques were suggested earlier in [108–113] with the purpose of exploring different
problems.
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and quantum algorithms which compute physical observables in a state where an
energy filter is applied [128].

3.2 Floquet systems
Many-body quantum systems governed by time-periodic Hamiltonians i.e., a period
T exists such that H(t+T ) = H(t) possess a particular case of dynamics [129–146].
The Floquet theorem [147, 148] guarantees the presence in the Hilbert space of a
complete basis of solutions of the time-dependent Schrödinger equation which are
periodic, such that,

|ΦFα(t)⟩ = e−iεαt |ΦPα(t)⟩ , (3.4)
where |ΦPα(t)⟩ = |ΦPα(t+ T )⟩ is known as Floquet mode and the εα is the
eigenenergy, known as Floquet quasienergy. Eq. (3.4) is reminiscent of the time-
independent case which is discussed in the previous section. The difference is
the state |ΦPα(t)⟩ which is now periodic in time rather than a time-independent
eigenstate of the Hamiltonian. If we expand a general initial state as

|Φ(0)⟩ =
∑
α

|ΦPα(0)⟩ ⟨ΦPα(0) | Φ(0)⟩ ,

then the time-evolution can be written, in a form that is similar to the time-
independent case (given in Eq. (3.1)),

|Φ(t)⟩ =
∑
α

e−iεαt |ΦPα(t)⟩ ⟨ΦPα(0)︸ ︷︷ ︸
U(t)

|Φ(0)⟩,

where the time-evolution operator is U(t) =
∑

α e
−iεαt |ΦPα(t)⟩ ⟨ΦPα(0)| . For an

evolution from t = 0 to t = T , the elements of a complete orthonormal set of
eigenstates of U(T ) are the Floquet states |εα⟩.

According to the Floquet theory [147], the Floquet Hamiltonian HF is given by

e−iHFT := T
(
e−i

∫ T
0 dtH(t)

)
, (3.5)

where H(t) is the Hamiltonian of the system which is periodic in time H(t) =
H(t+T ) and T is the time-ordering operator. Calculating the Floquet Hamiltonian
is one of the non-trivial problems [149–152] in periodically driven systems since it
contains the full information about their thermodynamic properties.

A possible method for calculating the Floquet Hamiltonian is to expand it with
respect to the period T : this is the Floquet Magnus (FM) expansion [153, 154]:

HF =
∞∑
n=0

T nΩn, (3.6)

where

Ωn =
∑
σ

(−1)n−θ[σ]θ[σ]!(n− θ[σ])!

in(n+ 1)2n!T n+1

∫ T

0

dtn+1 · · ·

×
∫ t2

0

dt1
[
H
(
tσ(n+1)

)
,
[
H
(
tσ(n)

)
, . . . ,

[
H
(
tσ(2)

)
, H
(
tσ(1)

)]
. . .
]]
,
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where σ is a permutation and θ[σ] =
∑n

i=1 θ(σ(i+ 1)− σ(i)) with θ(·) is the step
function. The FM expansion is useful particularly for the high frequency ω = 2π/T
limit in finite system sizes, in which the higher order contribution is negligible.
However, it has been noticed that the FM expansion is not a convergent series
expansion in general [149, 154]. Due to the divergence problem, a technique of
truncation in the FM expansion has been recently developed for describing the
Floquet Hamiltonian in particular for transient time scales [155, 156]. Accordingly,
the truncated Magnus expansion to approximate the transient dynamics has been
given as,

H
(n)
F =

n∑
m=0

TmΩm, for e−iH
(n)
F T ≃ e−iHFT . (3.7)

H
(n)
F is the nth order truncated Floquet Hamiltonian and for example the first two

terms in the expansion read as,

H
(0)
F =

1

T

∫ T

0

dtH(t)

H
(1)
F =

1

2iT 2

∫ T

0

dt1

∫ t1

0

dt2[H(t1), H(t2)].

Several studies have demonstrated that the time-evolution of the truncated Floquet
Hamiltonian is reliable up to a certain long-time: for high-frequency driving [149],
for the Friedrichs model on the continuous space [157], and for lattice systems when
driving is local [155] as well as when interactions are short-ranged [155, 158, 159].

Periodic driving can be used to engineer desirable interaction Hamiltonians
for analog quantum simulations [135, 160–174]. Furthermore, digital quantum
simulators employing Trotterization can be interpreted as Floquet systems [175,
176]. Periodically driven quantum systems can also serve as a platform for realizing
interesting phases of matter like discrete time crystals [146, 177–185] and Floquet
topological phases [186–192]. Periodic driving has also been used for opening gaps in
graphene [193–195], controlling magnetic exchange interactions in solids [152, 196–
199], realizing artificial gauge fields in cold atoms [200, 201], and stabilizing or
inducing superconductivity [202–204]. These applications of Floquet systems
necessitate an understanding of their long-time dynamics.

At long times, the diagonal ensemble in Floquet systems is defined in terms of
the overlap of the initial state of the system and the Floquet states, similar to the
time-independent case as given in Eq. (3.2):

ρ =
∑
α

|⟨Φ(0)|εα⟩|2|εα⟩⟨εα|. (3.8)

The expectation value of a local observable in a Floquet quantum system is expected
to equilibriate, in average, to its expectation value in the Floquet diagonal ensemble
(FDE) [140, 205, 206], which is given by

⟨O⟩D =
∑
α

|⟨Φ(0)|εα⟩|2 ⟨εα|O|εα⟩ . (3.9)
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Although exceptions like many-body localized [142, 207–215] and other non-ergodic
systems [216–224] exist, generic non-integrable Floquet many-body systems have
been predicted to absorb energy from the periodic driving, rendering the diagonal
ensemble equivalent to an infinite temperature state for local observables; this
is the Floquet version of the eigenstate thermalization hypothesis, and is called
Floquet ETH [209, 225–230]. This is indeed a consequence from the analogy of
ETH in non-driven systems [9]. The ETH postulates that each energy eigenstate
is not distinguishable from the microcanonical ensemble for the same energy. In
periodically driven systems, the energy is not conserved anymore and hence the
extension of ETH to the driven case shows that the steady state is a state of
infinite temperature (i.e., a random state). Thus, the information reflected from
the system is not visible in the infinite-time scale due to the heating effect.

However, the experiments on many-body quantum systems do not focus on
the long-time limit; rather, they are interested in the transient dynamics for
the experimental time scale. The transient-time behavior of generic Floquet
systems can be less trivial, exhibiting interesting dynamical behaviours, such as
prethermalization [149, 155, 158, 181, 182, 231–244], where the system relaxes
to a long-lived quasi-stationary state before reaching the infinite temperature
state. This can be due to the emergence of an effective, static Hamiltonian that is
quasi-conserved [150, 170, 174, 181, 200, 245–247], slowing the heating rate. Due
to the suppressed heating, the prethermal window can be used for applications
like quantum simulation and preparation of non-equilibrium phases of matter by
engineering the effective Hamiltonian [149, 170, 181–183].

Motivated by the burgeoning applications of Floquet systems as discussed
above, the work presented in Chapter 6 aims to explore whether the application of
the filter algorithms to the Floquet scenario contributes to the understanding of
the dynamics in intermediate time regimes.
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Chapter 4

Approximating the diagonal
ensemble

Most of the content of this chapter is contained in:

• “Approximating the long time average of the density operator: Diagonal
ensemble”
Aslı Çakan, J. lgnacio Cirac and Mari Carmen Bañuls
Phys. Rev. B 103, 115113 (2021)

In this chapter, we are interested in exploring long-time dynamics of isolated
generic quantum systems out of equilibrium, in which the long-time average of
observables is given by the diagonal ensemble as discussed in Chapter 3. Here, we
present an alternative method to approximate the diagonal ensemble instead of
simulating the standard real time evolution. We introduce a filtering technique,
and show how it can filter out the off-diagonal components of a density operator
with respect to the energy basis, thus approximate the diagonal ensemble without
resourcing to the explicit simulation of the dynamics.

In the first part of this chapter, we review our filtering procedure explicitly,
where we apply to the initial density matrix a Gaussian with a superoperator that
filters out off-diagonal matrix elements in the energy eigenbasis. In the limit of
vanishing width of the Gaussian, the result will converge to the diagonal ensemble,
in the most generic case, when there are no degeneracies in the spectrum. If there
were degenerate energy levels, the procedure would leave untouched the coherences
in the corresponding energy subspace, and thus would still lead to the correct limit
of the time-averaged density operator.

In the second part of this chapter, we describe the main elements of our numerical
simulations, in which we make use of MPS techniques: as described in Chapter 2.3,
a Gaussian can be approximated as a sum of Chebyshev polynomials, and its
application to an initial vector can be numerically simulated using MPS [33, 39]
methods, at least for moderate widths. Here we carry out these simulations for a
spin chain in the non-integrable regime, and investigate how the values of local
observables converge towards the thermal equilibrium. Moreover, we analyze the
behaviour of operator space entanglement entropy and examine how it depends
on the Gaussian filter width. Later, we also discuss the distinct behavior of an
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integrable instance: for comparison, we consider an integrable case of the same
model, for which the observables may converge to different non-thermal values,
depending on the initial state. Finally, we summarize our findings and discuss
potential extensions of our work.

4.1 Filtering the diagonal ensemble
Let us consider a system of size N governed by a (local) Hamiltonian H, and a
pure initial state, which can be written in the energy eigenbasis as

|Ψ0⟩ =
∑
k

ck |Ek⟩ ,

with the normalization condition
∑

k |ck|2 = 1 (where the sum runs over the energy
basis). We are interested in the long time average properties of the evolved state,
i.e. given any physical observable O =

∑
k,lOkl |Ek⟩ ⟨El|, we want to compute

lim
T→∞

1

T

∫
dt ⟨Ψ(t)|O |Ψ(t)⟩ =

∑
k

|ck|2Okk = tr[ρD(Ψ0)O] (4.1)

where the first equality holds under the generic condition, which we assume in the
following, that the spectrum is non-degenerate 1, and in the second one we have
used the definition of the diagonal ensemble

ρD(Ψ0) =
∑
n

|ck|2 |Ek⟩ ⟨Ek| . (4.2)

If the system thermalizes, the diagonal expectation value ⟨O⟩D := tr (ρDO) will be
equal to the expectation value in the thermal equilibrium state,

ρth(β) =
e−βH

tr(e−βH)
,

that corresponds to the mean energy of the initial state, tr(Hρth(β)) = ⟨Ψ0|H |Ψ0⟩.
Thus, an approximation to the diagonal ensemble would allow us to probe whether
a given state thermalizes or not.

In the energy eigenbasis, the density matrix for the initial state can be written
as

ρ0 =
∑
k,l

ckc
∗
l |Ek⟩ ⟨El| .

Filtering out the off-diagonal matrix elements in this basis will result in the diagonal
ensemble (4.2). We thus define an (unnormalized) Gaussian filter which acts on
the mixed state as a superoperator

Fσ[ρ] := e−Ĥ
2
C/2σ

2

[ρ], (4.3)
1If this condition is not fulfilled, ρD should be replaced by a block-diagonal operator, where

each block corresponds to a different energy subspace, with the same matrix elements as in the
initial state.
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where ĤC is the commutator with the Hamiltonian, i.e. ĤC [ρ] = Hρ− ρH. Notice
that Fσ is a completely positive trace preserving map, i.e. a quantum channel. The
effect of this filter is to suppress the off-diagonal matrix elements corresponding
to pairs of states with different energies. As the width σ is reduced, and for a
generic, non-degenerate, Hamiltonian, the application of the filter will converge to
the desired result

Fσ[ρ0] −→
σ→0

ρD(Ψ0).

Notice that the filter would not affect the density operator components in a
degenerate energy subspace. Thus, if the Hamiltonian has degenerate levels, the
limit of the procedure is block diagonal, corresponding to the long time limit of
the time-average of the evolved state.

Mapping the basis operators to vectors [248] as |Ek⟩ ⟨El| → |EkEl⟩, we can
write the density matrix as a vector of dimension 22N , on which the filter acts as a
linear operator, and the problem becomes formally analogous to the energy filters
used in [113–115, 249].

In this representation, the commutator corresponds to the linear operator

ĤC = H ⊗ 1 − 1 ⊗HT ,

which, if H is local, is also a local Hamiltonian with eigenvectors |EkEl⟩ and
corresponding eigenvalues Ek − El, for k, l = 1 . . . 2N . We can then apply the
filtering procedure for reducing the energy variance from a state with given mean
energy as described in 3. For a product initial state |Ψ0⟩, the (vectorized) initial
density matrix |ρ0⟩ = |Ψ0⟩ ⊗ |Ψ0⟩ is also a product.

With respect to the Hamiltonian ĤC , any physical state has mean value

⟨ρ0| ĤC |ρ0⟩ = tr
(
ρ†0 [H, ρ0]

)
= 0.

The filter (4.3) preserves this property of the initial state while it reduces the cor-
responding (effective energy) variance, ⟨ρ| Ĥ2

C |ρ⟩ = −tr ([H, ρ]2), which measures
precisely the off-diagonal part of the density operator in the energy basis.

4.1.1 Chebyshev approximation of the filter

Formally, this filtering procedure is analogous to the one described in [115], and
some of the properties can be directly translated to the current case. In particular,
the Gaussian filter Fσ can be approximated by a series of Chebyshev polynomials.

As discussed in Section 2.3, any piece-wise continuous function f(x) defined
in the interval x ∈ [−1, 1] can be approximated by a linear combination of the
M lowest-degree Chebyshev polynomials [116]. In particular, the corresponding
series for the delta function truncated to order M (and improved using the kernel
polynomial method) is known to approximate a Gaussian of width

√
π/M . We

can thus use such series to order M ∝ N/σ to approximate the Gaussian filter Fσ.
As discussed in Section 2.3, this sum has the form as Eq. (2.12) and we apply the
same truncated series to the Hamiltonian commutator ĤC ,
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QM :=

⌊M/2⌋∑
m=0

(−1)m
2− δm0

π
γM2mT2m(αĤC), (4.4)

where α is a rescaling constant to ensure that the spectrum of αĤC lies strictly
within the interval [−1, 1]. We use HC = αĤC for the rescaled Hamiltonian
commutator in the rest of the Chapter.

As in [108, 110, 114, 115, 250, 251], we can then take advantage of the fact that
we do not need the full polynomials Tm(HC), which in our case are operators acting
on a 22N dimensional vector space, but only the vectors resulting from their action
on the initial state Tm(HC)|ρ0⟩. The latter satisfy the same recurrence relation as
the polynomials and can be computed with lower computational cost.

We will denote the result of applying the series expansion to order M as

|ρM⟩ := QM |ρ0⟩ , (4.5)

and its norm is given as

⟨ρM | ρM⟩ ∼ 1

σ
√
N
.

Notice that this vector has a different normalization than |ρσ⟩, because the sum in
QM approximates a normalized Gaussian distribution, unlike Fσ from (4.3), which
we will be discussing in the following Section 4.1.3 and Section 4.3.1.

The off-diagonal width of the operator ρM is determined by the corresponding
variance of HC as

δ2 :=
⟨ρM |H2

C |ρM⟩
⟨ρM | ρM⟩ , (4.6)

since ⟨ρM |HC |ρM⟩ = 0.

4.1.2 Properties of the diagonal filter

Notice that the filtering procedure described so far is general, as it does not make
any assumption on the spatial dimension of the problem. In the following we will
focus on a one-dimensional problem, for which we can use tensor networks in order
to obtain numerical approximations.

As in [115], we can use matrix product state (MPS) techniques [33, 39] to
simulate the application of this filter to an initial state. In this way we construct
a matrix product operator (MPO) [51, 88, 252] approximation to the filtered
ensemble. One of the essential results obtained in [115] is that for large system
sizes and narrow filters, the required bond dimension for the approximation can be
bounded as D ≲ c′

√
ND

1/δ
0 , where c′ and D0 are O(1) constants. Accordingly, the

expression for the entanglement entropy,

S ≲ k/δ + log
√
N + const (4.7)

corresponds here to a bound for the operator space entanglement entropy (OSEE) [253].
The spectrum of HC exhibits however an exponential degeneracy in the subspace

of eigenvalue zero, which imposes a significant difference. For each eigenstate |En⟩
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of H, |EnEn⟩ is eigenstate of HC with zero eigenvalue. Thus, even if the spectrum of
H is non-degenerate and even if it fulfills the stronger assumption of non-degenerate
gaps, the “zero energy” subspace of HC is always exponentially degenerate.

Hence the target diagonal ensemble states could in principle have arbitrarily
small OSEE, even with vanishing width σ (an extreme case would be the maximally
mixed state, with zero OSSE). This is in contrast to the Hamiltonian filtering, where
the limit would generically have thermal (i.e. volume law) entanglement. Even
if we expect that the general relations between energy fluctuations and entropy
or bond dimension demonstrated in [115] still hold during the main part of the
filtering procedure, eventually, as the width becomes negligible and the procedure
converges to the diagonal ensemble, the OSSE can converge to a non-generic value
that will depend on the initial state.

The scenario we discuss here also exhibits another fundamental difference
regarding physical observables. For a local operator O, the expectation value is
computed as

tr (Oρ)

trρ
=

⟨O| ρ⟩
⟨1| ρ⟩ , (4.8)

where |O⟩ and |1⟩ are respectively the vectorized observable and identity operators 2.
As an overlap between two vectors, this is a global quantity, and no longer local

in space. Therefore, the considerations in [115] about the minimal entanglement
of a subregion required for local observables to converge to thermal values do not
immediately apply here. More explicitly, one of the conclusions in Ref. [115] is that
decreasing the energy variance as δ ∼ 1/ log(N) by keeping a polynomial scaling
in bond dimension is sufficient to reach convergence in the thermodynamic limit,
which is not necessarily expected to apply our case since we do not have the same
local structure here.

4.1.3 Convergence of the off-diagonal components

The pure initial state is given by a physical density operator, normalized in trace,
trρ0 = 1, and also Frobenius norm, ⟨ρ0| ρ0⟩ = trρ20 = 1. The filter (4.3) preserves
the former, but not the latter. Instead, the Frobenius norm of the filtered vector
|ρσ⟩ indicates the magnitude of the remaining off-diagonal components.

The state resulting from the application of the original Gaussian filter Fσ on ρ0
can be written as a sum of two mutually orthogonal components,

|ρσ⟩ = |ρD⟩+
∑
n,m ̸=n

cnc
∗
me

−(En−Em)2/(2σ2) |EnEm⟩ . (4.9)

The first term is precisely the diagonal ensemble, and the second one includes all off-
diagonal components of the density operator. Denoting them by |∆ρ⟩ := |ρσ⟩−|ρD⟩,
the (Frobenius) norm of the off-diagonal components is

⟨∆ρ|∆ρ⟩ =
∑
n,m ̸=n

|cn|2|cm|2e−(En−Em)2/σ2

. (4.10)

2Notation for operators ⟨A|B⟩ := tr(A†B).
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The magnitude of these components may be estimated using simple arguments.
We consider as initial state ρ0 a pure product state, for which the energy distribution,
given by |cn|2, is peaked around the mean energy Eρ0 = tr(Hρ0), and has variance
O(N). For large systems, this distribution behaves as a Gaussian [254] and we can
approximate the norm of the vector |ρσ⟩ by a double integral over energies, from
which we obtain

⟨ρσ| ρσ⟩ ∼
σ√
N
. (4.11)

The norm of the diagonal component, equivalent to the inverse participation ratio
of the initial state, ⟨ρD| ρD⟩ =

∑
n |cn|4 is independent of σ.

Typically, the number of energy eigenstates contributing to the sum will be
exponentially large in the system size, unless the mean energy of the initial state
Eρ corresponds to a region of exponentially small density of states. To see this,
we can take again into account the aforementioned distribution of the weights
for our initial states, and the fact that for large systems the density of states
approaches also a Gaussian distribution [254, 255]. The inverse participation ratio
then decreases exponentially with the system size,

⟨ρD| ρD⟩ ∼ 2−N . (4.12)

Unless the width of the filter is exponentially small in N , the norm of the
filtered state is dominated by the off-diagonal component, and we expect both of
them to decrease proportionally to the width, for fixed size N , according to (4.11).
Notice nevertheless that a bound on the (Frobenius) norm of |∆ρ⟩ is not enough
to extract conclusions about the convergence of physical observables, a question
that we explore numerically in section 4.3.

4.2 Setup for the numerical simulations

We use numerical simulations to explore some of the questions in the previous
section. In particular, we investigate whether the diagonal ensemble can be
approximated by a MPO, and how the physical observables approach the diagonal
expectation values as we filter out the off-diagonal matrix elements of the density
matrix.

4.2.1 MPS approximation of the ensemble

We use matrix product operators (MPO) [51, 84, 88] to represent the density
operators corresponding to the initial and filtered states. Once vectorized, they
are represented by MPS with double physical indices, which can be manipulated
using standard tensor network methods [33, 39, 73, 256].

We find a MPS approximation for the action of the filter Eq. (4.4) on a given
initial state. The method is completely analogous to the one presented in [115]
for filtering out energy fluctuations (as explained in Section 2.3), with the only
difference that here the effective Hamiltonian is the commutator superoperator
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HC acting on the vectorized density matrices. For a local Hamiltonian H, the
commutator HC can also be written as a MPO.

4.2.2 Model and initial states

We focus our study in the Ising spin chain with both longitudinal and transverse
fields,

HIsing = J
∑
i

σ[i]
z σ

[i+1]
z + g

∑
i

σ[i]
x + h

∑
i

σ[i]
z . (4.13)

If either g = 0 or h = 0, the model becomes exactly solvable. For the remaining of
this section we focus on the generic, non-integrable case. We choose parameters
(J, g, h) = (1,−1.05, 0.5), far from the integrability limit.

As initial states we consider product states in which all spins are aligned in the
same direction. We denote such states by the direction in which the spins are aligned,
e.g. |X±⟩ = 2−N/2 (|0⟩ ± |1⟩)⊗N , |Y±⟩ = 2−N/2 (|0⟩ ± i |1⟩)⊗N , |Z+⟩ = |0⟩⊗N and
|Z−⟩ = |1⟩⊗N .

4.3 Numerical Results

We have applied the procedure described in the previous section to system sizes
20 ≤ N ≤ 60, using MPS with bond dimensions 100 ≤ D ≤ 1000. Additionally,
we cross-check results for small system sizes N ≤ 20 which can be explored with
exact diagonalization.

4.3.1 Scaling

We expect the off-diagonal width δ of our simulations to follow the scaling predicted
in Ref. [115], namely δ2 ∝ 1/M2, for large enough number of terms in the approxi-
mation of the filter, and provided that the truncation error is not significant. Thus,
the decrease of the width with M provides us with a check that our simulations are
in the expected regime. Figure 4.1 shows that this is indeed the case. The figure
shows that for all system sizes, the converged data are well described by a power
law fit δ2 ∝M−α (dotted lines) with exponents −2.13,−1.98,−1.97,−1.95,−1.96
for N = 20, 30, 40, 50, 60, respectively.

A further check is provided by the norm of the filtered state |ρσ⟩. As described
in section 4.1.3, ⟨ρσ| ρσ⟩ should decrease as the inverse off-diagonal width. Since
our algorithm applies the normalized filter (4.4), QM ∼ 1√

2πσ2
Fσ, we expect, for

the proper values of M and σ,

⟨ρM | ρM⟩ ∼ 1

σ
√
N
. (4.14)

To directly probe this relation, we plot the vector norm of our resulting state
in figure 4.2, for system sizes N = 20− 60, and find that our data agrees well with
this prediction, except for the smallest values of M .
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Figure 4.1: Scaling of the variance δ2 = ⟨ρM |H†
CHC |ρM⟩, as a function of the

Chebyshev truncation parameter M for different system sizes N = 20− 60 with
bond dimension D = 1000 and initial state |X+⟩. Except for the smallest values
of M , we find that our results scale with the expected [115] δ2 ∝ 1/M2.
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Figure 4.2: Relation between vector norm of off-diagonal components and inverse
off-diagonal width as explained in the text and given in Eq. (4.14) for system sizes
N = 20 − 60 and bond dimension, D = 1000, starting with initial state |X+⟩,
where the slopes of all are ∼ 1.

4.3.2 Convergence of local observables

As the filtered state approaches the diagonal ensemble, so will the values of physical
observables. If the state thermalizes, such limit will agree with the thermal value
corresponding to the initial energy, and thus comparing this to the converged
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Figure 4.3: Absolute error in local observables σx (upper) and σz (lower figure)
between exact diagonal ensemble values and exact Chebyshev filter results as a
function of inverse off-diagonal width for system sizes N = 8, 10, 12, 20 and 24 with
the initial state |X+⟩. The insets indicate the log-log plot of the corresponding
figures, which we show the upper bounds with the straight dotted lines. The slope
for σx is -0.52 and it is -0.53 for σz.

values can be used to probe thermalization of the system. Here we are interested
in the rate of convergence of the physical expectation values.

For the problem of reducing the energy variance of a pure state, it has been
predicted that for chaotic systems [257] a polynomial decrease of the variance
with the system size is sufficient for all local observables to converge to their
thermal values. In Ref. [115] it was numerically observed for model (4.13) that an
energy variance decreasing as 1/ logN or faster was sufficient for convergence in
the thermodynamic limit. But as discussed in section 4.1, these conclusions do not
need to apply in our case, because the expectation value in the mixed state does
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Figure 4.4: Absolute error in local observables σx (upper) and σz (lower figure)
between thermal values and numerical results based on Chebyshev filter as a
function of inverse off-diagonal width for system sizes N = 30− 60 with the initial
state |X+⟩. The insets indicate the log-log plot of the corresponding figures, where
we add the upper bounds with the dotted lines and the data points belong to
N = 12 with lighter color as reference values taken from figure 4.3.

not have the same local structure. We thus explore this question numerically by
studying the local x and z magnetizations in the middle of the chain, O = σ

[N/2]
x,z ,

and analyzing how the expectation values vary as the width of the filter decreases.
For systems of size N ≤ 12 we can compute the action of the filter exactly for
any width, while for larger systems, up to N ≤ 60, we run MPS simulations up
to the narrowest filter widths that we can reliably reach with a maximum bond
dimension D = 1000.

For small systems, N ≤ 24, we can compare the filtered values with the exact
computation of magnetizations in the diagonal ensemble. For larger systems we
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do not have access to either the evolved state at long times or the exact diagonal
ensemble, but we can approximate the thermal ensemble corresponding to the initial
energy using MPO [51, 88, 258]. For the cases we study, there are analytical and
numerical arguments in favor of thermalization [114, 259], such that the thermal
expectation values should be very close to the diagonal ones. Thus, for our analysis
it is enough to use the thermal value as reference. However, our simulations for
large systems do not seem to reach full convergence (see subsection 4.3.4 for a
more detailed discussion of the numerical errors).
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Figure 4.5: Absolute error in local observables σx (upper) and σz (lower figure)
between exact diagonal ensemble values and Chebyshev filter results, as a function
of inverse off-diagonal width for system sizes N = 8, 10, 12 and 20 with the initial
state |Z+⟩. The insets indicate the log-log plot of the corresponding figures, which
we show the upper bounds with the grey dotted lines. Slopes for σx is -0.62(63)
and it is -0.60(47) for σz.
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Figure 4.6: Absolute error in local observables σx (upper) and σz (lower figure)
between thermal values and numerical results based on Chebyshev filter as a
function of inverse off-diagonal width for system sizes N = 30− 60 with the initial
state |Z+⟩. The insets indicate the log-log plot of the corresponding figures, where
we put the upper bounds with the dotted lines and the data points belong to
N = 12 with lighter color as reference values taken from figure 4.5.

We plot the results for small and large system sizes in figures 4.3 and 4.4
for initial state |X+⟩, and in figures 4.5 and 4.6 for initial state |Z+⟩. In all
cases we represent the absolute value of the difference between the expectation
values in |ρM⟩ and the diagonal (thermal, for large systems) values as a function
of the off-diagonal width δ. In all cases, i.e. for the different initial states and
different sizes, we observe that this absolute error, which is given exclusively by the
off-diagonal part of ρM , decreases at least as fast as 1/

√
δ (see insets). Moreover,

the figures show that curves for different system sizes practically collapse on top of
each other.
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Figure 4.7: Upper figure: Operator space entanglement entropy of the half chain as
a function of logarithm of the system size, N , with different truncation numbers of
Chebyshev filter, M = f(N) and bond dimension, D=1000 for initial state |X+⟩.
Our data show that the entropy grows with logN in all cases except that the line
for M = 5

√
N stays constant. Lower figure: Behavior of the exponential of the

entropy as predicted by Ref. [115] that we have explained in the text and shown in
Eq. (4.7). The dotted line indicates the linear fit where all data points locate on
the same line as expected for large system sizes. D0 from fitting the data for all
system size is 2.76(40) and the slope of the fit is 1.

4.3.3 Entropy

Since we start with a product state |ρ0⟩ and evolve it with a local Hamiltonian
HC , the same arguments used in the case of pure states [115, 260] then imply that
the OSEE can be bounded as a function of the off-diagonal width and the system
size as given in Eq. (4.7). Here we check whether it is similarly bounded.
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Figure 4.7 (upper panel) shows that indeed, the evolution of the OSEE while
filtering out the off-diagonal components of the state satisfies a similar bound.
The plot shows the OSEE corresponding to the middle cut of the approximate
filtered state ρM , as a function of the system size, for simulations in which the
number of Chebyshev terms was chosen as different functions of the size M = f(N),
corresponding to a width δ(N) ∝ 1/M . We observe that for M ∝

√
N , which

corresponds to δ ∝
√
N , the OSEE does not grow with the system size, while

for M ∝ N or M ∝ N logN (correspondingly δ ∼ const or δ ∝ 1/ logN ), it
increases as logN . For faster growing M ∝ N2, also the increase in entropy is
faster (compatible with it growing at most as N2, as predicted by the argument in
[115]).

The asymptotic universal scaling of the entropy can be appreciated more
explicitly in figure 4.7 (lower), which shows that

2S ∝
√
N(D

1/δ
0 − 1)

for all system sizes N ≥ 20 with a constant D0 = 2.76.

10
0

10
1

10
2

10
3

0.5

1

1.5

2

10
0

10
1

10
2

10
3

10
4

0.2

0.4

0.6

0.8

Figure 4.8: Relation between entropy and logarithm of 1/δ based on exact cal-
culation for N = 8, 10, 12 with initial state, |X+⟩ (left) and |Z+⟩ (right figure).
Purple, green and blue horizontal lines indicate the exact entropy values in the
diagonal ensemble for the same system sizes N = 8, 10, 12 respectively, belonging
to the same color map in the legend.

The limit of the filtering procedure when the width vanishes is a mixed state
in the exponentially degenerate null space of HC . This subspace supports states
with zero OSEE (e.g. the maximally mixed state), and thus the final OSEE is not
generic, but will be determined by the initial state, in contrast to the case of pure
state filtering, where we could generically expect that the entanglement entropy
converged to a thermal volume law.

We can explore how the limit value is approached during the filtering by
analyzing the results for small systems, as shown in figure 4.8. As illustrated in
the figure for different initial states and sizes N ≤ 12, the entropy grows with 1/δ
for moderate widths, but it reaches a maximum after a certain point, and then
decreases towards the diagonal value. If we examine how this final value depends
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on the system size, we observe, that in all the cases studied the diagonal OSEE
increases almost linearly with the size, although the values change considerably from
one state to another, where the slope of each initial states are 0.0678, 0.8917, 0.0237
for |X+⟩ , |Y+⟩ , |Z+⟩, respectively.

4.3.4 Error Analysis

In our strategy, for a fixed order M of the Chebyshev expansion, the main source of
error is the truncation error, namely approximating the action of each Chebyshev
polynomial on the initial state by a MPS with limited bond dimension. We can
quantify this error for a given order m using as reference the best approximation
found for the corresponding term Tm(HC) |ρ0⟩ (in our case, with D = 1000) and
comparing it to its truncated versions with smaller bond dimensions. In this way
we can extract the bond dimension required for fixed precision.

In previous works that used MPS approximations of Chebyshev series [108, 110,
114, 250, 251] it was observed that the required bond dimension for such terms
increases polynomially with the degree m. Our results, illustrated in figure 4.9,
seem to agree with such behavior, except for the smallest values of m. We have
also observed, as in the recent work [114], that for fixed m the bond dimension
required to maintain constant truncation error in Tm(HC) |ρ0⟩ gets smaller for
larger system sizes. Notice, however, that for larger systems, also polynomials of
higher degree will be required to attain a constant width δ, since, as discussed in
Section. 4.1.1, the order of the expansion scales as M ∝ N/δ, which will be also
checked in the following chapter 5.
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Figure 4.9: Scaling of the bond dimension required to keep a constant precision in
the MPS approximation of Tm(HC) |ρ0⟩, as a function of the degree m for various
values of the truncation error, 10−2, 10−3, 10−4, 10−5 and system sizes N = 20 (left)
and N = 30 (right) for which we take D = 500 as a reference.
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4.4 Integrable case
The results in section 4.3.2 are consistent with the generic expectation that for
non-integrable cases, the values of local observables in the diagonal ensemble agree
with those in thermal equilibrium. But the presence of local conserved quantities
imposes constrains on the equilibration of observables. Thus for integrable models,
long time averages are not expected to agree with the thermal ensemble. Instead,
the system could in such cases converge to a generalized Gibbs ensemble [17]
compatible with all conserved quantities.

We expect that, as the width of the filter decreases, our method approximates
the actual time averaged state in the limit of infinite time. Hence local observables
can converge to values that differ from thermal equilibrium. In order to probe
this case, we have applied the method to an integrable choice of parameters
in Eq. (4.13), namely (J, g, h) = (1, 1.05, 0.), for various translationally invariant
product states. We have simulated system sizes up to N = 50, with bond dimension
up to D = 1000.

The scaling of variance and entropy with the filter width in the integrable case
does not substantially differ from those described in subsections 4.3.1 and 4.3.3.
However, local observables can exhibit qualitative differences, as illustrated in
figures 4.10.

Figure 4.10 shows the convergence of a local observable ⟨σx⟩ at the middle of
the chain as a function of the inverse width 1/δ, for two different initial states
|X+⟩ and |Z+⟩. In both cases, the limit of the time averaged observable noticeably
differs from the thermal value, as we have checked using exact diagonalization
for system sizes N ≤ 20. Applying our algorithm to these and also larger system
sizes, indeed suggests convergence of the observable to values that are distinct from
thermal equilibrium (indicated by dashed horizontal lines).

4.5 Discussion
We have presented a method to approximate the diagonal ensemble corresponding
to a quantum many-body state. By applying a Gaussian filter to the density
operator, the off-diagonal components in the energy basis are suppressed and,
in the limit of vanishing filter width, the result converges to the ensemble that
represents the long time average of the time evolved state. For a Hamiltonian with
non-degenerate spectrum, this is the diagonal ensemble.

Numerically, the filter can be approximated by a Chebyshev polynomial series,
and applied using MPS standard techniques, in an analogous manner to what was
already described in Ref. [115] for an energy filter. In our case, we obtain a MPO
approximation to the filtered ensemble.

The method allows us to treat larger systems than exact diagonalization.
However our results for small systems indicate that the operator space entanglement
entropy of the diagonal ensemble scales as a volume law, which limits the system
sizes for which the MPO can provide a reliable approximation. Still, we are able
to simulate the effect of filters with moderate off-diagonal width and to analyze
the convergence of local observables towards the thermal equilibrium.
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Figure 4.10: Expectation value of local observables σx at the middle of the chain
based on Chebyshev filter simulations for initial states |X+⟩ (upper) and |Z+⟩
(lower figure) as a function of inverse off-diagonal width for system sizes N =
10− 50. Red, blue and green solid lines indicate the long time average values for
N = 10, 12, 20 respectively. Red, blue and green dashed lines indicate the thermal
values for the same system sizes N = 10, 12, 20 respectively, belonging to the same
color map in the legend.

We have applied this method to a non-integrable spin chain and several out
of equilibrium product initial states for system sizes up to N = 60. We have
numerically observed that local observables converge towards their thermal values
as a power of the inverse off-diagonal width. Remarkably, this behavior is mostly
independent of the system size. Even for moderate off-diagonal widths, the method
provides in this way insight beyond exact diagonalization. In the future, it can be
thus used to explore other one-dimensional models.

It is worth noticing that our procedure does not directly target the diagonal
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ensemble, but the limit of the time-averaged state. In an integrable case this can be
a generalized Gibbs ensemble, and differ considerably from the thermal equilibrium
one (see e.g. [117, 118, 261]). For an integrable instance of the model, we have
explicitly shown how local observables in the filtered state can indeed converge
to values far from thermal equilibrium. A detailed analysis of integrable cases
requires however more precise simulations than the ones shown here, which we will
be presenting the further analysis in the following Chapter 5.
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Chapter 5

Filtering with alternative tools

This chapter contains our unpublished work in which we study the dynamics of
out-of-equilibrium systems, approximating the expectation values in the diagonal
ensemble with the use of another novel method to perform the numerical simulations
efficiently. In addition, we discuss whether this approach gives advantages for
further investigations of relevant questions such as, how to characterize the diagonal
ensembles independent of models. We include our preliminary studies in this regard,
in which many of the results are work in progress, and have been tested for small
system sizes, benchmarks and initial investigations, hoping that they can be useful
for further inquiries.

In the first part of this chapter, we present another tool which can be employed
as an alternative approach to the Chebyshev method used in our previous work [262]
which we introduced in Chapter 4, with the purpose of computing the expectation
values by explicitly constructing a MPO description for diagonal ensemble. Here,
instead of obtaining a tensor network approximation of the diagonal ensemble,
we make use of a more efficient way which only targets the expectation value of
observables. More precisely, we take a Gaussian filter as before, but numerically
approximate this filter by different means than Chebyshev expansions. Inspired
by recent works [115, 128], we use the Cosine filter to approximate the effect of
the Gaussian filter, which allows for computations that directly focuses on the
expectation values using the same filtering idea. We analyze the convergence of
local observables to their steady state values, in order to study the thermalization
of different systems. Compared to the standard time-evolution and our previous
approach by Chebyshev expansions (see Chapter 4), this alternative approach
promises cheaper computational cost in the numerics in particular for calculation
of expectation values.

In the second part of this chapter, we make use of this efficient method to
explore certain questions, in particular, how to distinguish the diagonal ensemble in
generic and non-ergodic scenarios. Moreover, we evaluate whether their interesting
short-time dynamics are detectable by our filtering procedures. We finalize this part
by providing our initial investigations and benchmarks, which should be explored
further in future.
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5.1 Approximation by the Cosine filter
The approach we present here is based on the one described in Chapter 4, with
the combination of the Cosine filter approach which is also considered by the
recent works [115, 128]. First, we consider a Gaussian filter of the Hamiltonian
commutator, HC [ρ] = Hρ − ρH, as formerly in Sec. 4.1. We apply the filter on
the initial density matrix, in order to suppress the off-diagonal elements, which
results in the diagonal ensemble given in Eq. 4.2,

F (HC ; δ)[ρ] := e−H
2
C/2δ

2

[ρ]. (5.1)

Second, in order to approximate this Gaussian filter above (Eq. 5.1), we consider
the Cosine filter as an alternative to the Chebyshev expansions. The idea of the
Cosine filter uses the fact that

e−MX2/2 ≃ cosM(X),

for |X| < 1 and even number of M , which can be further approximated, as in [113],
by the expansion

cosM(X) ≃
M∑

m=−M
cme

−i2mX ≃
⌊x

√
M⌋∑

m=−⌊x
√
M⌋

cme
−i2mX , (5.2)

where x is a real constant and the coefficients cm are given by

cm =
1

2M

(
M

M/2−m

)
.

The sum above can be restricted to −⌊x
√
M⌋ ≤ m ≤ ⌊x

√
M⌋ as written in Eq. 5.2

where ⌊· · · ⌋ gives the closest even integer with the error scaling as a Gaussian
function of x. With a suitable choice of x = O(1), the error can be made arbitrarily
small. Then, the Gaussian filter in our case as given in Eq. 5.1 can be approximated
by adapting X = HC/α in Eq. 5.2,

F (HC ; δ) ≃ cos [HC/α]
M ≃

R∑
m=−R

cme
−i2mHC/α, (5.3)

where α = O(N) that rescales the Hamiltonian commutator such that its spectrum
lies in one period (π/2) of the Cosine function 1, M = α2/δ2 and R = xα/δ. The
difference between our application of Cosine filter with the reference works [115, 128]
enters here, where we take X = HC/α, instead of X = (H − E)/α, since we use a
Gaussian filter with Hamiltonian commutator as indicated in Eq. 5.1 instead of
filtering over only the Hamiltonian by itself. Then, the Cosine filter in Eq. 5.3 can
be expressed in terms of the evolution operator e−iHCt for certain times t,

R∑
m=−R

cme
−i2mHC/α ≃

R∑
m=−R

cme
−iHCtm = Pδ, (5.4)

1The approximation holds in fact for the range beyond that too, see reference [128] for details.
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where tm = 2m/α with a time step 2/α.
Thus, we denote the result of applying the filter (Eq. 5.4) to a vectorized initial

density matrix |ρ0⟩ = |Ψ0⟩ ⊗ |Ψ0⟩ as

|ρδ⟩ := Pδ |ρ0⟩ , (5.5)

which can be written more explicitly as

|ρδ⟩ =
R∑

m=−R
cme

−iHCtm |ρ0⟩ =
R∑

m=−R
cme

−i(H⊗1−1⊗HT )tm |Ψ0⟩ ⊗ |Ψ0⟩

=
R∑

m=−R
cm(e

−iHtm |Ψ0⟩ ⊗ eiH
T tm |Ψ0⟩)

=
R∑

m=−R
cm(e

−i2mH/α |Ψ0⟩ ⊗ ei2mH
T /α |Ψ0⟩). (5.6)

This expression (Eq. 5.6) reveals the key difference from the previous approximation
by Chebyshev expansions, which we will discuss in the following section in detail.

5.1.1 Computation of local observables

We now consider how the calculation of the expectation value of local observables
differs from the former approach based on the Chebyshev expansions. The Gaussian
filter which needs to be approximated is essentially the same for both procedures
with Chebyshev and Cosine filters as they share the fundamental properties [115]
attaining the similar scaling δ ∝ N/M . However, approximating the Gaussian of
Hamiltonian commutator with Cosine filter provides more efficient computations
since it leads to simpler terms and allows evolving a pure state (see Eq. 5.6) in
contrast to the Chebyshev filter, in which the diagonal ensemble is described by
an MPO and the expectation value of local observables are computed by the
contraction of the vectorized form of filtered density operator and observables (see
Section 4.1.2 and Eq. 4.8).

Here, the expectation value of local observables of the filtered state are computed
by applying Eq. 5.6, which gives

tr (OPδ[ρ0]) =
R∑

m=−R
cm⟨Ψ0| ei2mH/αOe−i2mH/α |Ψ0⟩. (5.7)

We will denote

bO,m = ⟨Ψ0| ei2mH/αOe−i2mH/α |Ψ0⟩.
Summing over all m provides the final expectation value of observables

⟨O⟩δ =
tr(OPδ[ρ0])

tr(Pδ[ρ0])
=

∑
m cmbO,m∑
m cm

, (5.8)

where the normalization factor is simply the sum of cm coefficients, because the
filtering operation is trace preserving.
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5.1.2 Numerical results

The advantage of the result of Cosine filter given in Eq. 5.8 is that it describes the
evolution of pure states only. In the previous construction, the Chebyshev polyno-
mials Tm(HC) with commutator superoperator HC are acting on the vectorized (i.e.,
with double physical indices) density matrices (also see Section 4.1.1 and 4.2.1).
On the other hand, the Cosine filter gives a 2N reduction in problem complexity
via evolution of pure states. Thus, this new construction allows us to represent the
evolution operator directly with the system’s Hamiltonian as a MPO [51, 84, 88]
and represent the initial state using standard MPS methods [39, 48] in order to
simulate the evolution as above, giving a computational advantage.

In the following, we compare the exact and numerical results based on Chebyshev
and Cosine filters comparatively, make cross-checks for both non-integrable and
integrable cases, starting with all initial states considered before in Section 4.2.2.

Non-integrable case: Ising chain

We present one particular case here in Fig. 5.1, for the non-integrable Ising
model which is also considered in the previous chapter for Chebyshev filter based
calculations:

HIsing = J
∑
i

σ[i]
z σ

[i+1]
z + g

∑
i

σ[i]
x + h

∑
i

σ[i]
z . (5.9)

with the same parameter choice (J, g, h) = (1,−1.05, 0.5) to compare one-to-one
with Chebyshev filter calculations. We analyze the convergence of local observable
σx at the middle of the chain with decreasing width δ, starting from the initial
state |X+⟩. Comparison of our former data set based on Chebyshev filter (light
colors) with the one discussed here with Cosine filter (colors) is given in Fig. 5.1,
showing that we reproduce exactly the same evolution as in Fig. 4.3 for small
systems and Fig. 4.4 for large system sizes.

Here we take notice of a couple of points on the results of Chebyshev and
Cosine filters. First, the computational cost of the Cosine filter is lower than the
previous method based on Chebyshev expansions due to the fact that here we start
from pure states instead of starting from mixed states. Hence the computations
here require 2N dimensional vector space in exact results instead of 22N which is
demanded by the Chebyshev approach.

Second, both filters are expected to give quantitatively the same results which
we have also illustrated in Fig. 5.1, since they are not two different filter strategies,
but two different approximations of the same Gaussian filter which suppresses
the off-diagonal terms and converges to the diagonal ensemble. In addition to
reproducing the previous results, we show that one can go beyond the former data
(lighter data points in Fig. 5.1) and analyze the regime for much smaller δ values
with less computational effort (clear data points in Fig. 5.1).

Furthermore, we have here the same interesting observation as given by the
Chebyshev results that the local observable values for all system sizes fall on top of
each other, converging all to their thermal values as the inverse off-diagonal width
increases.
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Figure 5.1: Absolute error in expectation value of local observables σx between
filtered results and exact diagonal ensemble values for small system sizes in the
upper figure and thermal values for larger system sizes in the lower figure as a
function of inverse off-diagonal width, starting with initial state |X+⟩. The color
map and lighter colored data points are exactly the same as the ones introduced in
upper Fig. 4.3 and Fig. 4.4 in Section 4.3.2. The same but non-transparent colors
indicate our new results with Cosine filter, which is seen that we can draw beyond
the previous data set since the new approach allows us to analyze further with
lower computational cost.

As discussed in detail in Section 4.3.2, it is possible to reach the exact values
for system sizes N ≤ 24 and we can compute the absolute errors between the
filtered and diagonal values (upper Fig. 5.1). However, there is no such access
to the corresponding diagonal values for larger system sizes. Nevertheless, we
can compute the variation of the expectation values taking the thermal values as
reference since the thermal expectation values are expected to be very close to
the diagonal ones in non-integrable models (lower Fig. 5.1). For large systems,
although our simulations with both approximations do not seem to reach full
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convergence, we show that it is possible to improve and reach to much narrower
widths with Cosine filter where the absolute error is considerably small.

Integrable case: XXZ chain

Here we consider an integrable instance of the XXZ chain and illustrate our
results in Fig. 5.2. The addition of this study to the preivous study of the non-
integrable case provides a more conclusive test of our method since in this model,
the diagonal ensemble results do not agree with the thermal ones, but converge to
the corresponding GGE values [117, 118, 263]. Note that our filtering technique
targets the long time limit, and this limit can be a GGE in the case of an integrable
model. Therefore, integrable models can also be studied with our procedures.

Compared to the integrable case of Ising model which we have studied in the
previous chapter (in Section 4.4), we include here some of our results for a more
complicated integrable model and a different initial state as studied in [263]. This
corresponds to the Hamiltonian,

HXYZ =
∑
i

(
Jxσ

[i]
x σ

[i+1]
x + Jyσ

[i]
y σ

[i+1]
y +∆σ[i]

z σ
[i+1]
z

)
+ h

∑
i

σ[i]
z . (5.10)

We choose for our comparison the same range of parameters as studied in [263].
In particular, Fig. 2 of [263] explicitly shows results of local, nearest neighbor corre-
lations, σ[i]

z σ
[i+1]
z , and next-nearest neighbor correlations, σ[i]

z σ
[i+2]
z , for Hamiltonian

parameters (Jx, Jy,∆, h) = (1, 1, [1, 2, 4, 8], 0), and initial state

(| ↑↓↑↓ . . .⟩+ | ↓↑↓↑ . . .⟩) /
√
2 (5.11)

For this particular set of parameters, the long time average of the expectation
value of these correlators was shown to converge to the Bethe ansatz predictions
as the system size increases for all ∆ values.

Fig. 5.2 shows the results of our simulations for the same case with solid
dots. We observe that our filter results agree with the exact diagonalization
results approaching to the Bethe ansatz predictions for both local correlations with
increasing system size and they are quantitatively in agreement with those in Fig.
2 in Ref. [263].

Based on our numerical experiments for several different models and initial
states, we conclude that the alternative approach introduced in this chapter can
allow us to conduct more detailed analyses of other interesting and more complex
models as well. Further preliminary research in this regard is given in the following
section.

5.2 Characterization of the diagonal ensemble us-
ing filters

Two different filtering approaches have been presented by now with the motivation
to find efficient tensor network approximations, targeting thermalization and
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Figure 5.2: Local (two-site), nearest neighbor, σizσi+1
z , and next-nearest neighbor

correlators, σizσi+2
z , as a function of system size, N , for different anisotropy pa-

rameters ∆ = 1, 2, 4 and 8, starting with a particular superposition state, as in
the ref. work [263]. Our filter results are shown with solid dots while the exact
diagonalization (empty symbols) and GGE (dashed lines) data are based on the
results in Ref. [263].

equilibration dynamics. Accordingly, we have analyzed both nonintegrable and
integrable regimes. Primarily, we have been concerned with the most generic
case, when there are no degeneracies in the spectrum (i.e., the nonintegrable case).
However, we have also noted that our filtering procedures lead us to the correct
limit even if there are degeneracies, since the coherences in the corresponding
energy subspace will remain untouched by the filtering.

At this point, the natural follow-up question is whether one can characterize
these degeneracies with the help of the filtering technique, and hence distinguish
the generic and non-ergodic scenarios.

Another question that follows is, in addition to exploring thermalization to the

49



Gibbs ensemble in nonintegrable models and equilibrium to the GGE’s in integrable
models, whether the filtering procedure we introduced is sensitive enough to detect
interesting dynamical behaviours of different systems as well.

5.2.1 Incoherent and Coherent Averages

The purpose of this section is to give preliminary insights on these questions. First
we start by introducing the expectation value of local observables in coherent and
incoherent averages using our filtering idea which are convenient for formulating
general Hamiltonian dynamics independent from the model. After briefly discussing
these approaches, we test and compare them with the Cosine filter, also called
direct filter since the Cosine filter is diagonal in energy eigenbasis and directly
converges to the diagonal ensemble in the limit of vanishing width. Finally, we
provide some of our preliminary results for a near-integrable Ising model and a
PXP model.

Let us start by considering a system governed by a (local) Hamiltonian H, and
a pure initial state |ψ⟩ for which we are interested in approximating the long-time
averaged expectation value of a given physical observable O,

O = lim
T→∞

1

T

∫ T

0

dt⟨ψ(t)|O|ψ(t)⟩

= lim
T→∞

1

T

∫ T

0

dt
∑
k,k′

ckc
∗
k′e

iEk′ te−iEkt ⟨k′|O |k⟩

=
∑

k,k′,E′
k=Ek

ckc
∗
k′ ⟨k′|O |k⟩ , (5.12)

where k indexes are the energy eigenbasis. Here, we propose approximating this
long-time averaged value with the following definitions which are targeting the
degeneracies in the system, and are computable with the help of filtering techniques:

1. Incoherent Average

If there are no degeneracies in the spectrum (i.e., in the generic case), the long-time
averaged expectation value above (Eq. 5.12) is given by the expectation value in
the diagonal ensemble:

O = ODE
ψ ≡

∑
k

⟨k|O |k⟩ | ⟨k|ψ⟩|2 (5.13)

with ⟨k|O |k⟩ = O(Ek), and can be approximated by the use of the filtering idea
as follows:

ODE
ψ,δ =

∫
dE

tr
(
OP

(H)
δ (E)

)
tr
(
P

(H)
δ (E)

) ⟨ψ|P (H)
δ (E)|ψ⟩, (5.14)

where,

P
(H)
δ (E) =

R∑
m=−R

cme
−i(H−E)tm . (5.15)
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Note that the evolution operator in Eq. 5.15 is not defined with Hamiltonian
commutator as formerly used in our filter. Instead, the Gaussian filter here is taken
directly with Hamiltonian of the system F (E; δ) := e−(H−E)2/2δ2 as introduced
in [114, 115, 249], and Eq. 5.15 is the consequence of approximating this Gaussian
by the Cosine filter in a similar way as introduced in the previous section (see
Section 5.1).

The first term in the above integral (Eq. 5.14) gives the average expectation
value of O over all states with the same energy tr

(
OP

(H)
δ (E)

)
/tr

(
P

(H)
δ (E)

)
= O(E) and

the second term gives the weight ⟨ψ|P (H)
δ (E)|ψ⟩ =∑k,Ek=E

|ck|2 in the δ → 0 limit,
which are equivalent to the terms in the expectation value in diagonal ensemble
in Eq. 5.13. The result converges to the exact diagonal value as δ → 0. We
call this expression (Eq. 5.14) the Incoherent Average, which coincides with the
diagonal ensemble when there is no degeneracy in the spectrum, i.e., sensible for
the nonintegrable models. However, if there were degeneracies, then this expression
would give something different: it would be the average over ⟨En|O |En⟩ for each
energy, multiplying by the total weight at that energy ∼∑k,Ek=E

| ⟨ψ|Ek⟩|2.

2. Coherent Average

If the spectrum is degenerate, using the same filter above (Eq. 5.15) we can
estimate the long-time averaged limit of expectation values which is also discussed
in Ref. [114] based on Chebyshev filter. Similarly, in the δ → 0 limit, the time-
averaged expectation value of O in the degenerate case can then be approximated
by the following expression using the filter as

Oψ,δ =

∫
dE⟨ψ|P (H)

δ (E)OP
(H)
δ (E)|ψ⟩∫

dE ⟨ψ|P (H)
δ

2
(E)|ψ⟩

≡
∫
dEŌ(E). (5.16)

Here, the coherent average (Eq. 5.16) is expected to converge to the true long time
limit as δ → 0 in any case:

lim
δ→0

⟨ψ|P (H)
δ (E)OP

(H)
δ (E)|ψ⟩ =

∑
k,k′ Ek=Ek′=E

⟨ψ |Ek⟩ ⟨Ek′|ψ⟩ ⟨k|O |k′⟩

=
∑
k,k′

ckc
∗
k′Okk′

If there was no degeneracy, then it would result in the diagonal ensemble form
(
∑

k |ck|2Okk) which is also obtained from the incoherent average (Eq. 5.14) in the
limit of vanishing width.

3. Comparison to true long-time limit

Our purpose here is to compare incoherent and coherent averages, which are
introduced in the previous subsections, with the true long-time limit. To do so,
we recall the Cosine filter we studied in the previous section which applies the

51



Gaussian filter with Hamiltonian commutator, and converges to the true diagonal
value as δ → 0:

Oδ =
tr(OPδ[ρ0])

tr(Pδ[ρ0])
. (5.17)

In the limit of vanishing width, Eq. 5.17 should agree with the coherent average
value given in Eq. 5.16, while they are not necessarily expected to agree for larger
δ values: consider the initial state |ψ⟩ = ∑k ck |k⟩ in its energy eigenbasis with
the normalization condition

∑
k |ck|2 = 1, and for a given any physical observable

O =
∑

k,lOkl |k⟩ ⟨l|, the following relation holds for direct filter:

tr(OPδ[ρ0]) =
∑
k,l

ckc
∗
lOkle

−(Ek−El)
2/2δ2 . (5.18)

As for the coherent average case from Eq. 5.16:∫
dE⟨ψ|P (H)

δ (E)OP
(H)
δ (E)|ψ⟩ =

∑
k,l

∫
dE ckclOkle

−(Ek−E)2/2δ2e−(El−E)2/2δ2 .

By changing the variable E ′ := El − E:∫
dE⟨ψ|P (H)

δ (E)OP
(H)
δ (E)|ψ⟩ =

∑
k,l

∫
dE ′ ckc

∗
lOkle

−(E′−(Ek−El))
2/2δ2e−E

′/2δ2 .

(5.19)
Eq. 5.18 and Eq. 5.19 do not result in the same quantity, however they converge
to the same value (true long time) in the limit of δ → 0.

5.2.2 Models and Results

Here, we numerically investigate how all three quantities listed above differ at
finite δ, which we can compute with the same effort using the exact filter. We
test these quantities with our filters not only in the generic scenarios, but also
non-ergodic (non-thermalizing) scenarios. Thus, in this part we present our study
on different models including the PXP model and near-integrable Ising model to
analyze whether our filters can distinguish and capture their interesting dynamical
behaviours e.g. prethermalization and scars beyond the direct thermalization and
equilibrium dynamics on a single time scale.

PXP model

Here we start with the PXP model,

HPXP =
N−1∑
i=2

Pi−1σ
[i]
x Pi+1 + σ[1]

x P2 + PN−1σ
[N ]
x , (5.20)

which is a constrained model in a Rydberg chain realized in a recent experiment [264]
and its non-thermal eigenstates have been dubbed quantum scars.

It has been observed in this experiment [264] that PXP dynamics reveal
unexpected behaviours depending on the initial states. While some specific initial
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states showed relaxation to thermal ensembles, as expected in an ergodic system,
some other states exhibited periodic revivals.

Similarly, in the recent numerical studies of the quench dynamics, such revivals
of the wave function and local observables have been demonstrated when the system
is quenched from initial |Z2⟩ ≡ | ↑↓↑↓ . . .⟩ and |Z3⟩ ≡ | ↑↓↓↑↓↓ . . .⟩ states [265, 266],
contrary to the other initial states, such as |0⟩ ≡ | ↓↓↓ . . .⟩ and |Z4⟩ ≡ | ↑↓↓↓↑ . . .⟩,
which exhibit fast relaxation without revivals [123]. Furthermore, it has been
postulated [123, 259, 267] that the large overlap of these |Z2⟩ and |Z3⟩ states with
scar states causes the slow dynamics, and these states sit in the middle of the
spectrum (E = 0) which has an exponentially large degeneracy. In this case, the
incoherent average (Eq. 5.14) might not necessarily be a good estimation of long
time limit.
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Figure 5.3: PXP model: the expectation value of local observables σz in the
middle of the chain as a function of the inverse width for system size N = 10
and N = 12, starting with initial states |Z2⟩ (upper) and |Z3⟩ (lower figures).
Purple colors represent the incoherent average results (Eq. 5.14 in itemize 1),
blue colors indicate the coherent average (Eq. 5.16 in itemize 2) while green ones
show the direct filter (Eq. 5.17 in itemize 3) results. Red dashed lines indicate
the corresponding long time average values and grey dashed lines represent the
corresponding exact diagonal ensemble values.

Therefore, here we consider these two special initial states |Z2⟩ and |Z3⟩, to
test and benchmark our approaches. In Fig. 5.3, we illustrate all the expectation
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values which are itemized above in Section 5.2 as incoherent average (itemize 1:
purple data), coherent average (itemize 2: blue data) and direct filter (itemize 3:
green data) for system sizes N = 10, 12 and initial states |Z2⟩ (upper) and |Z3⟩
(lower figures) together with the long time average (red dashed) and exact diagonal
ensemble values (grey dashed lines).

For both initial states, the results of coherent (blue) and direct filter (green)
converge to the long time average value (red dashed) as expected (see Eq. 5.18 and
Eq. 5.19), while the incoherent diagonal ensemble results are converging to the
diagonal value (grey dashed lines). When there are degeneracies in the spectrum,
the coherent average values (blue) are expected to converge to a value different
from incoherent values (purple), which is observed in our calculations.

The results belonging to the initial state |Z2⟩ do not reach the full convergence
even for N = 12 (upper right figure), and it seems that it takes extraordinarily
long by starting to converge at around 1/δ ∼ 104 compared to the initial state |Z3⟩.
In the case of larger systems, this will take even longer, and we cannot expect to
reach those times with MPS simulations. On the other hand, the results of the
initial state |Z3⟩ converge relatively faster (lower figures), and MPS simulations
for this case seem more feasible.

However, we believe that the difference should not only be the system size or
initial state, and further checks such as spectral decompositions are needed to
be monitored which may give more hint about the dynamics. We leave further
investigations for future research, hoping that our preliminary study provides an
initial insight and motivation.

Near-integrable case: Ising Model

Next we consider an instance of isolated near-integrable quantum many-body
systems, in which dynamics have been studied extensively in experiments [24, 30,
243, 268–274]. In particular, a recurring subject has been the prethermalization
phenomenon and its stability to perturbations [268, 273].

These experiments provided a new insight to test theoretical concepts. It has
been postulated that in the presence of quasi-conserved quantities, an isolated
system is expected to exhibit a two-step relaxation: before reaching thermal
equilibrium, it is first expected to relax to a quasi-stationary state described by a
GGE [15, 244, 275–279]. In the context of near-integrable systems, this behavior
has been related to prethermalization [268]. After this intermediate relaxation, a
slower relaxation to the thermal equilibrium is expected to happen [280].

This two-step relaxation in the dynamics can occur if the system’s Hamiltonian
consists of an unperturbed term and a perturbative term. The initial evolution is
controlled by the unperturbed Hamiltonian and the prethermal state is defined
by its equilibrium state. The perturbation leads to a subsequent slow relaxation
to the thermal equilibrium of the perturbed Hamiltonian. However, it cannot
be expected that every perturbation will result in a two-step relaxation process
since splitting any Hamiltonian into two parts as unperturbed and perturbative
is possible in arbitrary ways. Therefore, the unperturbed Hamiltonian should
have a distinctive feature that clearly distinguishes it from the system’s total
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(perturbed) Hamiltonian, so that the prethermal and thermal relaxation regimes
become qualitatively different [15, 244, 276, 281–283].

One of the well-studied setups to understand the prethermalization phenomenon
in near-integrable systems is when the unperturbed Hamiltonian is given by an
integrable model, while the perturbative term is expressed by an integrability-
breaking perturbation [15, 244, 276, 281–283]. In this case, the prethermal state is
not a thermal state due to the extensive set of conserved quantities of integrable
(unperturbed) Hamiltonian, but it is described by a GGE [17, 59, 120, 272]. The
perturbation with the integrability breaking causes a slow relaxation from the
GGE to the thermal equilibrium of total Hamiltonian [19, 274, 280, 281, 284].

Here we use the Ising chain with both longitudinal and transverse fields, which
we studied in Section 4.2.2 (Eq. 4.13) and Section 5.1 (Eq. 5.9)

HIsing = J
∑
i

σ[i]
z σ

[i+1]
z + g

∑
i

σ[i]
x + h

∑
i

σ[i]
z , (5.21)

now with a different parameter choice such that it fits into the category defined
above: we consider the unperturbed Hamiltonian, i.e., integrable model by taking
the parameters as (J, g, h) = (−1, 0.8, 0), and the perturbative term with the
integrability breaking with a weak perturbation in longitudinal field h as (J, g, h) =
(−1, 0.8, 0.08).

In Fig. 5.4, we use the same color map as shown in PXP model, in order
to illustrate all the expectation values computed by incoherent average (purple),
coherent average (blue) and direct filter (green data) for system sizes N = 10
(upper) and N = 12 (lower figure) together with the long time average values for
integrable (upper dashed lines) and near-integrable case (lower dashed lines). We
observe that the results belong to the coherent average (blue) and direct filter
(green) are slightly different for large δ values, and start agreeing as δ decreases
as expected (given by the derivation in Eq. 5.18 and Eq. 5.19), while incoherent
average values are converging slower to the long time limit, choosing a different
path from the other two.

In addition, the coherent average (blue) seems to detect the intermediate regime
showing a prethermal plateau, together with direct filter (green), which can be
seen more clearly in the insets. We see that both values seem to relax to the
long time limit of the integrable case (J, g, h) = (−1, 0.8, 0) for a while (upper
dashed lines in the insets) before reaching to the long time value of near-integrable
case (J, g, h) = (−1, 0.8, 0.08) (lower dashed lines in the insets). In contrast, the
incoherent diagonal ensemble does not seem to capture the prethermal window.
This is plausible since the incoherent average (given by Eq. 5.14) is expected to
apply for the cases with non-degenerate spectrum by definition.

Our preliminary results show the filters’ potential capabilities to answer different
questions and detect interesting dynamics. While here we leave further analysis
and numerical simulations for future works, in the following chapter we will be
discussing how to adapt the filtering technique to the time-dependent systems with
the purpose of exploring the prethermalization phenomenon there as well.
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Figure 5.4: Near-integrable Ising model: expectation value of local observables
σx at the middle of the chain as a function of the inverse width for system sizes
N = 10 (upper) and N = 12 (lower figure), starting with initial state |X+⟩.
Purple colors represent the incoherent average results (Eq. 5.14 in itemize-1),
blue colors indicate the coherent average (Eq. 5.16 in itemize-2) while green
ones show the direct filter (Eq. 5.17 in itemize-3) results. Grey dashed lines
belong to the long time average values of corresponding integrable case with
parameters (J, g, h) = (−1, 0.8, 0) (upper dashed) and near-integable case by a
small perturbation with longitudinal field (J, g, h) = (−1, 0.8, 0.08) (lower dashed
line).

5.3 Outlook

We have presented an alternative way of approximating the expectation values in
the diagonal ensemble by unifying two recent ideas given in [262] and [115, 128]:
staying with the idea of the Gaussian filter with Hamiltonian commutator which
was previously studied in Chapter 4, we have used another tool for our numerics to
approximate the effect of Gaussian filter which provides more efficient computations,
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allowing us to improve our understanding on thermalization and equilibration
dynamics in different system.

First, we have presented the promise of replacing the previous approximation
by Chebyshev polynomial series with the Cosine filter, in order to approximate
the Gaussian filter and simulate for the similar Ising model to cross-check. Even if
it is obvious that both approaches are expected to give quantitatively the same
results, the new approach has improved our algorithm efficiency by replacing the
evolution from mixed states to pure states. We have clearly demonstrated that
this improvement allows one to simulate further regimes with the latter procedure
(see Fig. 5.1).

Furthermore, we have tested this approach on a XXZ scenario, which has a higher
computational cost than the Ising chain and requires even more computational effort
in the former algorithm (Chebyshev filter). Additionally, we have preliminarily
performed computations for different instances such as a near-integrable Ising and
PXP model and concluded that this new tool allows us to examine other interesting
models as well.

Later, we have discussed whether this method can be utilized to find answers
for further questions. These questions have been related to characterizing diagonal
ensembles and noticing interesting behaviours in the long time limit such as
prethermalization and quantum scars concepts besides thermalization to Gibbs
ensemble for nonintegrable models or equilibration to GGE’s for integrable models.
Accordingly, we have studied two different models in isolated systems which reflect
different kinds of dynamics: prethermalization when breaking the integrability
and quantum scars in PXP model. Our preliminary results have given hints that
different dynamical behaviours in different models can indeed be detected by our
filtering procedures, which considerably ease the numerical implementation with
standard MPS techniques to treat and perform efficient simulations for larger
systems.

Moreover, although all our results are computed for one-dimensional spin chains,
these filtering procedures can in principle be applied to higher dimensions since
they do not make any assumption on the spatial dimension of the problem.

We leave more detailed analyses for future works. Also, we hope that this
inspires the search for other interesting approaches, that promise faster, but lower
computational effort.
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Part III

Prethermalization in Periodically
Driven Systems
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Chapter 6

Filtering for the Floquet diagonal
ensemble

Most of the content of this chapter is being prepared for a publication:

• “Filtering for the Floquet diagonal ensemble”
Sattwik Deb Mishra∗, Aslı Çakan∗, J. lgnacio Cirac and Mari Carmen Bañuls

In this chapter, our aim is to apply the efficient filtering technique, which is
formerly introduced in Chapter 4 to approximate the diagonal ensemble and made
use of in Chapter 5 for further investigations in time-independent systems, now
to a time-periodic setting. The main motivation is to explore the filter’s use to
probe non-equilibrium dynamics of time-periodic systems by approximating the
expectation values in Floquet version of diagonal ensemble which is previously
outlined in Chapter 3.2.

In the first part of this chapter, we present a route how the filtering idea of
the construction with the Hamiltonian commutator can be extended to the case of
a periodic time-dependent system. We could in principle proceed analogously as
introduced in Chapter 4, where the filtered state was explicitly constructed to obtain
a tensor network approximation of the diagonal ensemble. Instead, we proceed
with the more efficient approach which only targets observable expectation values
as we discussed in Chapter 5, where we also examined its potential capabilities
to answer different questions, including interesting short-time dynamics such as
prethermalization. We adapt here a periodic version of a Gaussian filter and, using
a Fourier transformation 1 of the filter, show that in the case of Floquet systems,
expectation values at stroboscopic times (i.e., multiples of the time period of the
Hamiltonian) can be used to approach the Floquet diagonal ensemble.

In the second part of this chapter, focusing on a non-integrable time-periodic
system that exhibits Floquet ETH and prethermalization, we analyze how the
filtered expectation value tends to the value in the diagonal ensemble as the
filter width is decreased, and whether the convergence behavior of the filtered
expectation value reveals a signature of the Floquet dynamical phenomenon of

1We notice that Fourier transform-based implementations of general functions of time-
independent Hamiltonians to approximate their ground states have been studied before [285–287].
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prethermalization. Finally, we conclude this part by summarizing our results and
discussing potential extensions of our work.

6.1 Filtering for periodically driven systems
As outlined in Chapter 3.2, for a system described by a time-periodic Hamiltonian
H(t) with period T , the Floquet operator, i.e., the propagator over one time period
T starting from t = 0, is defined as

UT := T exp

(
−i
∫ T

0

dt′H(t′)

)
, (6.1)

and the Floquet Hamiltonian HF is defined as the logarithm of the Floquet operator
UT ,

exp(−iHFT ) := UT . (6.2)

Let |εα⟩ be the Floquet states — the eigenstates of the Floquet operator UT
with corresponding eigenvalues e−iεαT . The Floquet Hamiltonian HF has the
same eigenstates as UT but its eigenvalues are not specified uniquely by Eq. (6.2);
the eigenvalue of HF corresponding to |εα⟩ can be εα + 2nπ/T, ∀n ∈ Z. We
consider the eigenvalues of the Floquet Hamiltonian, called the quasienergies, to
lie in [−π/T, π/T ) with the understanding that the spectrum can be considered as
having a period of 2π/T .

For time-independent Hamiltonians, as described in Chapter 3.1 and Chapter 4,
the diagonal ensemble for a given initial state is a density operator, diagonal in
the Hamiltonian eigenbasis, with the same probability as the initial state for each
energy eigenstate. Similarly, as described in Chapter 3.2 as well, the Floquet
diagonal ensemble is defined in terms of the overlap of the initial state of the
system |ψ0⟩ with the Floquet states |εα⟩ (as given by Eq. (3.8)),

ρDE =
∑
α

|⟨ψ0|εα⟩|2|εα⟩⟨εα|. (6.3)

In order to find efficient tensor network approximations for the expectation
values in the diagonal ensemble, we have employed two different filtering procedures
by now: the first procedure has been introduced in Chapter 4 to obtain an MPO
approximation to the diagonal ensemble of a time-independent system, by applying
a Gaussian filter of the Hamiltonian commutator to the initial density operator, to
suppress the off-diagonal elements as

f(HC ; δ) = e−
H2

C
2δ2 , (6.4)

where HC := [H, .] is the superoperator representing commutation with H. The
effect of this filter is approximated by a series of Chebyshev polynomials, constructed
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from the MPO representation of the Hamiltonian. The second procedure has been
introduced in Chapter 5 in which the same Gaussian filter above in Eq. (6.4) is
made use of but approximated by Cosine filter which leads to the computation
that directly targets the expectation value of (local) observables. Here, for the
Floquet scenario, we follow the same idea with the second procedure as we will be
arguing in the following subsection, since it allows us to perform a similar filtering
using only the well-defined evolution operator (see Section 5.1.1).

Based on the latter idea explained above, the expectation value of an observable
O in the Floquet diagonal ensemble (given in Eq. (6.3)) can then be approximated
by a similar way as explicitly given in Chapter 5.1, which results in the following
quantity,

⟨O⟩δ =
∞∑

m=−∞
cm ⟨ψ0|U †m

T OUm
T |ψ0⟩ , (6.5)

which is analogous of expression Eq. (5.7) in Chapter 5.1. In the expression
above Eq. (6.5), cm are Fourier series coefficients of a function fP (x; δ) which is a
2π
T
−periodic summation of Gaussians of width δ:

fP(x; δ) :=
∞∑

n=−∞
e−

(x−2nπ/T )2

2δ2 I
(
(2n− 1)π

T
≤ x <

(2n+ 1)π

T

)

=
∞∑

m=−∞
cme

−imTx, (6.6)

where I(.) is the indicator function which is unity if its argument is true and zero
otherwise.

6.1.1 Computation of local observables

To demonstrate the expectation value of local observables in Floquet case as given
in Eq. (6.5) more explicitly, let us start by introducing the filtered state obtained
by acting on the initial state with the following filtering superoperator,

ρδ = fP (HF,C; δ) [ρ0] , (6.7)

where HF,C := [HF, .] is the Floquet Hamiltonian commutator, in which the filter
construction here is reminiscent of the construction that we had in Chapter 5
(Section 5.1.1) with the difference that the filter function here is periodic in the
first argument.

As HF,C has eigenoperators |εα⟩ ⟨εβ| with corresponding eigenvalues εα − εβ,
the filtered state can be written in the basis of Floquet states as,

ρδ =
∑
α,β

fP (εα − εβ; δ)⟨εα |ψ0⟩ ⟨ψ0 |εβ⟩ |εα⟩ ⟨εβ| . (6.8)
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The differences of quasienergies lie in the open range (−2π/T, 2π/T ), so the action
of the filter Eq. (6.7) is to suppress terms in the sum above Eq. (6.8) that don’t
satisfy εα−εβ ≈ 0,±2π/T. Even though the Gaussian filter in here has extra peaks
at ±2π/T (as shown in Fig. 6.1), their contribution to the filtered state vanishes
in the limit of vanishing width δ. The remaining effect is that of the central peak
which precisely selects the diagonal terms and suppresses the off-diagonal ones.

Figure 6.1: Periodic Gaussian filter function (Eq. (6.6)) of the superoperator
HF,C = [HF, .]. HF,C has eigenoperators |εα⟩ ⟨εβ| with corresponding eigenvalues
εα − εβ ∈ (−2π/T, 2π/T ).

We now consider computing the expectation value of an observable in the
filtered state. Using the action of the exponential of the commutator,

e−iHF,CmTρ = eiHFmTρe−iHFmT , (6.9)

and the fact that the filtering operation is trace-preserving as in the time-independent
case shown in Chapter 5.1, we obtain,

⟨O⟩δ = TrOfP (HF,C; δ) [ρ0] (6.10)

=
∞∑

m=−∞
cm ⟨ψ0| eiHFmTOe−iHFmT |ψ0⟩ , (6.11)

=
∞∑

m=−∞
cm ⟨ψ0|U †m

T OUm
T |ψ0⟩ . (6.12)

Thus, expectation values in the state filtered by the periodic version of the Gaussian
filter can be calculated from the Floquet stroboscopic dynamics. As in Chapter 5.1,
the calculation of expectation values in the filtered state can be done by just
classical post-processing if each of the expectation values in the sum in Eq. (6.12)
can be obtained from a quantum simulation.
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As in the time-independent case, the expression above in Eq. (6.12) can be
approximated well by truncating the sum to −R ≤ m ≤ R :

⟨O⟩δ =
R∑

m=−R
cm ⟨ψ0|U †m

T OUm
T |ψ0⟩ . (6.13)

where the coefficients cm are given by the same expression as formerly described in
Chapter 5.1

cm =
1

2M

(
M

M/2−m

)
. (6.14)

Here, M = 1/T 2δ2, R = x/Tδ and x is a real constant. The runtime of a
quantum simulation to obtain the stroboscopic expectation values would be 2R
steps 2, illustrating the tradeoff between runtime and filter width. Similar runtime-
width dependencies have been studied in the case of time-independent systems in
Chapter 5.1 as well as in the use of cosine filters in Refs. [288–290].

We point out here that in the time-independent case in Chapter 5.1, the
Hamiltonian commutator in the Gaussian filter is rescaled by a factor α such that
its spectrum is contained in one fixed period of the filter, while here in time-periodic
case, the period is fixed by T and cannot be changed.

6.2 Numerical results

6.2.1 Model

We consider a periodically kicked Ising spin-chain [231, 291],

H(t) =
N∑
i=1

Bi(t) · σi +
N∑
i<j

∑
α,γ=x,y,z

Jαγij (t)σαi σ
γ
j , (6.15)

where σi = (σxi , σ
y
i , σ

z
i ) is the Pauli matrix of the ith spin, Bi(t) is the local

magnetic field at the ith site, and Jαγij (t) indicates the interaction between the
ith and jth spins. Here we focus on one particular case which is studied in [231]
with period T where the first half of the period is governed by H(t) = Hz and the
second half of the period is governed by H(t) = Hx. Explicitly, Hz and Hx are
defined as follows,

Hz =
N∑
i=1

[
−Jσzi σzi+1 +Bzσ

z
i

]
, (6.16)

Hx = Bx

N∑
i=1

σxi . (6.17)

We choose Hamiltonian parameters as (J,Bx, Bz) = (1, 0.9045, 0.809) for our
calculations, where this model is robustly non-integrable, and we assume open

2Notice that 2R is the number of evolution and measurements while the runtime R is for the
largest one only.
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boundary conditions. 12 specific choice of periods in range 0.81 ≤ T ≤ 1.51 is
considered to scan a region at around T ∼ 1, where the transition from prethermal
to fully thermalizing regime has been observed [231]. Further, for T ≥ 1, the
transient dynamics have been shown to be well approximated by a technique in
Floquet Magnus expansion (that we introduced in Chapter 3.2 with Eq. (3.7) and
will be further arguing below). Therefore, in this case, the Floquet operator, as
defined in Eq. (6.1), is

UT = exp(−iHxT/2) exp(−iHzT/2). (6.18)

For this particular choice of parameters, it has been shown that this model is non-
integrable and exhibits Floquet ETH [227, 231]. As discussed in Chapter 3.2, one of
the consequences of Floquet ETH is that generic non-integrable periodically driven
many-body systems are expected to heat up to infinite temperature in the long-
time limit since it postulates that all of the Floquet eigenstates are identical, and
indistinguishable from the infinite-temperature state, although several exceptions
exist which are listed in Chapter 3.2. Therefore, for local observables, the Floquet
diagonal ensemble in this case is indistinguishable from the maximally mixed
ensemble. In our simulations, we consider the same local observable σz1 as in
Ref. [231]—the z-component of the first spin on the lattice for which we thus expect
zero expectation value in the long-time limit.

6.2.2 Results

We numerically simulate the Floquet dynamics of the model described in Eq. (6.15)
with a particular choice of driving for system sizes N ∈ {20, 50}, using MPS
techniques. In addition, we cross-check results for small system sizes N ≤ 20 which
can be explored with exact diagonalization. We include here our results for system
sizes, N = 20 and N = 50. For N = 20, we compute the state at stroboscopic times
by approximating Floquet operator Eq. (6.18) using a Krylov-subspace method
(hereafter referred to as Arnoldi method) [292–294], which approximates the action
of UT onto the state directly. For the larger size (N = 50), we represent the Floquet
operator, UT Eq. (6.18), as a matrix product operator [51, 84, 88]. To calculate
the time-evolution from the initial state, we represent the state of the system
as a matrix product state [39, 48] that is truncated to a fixed bond dimension
after an application of the MPO representation of the Floquet propagator UT (see
Chapter 2.1 for detailed explanation). Here we carry out our numerical simulations
with bond dimensions 100 ≤ D ≤ 400 and observe that our results converge in
bond dimension D = 400.

In Fig. 6.2 we show the stroboscopic dynamics of the observable σz1 for two
different system sizes, N = 20 (left column), and N = 50 (right column, MPS
simulations with bond dimension D = 400), calculated for two different time
periods T = 1.02 and T = 1.15, each starting from the initial product state |Z−⟩
where all the spins are pointing down. For both the time periods shown, we
observe that the expectation value relaxes and plateaus first before increasing to
the infinite temperature value — this transient dynamical phenomenon has been
called prethermalization [231, 239].
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Figure 6.2: Expectation value of local observable σz1 at stroboscopic times t = mT ,
m ∈ {0, 1, . . . , 6 × 103}) starting from initial state |Z−⟩ = |1⟩⊗N as taken in
Ref. [231], for system sizes N = 20 (left column, computed by the Arnoldi method)
and N = 50 (right column, MPS simulations with bond dimension D = 400) for
different time periods T = 1.02 and T = 1.15 in a kicked Ising chain given by
Eq. (6.15). Here we show that prethermalization can be seen in the transient-time
dynamics same as observed in Ref. work [231]– ⟨σz1⟩(mT ) relaxes initially and
oscillates around a prethermal value before completely relaxing to the infinite
temperature value of zero.

The dynamical simulations described above allow us to approximate each of
the expectation value terms in the sum in Eq. (6.12) which we then multiply with
the filter coefficients to obtain the filtered expectation value. This procedure is a
classical simulation of a quantum algorithm as the stroboscopic time expectation
values could alternatively be obtained from a quantum simulator as proposed
in [289] (see also [290]).

In Fig. 6.3, we illustrate the action of the Gaussian periodic filter for the model
described above for the two system sizes N = 20 (left column) and N = 50 (right
column, MPS simulations with bond dimension D = 400). It can be seen from the
plots in the top row that, as expected, the filtered expectation value converges to
the expectation value in the infinite temperature ensemble (indicated by a black
dashed line) as the filter width δ decreases. Due to finite size effects for small time
periods (e.g. T = 0.81 for N = 20) the system does not satisfy Floquet ETH, i.e.,
it does not completely thermalize to the infinite temperature ensemble [295] and
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Figure 6.3: Expectation value of local observable σz1 based on the filter calculations
as a function of inverse width for system sizes N = 20 (left column, computed by
the Arnoldi method) and N = 50 (right column, MPS simulations with D = 400)
for time periods from T = 0.81 to T = 1.51 and initial state |Z−⟩ = |1⟩⊗N . Top row
indicates expectation value of σz1 in the state produced by the periodic Gaussian
filter as a function of inverse width δ, in which we observe slowly changing plateaus
in the convergence curves for time periods between T = 1.02 to T = 1.21 that are
the signatures of prethermalization. Bottom row shows finite difference gradient of
the Gaussian filtered expectation value. For time same periods between T = 1.02
to T = 1.21, the appearance of a plateau followed by a peak in the gradient with
decreasing filter width signals prethermalization which confirms the sensitivity of
our filtering procedure to intermediate dynamical behaviours.

the filtered expectation value does not approach zero as the width decreases.
Furthermore, we observe from the plots in the top row that the convergence

behavior to the diagonal ensemble varies with the time period. For smaller time
periods (e.g. T = 1.02) the filtered expectation value plateaus initially before
increasing to the infinite temperature value as the filter width decreases. In contrast,
for larger time periods (e.g. T = 1.15), the plateau is absent. We attribute this
effect to prethermalization occurring at smaller time periods. Prethermalization in
this model occurs because, if the period T is small enough, the dynamics produced
by the Floquet propagator UT is well approximated by a propagator generated
from a time-independent, local effective Hamiltonian that can be obtained from
truncating the Magnus expansion (see Eq. (3.7)) for the Floquet Hamiltonian after
a few terms as described in Chapter 3.2. For a total time mT the error of the
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truncated Magnus expansion can be bounded as [155, 158, 232],

∥Um
T − Um

eff∥ ≤ κmNTe−c/T , (6.19)

where Ueff = e−iHeffT , Heff is the effective local Hamiltonian, and c is a constant
independent from N and T . Thus, in finite size systems and for a time that
scales exponentially with the driving frequency, the effect of the evolution is
approximately that of the local Hamiltonian and, correspondingly, the expectation
values of observables can be well approximated by the ones that would be obtained
evolving with the latter, with an error that scales with m,N, T as in Eq. (6.19). The
filtered expectation values Eq. (6.12) are computed from stroboscopic observations
at times up to O(1/δ). For a period T that exhibits prethermalization, when δ is
not too small, the filtered expectation value Eq. (6.12) is mostly decided by the
dynamics generated by the effective Hamiltonian, and hence, tends to converge,
in the generic case and in the limit of small δ, to a thermal value at a certain
inverse temperature β determined by the energy (w.r.t. Heff) of the initial state.
Thus, the slowly changing plateaus at intermediate δ in the convergence of the
filtered expectation value in the top row of Fig. 6.3 arise from the combination of
prethermalization, i.e. the convergence to the thermal value w.r.t. Heff, with an
additional error that grows (at most) linearly in the stroboscopic time index m.

A possibly clearer signature of prethermalization can also be found by looking
at the rate of change of the filtered expectation with the filter width. The lower row
in Fig. 6.3 shows the finite difference gradient of the filtered expectation value as
the filter width changes. For time periods between T = 1.02 to T = 1.21 for which
prethermalization occurs, (the magnitude of the) gradient drops after the initial
relaxation and plateaus to a small value corresponding to the prethermal regime,
then it increases, signifying the start of relaxation to the infinite temperature
ensemble, and finally it drops to zero as the relaxation to infinite temperature
becomes complete.

Although we have considered a Gaussian filter function so far, the method
of defining a periodic filter function and using its Fourier decomposition can
be generalized to any other functional form. An example is stroboscopic-time
averaging, defined by cm = 1/(R + 1) for 0 ≤ m ≤ R and cm = 0 otherwise, which
corresponds to the filter function

favg(x;R) =
eiRTx/2

R + 1

sin((R + 1)Tx/2)

sin(Tx/2)
, (6.20)

where we plot the result of this average in Fig. 6.4 and its convergence to the
diagonal ensemble with increasing averaging window length parameter R. We
observe that this stroboscopic-time average also exhibits prethermal plateaus, but
they are noisier in comparison to the Gaussian filtered expectation value— we
attribute this to the oscillations in the corresponding filter function favg(x;R) as
opposed to the more monotonic nature of the Gaussian filter function.
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Figure 6.4: Convergence of the stroboscopic-time average of local observable σz1
with increasing averaging window length parameter R as given in Eq. (6.20), for
system sizes N = 20 (left plot, computed by the Arnoldi method) and N = 50
(right plot, MPS simulations), time periods from T = 0.81 to T = 1.51, and initial
state |Z−⟩ = |1⟩⊗N . Prethermal plateaus are also visible in this case, but are
noisier compared to the Gaussian filter.

6.3 Discussion

We have shown how the filtering algorithms that we presented in Chapter 4 and
Chapter 5 can be applied to systems with a time-periodic Hamiltonian in order to
approximate expectation values in the Floquet diagonal ensemble. By formulating
the filter as a function of the Floquet operator, we obtain a periodic version
of a Gaussian filter operator, that can produce the Floquet diagonal ensemble
in the limit of vanishing Gaussian width. As in Chapter 5, expectation values
of observables in the filtered state can be calculated from measurements of the
expectation value of the observable at periodic time instances, i.e. without explicitly
constructing the filtered state.
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We numerically demonstrated the filtering technique using tensor network
dynamical simulations of a non-integrable spin-chain model exhibiting Floquet
ETH and prethermalization. We observed that as the filtered expectation value
of an observable converges to the infinite temperature value with decreasing filter
width, it displays signals of prethermalization at intermediate widths. The Gaussian
filtering technique can be considered as an alternative to taking the stroboscopic
time-average to obtain the long-time limit of Floquet dynamics in which we observed
in our comparison of these approaches that the signature of prethermalization is
clearer (less noisy) in the results of filtering technique.

Interesting directions for future work include studying the behavior of our
filtering approach in systems which approximate emergent symmetries even when
an effective Hamiltonian approximation cannot be made [241] or the initial state is
at a high or infinite temperature [242].

While our calculations are done with classical (tensor network) methods, which
limits the minimal filter width that can be reached, a quantum version of the
algorithm, analogous to [289, 290], would be capable of exploring narrower filters
or higher dimensional problems in the future.

The periodic filter construction Eq. (6.6) can also be modified to work directly
with Floquet eigenstates (instead of the diagonal ensemble) as its argument. Fil-
tering Floquet eigenstates with arbitrarily small quasienergy variance is similar
to an approach for time-independent systems [288]. We expect that restricting
the stroboscopic observations required in this direct filtering approach to the
prethermal window could enable the study of ground state or thermal properties
of the prethermal effective Hamiltonian through the Floquet dynamics — another
interesting avenue for future inquiry.

Finally, we point out again that the periodic filter construction method can be
adapted to study other functions, besides Gaussians, of the Floquet Hamiltonian
and its commutator. We hope that this encourages the search for other interesting
filters for Floquet quantum systems.
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Part IV

Thermodynamic Ensembles
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Chapter 7

Alternative Ensembles for Tensor
Networks

Most of the content of this part is contained in:

• “Variational Approximations of Thermal States for Tensor Networks”
Giacomo Giudice, Aslı Çakan, J. lgnacio Cirac and Mari Carmen Bañuls
Phys. Rev. B 103, 205128 (2021)

In this chapter, we turned our attention to dynamics in thermal equilibrium for
which we aim to construct alternative ensembles that respect the same constraints
as the Gibbs ensemble. We analyze the properties of such ensembles, in particular
how they approximate the thermal properties, and present several variational
algorithms which can be used to compute them.

More explicitly, the Gibbs state, ρG = 1
ZG
e−βH , describes the thermal equilib-

rium at a given temperature. It is the ensemble that maximizes the von Neumann
entropy, S(ρ) = −tr(ρ log ρ), at a given energy, which can equivalently be expressed
by the minimization of the free energy,

F (ρ) = tr(Hρ)− 1

β
S(ρ). (7.1)

Here, the alternative thermodynamic ensembles that we study, instead of the von
Neumann entropy, maximize the α-Rényi entropy [296],

Sα(ρ) =
1

1− α
log trρα (7.2)

at a fixed energy. In the limit of α → 1, Sα reduces to the von Neumann entropy.
By replacing the von Neumann entropy in Eq. (7.1) by a Rényi entropy, we define
a Rényi free energy :

Fα(ρ) = tr(Hρ)− 1

βα
Sα(ρ). (7.3)

In the first part of this chapter, we demonstrate how this new ensemble, which
minimizes the Rényi free energy in Eq. (7.3), reproduces all local expectation
values in the thermodynamic limit although in general the extremizer ρα of this
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function is not the thermal ensemble. The parameter βα is not, in general, related
to the conventional inverse temperature β, but should be treated as a constant
for the optimization. We discuss from a TN perspective that the definition in
Eq. (7.3) offers the possibility of directly performing a minimization, since the
Rényi entropies in Eq. (7.2) are efficiently computable—at least for small integer
values of α. Accordingly, we consider the most convenient case α = 2, for which
Eq. (7.3) becomes

ρR := argmin
ρ⪰0

FR, FR(ρ) = tr(Hρ) +
1

βR
log trρ2, (7.4)

where the subscript R represents α = 2. In other words, optimizing Eq. (7.4) is
equivalent to finding the most mixed state at a chosen energy.

In the second part of this chapter, we discuss the difficulties of the optimization
of such a function as given in Eq. (7.3) in many-body quantum physics since the
dimension of ρ increases exponentially with the system size which makes such
approaches impractical for large systems. We introduce an optimization strategy
based on uniform MPS, in order to approximate the purification of ρR directly
in the thermodynamic limit. This non-linear optimization can be accelerated
using state-of-the-art techniques [297] by restricting it to the Grassmann manifold.
This is discussed in detail in Sec. 7.2.1, and accompanying numerical experiments
to benchmark the algorithm are presented. Moreover, we present an alternative
technique, based on a non-linear evolution of the density operator in Sec. 7.2.2,
which flows towards the desired ensemble. To conclude, we finalize this chapter by
discussing possible developments.

7.1 Ensemble with Maximal 2-Renyi Entropy

Here we start by introducing the analytical form of the extremizer of Eq. (7.3),
which has been previously derived for classical distributions [298–300]. We can use
this result in the quantum case noticing that the state that minimizes Eq. (7.3)
must be diagonal in the energy eigenbasis {|Ek⟩} and thus its eigenvalues are
equivalent to a probability distribution.

In order to find the coefficients {pk} in the density operator ρ =
∑

k pk |Ek⟩ ⟨Ek|,
ρ ⪰ 0 which maximizes the Rényi entropy Eq. (7.2) under the constraints trρ = 1
and tr(Hρ) = Ē, we introduce the Lagrange multipliers βα and γα. The functional
L is then

L(ρ) =
1

1− α
log
∑
k

pαk − γα

(∑
k

pk − 1

)
− βα

(∑
k

Ekpk − Ē

)
. (7.5)

At the stationary point, the parameter γα can be eliminated [298], and we obtain
the maximal Rényi ensemble (MRE):

ρα =
1

Zα

ΠE⊥

(
1− βα

α− 1

α
(H − Ē)

) 1
α−1

ΠE⊥ , (7.6)
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where Zα is a normalization factor and ΠE⊥ is a projector onto the eigenvalues
below a cutoff energy E⊥ := α

β(α−1)
+ Ē:

ΠE⊥ = Θ(E⊥ −H),

Zα = tr

[
ΠE⊥

(
1− βα

α− 1

α
(H − Ē)

) 1
α−1

]
, (7.7)

where Θ(·) is the Heaviside function. Symmetrically, there is also a solution with
a projector onto energies above the cutoff energy: E > E⊥ which represents the
Rényi-equivalent of negative temperatures as we will illustrate this region for a
comparison in the following.

Initial test and benchmarks: Here, we focus on 2-Rényi case for our tests and
benchmarking. Therefore, we take α = 2 in the expression Eq. (7.6) and we obtain
the maximal 2-Rényi ensemble as,

ρR =
1

ZR

ΠE⊥

(
1− βR

2
(H − Ē)

)
ΠE⊥ . (7.8)

-25 -20 -15 -10 -5 0 5 10 15 20 25

and T

-25

-20

-15

-10

-5

0

5

10

15

E
n
e
rg

y

Ising type (parallel+transverse field)

E( )

E( )

N=10, h=1, g=1

Branch 2

Branch 1

-25 -20 -15 -10 -5 0 5 10 15

Energy

0

1

2

3

4

5

6

7

8

9

10

E
n

tr
o

p
y

Ising type (parallel+transverse field)

S
2
( )

S
1
( )

S
2
( )

S
1
( )

N=10, h=1, g=1

Figure 7.1: Left figure indicates the relation between the energy Ē and the
parameters T (temperature in Gibbs ensemble) and µ (E⊥) for a non-integrable
Ising model with parameters (J, g, h) = (1, 1, 1) in Eq. (7.15) and system size
N = 10. Pink colors indicate the exact results computed by the Gibbs ensemble
while blue colors showing the results of the exact calculations based on the 2-Rényi
ensemble given in Eq. (7.8). Branch 1 indicates the case where the eigenvalues are
below the cutoff energy µ > E, while Branch 2 represents the region above the
cutoff energy µ < E, which corresponds to the negative temperatures in Gibbs
ensemble. Right figure shows the behaviour of entropy as a function of energy
for the same case. We illustrate both von Neumann (green) and 2-Rényi entropy
(pink) calculations based on both ensembles. Circles belong to the Gibbs ensemble
based results and stars represent the 2-Rényi ensemble based ones.
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Here we again consider a non-integrable instance of the Ising model as we have
studied in the previous chapters and also present the model here in Eq. (7.15), in
which we choose the parameters as (J, g, h) = (1, 1, 1) for our comparisons.

In Fig. 7.1, we indicate E⊥ = µ and provide our comparative results based on
the exact calculation of both Gibbs and 2-Rényi ensembles for system size N = 10.
In the left figure, we present the relation between the energy and the parameters,
T and µ, where T is the temperature in Gibbs ensemble. Pink circles indicate
the calculations based on the Gibbs ensemble, while blue circles belong to the
calculations based on the 2-Rényi ensemble.

Branch 1 indicates the case where the eigenvalues are below the cutoff energy
E < E⊥, while Branch 2 represents the region above the cutoff energy E > E⊥,
which is equivalent of negative temperatures as illustrated in Fig. 7.1. We observe
that T and µ become equivalent for the same energy when Ē → 0, while they differ
very much for the same energy values when Ē → Emax(Emin).

We also analyze the relation between the energy and entropies which can be seen
in the right panel in Fig. 7.1. Starred data points belong to the calculations based
on the 2-Rényi ensemble while the circles are based on the Gibbs ensemble. Green
ones represent the von Neumann entropy which we labelled as S1 and the pink
ones are 2-Renyi entropy labelled as S2. We observe that both ensembles concide
in the limits when Ē = Emin and Ē = Emax, and the curves behave qualitatively
similar.

Further tests together with larger system sizes: To visualize the behavior
of Eq. 7.6, we demonstrate some characteristcs of the different ensembles in a
particular finite case in Fig. 7.2. In panels (a–b) we illustrate the distribution of ρ
relative to the eigenbasis. The MRE has a distinctive cutoff energy, beyond which
the distribution is zero and therefore quite different from the case of the canonical
ensemble. However, in a many-body system, we need to take into account that the
density of states is non-uniform, but becomes increasingly peaked in the middle of
the spectrum. Then the distributions which are weighted by the density of states,
become much more similar, as seen in panel (b).

In Fig. 7.2(a–b) we explicitly demonstrate, the comparison of von Neumann
and 2-Rényi entropies for the ensembles that maximize each of them over the
whole energy range for a small system size. As observed in the initial test given in
Fig. 7.1, while the behavior is qualitatively similar, both ensembles only agree in
the limiting cases Ē = 0, when the state is maximally mixed (corresponding to
the Gibbs ensemble at infinite temperature β = 0) and Ē = Emin (Emax), when
the ensemble reduces to the ground (maximally excited) state, corresponding to
β → +∞ (−∞).

In order to explore the behavior at large system sizes, we consider an exactly
solvable case of Ising model given in Eq. (7.15) with the parameter choice as
(J, g, h) = (1, 0, 0.5). We present the corresponding results in Fig. 7.3, in which
only the largest size N = 500 is demonstrated for the Gibbs ensemble since there
is no visible difference in the curves for ρG.

In panels (a) and (b) of Fig. 7.3, we observe that, as the system size increases,
the von Neumann entropy density of the Rényi ensemble approaches that of the
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Figure 7.2: (a) Distribution p(E) of the Maximal Rényi and Gibbs ensembles
for different values of α for the Ising model in Eq. (7.15), with longitudinal
and transverse fields (J, g, h) = (1,−1.05, 0.5) and system size N = 10 (PBC).
The mean energy Ē is fixed at −1/4 of the width of the spectrum. (b) The
same distributions weighted with the corresponding density of states D(E), from
the approximation in Ref. [301]. Below, the von Neumann (c) and 2-Rényi (d)
entropies for the canonical (solid line) and 2-Rényi (dashed line) ensembles are
compared at a given mean energy density, for the same system size and Hamiltonian.
In both cases, the asymptotic behaviors limβ→0 S = limβR→0 SR = N log 2 and
limβ→±∞ S = limβR→±∞ SR = 0 are recovered. The branch with negative (positive)
mean energy density corresponds to a β > 0 (β < 0), corresponding to a solution
with a projector onto energies below (above) the cutoff energy E⊥.
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Figure 7.3: (a–b) Von Neumann and 2-Rényi entropies compared to the mean
energy density, for the (classical) Ising model with (J, g, h) = (1, 0, 0.5). (c)
Comparison of β and βR as a function of the mean energy density for the largest
size N = 500.

Gibbs ensemble 1. The Rényi entropy difference ∆sR instead increases with system
size.

For this choice of parameters, the density of states becomes Gaussian, and it
is interesting to see that the Rényi ensemble has a von Neumann entropy which
approaches the Gibbs state, and hence will have a free energy (see Eq. (7.1)) which
increasingly approaches its maximal value. However, the same cannot be said for
the Rényi free energy introduced in Eq. (7.3).

In Fig. 7.3 (c), we show the behaviour of β and βR as a function of the mean
energy density in which they agree well, and we will be further discussing in
Sec. 7.2.1.

7.1.1 Equivalence of local observables

We consider a one-dimensional quantum system described by a local Hamiltonian
H, an operator in the complex Hilbert space H. This total Hilbert space is formed
by the tensor product of N local Hilbert spaces

H =
N⊗
n=1

Hn . (7.9)

The Hamiltonian is restricted to be ℓ-local, i.e. it can then be written in the form

H =
N∑
n=1

hn, (7.10)

1Since the eigenvalues correspond to only a number of discrete energies, oscillations occur at
finite sizes.

80



where each hn acts non-trivially only on sites n, . . . , n+ℓ−1, and has finite operator
norm. In addition, we will assume that almost all local terms satisfy ∥hn∥op > 0,
such that the spectrum of H is extensive. We mostly consider infinitely-large
systems, but when considering finite systems, we specify either open boundary
conditions (OBC) or periodic boundary conditions (PBC).

In this setting, it is straightforward to see that the density of states

D(E) = tr[δ(H − E)] (7.11)

has a variance which scales as O(
√
N). It can be shown that D(E) becomes

Gaussian in the thermodynamic limit for specific models, such as strictly 1-local
Hamiltonians. Under the assumption of a Gaussian density of states, we can
then compute the variance of the energy when we take into account the energy
distribution of the ensemble. In the case of the 2-Rényi entropy, it turns out that
this can be computed exactly. As described in Appendix of ref. [302], in both
cases the variances scale as O(N). Hence, if we think about the normalized energy
spectrum, both distributions will be increasingly peaked around the same Ē = ⟨H⟩
with a standard deviation O(1/

√
N) for large N . Hence, the expectation values of

local observables become equivalent in the thermodynamic limit. This derives from
the correspondence between microcanonical and canonical ensembles [303]. While
there exist counterexamples to this correspondence, a sufficient condition for it to
hold is that the energy per site converges to a constant [304, 305]. Note that while
this argument has been carried out for a Gaussian density of states, we believe
that it can be extended to the general case as long as the Hamiltonian is local.

A couple of final remarks are in order. First, we obtain a correspondence βR → β
which holds in the thermodynamic limit, at least in the case of α = 2. This holds
asymptotically for large βR and the range of validity of this approximation increases
with system size. Hence, the βR for which the Rényi ensemble has the same energy
density Ē as a Gibbs ensemble turns out to be the same as the inverse temperature β.
Second, this can be shown in the case of a Gaussian density of states (see Appendix
of ref. [302]), and we numerically observe in both integrable and non-integrable
models as we will be discussing in the following Sec. 7.2.1. This is somewhat
surprising, since there is no connection between the parameters describing the two
different ensembles. However this correspondence is convenient to approximate a
thermal ensemble, since we may as well take βR to be the inverse temperature.

7.2 Variational algorithms for approximating the
Rényi ensemble

In this Section, we introduce two different possibilities to obtain numerically the
Rényi ensemble in Eq. (7.6). Although we have a closed form for the exact solution,
its use in a many-body setting is impractical because it would require knowledge
of the full energy eigenbasis or of the projector in Eq. (7.6). This motivates the
formulation of methods compatible with tensor network techniques.

In the first part of this section, we study how uniform matrix product states
can be used to form a purification which represents the density matrix, and its
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individual tensors can be optimized directly by using techniques from Riemannian
optimization. In the second part of this section, we introduce a non-linear evolution
which has Eq. (7.6) as a fixed point, so that any arbitrary state can be brought to
the desired one by simulating this evolution for a sufficient amount of time.

7.2.1 Minimization on the MPS manifold

The optimization problem in Eq. (7.4) can be restricted to the manifold of states
described by some class of tensor networks. In particular MPS are arguably the
most effective ansatz to represent ground states of local, gapped Hamiltonians in
one dimension [77, 81, 93, 306]. We consider a uniform MPS 2:

|Ψ(A)⟩ =
∑
s⃗

tr (. . . Asn−1AsnAsn+1 . . . ) |s⃗⟩ , (7.12)

where |s⃗⟩ = |s1, . . . , sN⟩.
As discussed in Chapter 2.1.1, quantum-mechanical operators can be cast

into MPO form [42, 43, 307], which is composed of rank-4 tensors contracted
sequentially for which the graphical representation is given in Fig. 2.1.1. The
key point of the construction is that it is difficult to ensure positivity, which is a
necessary condition for objects like density operators. The issue is that positivity
is a global property, which cannot be captured in the local tensors [308–310]. Even
though the stationary points of dissipative dynamics [311, 312] has been successfully
approximated with the use of an MPO ansatz, it is challenging for a variational
method since there is no way to vary the local tensors without compromising
positivity.

An alternative way is to introduce a locally purified state [42, 308, 313], which
ensures the positivity of the operator for any local tensor. The idea of the
construction is as follows: one considers a pure state, where each site has twice
the degrees of freedom, which we call system and ancilla. We find a ladder-like
tensor network by tracing out the ancillary degrees of freedom, which represents
the density matrix ρ = tranc |Ψ⟩ ⟨Ψ|. Even if the objective function is quadratic
in ρ, as in Eq. (7.4), it will be quartic in the local tensors due to the fact that we
have introduced a non-linearity in ρ with respect to the local tensors As. Thus we
cannot use linear algebra to iteratively optimize the local tensors, as in the case of
DMRG [33]. However, we can consider the problem in Eq. (7.4) as a non-linear
optimization over the tensors of an MPS.

In order to optimize a generic function f(A) using any gradient-based opti-
mization, we must be able to compute the gradient with respect to the parameters
in A and project it onto the tangent space of the Grassmann manifold. The
optimization of differentiable functions on Riemannian manifolds has been the
object of extensive studies in mathematics and recently these techniques have been
applied to tensor networks [297]. The key ingredients of this optimization can be
found in Appendix of Ref. [302].

2In this Section we focus on uniform MPS for simplicity, but the method can be applied to
finite MPS as well.

82



Figure 7.4: Expectation values of local observables σz in panel (a) and next-
neighbor correlation Γz,z in panel (b) as a function of the mean energy per particle
for the Ising model with parameters (J, g, h) = (1, 1.5, 0) based on exact (dotted
black lines) and MPS calculations with different bond dimensions D = 4, 8, 12, 16.
In (c–d), comparison of the absolute errors and the exact solution is illustrated. No
spontaneous symmetry breaking can occur at finite temperature in one-dimensional
systems with local interactions—we therefore explicitly enforce the Z2 symmetry
in the tensors.

For our application, the objective function is given by Eq. (7.4). For the uniform
MPS of Eq. (7.12), it reduces to

fR :=
FR
N

= ε+
1

βR
log η, (7.13)

where ε = tr(Hρ)/N is the energy per site and η = (trρ2)
1/N is the purity per

site. Both these terms are computable with standard tensor network routines in
polynomial time, for uniform MPS as well as finite MPS. The gradient of Eq. 7.13
with respect to A is

∂fR
∂A

=
∂ε

∂A
+

1

βRη

∂η

∂A
. (7.14)
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We thus use this gradient information to perform the optimization on the Rieman-
nian manifold using the l-BFGS algorithm [314, 315].

To conclude, we note that gradient methods are not expected to ensure in
any way convergence towards the global minimum, but only some local minimum.
While Eq. (7.4) has a unique solution in the cone of the positive operators, the same
is not expected to happen on a uniform MPS manifold of fixed bond dimension.

Figure 7.5: Average energy from Fig. 7.4 with the choice of βR = β.

Numerical experiments

For our numerical experiments, we consider the Ising model as in the previous
chapters,

HIsing = J
∑
i

σ[i]
z σ

[i+1]
z + g

∑
i

σ[i]
x + h

∑
i

σ[i]
z . (7.15)

In the case of absence of the longitudinal field (h = 0), the model is integrable, and
local observables and correlations have a closed form [316, 317]. We use this model
to perform the optimization of Eq. (7.4) as described in Sec. 7.2.1. The parameter
βR is fixed to different values in the interval βR ∈ [0, 2], and the uniform MPS is
optimized until the gradient is small enough 3.

In Fig. 7.4, we have shown the results of the optimization, plotting some local
observables such as the expectation value of ⟨σzi ⟩ and next-neighbor correlation
Γa,b = ⟨σai σbi+1⟩ − ⟨σai ⟩ ⟨σbi+1⟩ as a function of the mean energy density of the
ensemble. We increase the number of the free parameters by increasing the
bond dimension, and we observe that the numerical results converge towards the
thermal ones. In addition to that, we have shown the comparison of the thermal
observables by setting βR = β in Fig. 7.5. Up to βR ≲ 2, we observe that there is a
correspondence between the two ensembles at βR = β. For βR ≳ 2 the optimization

3The optimization halts after the norm of the gradient vector in tangent space is smaller than
10−6.
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Figure 7.6: Expectation value of local observable σx in panel (a), σz in panel
(b) and nearest-neighbor correlations Γx,x in panel (c) and Γz,z in panel (d) are
given as a function of the mean energy density for the non-integrable case with
(J, g, h) = (1,−1.05, 0.5). The dotted line corresponds to the results given by the
iTEBD algorithm.

of Eq. (7.13) converges to the ground state exactly, in particular at small bond
dimensions.

In order to explore the physics of finite temperatures, it is therefore more
convenient to reexpress the optimization problem in Eq. (7.4) by introducing a
Lagrange multiplier

ρ∗ = argmin
ρ⪰0

{
trρ2 +

λ2

2

(
tr(Hρ)− Ē

)2}
. (7.16)

The gradient can be modified accordingly, and the non-linear optimization can be
performed in a similar way. This new objective function gets rid of the dependence
on βR, and one can directly choose an energy to target, since limλ→∞ tr(Hρ∗) = Ē.
However, if one wishes to explore the behavior of some observable with respect to
Ē, it is not necessary to perform the extrapolation with λ→ ∞, but a finite λ is
adequate to find an energy in the vicinity of the desired value 4.

4In our simulations, we set λ = 10. Since the purity per site 0.5 ≤ η ≤ 1 is order 1, we expect
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We also would like to note here that the method is general and independent
of whether the system is integrable or not. To complete our benchmarks, we
consider a non-integrable instance as well, introducing a longitudinal field and
present our results in Fig. 7.6. In this case exact results are not known, but
our results are compared to those of an MPS approximation to the Gibbs state
purification obtained with a traditional imaginary time-evolution method [42, 49].
Since the model does not have a finite-temperature phase transition, the method
will behave similarly for any value of the fields. In the case of (J, g, h) = (1, 1, 0),
the required bond dimension is expected to increase when β → ∞, as the critical
ground state is approached [318–321]. In this regime, the cost function in Eq. (7.4)
will be dominated by the energy term. Hence the algorithm is reduced to an energy
minimization, and we expect it to behave equivalently to other variational methods,
such as the one proposed in Ref. [297].

7.2.2 Non-linear evolution

In Ref. [322], a non-linear evolution was introduced with the purpose of approxi-
mating the thermal ensemble with Gaussian states. Following the same idea, here
we generalize this non-linear evolution for the Rényi entropies, which leads us to
an evolution that is efficiently computable with tensor network techniques.

Let us start by considering a non-linear evolution of a density operator ρτ which
depends on a real parameter τ

ρ̇τ :=
∂ρτ
∂τ

= −1

2
{Jτ − ⟨Jτ ⟩ , ρτ} . (7.17)

The operator Jτ can be chosen such that the fixed point of this evolution leads to
the MRE. For instance, the choice

Jτρτ = βRH +
2

trρ2τ
ρτ (7.18)

ends up with the same density operator as Eq. (7.4). The similar proof given in
Ref. [322] can be followed, and it is sufficient to demonstrate that the operator Jτ
in Eq. (7.18) satisfies the following criteria:

trρτ = 1, ∀τ ∈ R Trace conservation (7.19a)
ρτ ⪰ 0, ∀τ ∈ R Positivity conservation (7.19b)
∂fR(ρτ )/∂τ ≤ 0 Free energy decrease (7.19c)

Hence, choosing an appropriate density operator ρ0 and integrating Eq. (7.17) over
a sufficiently long interval, we find the solution to Eq. (7.4), since its value can only
decrease with time. It is not ensured that one can reach the global minimum—and
indeed any eigenstate of H does not evolve under Eq. (7.17)—but a random choice
of the initial state should be sufficient in most cases.

We illustrate some numerical experiments performed on small system sizes in
Fig. 7.7, where the energy eigenbasis is available. In all cases the numerically

deviations in energy density around O(1/λ2).
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Figure 7.7: 2-Rényi entropy of the maximal Rényi ensemble results based on the
analytic solution (solid lines) and nonlinear evolution (points). Results are obtained
for the Ising model (OBC) in Eq. (7.15) with longitudinal and transverse fields
(J, g, h) = (1,−1.05, 0.5). We also show numerical results for N = 20 (triangles)
based on the non-linear evolution with MPS.

integrated density operator converges to the ensemble in Eq. (7.6). The evolution
is discretized by expanding Eq. (7.17) to first order,

ρτ+δτ ≈ e−
δτ
2
(Jτ−⟨Jτ ⟩)ρτe

− δτ
2
(Jτ−⟨Jτ ⟩). (7.20)

If the time step is chosen to be sufficiently small, then this evolution will converge
to the desired fixed point. This is witnessed by the fact that the Rényi entropy
reaches the theoretical maximum for each mean energy, as shown in Fig. 7.7. As a
proof of concept, we also perform the integration using MPS, in particular using
the TDVP scheme [323, 324] to update the state at each time step. However, in
practice, we experience that the time step required to achieve accurate results
scales unfavourably with the system size, and we have yet to fully understand if
the evolution becomes ill-conditioned for large system sizes. Nonetheless, it might
be possible to treat it by different integration schemes which allow for large time
steps without compromising the stability of the evolution. We leave more detailed
analyses for future works.

7.3 Discussion

We have presented a new approach to compute thermal expectation values instead
of simulating the conventional imaginary time-evolution based on the Gibbs state
purification. Here, we construct an alternative ensemble which maximizes the
2-Rényi entropy for the same mean energy, and is expected to reproduce local
observables of the corresponding Gibbs ensemble in the thermodynamic limit.
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We have demonstrated that this ensemble can be efficiently approximated using
MPS techniques. To this end, we have presented variational algorithms to find such
an approximation, in which it is possible to work directly in the thermodynamic
limit and use an MPS representation of the ensemble that optimizes the Rényi
free energy in Eq. (7.4). Although this function seems to have a simple form,
the optimization is non-linear and one possible way to tackle it is to approach
by gradient-based methods. Since the positivity constraint in tensor networks is
highly non-local, one needs to consider additional tools to treat it: one possible
way of enforcing it is by means of a purification. The convergence can be improved
with techniques based on manifold optimization, but suffers from a fundamental
limitation, having the high contraction cost. Indeed, for a purification of bond
dimension D, the time-complexity occurred by the computation of the purity is
O(D5), which is significantly higher than the typical O(D3) for other popular
MPS algorithms, such as time evolution or ground state search. Incidentally, the
former is the same leading cost of the original formulation of DMRG with periodic
boundary conditions [61]. Further, we observe that moderate bond dimensions are
sufficient to study the ensemble and its local properties both in integrable and
non-integrable models in spite of the higher time-complexity.

Alternatively, we have also adapted a method based on a non-linear evolution of
the density operator. Under this evolution, we observe that the Rényi free energy
is monotonically decreasing, and hence flows to the maximal Rényi ensemble.

The ideas outlined here could be applied to other wave-function ansätze. Re-
cently, variational Monte Carlo techniques have been used to optimize neural
networks to describe the steady state of dissipative dynamics [325–328]. Such
techniques could also be adapted here to perform the optimization described in
this chapter, which can be an option for further inquries.
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Part V

Conclusions
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Chapter 8

Summary and outlook

Throughout this dissertation, we have studied the application of novel tools to
challenging problems in quantum many-body physics using tensor network methods.
Our studies are focused around thermalization, equilibration and prethermalization
problems of isolated quantum many-body systems in one dimension, and tensor
networks provided powerful approximations to those problems with desirable
properties that allow to probe moderately large systems.

On the one hand, we have shown that the standard MPS techniques when
combined with sensible methods are adequate tools to explore the thermalization
and equilibration concepts in one-dimensional isolated systems. To this end, by
constructing a filtering method which includes a Gaussian operator of Hamiltonian
commutator with the purpose of suppressing the off-diagonal components of the
density operator, first we have examined a non-integrable spin chain for which we
approximated the diagonal ensemble as a MPO. By assisting our numerics in MPS
simulations with the use of a Chebyshev polynomial series which approximates
the Gaussian filter, we have shown that expectation values of local observables
converge towards their thermal values polynomially with the inverse width of the
Gaussian filter. Our results show that simulating larger systems with moderate
off-diagonal width is possible although the results of small systems indicated the
scaling of the operator space entanglement entropy of the diagonal ensemble as a
volume law, which limits the system sizes for which we can have a reliable MPO
approximation.

Moreover, taking the advantage of the fact that the filtering procedure we have
proposed is not limited to the generic cases since it does not directly target the
diagonal ensemble but the time-average limit, we have also explored the feasibility
of this method on an integrable spin chain where we have explicitly demonstrated
that local observables converge to considerably different values from the thermal
equilibrium ones as expected. Furthermore, we have observed a similar convergence
behaviour for both non-integrable and integrable models, in which the curves for all
system sizes fall on top of each other, i.e., the convergence behaviour is independent
of the system size. These findings from our studies provide in this way insight
beyond exact diagonalization even for moderate filter widths.

On the other hand, we have alternatively studied by the way of replacing
the previous approximation of Gaussian filter by Chebyshev polynomial series
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with the Cosine filter for the purpose of approximating the expectation values
in the diagonal ensemble, and concluded that it allows us directly to compute
the expectation value of observables in diagonal ensemble without constructing
the diagonal ensemble as an MPO. In addition, when the expectation value of
local observables is the point in question, our comparative results based on both
approaches for similar models show that we can simulate further regimes reaching
much narrower widths due to the considerable reduction of computational cost in
the latter procedure.

Based on our findings, which give evidence that the proposed filtering procedure
is reliable enough to explore different dynamics of different kinds of models, we
have studied further questions which have been related to characterizing diag-
onal ensembles and capturing interesting intermediate-time behaviours such as
prethermalization and quantum scars. By introducing incoherent and coherent
averages using the filter which target to distinguish between the cases with and
without degeneracies in the spectrum, we have examined two specific models;
near-integrable and PXP models. Results of our simulations on these different
scenarios have given remarkable clues that our filtering procedure is indeed capa-
ble of detecting distinctive dynamical behaviours in different models. Moreover,
numerical implementation with standard MPS techniques is fairly straightforward
by this method, thus makes it possible to treat and perform efficient simulations
for larger systems.

Since our construction is quite general and could be performed for different
kinds of systems, we have shown that extending the success of combining MPS
tools with the filtering technique to time-periodic systems is also possible for which
interesting dynamical properties have been characterized. By formulating the
filter as a function of the Floquet operator, we have shown without explicitly
constructing the Floquet Hamiltonian, the filter gives access to study its properties.

We have numerically simulated a non-integrable spin chain model in a peri-
odically driven system which exhibits Floquet ETH and prethermalization, and
monitored that, as the filtered expectation value of an observable converges to the
diagonal ensemble value with decreasing filter width, it reveals a clear signature of
prethermalization at intermediate widths. Furthermore, our comparative results
of the Gaussian filtering technique with directly stroboscopic time-average have
shown that the filtering approach provides clearer picture of prethermalization
while the results of stroboscopic time-average show noiser behaviours. Our findings
provide clear evidences that the filtering procedure is sensitive enough to capture
interesting intermediate-time dynamics besides exploring the long-time dynamics.

In all of our simulations with the filtering technique for different models in both
time-independent and time-periodic settings, we have performed our calculations
with classical tensor network methods, in which we have obtained desirable results
to explore the dynamics out of equilibrium. Additionally, our numerical results
can also serve as benchmarking data that could help to test and validate future
quantum version of algorithms, which would be capable of investigating narrower
filters or higher dimensional problems in the future. Although the computational
cost for higher dimensions is expected to be much higher, combination of tensor
networks and the filtering methods might be helpful to reach possible solutions as
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the filter construction does not make any assumption on spatial dimension.
In the last part of this dissertation, we turned our attention to the expectation

values in thermal equilibrium, in which we have studied an alternative ensemble
that minimizes the free energy with 2-Rényi entropy as an alternative to Gibbs state.
We have shown that this ensemble can be efficiently approximated using MPS tools
by optmizing the Rényi free energy, which has a non-local structure. Based on
the gradient-based methods, we have demostrated that it is possible to tackle the
non-linear optimization, and observed that a moderate bond dimension captures
well the ensemble and its local properties, both in integrable and non-integrable
models.

In addition to gradient-based optimization, we have performed our simulations
based on a non-linear evolution of the density operator, in which Rényi free energy
is monotonically decreasing, and thus flows to the maximal Rényi ensemble. An
interesting further inquiry would be to adapt different techniques to perform this
optimization such as variational Monte Carlo as used in recent works [325–328] to
optimize neural networks.

Altogether these works contribute to the growing interest of connecting tensor
networks with new ideas to improve the understanding on dynamical properties
of systems in and out of equilibrium. In guidance of tensor networks and their
robust mathematical formulation, our understanding on the behaviour of quantum
mechanical wave functions has been improved. Further, assisting them with clever
approaches might provide ground for developing more rigorous results in the field
of quantum statistical mechanics.
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