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HIGH LEVEL SUMMARY

Thermalization of quantum spin systems is of large interest to the quantum information- [1]–
[4] and many-body-physics-communities [5], [6]. A body of works recently approached rapid
thermalization of quantum spin systems via exponential convergence of the relative entropy between
the evolved state and the Gibbs equilibrium state of the system via the development of so called
complete modified logarithmic Sobolev (cMLSI) inequalities [7]–[10]. The decay rate of this
convergence can be characterlized by the cMLSI constant governing this inequality. Amongst others
it was shown that for 1D commuting or 2-local commuting quantum spin systems a strictly positive
cMLSI constant𝛼, exists for any system size. But in general it is monotonically decreasing in system
size. [11], [12]. We add to this work by showing amongst others that a 2-local, commuting quantum
spin system on an arbitrary sub-exponential lattice has a positive cMLSI-constant, independent of
lattice size, whenever the Lindbladian (of the evolution) is gaped. We also affirmatively show that
weak clustering, i.e. exponential decay of correlations, in this setting is sufficient to guarantee a
gaped Davies generator. This partially answers a long standing open question from [3] for 2-local
systems. We do this via a novel concept we call strong local indistinguishability and with it show
that weak clustering (L∞) is equivalent to (qL1 − L∞)-clustering, for certain systems. This also
implies a strong form of approximate tensorization of the relative entropy for any 2-local quantum
spin system and we also establish equivalence between decay of correlations (L∞-clustering) and
decay of mutual information for Gibbs states of commuting Hamiltonians, extending work from
[7]. Applying the main result to geometrically-local, commuting quantum spin chains and 𝑏-ary
trees yields existence of a systems-size independent cMLSI constant at any temperature in the
former and a logarithmically decreasing one in the latter if the Davies Davies Lindbladian is gaped.
This implies rapid thermalization of any uniform, commuting, 2-local system with gaped Davies
Lindbladians. Amongst others this also leads to new optimal Gaussian concentration bounds, more
general ensemble equivalences, and tighter entropy difference bounds.
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1 Introduction

Dynamics of open quantum systems are of large interest to the quantum optics, condensed matter,
chemical physics, and mathematical physics communities [13]. One very important class of such
open quantum evolutions are Markovian ones, which are of large interest to the quantum information
community as well as all other just mentioned ones. Such Markovian dynamics describe amongst
others thermalization of quantum systems [2], and hence are also important in quantum algorithms
that sample thermal or ground states of certain Hamiltonians or are supposed to simulate physical
thermalization of quantum lattice systems. Quantum Markov Semigroups (QMS) which describe
thermalization are also called quantum Gibbs samplers, since the thermal equilibrium state is
also called the Gibbs state of a system. These are a mathematical tool, which can be studied
systematically in high generality. They form the quantum analogue of the seminal Monte Carlo
algorithm and are in contrast to the often considered heuristic approaches of Gibbs state preparation
such as the variational eigensolver or adiabatic algorithms. One important example, and the main
one we are considering in this work, is the Davies evolution [13], [14]. It describes the physical
process of thermalization1 of a quantum system weakly coupled to its environment. Hence it is often
considered in the mathematical physics community when describing thermalization processes. It
is, hence, also often used as a sub-routine for certain types of quantum algorithms. [2], [3], [7],
[11]. Quantum lattice-spin systems are also some of the most promising candidate architectures
for quantum computing and quantum information storage. For these reasons, understanding their
thermalization is of great importance, especially in the current regime of noisy intermediate scale
quantum systems, where the number of qubits and their coherence times are too small/short to
enable the use of quantum error correction. Hence thermalization of quantum lattice systems is
also of interest to the computer science community. There are many heuristic and numerical results
about thermalization of certain physical systems, but an overarching theory of thermalization of
quantum systems does not exist in the mathematics literature, however, there is a rapidly growing
body of work. This piece of work is a step towards establishing such a theory.
Quantum Markovian evolutions, just like their classical counterparts, are known to mix under
certain conditions, that is that the evolution approaches certain fixed points. When considering
dynamics which describe thermalization, this fixed point is the thermal equilibrium state of the
spin system, called the Gibbs state of the system. This work is concerned with the quest of finding
quantitative bounds on the mixing times of Davies evolutions 𝑡mix(𝜖). This is how quickly these
evolutions evolve any initial state 𝜖-close to the stationary state. We will be doing this via entropic
and functional inequalities that these evolutions follow. Systems for which the mixing time scales
logarithmically with system size are said to be rapidly mixing. In turn rapid mixing is known
to imply many static and dynmaical properties for these systems, among which stability of these
evolutions under local perturbations [15], existence of area laws for the mutual information of fixed
points of such evolutions [16], efficient preparation and simulability of the fixed points [2], and
even rigorous connections to the elusive eigenstate thermalization hypoethsis (ETH) [17], [18].
Our main result directly applies to these.
Quantum Gibbs samplers find also applications as sub-routines in larger algorithms, like ones

1though this is sometimes questioned since its derivation requires a few non-trivial assumptions see e.g. [2], [13]
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1 Introduction

solving semidefinite programs [19], [20], quantum machine learning [21], fault tolerant algorithms
and analogue quantum simulators for Gibbs states. [18].
Most notably, we know that fast thermalization of certain lattice-systems occurs under certain
clustering conditions [7], [11], [22] In recent years, an extensive amount of research has focused
on using concepts from quantum information theory and developing entropic tools and bounds
for the study of thermalization of quantum lattice-spin systems. One of the most notable is
the socalled complete modified logarithmic Sobolev inequality, an entropic inequality used to
establish exponential decay of relative entropy under a Markovian evolution towards its stationary
states. [7], [11], [12], [23] This exponential decay directly implies rapid thermalization if the
decay rate is at most poly-logarithmically decreasing in system size. Using these tools it was
established that under certain conditions, 1D quantum spin chains with Hamiltonians which arise
from commuting potentials [12] and hypercubic systems with Hamiltonians arising from nearest
neighbour-interacting commuting potentials at high temperatures [11] are rapidly mixing.
Main results in words:(informal)
In this work we will improve amongst others on both of these works and establish new ones for more
general lattice systems. In the one dimensional case we will show that the entropy decay rate of the
system towards its equilibrium is system size independent (see Theorem 5.2) and in the hypercubic
setting we will show that a much weaker condition, namely that of a gapped generator, is actually
a sufficient condition for exponential entropic decay and thus rapid thermalization. We will also
establish that nearest neighbour commuting systems on 𝑏-ary trees satisfy rapid thermalization
with a logarithmically decreasing cMLSI constant under the condition of gapped generators. For
a graphical representation of some of these implications see Figure 5.1.

1.1 Thesis outline

In the following Chapter 2 will set the notation, present necessary mathematical definitions and
prerequisites, and some preliminary results required in the rest of this thesis. Most notably we
formally introduce the complete Modified Logarithmic Sobolev Inequality (cMLSI) and show
its connection to rapid thermalization. The proof of the main result may conceptually be split
into two parts, one static and one dynamic. We establish some preliminary results of potentially
independent interest concerning the static part in Chapter 3. There we first define the concept of
strong local indistinguishability, which, as the name suggests gives a strictly stronger notion of local
indistinguishability and which will be central in the proof of an approximate tensorization- and a
’weak-implies-strong clustering’ result in Theorem 5.6 later on. We also show in Theorem 3.4 that
for Gibbs states of geometrically local, commuting, and bounded Hamiltonians, weak clustering,
i.e. exponential decay of spacial correlations, is actually equivalent to exponential decay of
mutual information and implies strong local indistinguishability. This is a in general stronger
form of clustering. For 1D systems we show this without the commutativity assumption also in
Theorem 3.5.
Next in Chapter 4 we first discuss the local Davies generators associated to a uniform family of
Hamiltonians and then construct the Schmidt conditional expectations, establishing some further
notation for this work, and derive some of their properties.
In Chapter 5 we first present the main results of this work in Theorem 5.1 and some immediate
Corollaries in Theorem 5.2, Theorem 5.3 and discuss them. The rest of that section is then devoted
to proving it. One of the main steps of the proof is establishing a very strong clustering condition for
nearest-neighbour, commuting systems on 2-colorable graphs, from existence of a strictly positive
gap of the generator. This is done in Theorem 5.4 and although this is a static property it is in this
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1 Introduction

chapter because it requires the notion of Schmidt conditional expectations. This is a result very
much of independent interest. Its immediate consequences, such as Theorem 5.5 and Theorem 5.6,
are discussed thereafter. Finally through a novel geometric divide-and-conquer strategy, averaging
over suitable partitions, we establish the main result in Section 5.2.

In Chapter 6 we derive some applications of the main result, establish exponential convergence
to the Gibbs state in the thermodynamic limit, optimal Gaussian concentration bounds, improved
entropy difference bounds in the settings considered here. Finally in Chapter 7 we will discuss
some conjectures stemming from this work and future related directions of research.

Hence the main results of this work and discussions thereof are found in Chapter 3, Chapter 5,
and Chapter 6 whereas Chapter 2 and Chapter 4 introduce necessary prerequisites.
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2 Preliminaries

2.1 Graphs

A graph is a tuple Λ = (𝑉, 𝐸𝑉 ) of a set of vertices 𝑉 and a set of edges 𝐸𝑉 ⊂ 𝑉 × 𝑉 connecting
vertices. A complete subgraph Γ ⊂ Λ is a tuple (𝐺, 𝐸𝐺), where 𝐺 ⊂ 𝑉 and 𝐸𝐺 contains/connects
all edges in 𝐸𝑉 , which contain the vertices in 𝐺. Abusing notation slightly we will call complete
subgraphs subsets, write Γ ⊂ Λ.
For simplicity of notation we associate the graph with its vertex set, hence we may write 𝑥 ∈ Λ,
𝐴 ⊂ Λ, or 𝑥 ∈ Γ for an 𝑥 ∈ 𝑉 , when the edge set 𝐸𝑉 of Λ = (𝑉, 𝐸𝑉 ) is clear from context.
We define the size of a graph Λ, or of a subset Γ ⊂ Λ, denotes as |Λ|, |Γ|, respectively, as the
number of the vertices it contains. When emphasizing that Γ is a finite subset of Λ, i.e. |Γ| < ∞,
we write Γ ⊂⊂ Λ.
We write 𝐶𝐷 ⊂ Λ for the complete subgraph containing all of the vertices of 𝐶 and 𝐷, in this
sense 𝐶𝐷 = 𝐶 ∪𝐷. Note that this does not require 𝐶, 𝐷 to be disjoint. We call a subset of vertices
Γ ⊂ Λ connected, if for any two vertices 𝑥, 𝑦 ∈ Γ there exists a sequence of pairwise overlapping
edges in 𝐸𝐺 , s.t. the first overlaps with 𝑥 and the last with 𝑦.
The graph distance 𝑑 (on Λ) between two vertices 𝑥 ≠ 𝑦 ∈ Λ is defined as the minimal length of a
connected subset of edges which overlap both with 𝑥 and 𝑦. We also set 𝑑 (𝑥, 𝑥) = 0∀𝑥 ∈ Λ. The
length of a subset of edges is given by the number of edges it contains. The distance between two
subsets 𝐴, 𝐵 ⊂ Λ is defined as the minimal graph distance between pairs of points in 𝐴 and 𝐵,
respectively. It is denoted, with slight abuse of notation, with the same symbol 𝑑. We define the
diameter of a set 𝐴 ⊂ Λ as diam(𝐴) := sup𝑥,𝑦∈𝐴 𝑑 (𝑥, 𝑦).
The graph has growth constant 𝜈 > 0 defined as the smallest real number s.t., for any 𝑚 ∈ N, the
number of connected subsets of size 𝑚 containing some edge, for any edge, is bounded by 𝜈𝑚:

𝑛𝑚 := sup
𝑒∈𝐸𝑉

|{𝐹 ⊂ 𝐸𝑉 connected |𝑒 ∈ 𝐹, |𝐹 | = 𝑚}| ≤ 𝜈𝑚.

Note that any regular graph, i.e. one where every vertex has the same number of neighbours as
every other, has finite growth constant. For example, the growth constant of a 𝐷-dimensional
hypercubic lattice (Z𝑑) is bounded by 2𝐷𝑒, where 𝑒 is Euler’s number [6], [24].
We say a graph is 2-colorable if there exists a labeling of the graph with labels 0 and 1, i.e. a map
which assigns each vertex one label, such that adjacent vertices, i.e. ones which are connected by
some edge, have different labels.

Definition 1. For an infinite graph Λ we define 𝑁 (𝑙) := sup𝑥∈Λ |𝐵𝑙 (𝑥) |, where 𝐵𝑙 (𝑥) := {𝑣 ∈
Λ|𝑑 (𝑥, 𝑣) ≤ 𝑙 |} is the ball of radius 𝑙 around vertex 𝑥. We call a graph sub-exponential if there
exists a 𝛿 ∈ (0, 1) s.t. 𝑁 (𝑙) ≤ exp(𝑙 𝛿) holds eventually, i.e. if ln 𝑁 (𝑙) = O(𝑙 𝛿) 𝑗→∞.
Equally we call it exponential if no such 𝛿 exists, i.e. if ln 𝑁 (𝑙) = O(𝑙)𝑙→∞.

First note that all graphs with finite growth constant are in either of these two classes since we
can crudely bound |𝐵𝑙 (𝑥) | ≤ |{𝐹 ⊂ Λ|𝐹connected𝑥 ∈ 𝐹, |𝐹 | = 𝑙}| ≤ 𝜈𝑙 and hence 𝑁 (𝑙) ≤ 𝜈𝑙.
Note that hypercubic lattices are sub-exponential under this definition, whereas 𝑏−ary trees are
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2 Preliminaries

exponential. We will often consider geometrically−𝑟−local interactions, with 𝑟 > 1 some integer,
on such graphs. For some fixed 𝑟 we define the boundary of a subset 𝐴 ⊂ Λ, denoted with 𝜕𝐴, to
be all vertices in Λ \ 𝐴 that are within graph distance 𝑟 − 1 from vertices in A

𝜕𝐴 := {𝑥 ∈ Λ \ 𝐴|𝑑 (𝑥, 𝐴) < 𝑟},
𝐴𝜕 := 𝐴 ∪ 𝜕𝐴.

It will be clear from context what 𝑟 and hence the set-boundary 𝜕 is. Hence for nearest neighbour
interactions (𝑟 = 2), 𝜕𝐴 coincides with usual set boundary. A first important class of graphs
considered in this work is the of hypercubic lattices of dimension 𝐷 ∈ N, with Λ = Z𝐷 , and
the graph distance equal to the Hamming distance. Hence hypercubic lattices are subexponential
two colorable graphs. In the case 𝐷 = 1, the 1-dimensional infinite chain this is Λ ≡ Z =

(Z, {𝑥, 𝑥 + 1}𝑥∈Z). Another example is the complete infinite 𝑏−ary tree, for some integer 𝑏 ≥ 1.
These are loop-free, exponential, and two-colorable graphs. where each vertex has exactly 𝑏

neighbours. Each tree has one vertex, called the root, from which the tree extends, and who’s 𝑏
neighbours are called its children or leaves. Every other vertex has exactly 𝑏−1 children or leaves.

2.2 Some general notation

A quantum spin system on a finite graph Γ = (𝑉, 𝐸𝑉 ) is described by the Hilbert space

HΓ :=
⊗
𝑥∈𝑉

H𝑥 ,

where each local Hilbert space H𝑥 has dimension 𝑑 < ∞, i.e. describes a qudit system. Hence
the global dimension of the system is dim(HΓ) = 𝑑 |Γ | . We will only be considering finite
dimensional Hilbert spaces in this work. We denote the von Neumann-algebra (vN algebra) of
bounded linear operators, also called observables, over HΓ by B(HΓ) = 𝒜Γ and the set of density
operators with D(HΓ) := {𝜌 ∈ B(HΓ) | Tr[𝜌] = 1, 𝜌 ≥ 0}. Note that this von Neumann-algebra
is *-homeomorphic to 𝒜Γ∗, the predual of 𝒜Γ = B(HΓ) w.r.t. the canonical trace on the finite
dimensional Hilbert space HΓ.1 Since we can associate each (normalized) state (positive, linear
functional) with its density operator representation, i.e. for 𝜔 ∈ 𝒜Γ∗ there exists a 𝜌 ∈ D(HΓ),
s.t. 𝜔(𝑋) = Tr[𝜌𝑋], and the other way around. We denote the trace-class operators on a Hilbert
space H with 𝐵1(H). The norm on ℬ(H) is the usual operator norm, denoted by ∥𝐴∥ ≡ ∥𝐴∥∞
for 𝐴 ∈ B(H). The norm on 𝒟(H) is the usual trace-norm, denoted by ∥𝜌∥1 := Tr[|𝜌 |] for
𝜌 ∈ D(H).
We denote the the identity operator onH as1 ≡ 1H ∈ B(H) and the identity mapB(H) → B(H)
as id ≡ idB(H) . Given a linear map Φ : B(H) → B(H) we denote its pre-dual w.r.t the Hilbert-
Schmidt inner product as Φ∗. We call such a map Φ a quantum channel in the Heisenberg picture
if it is completely positive and unital 2. We will refer to such maps simply as unital CP maps.
Their pre-duals Φ∗ : 𝐵1(H) → 𝐵1(H), i.e. quantum channels in the Schrödinger picture, are
completely positive trace preserving maps (CPTP) 3. We will call such maps CPTP or quantum
channels.
We denote the spectrum of an operator 𝐴 ∈ 𝒜 with 𝜎(𝐴) ≡ spec(𝐴). The support-projection of a

1I.e. the inner product here is the map ⟨𝑋,𝑌⟩ = Tr[𝑋∗𝑌 ], which is also called the Hilbert Schmidt inner product.
2A map Φ : B(H) → B(H) is completely positive, if (id𝑛 ⊗Φ) : B(C𝑛 ⊗ H) → B(C𝑛 ⊗ H) is a positive map for

all 𝑛 ∈ N. It is unital, if it is identity preserving Φ(1) = 1.
3As the name suggests, a map Φ∗ is trace preserving if Tr[Φ∗ (𝜌)] = Tr[𝜌] for all 𝜌 ∈ D(H).
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2 Preliminaries

self-adjoint operator 𝐴 ∈ B(H) is defined as the smallest projection 𝑃 ∈ B(H), s.t. 𝑃𝐴 = 𝐴𝑃 = 𝐴.
The trace on the full Hilbert spaceHΓ is denoted as Tr[·] and the partial trace tracing out the Hilbert
space corresponding to a region 𝐴 ⊂ Γ is denoted as tr𝐴[·] : 𝐵1(HΓ) → 𝐵1(HΓ\𝐴).
We will employ the following ”big-O”-notation O(𝑔(𝑥))𝑥→∞ when meaning that 𝑓 (𝑥) = O(𝑔(𝑥))
for 𝑥 → ∞, i.e. to indicate in which limit the scaling O(𝑔(𝑥)) holds for a function 𝑓 (𝑥). We use
the same for the 𝑏𝑖𝑔 −Ω notation.

2.3 Weighted non-commutative L𝑝,𝜎-spaces and inner products

We will make frequent use of so called (weighted) non-commutative L𝑝 spaces in this work. For a
general overview and construction of such spaces on von Neumann algebras, see e.g. [25]. Since
we are only considering finite dimensional Hilbert spaces, the von Neumann algebra B(H) with
the canonical Hilbert space trace Tr on H is finite, i.e. of type I.4 Hence all the non-commutative
L𝑝 ≡ L𝑝 (B(H),Tr) spaces are just the 𝑝−Schatten spaces 𝐵𝑝 (H) := {𝑋 ∈ B(H)|∞ > ∥𝑋 ∥ 𝑝 :=
Tr[|𝑋 |𝑝]

1
𝑝 )} with norms

∥𝑋 ∥ 𝑝 := Tr[|𝑋 |𝑝]
1
𝑝 1 ≤ 𝑝 < ∞, (2.1)

∥𝑋 ∥∞ = ∥𝑋 ∥, (2.2)

which are all equivalent to each other. This is due to the finite dimension of the Hilbert space.
Hence the 𝐿𝑝-norms ∥ · ∥ 𝑝 are all equivalent to each other. This is not true in general.
Given a full-rank state 𝜎 ∈ D(H), we define the weighted non-commutative L𝑝,𝜎 spaces as the
subsets of B(H) s.t. its elements are bounded by the following associated norms

∥𝑋 ∥ 𝑝,𝜎 := Tr[|𝜎
1

2𝑝 𝑋𝜎
1

2𝑝 |𝑝]
1
𝑝 1 ≤ 𝑝 < ∞, (2.3)

∥𝑋 ∥∞,𝜎 := ∥𝑋 ∥∞ ≡ ∥𝑋 ∥, (2.4)

respectively. Note that these norms turn these spaces into Banach spaces for 𝑝 ∈ [1,∞] and satisfy
the usual Hölder-type inequality, Hölder duality, and monotonicity in 𝑝 for fixed 𝜎, see e.g. [3].
Equally one can show that L2,𝜎 is, as expected, a Hilbert space with respect to the KMS-inner
product

⟨𝑋,𝑌⟩KMS
𝜎 := Tr[

√
𝜎𝑋∗√𝜎𝑌 ] . (2.5)

There exists a natural embedding Γ𝜎 : L1,𝜎 → L1 via

Γ𝜎 (𝑋) :=
√
𝜎𝑋

√
𝜎. (2.6)

Hence the weighted 𝑝, 𝜎-norm can also be expressed as ∥𝑋 ∥ 𝑝,𝜎 = ∥Γ
1
𝑝

𝜎 (𝑋)∥ 𝑝. For completeness
we define the modular operator of 𝜎 here as

Δ𝜎 (𝑋) := 𝜎𝑋𝜎−1, (2.7)

and the modular group of 𝜎 as {Δ𝑖𝑠𝜎}𝑠∈R. For completeness, we define the GNS-inner product on
B(H), for a finite dimensional Hilbert space H as

⟨𝑋,𝑌⟩GNS
𝜎 := Tr[𝜎𝑋∗𝑌 ] . (2.8)

4A von Neumann algebra is said to be finite if a tracial state exists. In the case here, it is 𝑑−1
1 ∈ D(H), whenever

𝑑 = dim(H) < ∞.
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These two weighted inner products on B(H) are the most relevant ones and we give the variance
and covariance of our many-body observables with respect to these as

Cov𝜎 (𝑋,𝑌 ) := ⟨𝑋 − Tr[𝜎𝑋]1, 𝑌 − Tr[𝜎𝑌 ]1⟩KMS
𝜎 = | Tr[

√
𝜎𝑋

√
𝜎𝑌 ] − Tr[𝜎𝑋] Tr[𝜎𝑌 ] |,

(2.9)

Cov(0)
𝜎 (𝑋,𝑌 ) := ⟨𝑋 − Tr[𝜎𝑋]1, 𝑌 − Tr[𝜎𝑌 ]1⟩GNS

𝜎 = | Tr[𝜎𝑋𝑌 ] − Tr[𝜎𝑋] Tr[𝜎𝑌 ] |, (2.10)
Var𝜎 (𝑋) := Cov𝜎 (𝑋, 𝑋), (2.11)

Var(0)𝜎 (𝑋) := Cov(0)
𝜎 (𝑋, 𝑋). (2.12)

A distance on D(HΛ), which will be important for some applications is the quantum Wasserstein
distance of order 1 [26] between two finite dimensional quantum states 𝜌, 𝜎 ∈ D(HΛ). It is
defined as

𝑊1(𝜌, 𝜎) ≡ ∥𝜌 − 𝜎∥𝑊1 := (2.13)

1
2

min

{∑︁
𝑖∈Λ

∥𝑋 (𝑖) ∥1

����� Tr[𝑋 (𝑖) ] = 0, 𝑋 (𝑖)∗ = 𝑋 (𝑖) , tr𝑖 𝑋 (𝑖) = 0 ∀𝑖 ∈ Λ, 𝜌 − 𝜎 =
∑︁
𝑖∈Λ

𝑋 (𝑖)

}
.

Its dual norm w.r.t the Hilbert-Schmidt inner product distance is the Lipschitz distance [26], i.e.
for any self-adjoint observable 𝐴 ∈ B(HΛ)

∥𝐴∥𝐿 := max{Tr[𝐴𝑋] | Tr[𝑋] = 0, 𝑋 = 𝑋∗, ∥𝑋 ∥𝑊1 ≤ 1} = 2 max
𝑖∈Λ

min
𝐴(𝑖) ∈𝒜Λ\{𝑖}

∥𝐴 − 1𝑖 ⊗ 𝐴(𝑖) ∥,

where 1𝑖 ∈ B(H𝑖) is the identity on system 𝑖 and 𝐴(𝑖) does not act on system 𝑖. Thus by definition
it holds that | Tr[𝐴𝑋] | ≤ ∥𝑋 ∥𝑊1 ∥𝐴∥𝐿 for suitable 𝑋, 𝐴. For a thorough overview and some
properties see [26].

2.4 Uniform families of Hamiltonians

A Hamiltonian 𝐻 : B(HΛ) is a self-adjoint operator which governs the dynamics of closed
quantum systems and describes the state of a quantum system in thermal equilibrium at the same
time. In this work we consider many-body Hamiltonians of the form,

𝐻Λ :=
∑︁
𝑋⊂⊂Λ

Φ𝑋,

where for each 𝑋 ⊂ Λ, Φ𝑋 is a self-adjoint operator acting only non-trivially on the sub-region 𝑋 .
The map 𝑋 ↦→ Φ𝑋 for a finite 𝑋 ⊂ Λ is called the potential of the system. The potential is called
commuting (on Λ) if for each 𝑋,𝑌 ⊂ ΛΦ𝑋 and Φ𝑌 commute. It is said to have bounded interaction
strength 𝐽 := max𝑋⊂Λ{∥Φ𝑋∥} and interaction range 𝑟 := max{diam(𝑋) |𝑋 ⊂ Λ,Φ𝑋 ≠ 0}. We
will call potentials with interaction range 𝑟 geometrically-r-local. The family of Hamiltonians
{𝐻Γ}Γ⊂⊂Λ, s.t.

𝐻Γ =
∑︁
𝑋⊂Γ

Φ𝑋, (2.14)

is called a uniform 𝐽-bounded, geometrically-𝑟-local, commuting family if the potential satisfies
these properties for all Γ ⊂⊂ Λ independent of |Γ |. In this work, we will only consider such
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uniform families, unless explicitly stated otherwise.5
The associated Gibbs state of the local Hamiltonian on 𝐴 ⊂ Γ at inverse temperature 𝛽 is denoted
by

𝜎𝐴 :=
𝑒−𝛽𝐻𝐴

Tr[𝑒−𝛽𝐻𝐴] , (2.15)

while the reduced states onto some subregion 𝐴 ⊂ Γ is denoted by

𝜎𝐴 := trΓ\𝐴𝜎Γ, (2.16)

where 𝜎 ≡ 𝜎Γ = 𝜎Γ. We will employ the convenient notation 𝐸𝑋,𝑌 := 𝑒−𝐻𝑋𝑌 𝑒𝐻𝑋+𝐻𝑌 for Araki’s
expansionals for two disjoint subsets 𝑋,𝑌 ⊂ Λ from [7].

2.5 Quantum Markov semigroups and Lindbladians

A quantum Markov semigroup (QMS) is a strongly continuous one-parameter semigroup of unital
CP maps {Φ𝑡 }𝑡≥0 : B(H) → B(H). This is a family s.t. Φ0 = idB(H) ,Φ𝑠+𝑡 = Φ𝑠 ◦Φ𝑡 ∀𝑠, 𝑡 ≥ 0,
and lim𝑡↓0 ∥(Φ𝑡 − id) (𝑋)∥ = 0∀𝑋 ∈ B(H). By Hille-Yosida theorem there exists a densely defined
generator, called the Lindbladian

L(𝑋) := lim
𝑡→0

1
𝑡
(Φ𝑡 − id) (𝑋),

such that the semigroup is given as Φ𝑡 = 𝑒𝑡L ∀𝑡 ≥ 0. In our case of a finite dimensional Hilbert
space, the Lindbaldian is defined on all of B(H) and its pre-dual on all of D(H).
A QMS with generator L gives the unique solution to the master equation 𝑑

𝑑𝑡
𝜌(𝑡) = L(𝜌). We

call a QMS and its generator faithful if the QMS admits a full rank invariant state 𝜎 ∈ D(H) and
primitive if this state is unique. A state is invariant if Φ𝑡∗(𝜎) = 𝜎 for all 𝑡 ≥ 0, which is equivalent
to L∗(𝜎) = 0.

We call a QMS and its generator reversible or KMS-symmetric w.r.t. a state 𝜎 if the QMS
is symmetric w.r.t the KMS-inner product and similarly GNS-symmetric w.r.t. a state 𝜎, if it is
symmetric w.r.t. the GNS inner product. In the latter case, we also say that the QMS satisfies the
detailed balance condition. If L is its generator, then this is equivalent to

Tr[𝜎𝑋∗L(𝑌 )] = Tr[𝜎L(𝑋)∗𝑌 ] ∀𝑋,𝑌 ∈ B(H).

This is because one can think of the GNS symmetry of a QMS to be a quantum generalization
of the detailed balance property of a classical Markovian process w.r.t its invariant distribution.
Note that if a QMS is GNS-symmetric w.r.t a state 𝜎, then this state is necessarily a stationary
one. Given a graph Λ and a finite subset Γ ⊂⊂ Λ, we will be considering a family of Lindbladians
LΛ = {LΓ}Γ⊂⊂Λ, s.t.

LΓ =
∑︁
𝑋⊂Γ

𝐿𝑋, (2.17)

where {L𝑋}𝑋⊂Λ is a set family of local Lindbladians, s.t. 𝐽 := sup𝑋⊂Λ ∥L𝑋∗∥1→1,cb < ∞ and
L𝑋∗ = 0 whenever diam(𝑋) > 𝑟 .6 Hence we call these a uniform geometrically−𝑟−local,

5Hence these constants 𝐽, 𝑟 do not depend on the regions 𝐴 on which the local Hamiltonians are defined.
6Here ∥Φ∗∥1→1,cb is the completely bounded 1 → 1 norm, i.e. ∥Φ∗∥1→1,cb :=

sup𝑛∈N sup𝜌∈D(C𝑛⊗H) ∥(id𝑛 ⊗Φ∗) (𝜌)∥1.
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𝐽−bounded family of (bulk) Lindbladians, very much in analogy to the Hamiltonian case. When
we call a family of Lindbadians uniform, we imply that there are some 𝐽, 𝑟 < ∞ such that it is
geometrically−𝑟−local and 𝐽−bounded in the sense above. Such a family is called locally primitive
if there exists a full rank state for each finite Γ ⊂⊂ Λ, {𝜎Γ}Γ⊂⊂Λ, s.t. 𝜎Γ is the unique full rank
stationary state of LΓ. The family is called locally reversible if each LΓ is KMS-symmetric w.r.t
𝜎Γ and it is called frustration free, if for any two finite subsets 𝐴 ⊂ 𝐵 ⊂ Λ, the stationary states
of L𝐵 are also stationary under L𝐴, i.e. the ker(L𝐵)⊂ker(L𝐴). Note, that if a QMS is GNS
symmetric,i.e. satisfies detailed balance, then it is also KMS symmetric, i.e. reversible. Hence,
for a region Γ ⊂⊂ Λ, write the projection onto the fixed point subalgebra of LΓ as

𝐸Γ (𝑋) := lim
𝑡→∞

𝑒𝑡LΓ (𝑋). (2.18)

It turns out that for a primitive, frustration free uniform family, these projections are conditional
expectations w.r.t the family of stationary states. See Section 2.6 for more details. For a slightly
more general, but in this work unnecessary, notion of uniform families of Lindbladians, see e.g.
[11].

In this work we will be working with the Davies generators L𝐷
Λ

= {L𝐷
Γ
}Γ⊂⊂Λ, which is a

physically motivated suitable uniform family of Lindbladians associated to a uniform family of
Hamiltonians. They are introduced in Section 4.1. In the setting we are considering, they are a
uniform geometrically−𝑟−bounded, locally primitive, locally reversible, locally GNS-symmetric,7
frustration free family of Lindbladians which describe thermalization of a spin system.

We call a uniform family of Lindbladians, which are locally reversible, locally GNS symmetric,
and frustration free w.r.t to a set of Gibbs states {𝜎Γ}Γ⊂⊂Λ a quantum Gibbs sampler of the system
(𝐻Λ, 𝛽), whenever 𝐻Λ is a uniform family of Hamiltonians and 𝜎Γ are the Gibbs states of 𝐻Γ to
inverse temperature 𝛽. The Davies generators, see Section 4.1, but also the Heat-bath generators
w.r.t to the Davies or Schmidt conditional expectation [3], [11] are examples of quantum Gibbs
samplers.

2.6 Conditional Expectations

A very important tool we are working with are (quantum) conditional expectations. Given a von
Neumann subalgebra N ⊂ B(H), a conditional expectation onto N is a completely positive unital
map 𝐸N : B(H) → N , s.t.

𝐸N (𝑋) = 𝑋 ∀ 𝑋 ∈ N
𝐸N (𝑎𝑋𝑏) = 𝑎𝐸N (𝑋)𝑏 ∀ 𝑎, 𝑏 ∈ N , 𝑋 ∈ B(H).

By complete positivity and unitality, it follows that the preadjoint of any conditional expectation
w.r.t the Hilbert-Schmidt inner product 𝐸N∗ : N∗ → B(H)∗ is a completely positive trace
preserving map, i.e. a quantum channel. Any conditional expectation onto N s.t. there exists a
full rank state 𝜎 ∈ D(H) which satisfies

𝐸N∗(𝜎) = 𝜎 ⇐⇒ Tr[𝜎𝐸N (𝑋)] = Tr[𝜎𝑋] ∀ 𝑋 ∈ B(H),

is said to be with respect to the state 𝜎. [11], [12] Let 𝐸 be a conditional expectation w.r.t. a full
rank state 𝜎 onto N , then from the definition it follows that it is self-adjoint w.r.t. the 𝜎−KMS

7The KMS and GNS symmetry is w.r.t to the global Gibbs state.
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inner product, i.e.

𝜎
1
2𝐸 (𝑋)𝜎 1

2 = 𝐸∗(𝜎
1
2 𝑋𝜎

1
2 )

holds for any 𝑋 ∈ B(H).
Furthermore, it can be shown that it commutes with the modular group of 𝜎, i.e.

Δ𝑖𝑠𝜎 ◦ 𝐸 = 𝐸 ◦ Δ𝑖𝑠𝜎 ∀𝑠 ∈ R.

Moreover, given a von Neumann *-subalgebra N ⊂ B(H) and a faithfull state 𝜎 ∈ D(H), it turns
out that the existence of a conditional expectation w.r.t. 𝜎 onto N is equivalent to the invariance
of N under the modular automorphism group {Δ𝑖𝑠𝜎}𝑠∈R. Furthermore, in the case that the vN
*-subalgebra N is invariant under the modular automorphism group of said faithfull state 𝜎 this
conditional expectation is uniquely determined by 𝜎 [11], [27]. It turns out that any conditional
expectation w.r.t. some full rank state 𝜎 between finite dimensional matrix algebras, as all the ones
in this work, can be given in an explicit form, see e.g. [12]. Any finite dimensional von Neumann
subalgebra N ⊂ B(H) can be decomposed as

N =

𝑛⊕
𝑖=1

B(H𝑖) ⊗ C1K𝑖
, where H =

𝑛⊕
𝑖=1

H𝑖 ⊗ K𝑖 .

Now there exist density operators {𝜏𝑖 ∈ D(K𝑖)}𝑛𝑖=1 and projections {𝑃𝑖 ∈ B(H)}𝑛
𝑖=1, respectively,

onto {H𝑖 ⊗ K𝑖} s.t.

𝐸N (𝑋) =
𝑛⊕
𝑖=1

trK𝑖
[𝑃𝑖𝑋𝑃𝑖 (1K𝑖

⊗ 𝜏𝑖)] ⊗ 1K𝑖
⇐⇒ 𝐸N∗(𝜌) =

𝑛⊕
𝑖=1

trK𝑖
[𝑃𝑖𝜌𝑃𝑖] ⊗ 𝜏𝑖 ,

for 𝑋 ∈ B(H) and 𝜌 ∈ B(H). [12]

Since conditional expectations are, by definition, projections on closed-*-subalgebras (which
are convex), the following chain rule holds for states 𝜌, 𝜎 ∈ D(H), whenever 𝐸N∗(𝜎) = 𝜎

[23][Lemma 3.4]

𝐷 (𝜌∥𝜎) = 𝐷 (𝜌∥𝐸N∗(𝜌)) + 𝐷 (𝐸N∗(𝜌)∥𝜎). (2.19)

Example 1 (Local Lindbaldian Projectors). An important case of conditional expectations are so
called local Lindbladian projectors.
Let Γ be some finite graph. Let LΓ = {L𝐴}𝐴⊂⊂Λ be a uniform, frustration free family of local
primitive Lindbladians with stationary states {𝜎𝐴}𝐴⊂Γ. The local Lindbladian projector associated
with the family LΓ on 𝐴 ⊂ Γ is given by

𝐸𝐴(𝑋) := lim
𝑡→∞

𝑒𝑡L𝐴 (𝑋) (2.20)

for 𝑋 ∈ B(HΓ). If LΓ is locally primitive, i.e. each L𝐴 is a primitive Lindbladian, then 𝐸𝐴 acts
only non-trivially on 𝐴𝑐. If LΓ is frustration free, then 𝐸𝐴 is a conditional expectation w.r.t. the
stationary state 𝜎Γ onto the subalgebra 1𝐴𝜕 ⊗ B(H(𝐴𝜕)c).

Proof. Complete positivity and unitality follows from that of 𝑒𝑡LΓ for any 𝑡 ≥ 0. Taking the limit
𝑡 → ∞ does not change these properties. Clearly we have 𝑒𝑡LΓ∗ (𝜎Γ) = 𝜎Γ, and by frustration
freeness it follows that 𝑒𝑡L𝐴∗ (𝜎Γ) = 𝜎Γ. Hence

Tr[𝜎𝐸𝐴(𝑋)] = lim
𝑡→∞

Tr[𝜎𝑒𝑡L𝐴 (𝑋)] = lim
𝑡→∞

Tr[𝑒𝑡L𝐴∗ (𝜎)𝑋] = Tr[𝜎𝑋] .

Furthermore, by locality we have that 𝐸𝐴 acts only non trivially on B(H𝐴𝜕) since L𝐴 does. □
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Note that in this case it holds that the expectation value of any observable w.r.t. the invariant
state on the full system is also given by

Tr[𝜎𝑋] = Tr[𝜎𝐸Λ(𝑋)] = Tr[𝜎𝐸𝐴(𝑋)] ∀𝐴 ⊂ Λ.

On the other hand, given a family of local conditional expectation 𝐸𝐴 : B(H) → 1𝐴𝜕⊗B(H) (𝐴𝜕)c

w.r.t. the same state 𝜎 ∈ D(H),

L𝐴 :=
∑︁

𝑋∩𝐴≠∅
(𝐸𝑋 − id), (2.21)

is a family of locally primitive, frustration free Lindbladians with invariant state 𝜎.

Since the Davies-Lindbladian are a family of locally primitive...

2.7 The relative entropy and strong data processing

The Umegaki relative entropy [28] between two finite dimensional quantum states given by their
density operators 𝜌, 𝜎 ∈ D(H) is defined as

𝐷 (𝜌∥𝜎) :=

{
Tr[𝜌(log 𝜌 − log𝜎)] if supp(𝜌) ⊂ supp(𝜎)
∞ else

,

where the logarithm here is the natural logarithm to base 𝑒.
It is a very important information theoretic quantity which can be interpreted as a statistical dis-
tinguishability quantity between states, e.g. as Stein exponent in asymptotic asymmetric quantum
hypothesis testing [29]. The well known quantum Pinsker inequality (2.22), gives an upper bound
on the trace-distance, which is related to the one-shot symmetric distinguishability, in terms of the
relative entropy:

∥𝜌 − 𝜎∥2
1 ≤ 2𝐷 (𝜌 | |𝜎) (2.22)

Hence, the relative entropy is positive semi-definite, however, unlike a proper mathematical dis-
tance, it is in general not symmetric in its two arguments, nor does it satisfy the triangle inequality.
It also gives rise to the quantum mutual Information 𝐼. Given a finite graph Γ = 𝐴𝐵𝐶 the mutual
information of a state 𝜌 ∈ D(HΓ) between the reduced state on the region 𝐴 and the one on the
region 𝐶 is defined as

𝐼𝜌 (𝐴 : 𝐶) := 𝐷 (𝜌𝐴𝐶 ∥𝜌𝐴 ⊗ 𝜌𝐶). (2.23)

It is a measure of mutual information between these two regions.
The operational interpretation of the relative entropy as an information theoretic measure is further
underlined by a very important property it satisfies, called the data processing inequality (DPI)
(2.24). This property is that no quantum channel, i.e. (CPTP) map Φ∗, can increase the relative
entropy between any two states.

𝐷 (Φ∗(𝜌) | |Φ∗(𝜎)) ≤ 𝐷 (𝜌 | |𝜎). (2.24)

The core part of the the entropic-inequalities approach to thermalization relies upon a strengthening
of this inequality. We say a quantum channelΦ∗ satisfies a non-trivial strong data processing (sDPI)
with contraction coefficient 𝜂 ≡ 𝜂(Φ∗) < 1 if for any pair (𝜌, 𝜎) of states, s.t. 𝜌 ≠ 𝜎, it holds that

𝐷 (Φ∗(𝜌)∥Φ∗(𝜎)) ≤ 𝜂(Φ∗)𝐷 (𝜌∥𝜎). (2.25)
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More formally, we define the contraction coefficient for a GNS symmetric QMS Φ∗ ≡ Φ𝑡0∗ as

𝜂(Φ∗) := sup
𝜌∈D(H)

inf𝜎∈Σ 𝐷 (Φ∗(𝜌)∥Φ∗(𝜎))
inf𝜎∈Σ 𝐷 (𝜌∥𝜎) ,

where Σ is the set of stationary states of Φ∗. These are all the density operators which are
left invariant under the action of the channel.8 Assume we have some channel Φ∗ which has a
contraction coefficient 𝜂(Φ∗) < 1 and a unique invariant state 𝜎, i.e. Φ∗(𝜎) = 𝜎. Then sDPI
immediately induces an exponential decay of the relative entropy in the number of times the channel
is applied.

𝐷 (Φ𝑛∗ (𝜌)∥𝜎) = 𝐷 (Φ𝑛∗ (𝜌)∥Φ𝑛∗ (𝜎)) ≤ 𝜂𝑛𝐷 (𝜌∥𝜎).

2.8 Relative entropy decay via the complete modified logarithmic
Sobolev Inequality

We can establish the sDPI, not only for time-discrete, but also time-continous QMS {𝑒𝑡L}𝑡≥0.
Here we assume that our QMS has at least one full rank invariant state, say 𝜎, w.r.t. which it is
GNS-symmetric. This turns out to be the case for all Davies Lindbladians we will be considering
in this work. The way to do this is via a differential version of the strong data processing inequality
(2.25) for the channel Φ𝑡∗ := 𝑒𝑡L∗ in which we set 𝜂(𝑒𝑡L∗) = 𝑒−𝑡 𝛼, yielding

− 𝑑
𝑑𝑡
𝐷 (𝑒𝑡L∗ (𝜌)∥𝐸∗(𝜌))

��
𝑡=0 =: EPL (𝜌) ≥ 𝛼𝐷 (𝜌∥𝐸∗(𝜌)). (2.26)

Here 𝐸∗ := lim𝑡→∞ 𝑒𝑡L∗ is the projection onto the stationary states (2.18), see also Example 1.
We call this inequality (2.26) the modified logarithmic Sobolev inequality (MLSI) and EPL (𝜌) the
entropy production of the QMS {𝑒𝑡L}𝑡≥0. The optimal constant 𝛼 satisfying the MLSI is called
the modified logarithmic Sobolev constant (MLSI constant) 𝛼(L). It is hence given by

𝛼(L) := inf
𝜌∈D(H)

EPL (𝜌)
𝐷 (𝜌∥𝐸∗(𝜌))

.

Thus essentially by construction, formally by integration and use of Gronwall’s inequality, it
follows that any QMS {𝑒𝑡L}𝑡≥0 which satisfies the MLSI with strictly positive MLSI constant
𝛼 ≡ 𝛼(L) > 0 induces exponential convergence in relative entropy to its stationary states, i.e.

𝐷 (𝑒𝑡L∗ (𝜌)∥𝐸∗(𝜌)) ≤ 𝑒−𝛼𝑡𝐷 (𝜌∥𝐸∗(𝜌)).

One important way to establish the existence of such constants in the classical setting is to exploit
its stability under tensorization. This allows us to describe the dynamics of large composite
systems via their dynamics on small subregions. This is, however, not in general given in the
quantum setting, i.e. if we have two QMS {𝑒𝑡L}𝑡≥0, {𝑒𝑡K }𝑡≥0, then the joint evolution, given
by {𝑒𝑡L ⊗ 𝑒𝑡K = 𝑒𝑡 (L+K) } is not necessarily as quickly mixing as the slower individual one, i.e.
𝛼(L + K) ≱ min{𝛼(L), 𝛼(K)}. [30] In order to recover the stability under tensorization we can
introduce the so called complete MLSI (cMLSI) and the cMLSI constant 𝛼𝑐 (L)

𝛼𝑐 (L) := inf
𝑘∈N

𝛼(L ⊗ id𝑘), (2.27)

8In the case of a general quantum channel (instead of QMS) we would need to replace Σ by the decoherence free
subalgebra. If Φ∗ (𝑋) =

∑
𝑘 𝐴𝑘𝑋𝐴

∗
𝑘

is the Kraus representation of Φ∗, then the decoherence free subalgebra is
Σ :=

⋂
𝑘∈NN(Φ𝑘∗ ), where N(Φ∗) := Alg{𝑋 ∈ B(H)|[𝑋, 𝐴∗

𝑖
𝐴 𝑗 ] = 0 ∀𝑖, 𝑗}

12



2 Preliminaries

where id𝑛 : B(C𝑛) → B(C𝑛) is the identity channel [31]. Hence we say that the QMS {𝑒𝑡L}𝑡≥0
satisfies the cMLSI if the QMS {𝑒𝑡L ⊗ id𝑛}𝑡≥0 satisfies the MLSI for all ancilla system of arbitrary
dimension with the same constant. Indeed in [30] it was shown that for two KMS-symmetric QMS
with commuting generators L,K, respectively, it holds that

𝛼𝑐 (L + K) ≥ min{𝛼𝑐 (L), 𝛼𝑐 (K)}.

Next the following important result from [8], [32] guarantees the existence of positive cMLSI
constants for a sufficiently large class of QMS.

Theorem 2.1 ([8]). For any GNS-symmetric QMS {𝑒𝑡L}𝑡≥0 over the algebra B(H) of bounded
linear operators over some finite dimensional Hilbert space H , 𝛼𝑐 (L) > 0. In particular 𝛼𝑐 (L) ≥
𝜆(L)

log dim H , i.e. for many-body quantum lattice systems the cMLSI constant is deceasing as Ω( |Λ|−1).
Here 𝜆(L) is the spectral gap of the generator. Local existence of a strictly positive cMLSI

constant is a great starting point, however, on its own not very helpful for systems in the ther-
modynamic limit, since it does not give good bounds on the mixing time, as is discussed below.
A common way this result is used, when showing existence of a cMLSI constant which scales
better than O(|Λ|−1), is to use approximate tensorization results to geometrically break down the
lattice into logarithmic or finite size parts and apply Theorem 2.1 to these regions and then put
these small regions back together into the whole lattice. Such an approach is sometimes called a
divide-and-conquer technique, or global-to-local reduction. This is also the overall strategy we are
following in this work.

2.9 Variance Decay and Gap

A non information theoretic inspired and simpler approach to mixing of QMS {𝑒𝑡L} is via the
Poincaré inequality instead of the MLSI. Assume for simplicity, that the QMS is primitive with
fixed point 𝜎 and GNS symmetric, and write 𝑋𝑡 := 𝑒𝑡L (𝑋). Then the Poincaré inequality is

𝜆Var𝜎 (𝑋𝑡 ) ≤ − 𝑑
𝑑𝑡

����
𝑡=0

Var𝜎 (𝑋) = −⟨𝑋,L(𝑋)⟩KMS
𝜎 ,

where Var𝜎 (𝑋) is the KMS variance defined in Section 2.3. It turns out that the largest constant
𝜆 which satisfies this inequality for all 𝑋 ∈ B(H) is the spectral gap of the Lindbaldian L, that is
the absolute value of the greatest non-zero eigenvalue of L9 [3], [33], [34].

𝜆(L) := inf
𝑋∈B(H)

−⟨𝑋,L(𝑋)⟩KMS
𝜎

Var𝜎 (𝑋)
(2.28)

By Grönwall’s inequality, this directly implies exponential decay of the variance, i.e.

Var𝜎 (𝑋𝑡 ) ≤ 𝑒−𝜆(L)𝑡 Var𝜎 (𝑋). (2.29)

2.10 Rapid Thermalization

A natural figure of merit to quantitatively describe mixing of QMS {𝑒𝑡L}𝑡≥0 and hence ther-
malization is the so-called mixing or return time of the QMS. Write 𝜌𝑡 := 𝑒𝑡L∗ (𝜌). Then for
𝜖 > 0,

𝑡mix(𝜖) := inf{𝑡 ≥ 0|∀𝜌 ∈ D(H)∥𝜌𝑡 − 𝐸∗(𝜌)∥1 ≤ 𝜖}. (2.30)
9Due to primitivity the Lindbadian has one eigenvalue 0, and all others strictly smaller.
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It tells us how long we have to let the system evolve, s.t. under any initial state 𝜌0, the time-evolved
state 𝜌𝑡 is 𝜖 close in trace-distance to the stationary state 𝐸∗(𝜌). For a primitive quantum Gibbs
sampler, like the Davies evolution,the mixing time tells us how quickly the system approaches the
thermal equilibrium state 𝜎Λ.
We are interested in how this mixing time scales with system size |Λ|. In the previous section it
was shown that the spectral gap 𝜆 ≡ 𝜆(L𝐷

Λ
) induces exponential decay of the KMS-variance. This

directly implies

∥𝜌𝑡 − 𝜎∥1 ≤ ∥𝜎−1∥− 1
2 𝑒−𝜆𝑡 =⇒ 𝑡mix(𝜖) =

1
𝜆

log(𝜖−1∥𝜎− 1
2 ∥) = 1

𝜆
O

(
ln

1
𝜖
+ |Λ|

)
, (2.31)

where in the implication we assumed 𝜎 was the thermal state of some bounded geometrically-local
Hamiltonian, hence ∥𝜎−1∥−1 = 𝑒O( |Λ | ) is the smallest eigenvalue of the Gibbs state of a uniform
family of Hamiltonians [34]. Thus proving thermalization via gap, which may still depend on the
system size, gives a mixing time which scales in the best case as O(|Λ|).
We can do better though, in fact if the primitive QMS satisfies the cMLSI with constant 𝛼 ≡
𝛼𝑐 (L) > 0, then via Pinsker’s inequality we get

∥𝜌𝑡 − 𝜎∥1 ≤
√︁

2𝐷 (𝜌𝑡 ∥𝜎) ≤ 𝑒−
𝑡𝛼
2
√︁

2𝐷 (𝜌∥𝜎) ≤ 𝑒− 𝑡𝛼
2

√︃
2 log ∥𝜎−1∥

=⇒ 𝑡mix(𝜖) ≤
1
𝛼
O

(
ln

1
𝜖
+ ln |Λ|

)
. (2.32)

Hence if the cMLSI constant of a QMS is system size independent, then cMLSI implies a scaling
of the mixing time with O(ln |Λ|). We call such a logarithmic or poly-logarithmic scaling of
the mixing time in system size rapid mixing. Hence a primitive uniform family of Lindbladians
L = {LΓ}Γ⊂⊂Λ satisfies rapid mixing if 0 < 𝛼(LΓ) = Ω

(
(polylog( |Γ|))−1)

|Γ |→∞ and obviously
especially if it is constant in system size.
For Davies evolution of 1 dimensional systems with uniform geometrically-local, commuting, and
translation invariant Hamiltonians, it was shown in [7] that there exists a strictly positive cMLSI
constant 𝛼(L𝐷

Λ
) = Ω((ln |Λ|)−1) at any temperature. For hypercubic latices in dimensions 𝐷 ≥ 2,

the Schmidt generators, see Section 4.2 of a system with uniform nearest neighbour commuting
Hamiltonian was shown to satisfy a cMLSI with constant 𝛼(L𝐷

Λ
) = O(1) under certain mixing

condition. Hence for these systems this directly implies rapid thermalization, see also [22].

Remark. The main result of this work establishes rapid thermalization, informally speaking,
of nearest neighbour quantum spin systems on 2-colorable lattices with finite growth constant
whenever their generator is gapped. For exponential lattices, such a 𝑏−ary trees (under suitable
conditions) this is a novel result and although in the hypercubic lattice case this was already known,
the main result of this work constitutes an improvement over literature in these cases.
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3 Clustering and Strong local
indistinguishability

In this section we deal with some static properties of quantum spin systems. Namely various
types of spacial clustering and spacial mixing properties. Among these rather weak notions,
such as exponential decay of correlation, to stronger ones such as exponential decay of mutual
information. Clustering properties and the often from these derived mixing conditions are central
to the geometric divide-and-conquer arguments that establish entropic decay for quantum spin
systems. Both in the quantum setting, see e.g [9], [11], [12] and also the classical setting, see
e.g. [35]. In this section we will show that exponential decay of correlations implies an a priori
stronger version of clustering and a new stronger form of a spacial mixing condition, which we
coin strong local indistinguishability. We will use this notion and the results from this section
to derive an even stronger clustering result in Chapter 5, however, they are also of independent
interest. The results in this section are a crucial step in the proof of the system-size independence
of the MLSI constant of the quantum Gibbs samplers introduced above in Chapter 4. We first
introduce a useful relation to simplify notations. Then in Theorem 3.4 we establish, for uniform
geometrically-local, bounded, commuting Hamiltonians on a graph with finite growth constant,
that uniform exponentialL∞ decay of correlations (2) implies, one, strong local indistinguishability,
two, something referred to as ’(strong) mixing condition’ (or strong tensorization) [7], [12], and
three, is equivalent to exponential decay of the mutual information. In the 1-dimensional setting we
show these implications qualitatively1 without the commutativity requirement on the Hamiltonian
in Theorem 3.5.

The version of clustering of correlations we will be looking at is the usual following notion of
exponential decay of correlations, following the nomenclature of [11], denoted as as 𝐿∞-clustering.

Definition 2 (L∞-clustering). We call a pair of Potential Φ on Λ, and inverse temperature 𝛽,
uniformly exponentially 𝐿∞-clustering if for any subregion Γ ⊂⊂ Λ and any 𝐴, 𝐵 ⊂ Γ, s.t.
dist(𝐴, 𝐵) = 𝑙 there exists an exponentially decaying function 𝑙 ↦→ 𝜖 (𝑙), s.t.

Cov(0)
𝜎Γ ( 𝑓 , 𝑔) ≤ ∥ 𝑓 ∥∥𝑔∥|Γ|𝜖 (𝑙), (3.1)

for any self-adjoint 𝑓 , 𝑔 ∈ B(HΓ) with support on 𝐴, 𝐵, respectively. Here 𝜎Γ is the Gibbs state
of 𝐻Γ to inverse temperature 𝛽 and Cov(0)

𝜎 ( 𝑓 , 𝑔) the GNS-covariance defined in Section 2.3. The
decay length of the function 𝜖 (𝑙) is called the correlation length 𝜉, that is the standard decay rate
of thermal two-point correlation functions. I.e. − ln 𝜖 (𝑙) = O

(
𝑙
𝜉

)
𝑙→∞

.

Remark. This is a rather weak notion of clustering, hence sometimes refereed to as weak clustering.
It is known to imply local indistinguishability [4], [6] and a mixing condition [7], something
elaborated in in the next section. It is for example known to hold for steady states of rapidly
mixing QMS [3], [5], [15] and in particular for steady states of gapped primitive QMS, as in the

1However, in the 1 dimensional setting only the exponential strong local indistinguishability is a novel result. And the
decay rate may not be 𝜉
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following theorem, whose proof makes use of the detectibility lemma [36]. This is a very important
implication, which we henceforth shall refer to as ”gap implies exponential decay of correlations”.
The prefactor |Γ| is a in general too cautious choice and can in many cases actually be relaxed
or omitted, see [6] or [7][1D case]. Intuitively, one could assume that it should never occur in a
physically relevant definition of exponential decay of correlations. Since it won’t make a qualitative
difference in this work, we will, for sake of generality, keep it as |Γ |, though. If we would remove
it, then all the dependencies on sizes of regions in the theorems of this section could be dropped.
However, the scalings w.r.t the sizes of boundaries of regions would be unaffected by this.

Theorem 3.1 (Gap implies L∞ clustering [3](Corollary 27), adapted). Let Λ be a graph with finite
growth constant. Let {𝐻Γ}Γ⊂⊂Λ be a uniform, bounded, geometrically-local, commuting family
of Hamiltonians with Gibbs states {𝜎Γ}Γ⊂⊂Λ to some inverse temperature 𝛽. We say that a family
of Lindbladians LΛ := {LΓ}Γ⊂⊂Λ is gapped if

inf
Γ⊂⊂Λ

𝜆(LΓ) > 0.

If a local Gibbs sampler2 is gaped, then the Gibbs states (invariant states) satisfy L∞-clustering,
where the exponentially decaying function 𝜖 does not carry the |Γ | factor. 3

In fact, the authors of [3] show a somewhat stronger statement namely L2-clustering in form
of Cov𝜎 ( 𝑓 , 𝑔) ≤ ∥ 𝑓 ∥2,𝜎 ∥𝑔∥2,𝜎𝜖 (𝑙), where 𝜖 (𝑙) is an exponentially decaying function in 𝑙 the
distance of the supports of 𝑓 and 𝑔. By the monotonicity of the L𝑝,𝜎−norms in 𝑝 this directly
implies L∞-clustering. Note also, that there is no dependence on |Γ | in this decay of correlations!
Hence the assumption of a gapped generator will give us notions of clustering where we can omit
the system and subsystem sizes in the exponential bounds. However, it is notably not as strong
as a a form of clustering which we will be requiring and considering in Chapter 5, Section 5.1.
There, as the first big result of that section, we will, hence, establish a stronger implication under
appropriate conditions.

3.1 A useful relation

We first define the following relation to simplify the notation in the rest of this work.

Definition 3 (A strong similarity relation). Introduce the relation ∼ on D(HΛ), s.t. we write for
two states 𝜔, 𝜏 with the same support supp(𝜔) = supp(𝜏):

𝜔
𝜖∼ 𝜏 :⇔ ∥𝜔 1

2 𝜏−1𝜔
1
2 − 1∥ ≤ 𝜖 < 1, (3.2)

where the identity 1 ≡ 1supp(𝜔) = 1supp(𝜏 ) is on the support of the states. The inverse represents
the generalized inverse here, i.e. the inverse on the support times the support projection.

Note, that by Hölder’s inequality it follows immediately that 𝜔 𝜖∼ 𝜏 =⇒ ∥𝜔 − 𝜏∥1 ≤ 𝜖 , but the
converse is in general not true. Hence, this relation quantifies a stronger form of similarity between
a pair of states. This turns out to be a natural and powerful notion when working with Gibbs states
of local Hamiltonians.
We will often have 𝜖 be some (exponentially decaying) function depending on the supports of

2This is a uniform, locally primitive, locally GNS-symmetric and reversible, frustration-free family of Lindbladians
with the Gibbs states {𝜎Γ}Γ⊂⊂Λ as unique invariant states.

3This holds hence in particular for the Davies and Schmidt generators, which are introduced in 4.1 and 4.2, respectively.
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𝜔, 𝜏 and may sloppily write 𝜔 ∼ 𝜏 when meaning that there exists some exponentially decaying
function 𝜖 (𝑙) s.t. 𝜔 𝜖∼ 𝜏, where 𝑙 = dist(supp𝜔, supp 𝜏) and the exact function is not relevant. In
this sense the mathematical terminology relation is justified, as per the following proposition.

Proposition 3.2 (Properties of 𝜖∼). Let 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 𝐴̃, 𝐵̃ ∈ 𝐵1(H) be self-adjoint and full rank
and 𝑃 ∈ B(K) a projection. The above defined relation 𝜖∼ is reflexive (0), symmetric (1), transitive
(2), and tensor multiplicative (3) in the following senses. Additionally it satisfies the natural
localization and normalization properties 4) and 4′).

0) 𝐴 ∼ 𝐴 reflexive

1) 𝐴 𝜖∼ 𝐵 =⇒ 𝐵
𝜖 (1−𝜖 )−1

∼ 𝐴 symmetric

2) 𝐴 𝜖1∼ 𝐵, 𝐵
𝜖2∼ 𝐶 =⇒ 𝐴

𝜂∼ 𝐶 transitive

3) 𝐴 𝜖1∼ 𝐴̃, 𝐵
𝜖2∼ 𝐵̃ =⇒ 𝐴 ⊗ 𝐵 𝜂∼ 𝐴̃ ⊗ 𝐵̃ tensor multiplicative

4) 𝐷 𝜖∼ 𝐸 =⇒ trK (1 ⊗ 𝑃)𝐷 (1 ⊗ 𝑃) 𝜖∼ trK (1 ⊗ 𝑃)𝐸 (1 ⊗ 𝑃) locally preserved

4′) 𝐷 𝜖∼ 𝐸 =⇒ trK (1⊗𝑃)𝐷 (1⊗𝑃)
Tr[ (1⊗𝑃)𝐷 (1⊗𝑃) ]

𝜖 (2+𝜖 )∼ trK (1⊗𝑃)𝐸 (1⊗𝑃)
Tr[ (1⊗𝑃)𝐸 (1⊗𝑃) ] normalization preserved

where 𝜂 = 𝜖1(1 + 𝜖2) + 𝜖2.

For notational simplicity, we may write 𝐴 𝜖1∼ 𝐵
𝜖2∼ 𝐶, implying transitivity, when we mean 𝐴 𝜖1∼ 𝐵,

𝐵
𝜖2∼ 𝐶.

Corollary 3.3. If 𝐴𝑖
𝜖∼ 𝐴𝑖+1 for i= 0,...,K-1, then 𝐴0

𝜂∼ 𝐴𝐾 with 𝜂 = (1 + 𝜖)𝐾 − 1.

A proof of the proposition and the corollary is given in Section A.1.

3.2 Local and Strong local indistinguishability

Local indistinguishability[4], [6] pertains to observing quantum many-body states on finite subre-
gions 𝐴 ⊂ Λ and quantifying the influence of spatially far away (from 𝐴) regions on the marginal
on subregion 𝐴.
We say that a family of Gibbs states {𝜎Γ}Γ⊂⊂Λ satisfies exponential uniform local indistinguisha-
bility [4] if, for any subregion Γ ⊂⊂ Λ and any partition thereof into disjoint regions Γ = 𝐴𝐵𝐶,
the effect of subregion 𝐶 on 𝐴 with dist(𝐴,𝐶) = 𝑙 is exponentially decaying in 𝑙. I.e. there exists
an exponentially decreasing function 𝑙 ↦→ 𝜖 (𝑙), s.t.

∥ tr𝐵𝐶 [𝜎𝐴𝐵𝐶] − tr𝐵 [𝜎𝐴𝐵] ∥1 ≡ ∥𝜎𝐴 − tr𝐵 [𝜎𝐴𝐵] ∥1 ≤ |𝜕𝐶 |𝜖 (𝑙).

Here, 𝐵 here shields 𝐴 away from 𝐵 and the function 𝜖 , as defined above, is independent of
the regions (and their sizes) 𝐴, 𝐵, 𝐶. In [4] it was shown that Gibbs states of geometrically-local,
bounded, possibly non-commuting Hamiltonians, which satisfy universal exponential-L∞-decay of
correlations, satisfy universal exponential local indistinguishability. Furthermore they show that, if
the Hamiltonian is commuting, then the decay length of the function in the local indistinguishability
can be controlled by the thermal correlation length 𝜉. It implies that expectation values of local
observables can be evaluated quasi-locally, a property that plays an important role in establishing
stability of gapped ground state phases [4], [6].

Similarly, Uuing the strong similarity relation defined above in Definition 3, we may now, in
analogy to the above, define the stronger notion of strong local indistinguishability.
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Definition 4 (Strong local indistinguishability). We say the family of Gibbs states {𝜎Γ}Γ⊂⊂Λ
satisfies (exponential uniform) strong local indistinguishability if for any finite subregion Γ ⊂⊂ Λ

and any partition of it into Γ = 𝐴𝐵𝐶, s.t. 𝐵 shields 𝐴 away from 𝐶 and dist(𝐴,𝐶) = 𝑙, there exists
an exponentially decreasing function 𝑙 ↦→ 𝜖 (𝑙), s.t. the following holds.

tr𝐵𝐶 𝜎𝐴𝐵𝐶
𝜖 (𝑙)∼ tr𝐵 𝜎𝐴𝐵. (3.3)

Note that here 𝜖 (𝑙) may depend on the sizes of the regions 𝐴, 𝐵, 𝐶.

We will show that the Gibbs state of a geometrically local, bounded, and commuting Hamiltonian
𝐻 at inverse temperature 𝛽 satisfies strong local indistinguishability on any lattice with finite
growth constant 𝜈 if the pair (𝐻, 𝛽) satisfies uniform exponential L∞-clustering, and that the
commuting property for 1D systems may be dropped. For commuting Hamiltonians we will
also give quantitative results in terms of the correlation length 𝜉 and inverse temperature 𝛽 in
Theorem 3.4. Before we come to this though, let’s consider one more important property of Gibbs
states.

Definition 5 (Strong tensorization/mixing condition from [7]). We say the family of Gibbs states
{𝜎Γ}Γ⊂⊂Λ is uniformly exponentially strongly mixing if for any finite subregion Γ ⊂⊂ Λ and any
partition of it into Γ = 𝐴𝐵𝐶, s.t. 𝐵 shields 𝐴 away from 𝐶 and dist(𝐴,𝐶) = 𝑙, there exists an
exponentially decreasing function 𝑙 ↦→ 𝜖 (𝑙), s.t. the following holds.

𝜎𝐴𝐶
𝜖 (𝑙)∼ 𝜎𝐴 ⊗ 𝜎𝐶 , (3.4)

Note that here 𝜖 (𝑙) may depend on the sizes of the regions 𝐴, 𝐵, 𝐶.

Strong mixing of Gibbs states of geometrically-local, possibly non-commuting, bounded, and
translation invariant Hamiltonians on a 1D lattice was shown to hold qualitatively under the
condition of uniform exponential L∞-clustering [7][Proposition 8.1]. This was crucial in order to
establish the existence of a log-decreasing MLSI constant 𝛼 = Ω(ln |Λ|)−1 for commuting quantum
spin chain systems.
We build upon this work to extend this result to hold for geometrically-local, commuting, bounded
Hamiltonians on any lattice with finite growth constant. Moreover, we make our statement depend
explicitly on the inverse temperature 𝛽, as well as the thermal correlation length 𝜉 in the following
Theorem 3.4.

Theorem 3.4 (Implications of L∞-clustering: Strong local indistinguishability and more; com-
muting case). Let Λ be any graph with finite growth constant 𝜈. Let Γ = 𝐴𝐵𝐶 ⊂⊂ Λ, with
𝑙 := dist(𝐴,𝐶) ≥ 2𝑟 and let {𝐻Λ}Λ⊂⊂Γ be a uniform, bounded, commuting, geometrically-𝑟-local
family of Hamiltonians onΛ that satisfy universal exponential L∞-clustering at inverse temperature
𝛽 with correlation length 𝜉. Then its Gibbs state on Γ at inverse temperature 𝛽, satisfies

1) strong local indistinguishability with decay length 𝜉:

tr𝐵𝐶 (𝜎𝐴𝐵𝐶)
𝜖 (𝑙)∼ tr𝐵 (𝜎𝐴𝐵) with 𝜖 (𝑙) := 𝑒O(𝛽min{ |𝜕𝐴| , |𝜕𝐵 | } )O(|𝜕𝐶 | |𝐴𝐵𝐶 |) exp

(
− 𝑙 − 𝑟

𝜉

)
. (3.5)

Hence this family of Gibbs states satisfies uniform strong local indistinguishability.

2) strong tensorization with decay length 𝜉:

𝜎𝐴𝐶
𝜂 (𝑙)∼ 𝜎𝐴 ⊗ 𝜎𝐶 with 𝜂(𝑙) := 𝑒O(𝛽 ( |𝜕𝐴|+|𝜕𝐶 | ) )O(poly( |𝐴|, |𝐵|, |𝐶 |)) exp

(
− 𝑙 − 2𝑟

𝜉

)
. (3.6)
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Hence this family of Gibbs states satisfies uniform strong mixing.

3) exponential decay of mutual information with decay length 𝜉, i.e.

𝐼𝜎𝐴𝐵𝐶 (𝐴 : 𝐶) ≤ 𝜂(𝑙) = 𝑒O(𝛽 ( |𝜕𝐴|+|𝜕𝐶 | ) )O(poly( |𝐴|, |𝐵|, |𝐶 |)) exp
(
− 𝑙 − 2𝑟

𝜉

)
. (3.7)

Hence this family of Gibbs states satisfies uniform exponential decay of mutual information.

Remark: Note that in order to guarantee the universality of these three properties we need
a finite growth constant, under which the bounds |𝜕𝐴|, |𝜕𝐵 |, |𝜕𝐶 | ≤ 𝜈𝑟 < ∞ hold. Since by
Theorem 3.1 the existence of a gap implies uniform exponential L∞-clustering, we immediately
have strong local indistinguishability, strong mixing, and exponential decay of mutual information
from the gap property. Explicitly, this implies that 1 dimensional quantum spin chains satisfy these
properties at any temperature for geometrically-local, commuting, bounded Hamiltonians and in d-
dimensional regular latices if the temperature is high enough. With this in mind, implication 1), i.e.
gap implies strong local indistinguishability, is a strict strengthening of the local indistinguishability
result in [4], [6] in the case of commuting Hamiltonians. Implication 2) and 3) can be viewed
as extensions of the results in [7] to any lattice with finite growth constant under the additional
condition of commutativity of the Hamiltonian. By a standard use of Pinsker’s and Hölder’s
inequalities, exponential decay of the mutual information directly implies exponential decay of
GNS-Correlations with halved decay rate, since

𝐼𝜎 (𝐴 : 𝐶) = 𝐷 (𝜎𝐴𝐶 ∥𝜎𝐴 ⊗ 𝜎𝐶) ≥
1
2
∥𝜎𝐴𝐶 − 𝜎𝐴 ⊗ 𝜎𝐶 ∥2

1.

Thus what we are showing here is equivalence of exponential decay of mutual information, a
seemingly strictly stronger type of decay; and a more basic exponential decay of correlations. In
summary, to establish mutual information decay for the above considered systems it is enough to
establish decay of correlations. For an exemplary visualization of a splitting of Γ = 𝐴𝐵𝐶 see
Figure 3.1 and for a graphical representation of the implications and relation between the different
notions of clustering dealt with there, see the static properties section part in Figure 5.1.

Before proving this theorem we note that in the case of 1 dimensional quantum spin chains we
can also establish the above results and implications for non-commuting Hamiltonians. In this case
2) and 3) are the main results of [7].

Theorem 3.5 (Strong local indistinguishability in 1D). Let 𝐼 = 𝐴𝐵𝐶 ⊂⊂ Z be a convex, where
𝐵 shields 𝐴 away from 𝐶, s.t. 2𝑙 := |𝐵| = dist(𝐴,𝐶) and let 𝐻 be a geometrically-𝑟-local and
𝐽−bounded Hamiltonian on Λ which satisfies universal exponential clustering.

∥(tr𝐵𝐶 𝜎𝐴𝐵𝐶) (tr𝐵 𝜎𝐴𝐵)−1 − 1∥ ≤ 𝐾𝑒−𝑎𝑙, (3.8)

with some 𝐾, 𝑎 > 0 depending only on the interaction range 𝑟 and 𝐽𝛽, where we recall that 𝐽 is
the interaction strength and 𝛽 > 0 the inverse temperature.

Theorem 3.5 will be proven in Appendix A.1. Its proof is however essentially the same as the
one for Theorem 3.4 using some additional technical prerequisites from [7]. For the latter we will
first need the following technical Lemma. Recall that 𝐸𝐴,𝐵 := exp(−𝛽𝐻𝐴𝐵) exp(𝛽(𝐻𝐴 + 𝐻𝐵))
denote Araki’s expansionals.

Lemma 3.6. Let Φ be a geometrically−𝑟−local, 𝐽−bounded, commuting potential on a quantum
spin system Λ with finite growth constant 𝜈. Let Γ = 𝐴𝐵𝐶 ⊂⊂ Λ. Then the following bounds hold
with 𝐾 = exp(O(𝛽 |𝜕𝐵|)) independent of 𝑙 and 𝜉:
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Figure 3.1: The graph region Γ, here depicted as a colored region without the edges is partitioned
into the three sub-regions 𝐴, 𝐶 and 𝐵, such s.t. dist(𝐴,𝐶)=l. This is an example of a
partitioning in Theorem 3.4. If the Graph Γ is in a state which satisfies L∞-clustering,
then via this theorem, the reduced state on 𝐴𝐶 is approximately a product state between
the reduced states on regions 𝐴 and 𝐶. Approximately in the sense of the strong
similarity relation 𝜖∼ from 3, where 𝜖 is exponentially decaying in 𝑙.

0) ∥𝐸±1
𝐴,𝐵

∥ ≤ 𝐾 = exp(O(𝛽 |𝜕𝐵|))

1) ∥𝑄∓1∥−1 ≤ ∥ tr𝐵 [𝜎𝐵𝑄]±1∥ ≤ ∥𝑄±1∥ for any strictly positive 𝑄 ∈ B(HΛ)

1′) ∥ tr𝐵 [𝜎𝐵𝐸±1
𝐴,𝐵

]±1∥ ≤ 𝐾, ∥ tr𝐵 [𝜎𝐵𝐸±1
𝐵,𝐶

]±1∥ ≤ 𝐾, ∥ tr𝐴𝐵 [𝜎𝐴𝐵𝐸±1
𝐴,𝐵

]±1∥ ≤ 𝐾,
∥ tr𝐵 [𝜎𝐵𝐸±1

𝐴,𝐵
𝐸±1
𝐴𝐵,𝐶

]±1∥ ≤ 𝐾2.

The big-O notation refers to the dependence in 𝛽 and |𝜕𝐵 | and omits dependence on 𝐽, 𝑑, 𝑟, 𝜈.

Proof. To show 1) consider the map𝑄 ↦→ tr𝐵 [𝜎𝐵𝑄] = 1
Tr[𝑒−𝐻𝐵 ] tr𝐵 [𝑒−

1
2𝐻𝐵𝑄𝑒−

1
2𝐻𝐵] : B(HΛ) →

B(HΛ\𝐵) which is evidently positive and unital. Note that if 𝑄 > 0 is strictly positive, then so is
𝑄−1 > 0 and 𝜆min(𝑄)1 = ∥𝑄−1∥−1

1 ≤ 𝑄 ≤ ∥𝑄∥1 = 𝜆max(𝑄)1. Applying the aforementioned
map to this inequality immediately gives that

∥𝑄−1∥−1
1𝐵𝑐 ≤ tr𝐵 [𝜎𝐵𝑄] ≤ ∥𝑄∥1𝐵𝑐 ,

∥𝑄∥−1
1𝐵𝑐 ≤ tr𝐵 [𝜎𝐵𝑄]−1 ≤ ∥𝑄−1∥1𝐵𝑐 ,

since inversion of two commuting operators is order reversing. Taking norms gives 1).
For 0), if Φ is chosen as in the statement of proposition, then there exists a constant 𝑐𝑟 ,𝜈 depending
only on 𝑟, 𝜈 s.t.

∥𝐸±1
𝐴,𝐵∥ = ∥𝑒∓𝛽𝐻𝐴𝐵𝑒±𝛽𝐻𝐴±𝛽𝐻𝐵 ∥

= ∥ exp (∓𝛽
∑︁

𝑋∩𝐴≠∅,𝑋∩𝐵≠∅
Φ𝑋)∥

≤ exp (𝛽𝐽
∑︁

𝑋∩𝐴≠∅,𝑋∩𝐵≠∅
diam(𝑋)≤𝑟

1)

≤ exp(𝛽𝐽𝑐𝑟 ,𝜈 min{|𝜕𝐴|, |𝜕𝐵|}) =: 𝐾 = exp (O(𝛽 |𝜕𝐵|)),
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and

∥𝐸±1
𝐴,𝐵𝐸

±1
𝐴𝐵,𝐶 ∥ ≤ ∥𝐸±1

𝐴,𝐵∥∥𝐸
±1
𝐴𝐵,𝐶 ∥ ≤ 𝐾2 = exp (O(𝛽 |𝜕𝐵|)).

Note that 1′) are just special cases of 1) given 0), since each of the 𝐸𝐴,𝐵 are strictly positive, as Φ
is commuting, e.g. by self-adjointness and the spectral theorem. □

Remark. Note that the proof of Lemma 3.6 requires the commutativity of the Hamiltonian, since
we require 𝐸𝐴,𝐵 ≥ 0. If a proof of it, which does not require commutativity can be found then we
are hopeful that we can establish Theorem 3.4 without the additional assumption of commutativity.
For more details on this see the discussion in Chapter 7 on this.

By the combined use of Lemma 3.6, clever rewritings inspired by the proofs in [7], and repeated
application of local indistinguishability, we can prove the main theorem of this section.

Proof of Theorem 3.4. We first note that the following holds: ∥𝐴 1
2 𝐵−1𝐴

1
2 −1∥ ≤ ∥𝐴𝐵−1 −1∥. Set

𝑙 := dist(𝐴,𝐶) > 𝑟 . Assume uniform exponential L∞-clustering with correlation length 𝜉, hence
we may write 𝑙 ↦→ 𝐾̃ exp

(
− 𝑙
𝜉

)
for the exponentially decaying function, for some constant 𝐾 > 0.

1) To show strong local indistinguishability (3.5) we start by rewriting

(tr𝐵𝐶 𝜎𝐴𝐵𝐶) (tr𝐵 𝜎𝐴𝐵)−1 = tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] tr𝐵 [𝜎𝐵𝐸𝐴,𝐵]−1𝜆−1
𝐴𝐵𝐶 ,

where 𝜆−1
𝐴𝐵𝐶

=
Tr[𝑒−𝛽𝐻𝐴𝐵 ] Tr[𝑒−𝛽𝐻𝐵𝐶 ]
Tr[𝑒−𝛽𝐻𝐴𝐵𝐶 ] Tr[𝑒−𝛽𝐻𝐵 ] =

Tr[𝜎𝐴𝐵𝐶𝐸−1
𝐴,𝐵𝐶

]
Tr[𝜎𝐴𝐵𝐸−1

𝐴,𝐵
] .

Claim 1: |𝜆∓1
𝐴𝐵𝐶

− 1| is exponentially decaying in 𝑙 with decay length 𝜉.
Proof of Claim 1:

|𝜆−1
𝐴𝐵𝐶 − 1| = 1

Tr[𝜎𝐴𝐵𝐶𝐸−1
𝐴,𝐵𝐶

]

���Tr[𝜎𝐴𝐵𝐸−1
𝐴,𝐵 − Tr[𝜎𝐴𝐵𝐶𝐸−1

𝐴,𝐵𝐶]]
���

Lemma 3.6 1)
≤ ∥𝐸−1

𝐴,𝐵𝐶 ∥
���Tr[𝜎𝐴𝐵𝐸−1

𝐴,𝐵 − Tr[𝜎𝐴𝐵𝐶𝐸−1
𝐴,𝐵𝐶]]

��� .
Now set 𝐵 = 𝐵1𝐵2 with 𝐵1 := 𝐴𝜕, 𝐵2 = 𝐵 \ 𝐵1, s.t. dist(𝐴, 𝐵2) = 𝑟, dist(𝐵1, 𝐶) = 𝑙 − 𝑟 . Then
𝐸𝐴,𝐵𝐶 = 𝐸𝐴,𝐵 = 𝐸𝐴,𝐵1 . So now���Tr[𝜎𝐴𝐵𝐸−1

𝐴,𝐵 − Tr[𝜎𝐴𝐵𝐶𝐸−1
𝐴,𝐵𝐶]]

��� = ���Tr𝐴𝐵1 [tr𝐵2 (𝜎𝐴𝐵𝐸−1
𝐴,𝐵)] − Tr𝐴𝐵1 [tr𝐵2𝐶 (𝜎𝐴𝐵𝐶𝐸−1

𝐴,𝐵𝐶)]
���

= | Tr𝐴𝐵1 [(tr𝐵2 𝜎
𝐴𝐵 − tr𝐵2𝐶 𝜎

𝐴𝐵𝐶)𝐸−1
𝐴,𝐵1

] |
Hölder
≤ ∥(tr𝐵2 𝜎

𝐴𝐵 − tr𝐵2𝐶 𝜎
𝐴𝐵𝐶)∥1∥𝐸−1

𝐴,𝐵1
∥

≤ 𝐾 |𝜕𝐶 | |𝐴𝐵𝐶 |𝐾̃ exp( −1
𝜉

dist(𝐵1, 𝐶))

= 𝐾 |𝜕𝐶 | |𝐴𝐵𝐶 |𝐾̃ exp
(
− 𝑙 − 𝑟

𝜉

)
.

Thus |𝜆−1
𝐴𝐵𝐶

− 1| ≤ 𝐾2 |𝜕𝐶 | |𝐴𝐵𝐶 |𝐾̃ exp
(
− 𝑙−𝑟

𝜉

)
. The same holds for |𝜆𝐴𝐵𝐶 − 1| by the same

argument as above. Now we can rewrite

∥(tr𝐵𝐶 𝜎𝐴𝐵𝐶) (tr𝐵 𝜎𝐴𝐵)−1
1

∥ ≤∥(tr𝐵𝐶 𝜎𝐴𝐵𝐶) (tr𝐵 𝜎𝐴𝐵)−1 − tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] (tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥
+ ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] (tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1 − 1∥

≤∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] ∥∥(tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥|𝜆−1
𝐴𝐵𝐶 − 1|

+ ∥(tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵] ∥.
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Claim 2: ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵] ∥ is exponentially decaying in 𝑙 with decay rate 𝜉.
Proof of Claim 2: Again set 𝐵 = 𝐵1𝐵2, 𝐵1 := 𝐴𝜕, 𝐵2 := 𝐵 \ 𝐵1, thus dist(𝐵1, 𝐶) = 𝑙 − 𝑟 and
𝐸𝐴,𝐵𝐶 = 𝐸𝐴,𝐵 = 𝐸𝐴,𝐵1 . Then by local indistinguishability

∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵] ∥ = ∥ tr𝐵1 [(tr𝐵2 𝜎
𝐵1𝐵2 − tr𝐵2𝐶 𝜎

𝐵1𝐵2𝐶)𝐸𝐴,𝐵1] ∥
≤ ∥ tr𝐵2 𝜎

𝐵1𝐵2 − tr𝐵2𝐶 𝜎
𝐵1𝐵2𝐶 ∥1∥𝐸𝐴,𝐵1 ∥

≤ 𝐾 |𝜕𝐶 | |𝐵𝐶 |𝐾̃ exp
(
−dist(𝐵1, 𝐶)

𝜉

)
= 𝐾 |𝜕𝐶 | |𝐵𝐶 |𝐾̃ exp

(
− 𝑙 − 𝑟

𝜉

)
,

where the first inequality follows similar to Lemma 3.6 1), since 𝑄 ↦→ tr𝐵1 [| tr𝐵2 𝜎
𝐵1𝐵2 −

tr𝐵2𝐶 𝜎
𝐵1𝐵2𝐶 |𝑄] is positive and unital up to a scalar factor of Tr[| tr𝐵2 𝜎

𝐵1𝐵2 − tr𝐵2𝐶 𝜎
𝐵1𝐵2𝐶 |],

i.e.

∥ tr𝐵1 [(tr𝐵2 𝜎
𝐵1𝐵2 − tr𝐵2𝐶 𝜎

𝐵1𝐵2𝐶)𝐸𝐴,𝐵1] ∥ ≤∥ tr𝐵1 [| tr𝐵2 𝜎
𝐵1𝐵2 − tr𝐵2𝐶 𝜎

𝐵1𝐵2𝐶 |𝐸𝐴,𝐵1] ∥
Lemma 3.6 1)

≤ ∥𝐸𝐴,𝐵1 ∥ Tr𝐵1 [| tr𝐵2 𝜎
𝐵1𝐵2 − tr𝐵2𝐶 𝜎

𝐵1𝐵2𝐶 |] .

Putting everything together, we get the desired result:

∥(tr𝐵𝐶 𝜎𝐴𝐵𝐶) (tr𝐵 𝜎𝐴𝐵)−1
1

∥ ≤ 2𝐾2𝐾2 |𝜕𝐶 | |𝐴𝐵𝐶 |𝐾̃ exp
(
− 𝑙 − 𝑟

𝜉

)
+ 𝐶𝐶 |𝜕𝐶 | |𝐵𝐶 |𝐾̃ exp

(
− 𝑙 − 𝑟

𝜉

)
= O(𝐾4) |𝜕𝐶 | |𝐴𝐵𝐶 |𝐾̃ exp

(
− 𝑙 − 𝑟

𝜉

)
= exp O(𝛽 |𝜕𝐴|)O(|𝜕𝐶 | |𝐴𝐵𝐶 |) exp

(
−dist(𝐴𝜕, 𝐶)

𝜉

)
.

2) Assume 𝑙 ≥ 2𝑟. To prove the strong tensorization (3.6), we can, similar to above (or see e.g.
[7][Cor 8.3]), rewrite

∥𝜎𝐴𝐶 (𝜎𝐴 ⊗ 𝜎𝐶)−1 − 1∥ ≤ ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶]−1∥∥ tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐴𝐵,𝐶]−1∥∥ tr𝐵 [𝜎𝐵𝐸𝐴,𝐵𝐸𝐴𝐵,𝐶] ∥ |𝜆𝐴𝐵𝐶 − 1|︸       ︷︷       ︸
Claim 1

+ ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶]−1∥∥ tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐴𝐵,𝐶]−1∥
· ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐴𝐵,𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵𝐸𝐴𝐵,𝐶] ∥︸                                                                             ︷︷                                                                             ︸

Claim 3

≤ 𝐾4𝐾2 |𝜕𝐶 | |𝐴𝐵𝐶 |𝐾̃ exp
(
− 𝑙 − 𝑟

𝜉

)
+ 𝐾2(Claim 3).

Claim 3: ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐴𝐵,𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵𝐸𝐴𝐵,𝐶] ∥ is exponentially decaying
in 𝑙 with correlation length 𝜉.
Proof of Claim 3: Set 𝐵 = 𝐵1𝐵2𝐵3 with 𝐵1 := 𝜕𝐴, 𝐵3 := 𝜕𝐶, 𝐵2 := 𝐵 \ (𝐵1 ∪ 𝐵3), then
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dist(𝐵1, 𝐵3) = 𝑙 − 2𝑟 and 𝐸𝐴,𝐵𝐶 = 𝐸𝐴,𝐵 = 𝐸𝐴,𝐵1 and 𝐸𝐴𝐵,𝐶 = 𝐸𝐵,𝐶 = 𝐸𝐵3,𝐶 and consequently

∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐴𝐵,𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵𝐸𝐴𝐵,𝐶] ∥
=∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵1] tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐵3,𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1𝐸𝐵3,𝐶] ∥
≤ ∥ tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1𝐸𝐵3,𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1] tr𝐵 [𝜎𝐵𝐸𝐵3,𝐶] ∥︸                                                                    ︷︷                                                                    ︸

(I)

+ ∥ tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1] tr𝐵 [𝜎𝐵𝐸𝐵3,𝐶] − 𝑡𝑟𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵1] tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐵3,𝐶] ∥︸                                                                                         ︷︷                                                                                         ︸
(II)

.

To bound (II) we use that by the proof of Claim 2:

∥ tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1] − tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵1] ∥ ≤ ∥𝐸𝐴,𝐵1 ∥∥ tr𝐵2𝐵3 𝜎
𝐵 − tr𝐵2𝐵3𝐶 𝜎

𝐵𝐶 ∥1

≤ 𝐾2 |𝜕𝐶 | |𝐵𝐶 |𝐾̃ exp
(
−1
𝜉

dist(𝐵1, 𝐶)
)
,

∥ tr𝐵 [𝜎𝐵𝐸𝐵3,𝐶] − tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐵3,𝐶] ∥ ≤ ∥𝐸𝐵3,𝐶 ∥∥ tr𝐵1𝐵2 𝜎
𝐵 − tr𝐴𝐵1𝐵2 𝜎

𝐴𝐵∥1

≤ 𝐾2 |𝜕𝐴| |𝐴𝐵 |𝐾̃ exp
(
−1
𝜉

dist(𝐴, 𝐵3)
)
.

Together

(II) ≤ ∥ tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1] ∥∥ tr𝐵 [𝜎𝐵𝐸𝐵3,𝐶] − tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐵3,𝐶] ∥
+ ∥ tr𝐵 [𝜎𝐵𝐸𝐵3,𝐶] ∥∥ tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1] − tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵1] ∥

≤ 𝐾𝐾2 |𝜕𝐴| |𝐴𝐵 |𝐾̃ exp
(
− 𝑙 − 𝑟

𝜉

)
+ 𝐾𝐾2 |𝜕𝐶 | |𝐵𝐶 |𝐾̃ exp

(
− 𝑙 − 𝑟

𝜉

)
= exp(O(𝛽 |𝜕𝐴| + 𝛽 |𝜕𝐶 |)) ( |𝜕𝐴| |𝐴𝐵 | + |𝜕𝐶 | |𝐵𝐶 |) exp

(
− 𝑙 − 𝑟

𝜉

)
.

To bound (I) we use that theL∞-clustering directly implies ∥𝜎𝐴𝐶−𝜎𝐴⊗𝜎𝐶 ∥1 ≤ |𝐴𝐵𝐶 |𝐾̃ exp
(
− dist(𝐴,𝐶 )

𝜉

)
for 𝜎 ≡ 𝜎𝐴𝐵𝐶 , by use of Hölder duality. Thus

(I) = ∥ tr𝐵1𝐵3 [𝜎𝐵1𝐵3 (𝐸𝐴,𝐵1 ⊗ 𝐸𝐵3,𝐶)] − tr𝐵1 [𝜎𝐵1𝐸𝐴,𝐵1] ⊗ tr𝐵3 [𝜎𝐵3𝐸𝐵3,𝐶] ∥
= ∥ tr𝐵1𝐵3 [𝜎𝐵1𝐵3 (𝐸𝐴,𝐵1 ⊗ 𝐸𝐵3,𝐶) ∓ (𝜎𝐵1 ⊗ 𝜎𝐵3) (𝐸𝐴,𝐵1 ⊗ 𝐸𝐵3,𝐶)] − tr𝐵1 [𝜎𝐵1𝐸𝐴,𝐵1] ⊗ tr𝐵3 [𝜎𝐵3𝐸𝐵3,𝐶] ∥
= ∥ tr𝐵1𝐵3 [(𝜎𝐵1𝐵3 − 𝜎𝐵1 ⊗ 𝜎𝐵3) (𝐸𝐴,𝐵1 ⊗ 𝐸𝐵3,𝐶)]+
+ tr𝐵1𝐵3 [(𝜎𝐵1 ⊗ 𝜎𝐵3) (𝐸𝐴,𝐵1 ⊗ 𝐸𝐵3,𝐶)] − tr𝐵1 [𝜎𝐵1𝐸𝐴,𝐵1] ⊗ tr𝐵3 [𝜎𝐵3𝐸𝐵3,𝐶]︸                                                                                               ︷︷                                                                                               ︸

=0

∥

Proof of Claim 2
≤ ∥𝐸𝐴,𝐵1 ⊗ 𝐸𝐵3,𝐶 ∥∥𝜎𝐵1𝐵3 − 𝜎𝐵1 ⊗ 𝜎𝐵3 ∥1

≤ 𝐾𝐾 |𝐵|𝐾̃ exp
(
−dist 𝐵1, 𝐵3

𝜉

)
= 𝐾2 |𝐵|𝐾̃ exp

(
− 𝑙 − 2𝑟

𝜉

)
.

So together ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] tr𝐴𝐵 [𝜎𝐴𝐵𝐸𝐴𝐵,𝐶]−tr𝐵 [𝜎𝐵𝐸𝐴,𝐵𝐸𝐴𝐵,𝐶] ∥ ≤ exp(O(𝛽 |𝜕𝐴|+𝛽 |𝜕𝐶 |)) ( |𝜕𝐴| |𝐴𝐵 |+
|𝐵| + |𝜕𝐶 | |𝐵𝐶 |)𝐾̃ exp

(
− 𝑙−2𝑟

𝜉

)
and altogether

∥𝜎𝐴𝐶 (𝜎𝐴 ⊗ 𝜎𝐶)−1 − 1∥ ≤ exp O(𝛽( |𝜕𝐴| + |𝜕𝐶 |))O(poly( |𝐴|, |𝐵|, |𝐶 |)) exp
(
− 𝑙 − 2𝑟

𝜉

)
.
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3 Clustering and Strong local indistinguishability

3) The result for the mutual information follows directly from the one for the mixing condition 2)
(3.6) via the following inequality [7][Lemma 3.1]

𝐼𝜎 (𝐴 : 𝐶) ≤ ∥𝜎𝐴𝐶 (𝜎𝐴 ⊗ 𝜎𝐶)−1 − 1𝐴𝐶 ∥.

. □
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4 Local Generators and conditional
expectations

The previous section was on statics of quantum spin systems. Next, we want to consider the
dynamics of these spin systems. In this work we consider mainly two classes of dynamics. The
first one, commonly known as Davies dynamics, is a particularly physical motivated dynamic. It
is often used to model thermalization of finite dimensional quantum systems from weak coupling
to its environment. The main result is formulated w.r.t it. See Section 4.1 for Details of the
Davies evolution. In contrast, the second class is the is the Heat-bath dynamics w.r.t the Schmidt
conditional expectation, see Section 4.2 for its definition and the notation used. It serves as a
mathematically simpler model, but lacks physical interpretation.
In this work we will use the latter as a proxy to derive rigorous bounds on the mixing time of the
former through establishment of the modified logarithmic Sobolev inequality.

4.1 Davies Evolution and Local Davies Generators

The Davies evolution is a Markovian approximation of the reduced state dynamics of a many-
body spin system weakly-coupled to an infinite-dimensional environment in thermal equilibrium.
Although it is known that reduced evolutions of quantum systems are never exactly Markovian,
this approximation is very powerful. In general, the open system dynamics described by a mas-
ter equations, which always has a QMS as a solution, is of high interest to the quantum optics,
condensed matter, chemical physics, statistical physics, quantum information, and mathematical
physics communities. The interest in Markovian description of open system dynamics has espe-
cially followed a the rise of interest in quantum information theory and decoherence phenomena.
Moreover, Davies evolutions appear widely in the literature concerning thermalization of quantum
systems, both from physical and computational view points [2], [3], [7], [11]. It was originally
studied by Davies in [14]. For a great overview of general open system dynamics, including a
derivation of the weak coupling limit (in Section 6) see [13]. A sketch follows. We assume that
our spin system HΛ is in contact with an environment H𝐸 , where the Hamiltonian of the combined
closed system HΛ ⊗ H𝐸 is given by

𝐻Λ𝐸 = 𝐻Λ ⊗ 1𝐸 + 1Λ ⊗ 𝐻𝐸 + 𝜆
∑︁

𝛼(𝑥 ) ,𝑥∈Λ
𝐴𝛼(𝑥 ) ⊗ 𝐵𝛼(𝑥 ) ,

where {𝛼(𝑥)} labels a set of operators acting on site 𝑥 ∈ Λ and the operators {𝐴𝛼(𝑥 ) }𝛼(𝑥 ) ,𝑥∈Λ span
all of B(HΛ). A typical example of these would be the generalized Pauli matrices indexed by 𝛼. 𝜆
is the interaction strength between the environment and the system, where we have that each spin is
individually coupled to the bath. We further assume that the environment system is in its thermal
state 𝜎𝐸 given by 𝐻𝐸 at inverse temperature 𝛽, and the initial state of system and environment is a
product state, however, this is a easily satisfiable assumption. The weak coupling limit is first the
limit where we take the coupling constant 𝜆 → 0 and the interaction time 𝑡 → ∞, s.t. 𝜆2𝑡 = 𝜏 is
held constant and then use the Born-Markov approximation. It now turns out that under a certain
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4 Local Generators and conditional expectations

convergence condition [13][Theorem 6.1], which amongst others requires the environment system
to be infinite dimensional, the resulting reduced dynamics of the system is given by the following
Davies evolution

lim
𝜆→0,𝜏=𝜆𝑡2

tr𝐸 [𝑒−𝑖𝜏𝐻Λ𝐸 (𝜌 ⊗ 𝜎𝐸)𝑒𝑖𝜏𝐻Λ𝐸 ] = 𝑒𝜏L𝐷
Λ∗ (𝜌), (4.1)

where the limit converges in trace norm [13]. The corresponding Lindbladian is often called the
Davies generator and is given by

L𝐷
Λ (𝑋) = 𝑖[𝐻Λ, 𝑋] +

∑︁
𝑥∈Λ

L𝐷
𝑥 (𝑋), (4.2)

with

L𝐷
𝑥 (𝑋) =∑︁

𝜔,𝛼(𝑥 )
𝜒𝛼(𝑥 ) (𝜔)

(
𝐴∗
𝛼(𝑥 ) (𝜔)𝑋𝐴𝛼(𝑥 ) (𝜔) −

1
2
(𝐴∗

𝛼(𝑥 ) (𝜔)𝐴𝛼(𝑥 ) (𝜔)𝑋 + 𝑋𝐴∗
𝛼(𝑥 ) (𝜔)𝐴𝛼(𝑥 ) (𝜔))

)
,

(4.3)

with 𝜔 ∈ 𝜎(𝐻Λ) − 𝜎(𝐻Λ) the Bohr frequencies, 𝐴𝛼 (𝑥) (𝜔) the operator Fourier coefficients of
𝑒−𝑖𝑡𝐻Λ𝐴𝛼 (𝑥)𝑒𝑖𝑡𝐻Λ =

∑
𝜔 𝑒

−𝑖𝑡𝜔𝐴𝛼(𝑥 ) (𝜔), and 𝜒𝛼(𝑥 ) (𝜔) = 2𝜋 Tr[𝐵𝛼(𝑥 ) (𝜔)𝐵𝛼 (𝑥)𝜎𝐸] the discrete
Fourier transform of the two-point correlations function of the environment [3]. If we now as-
sume that we have a uniformly bounded, geometrically-𝑟-local commuting family of Hamiltonians
{𝐻Γ}Γ⊂⊂Λ, as in (2.14), then the above generator reduces to a local Davies generators

L𝐷
Γ (𝑋) = 𝑖[𝐻Γ, 𝑋] +

∑︁
𝑥∈Γ

L𝐷
𝑥 (𝑋), (4.4)

for any Γ ⊂⊂ Λ. These correspond to a uniformly bounded, geometrically-local family of
Lindbladians satisfying the following properties:

Proposition 4.1. ([3][Lemma 11]) For a finite graph Λ, a subset Γ ⊂ Λ and {𝐻Γ}Γ⊂Λ a uniformly
bounded, geometrically−𝑟-local, commuting family of Hamiltonians, then the associated local
Davies generators defined in (4.2-4.4) satisfy

1. For any subset Γ ⊂ Λ, {𝑒𝑡L𝐷
Γ }𝑡≥0 is a QMS with generator L𝐷

Γ
.

2. The family L𝐷 = {L𝐷
Γ
}Γ is geometrically-local, in the sense that each individual term L𝐷

𝑥

acts only nontrivially on the region 𝐵𝑟 (𝑥) for some fixed 𝑟 ≤ 𝑟 ≤ 2𝑟 .

3. The familyL𝐷 = {L𝐷
Γ
}Γ is locally primitive, locally reversible, and satisfies detailed balance

w.r.t the global Gibbs state 𝜎Λ.1

4. The family L𝐷 = {L𝐷
Γ
}Γ is frustration free.

For a proof see e.g. [3]. Recall Section 2.6 Hence 𝐸𝐷
Γ
(𝑋) := lim𝑡→∞ 𝑒

𝑡L𝐷
Γ (𝑋) is a conditional

expectation, called the Davies conditional expectation.

1i.e. the unique local full rank invariant states are 𝜎Γ, and 𝑒L
𝐷
Γ is KMS and GNS symmetric w.r.t these.
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4 Local Generators and conditional expectations

4.2 Schmidt Conditional Expectations

In order to get the main result, we will require a quite strong approximate tensorization statement
from [11], which, however, is a statement on the so called Schmidt conditional expectation, also
introduced in [11]. Since it is of central importance we will explicitly give their quite technical
construction and some properties in the following. The construction and results in this section
work for any 2-colorable graph of finite growth constant.

Let Λ = (𝑉, 𝐸𝑉 ) be a quantum spin system with nearest-neighbour, bounded, commuting
Hamiltonian 𝐻, which hence can be writen as

𝐻 =
∑︁

(𝑖, 𝑗 ) ∈𝐸𝑉

ℎ𝑖, 𝑗 ,

where each term ℎ𝑖, 𝑗 acts only non-trivially on vertices 𝑖 and 𝑗 . Then the Gibbs state of 𝐻 with
inverse temperature 𝛽 is given by

𝜎 =
𝑒−𝛽𝐻

Tr[𝑒−𝛽𝐻] =

∏
{𝑖, 𝑗 }∈𝐸𝑉

𝑒−𝛽ℎ𝑖, 𝑗

Tr[∏{𝑖, 𝑗 }∈𝐸𝑉
𝑒−𝛽ℎ𝑖, 𝑗 ]

.

Given some 𝐴 ⊂ Λ we will define a suitable *-algebra N𝐴 and conditional expectation 𝐸𝑆
𝐴

onto
it, which has the Gibbs state as an invariant state. For simplicity of notations, we do this for a
singelton 𝐴 = {𝑎}, however, this construction works similarly for all 𝐴 ⊂⊂ Λ. Given some 𝑎 ∈ Λ,
we enumerate the sets

𝜕{𝑎} := {𝑥 ∈ Λ| dist(𝑥, 𝑎) = 1} = {𝑏𝑖}𝑖∈𝐼𝑎 ,
𝜕{𝑏𝑖} := {𝑥 ∈ Λ| dist(𝑥, 𝑏𝑖) = 1} = {𝑐𝑖, 𝑗} 𝑗∈𝐽 (𝑖) , s.t. 𝑎 = 𝑐𝑖,0 ∀𝑖.

Hence 𝜕 (𝜕{𝑎}) \ {𝑎} = {𝑦 ∈ Λ| dist(𝑎, 𝑦) = 2} = {𝑐𝑖, 𝑗}𝑖∈𝐼𝑎 , 𝑗∈𝐽 (𝑖) \{0} . See Figure 4.1 for a
graphical example of these definitions on a section of a 3-ary tree graph.

We will drop the index 𝑎 of 𝐼 ≡ 𝐼𝑎, the labeling of all the neighbours of 𝑎 in the following. Now
we Schmidt-decompose

𝑒
−𝛽ℎ𝑏𝑖𝑐𝑖 𝑗 =

∑︁
𝑠

𝑋
𝑗 ,𝑠

𝑏𝑖
⊗ 𝑋𝑠𝑐𝑖 𝑗

for 𝑖 ∈ 𝐼, where the operators
{
𝑋
𝑗 ,𝑠

𝑏𝑖

}
𝑗 ,𝑠

⊂ B(H𝑏𝑖 ) and for 𝑗 ∈ 𝐽 (𝑖) ,
{
𝑋𝑠𝑐𝑖 𝑗

}
𝑠
⊂ B(H𝑐𝑖 𝑗 ).

We now define the *-algebras 𝒜 𝑗

𝑏 𝑗
to be generated by all

{
𝑋
𝑗 ,𝑠

𝑏𝑖

}
𝑠

[37].

Proposition 4.2. Any two non-identical of these algebras
{
𝒜
𝑗

𝑏𝑖

}
𝑖∈𝐼, 𝑗∈𝐽 (𝑖)

commute.

Proof. [37] Consider 𝒜 𝑗

𝑏𝑖
and 𝒜

𝑛
𝑏𝑚

. If 𝑖 ≠ 𝑚, then the statement is obvious, since their generators
act on different Hilbert spaces H𝑏𝑖 ,H𝑏𝑚 , respectively. If 𝑖 = 𝑚, see that

0 =

[
𝑒
−𝛽ℎ𝑏𝑖𝑐𝑖 𝑗 , 𝑒−𝛽ℎ𝑏𝑖𝑐𝑖𝑛

]
=

[∑︁
𝑠

𝑋
𝑗 ,𝑠

𝑏𝑖
⊗ 𝑋𝑐𝑠

𝑖 𝑗
,
∑︁
𝑟

𝑋
𝑛,𝑟

𝑏𝑖
⊗ 𝑋𝑟𝑐𝑖𝑛

]
𝑗≠𝑛
=

∑︁
𝑠,𝑟

𝑋𝑠𝑐𝑖 𝑗 ⊗ 𝑋
𝑟
𝑐𝑖𝑛

⊗
[
𝑋
𝑗 ,𝑠

𝑏𝑖
, 𝑋

𝑛,𝑟

𝑏𝑖

]
=⇒

[
𝑋
𝑗 ,𝑠

𝑏𝑖
, 𝑋

𝑛,𝑟

𝑏𝑖

]
= 0 ∀𝑠, 𝑟 .

Where the last implication follows since {𝑋𝑠𝑐𝑖 𝑗 }𝑠, {𝑋
𝑟
𝑐𝑖𝑛

}𝑟 form a set of linear independent operators
by Schmidt decomposition. □
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4 Local Generators and conditional expectations

Figure 4.1: Simple example of the notation introduced in Section 4.2 to define the local algebras
N𝑎 and thus the Schmidt conditional expectation 𝐸𝑆𝑎 . Depicted is a small region of a
3-ary tree, with a (red) vertex labeled a=𝑐𝑖,0. Its neighbours (yellow) are labeled with
{𝑏𝑖}𝑖∈𝐼 = 𝜕{𝑎}, where 𝐼 ≡ 𝐼𝑎 = {1, 2, 3, 4}. The next-nearest neighbours (purple)
are 𝜕 (𝜕{𝑎}) \ {𝑎} = {𝑐𝑖, 𝑗}𝑖∈𝐼, 𝑗∈𝐽 (𝑖) \{0} . The central vertex a is logically the same as
𝑐𝑖, 𝑗0 for each 𝑖 ∈ 𝐼. In the proof of proposition 4.3 the case i) considers for example
the turquiose shaded edge, case ii) for example the blue shaded edge and case iii)
for example the dark blue shaded edge. The boundary between the subsets {𝑎}𝜕 and
({𝑎}𝜕)𝑐 is marked with a gray dotted line.

Therefore these algebras and the underlying Hilbert spaces admit the following joint decompo-
sition

H𝑏𝑖 :=
⊕
𝛼𝑖

⊗
𝑗∈𝐽 (𝑖)

H 𝛼𝑖
𝑗

⊗ H 𝛼𝑖
𝑐 =:

⊕
𝛼𝑖

𝑃𝛼𝑖H𝑏𝑖 ,

where 𝑃𝛼𝑖 are orthogonal projectors such that

𝑃𝛼𝑖H𝑏𝑖 =
⊗
𝑗∈𝐽 (𝑖)

H 𝛼𝑖
𝑗

⊗ H 𝛼𝑖
𝑐 ,

where {H (𝛼𝑖 )
𝑗

,H (𝛼𝑖 )
𝑐 }𝛼𝑖 are such that

𝒜
𝑗

𝑏𝑖
=

⊕
𝛼𝑖

B(H 𝛼𝑖
𝑗
) ⊗ 1⊗

𝑘∈𝐽 (𝑖) \{ 𝑗} H
𝛼𝑖
𝑘

⊗H𝛼𝑖
𝑐

∀ 𝑗 ∈ 𝐽 (𝑖) .

Definition 6. Define the *-subalgebra N𝑎 := 1{𝑎} ⊗
⊗

𝑖∈𝐼
⊗

𝑗∈𝐽 (𝑖) \{0} 𝒜
𝑗

𝑏𝑖
⊗ B(H({𝑎}𝜕) )𝑐 ⊂

B(HΛ) for any {𝑎} ∈ Λ.

Proposition 4.3. The modular group of the Gibbs state 𝜎 leaves this algebra invariant, for any
𝑎 ∈ Λ, i.e.

Δ𝑖𝑡𝜎 (N𝑎) ⊂ N𝑎 ∀𝑡 ∈ R,

where Δ𝑖𝑡𝜎 (𝑋) := 𝜎𝑖𝑡𝑋𝜎−𝑖𝑡 ∀𝑋 ∈ B(HΛ).
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4 Local Generators and conditional expectations

Proof. wlog 𝛽 = 1. Fix 𝑎 ∈ Λ. It is enough to show that 𝑒𝑖𝑡ℎ𝑘𝑙N𝑎𝑒−𝑖𝑡ℎ𝑘𝑙 ⊂ N𝑎 holds for any pair
(𝑘, 𝑙) ∈ 𝐸𝑉 .
For examples of the following cases see also Figure 4.1. Case i) (𝑘, 𝑙) ⊂ ({𝑎}𝜕)𝑐, then this is
obvious, since N𝑎

��
H({𝑎}𝜕)𝑐

= B(H({𝑎}𝜕)𝑐 ).
Case ii) (𝑘, 𝑙) ⊂ {𝑎}𝜕 with WLOG 𝑘 = 𝑎, hence 𝑙 = 𝑏𝑖 for some 𝑖 ∈ 𝐼. Let 𝑌 ∈ N𝑎 then via the
spectral theorem [𝑒−𝑖𝑡ℎ𝑎𝑏𝑖 , 𝑌 ] = 0 ⇔ [𝑒−ℎ𝑎𝑏𝑖 , 𝑌 ] = 0. It is enough to show this for the generators
𝑌 = 1{𝑎} ⊗ 𝑋 𝑗 ,𝑠𝑏𝑖 for all 𝑠 and 𝑗 ∈ 𝐽 (0) \ {0}, by closeness of the algebra.[

𝑒−ℎ𝑎𝑏𝑖 ,1{𝑎} ⊗ 𝑋 𝑗 ,𝑠𝑏𝑖
]
=

[∑︁
𝑟

𝑋𝑟𝑎 ⊗ 𝑋0,𝑟
𝑏𝑖
,1{𝑎} ⊗ 𝑋 𝑗 ,𝑠𝑏𝑖

]
=

∑︁
𝑟

𝑋𝑟𝑎 ⊗
[
𝑋

0,𝑟
𝑏𝑖
, 𝑋

𝑗 ,𝑠

𝑏𝑖

]
= 0,

∀𝑠, 𝑗 ∈ 𝐽 (𝑖) \ {0} since the algebras 𝒜0
𝑏𝑖

and 𝒜
𝑗

𝑏𝑖
commute for 𝑗 ∈ 𝐽 (𝑖) \ {0}.

Case iii) (𝑘, 𝑙) ⊂ 𝜕{𝑎} ∪ ({𝑎}𝜕)𝑐. WLOG 𝑘 = 𝑏𝑖 for some 𝑖 ∈ 𝐼, hence 𝑙 = 𝑐𝑖 𝑗 for some
𝑗 ∈ 𝐽 (𝑖) \ {0}. Then 𝑒−𝛽ℎ𝑘𝑙 = 𝑒−𝛽ℎ𝑏𝑖𝑐𝑖 𝑗 ⊗ 1H{𝑘,𝑙}𝑐 =

∑
𝑠 𝑋

𝑗 ,𝑠

𝑏𝑖
⊗ 𝑋𝑠𝑐𝑖 𝑗 ⊗ 1H{𝑘,𝑙}𝑐 ∈ N𝑎. Thus by the

spectral theorem 𝑒±𝑖𝑡ℎ𝑘𝑙⊗1 ∈ N𝑎 and hence by closedness of the algebra 𝑒𝑖𝑡ℎ𝑘𝑙N𝑎𝑒−𝑖𝑡ℎ𝑘𝑙 ⊂ N𝑎. □

Thus by Takesaki’s theorem [27], see also [11][Proposition 10] due to Proposition 4.3, there
exists a conditional expectation

𝐸𝑆𝑎 : 𝐵(HΛ) → N𝑎, (4.5)

which has the Gibbs state 𝜎, which is faithful, as an invariant state, i.e. 𝐸𝑆𝑎∗(𝜎) = 𝜎. It is called
Schmidt conditional expectation.

Remark. Note that the above construction works exactly the same for any subsection 𝐴 ⊂ Λ in
place of {𝑎} ⊂ Λ, yielding a *-subalgebra N𝐴. Hence we equally define the family of conditional
expectations {𝐸𝑆

𝐴
}𝐴⊂Λ on B(HΛ). Similarly for these it holds that 𝐸𝑆

𝐴∗(𝜎) = 𝜎. We can think of
these conditional expectations as sort of replacing any given observable on the local subset with the
identity, in such a way that is consistent with the invariance of the Gibbs state under its pre-adjoint.
Hence, the family of Schmidt conditional expectations still have the desirable properties of the
Davies expectations, i.e. that the Gibbs state is invariant, but their structure is easier to analyze
since we can give an explicit expression for these which does not depend on system environment
couplings. [11] We highlight one other important property of the Schmidt conditional expectations
before we give an explicit form for these.

Proposition 4.4. For any two subsets 𝐴1, 𝐴2 ⊂ Λ, s.t. dist(𝐴1, 𝐴2) ≥ 2, the Schmidt conditional
expectations 𝐸𝑆

𝐴1
and 𝐸𝑆

𝐴2
satisfy

𝐸𝑆𝐴1
◦ 𝐸𝑆𝐴2

= 𝐸𝑆𝐴2
◦ 𝐸𝑆𝐴1

= 𝐸𝑆𝐴1∪𝐴2
,

𝐸𝑆𝐴1
◦ 𝐸𝑆𝐴2

= 𝐸𝑆𝐴2
◦ 𝐸𝑆𝐴1

= 𝐸𝑆𝐴1
.

This follows from the fact that the conditional expectation 𝐸𝑆
𝐴

is a local map, acting only non
trivially on 𝐴𝜕 and the following Lemma.

Lemma 4.5. For any two subsets 𝐴1, 𝐴2 ⊂ Λ, s.t. dist(𝐴1, 𝐴2) > 1, or such that one is a subset of
the other it holds that
1) N𝐴1 ∩ N𝐴1 = N𝐴1∩𝐴2

2) N𝐴1 ∪ N𝐴2 = N𝐴1∪𝐴2 .
HereN𝐴1 ∪N𝐴2 denotes the *-algebra generated byN𝐴1 andN𝐴2 . N𝐴1 ∩N𝐴2 denotes the *-algebra
generated by all elements in both N𝐴1 and N𝐴2 .
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4 Local Generators and conditional expectations

Proof. The proof is quite elementary from the definition of the algebras Nand may be found in
Appendix A.1. □

For a subset 𝐴 ⊂ Λ, we call a set (𝛼) := {𝛼𝑖}𝑖∈𝐼𝐴 a boundary condition.

Proposition 4.6 (Explicit Form of Schmidt conditional Expectation, [11]). For 𝐴 ⊂ Λ, let (𝛼) :=
{𝛼𝑖}𝑖∈𝐼𝐴 be a fixed boundary condition for the subset 𝐴 and denote 𝑃 (𝛼) :=

⊗
𝑖∈𝐼𝐴 𝑃

𝛼𝑖 . We set

H (𝛼)
𝐴in

:= H𝐴 ⊗
⊗
𝑖∈𝐼𝐴

H 𝛼𝑖
0 ⊗ H 𝛼𝑖

𝑐 ≡ H𝐴 ⊗ H (𝛼)
𝜕in𝐴

,

H (𝛼)
𝐴out

:= H(𝐴𝜕)𝑐 ⊗
⊗
𝑖∈𝐼𝐴

⊗
𝑗∈𝐽 (𝑖) \{0}

H 𝛼𝑖
𝑗

≡ H(𝐴𝜕)𝑐 ⊗ H (𝛼)
𝜕out𝐴

,

i.e. HΛ =
⊕

(𝛼) H
(𝛼)
𝐴in

⊗ H (𝛼)
𝐴out

, and write trH
𝐴
(𝛼)
in

≡ tr𝐴in, (𝛼) , respectively, trH
𝐴
(𝛼)
out

= tr𝐴out, (𝛼) for

simplicity.
Since every element of the algebra N𝐴 is block diagonal w.r.t the sets (𝛼), we can decompose the
Schmidt conditional expectation 𝐸𝑆

𝐴
and its pre-adjoint 𝐸𝑆

𝐴∗ along those blocks as well, yielding:

𝐸𝑆𝐴(𝑋) :=
⊕
(𝛼)

𝐸
𝑆, (𝛼)
𝐴

(𝑋), (4.6)

𝐸𝑆𝐴∗(𝜌) :=
⊕
(𝛼)

𝐸
𝑆, (𝛼)
𝐴∗ (𝜌), (4.7)

for any 𝑋 ∈ B(HΛ) and 𝜌 ∈ D(HΛ). 𝐸𝑆, (𝛼)𝐴
and 𝐸𝑆, (𝛼)

𝐴
have the following expressions [11],

defined on the block Hilbert space 𝑃 (𝛼)HΛ:

𝐸
𝑆, (𝛼)
𝐴

(𝑋) = 𝑃 (𝛼)
(
tr𝐴in, (𝛼) [𝜏

(𝛼)
𝐴in

𝑋] ⊗ 1𝐴in, (𝛼)

)
𝑃 (𝛼) , (4.8)

𝐸
𝑆, (𝛼)
𝐴∗ (𝜌) = tr𝐴in, (𝛼) [𝑃 (𝛼) 𝜌𝑃 (𝛼) ] ⊗ 𝜏 (𝛼)

𝐴in
, (4.9)

where the state 𝜏 (𝛼)
𝐴in

is given by

𝜏
(𝛼)
𝐴in

:=
1

Tr[...] tr𝐴out, (𝛼) [𝑃 (𝛼)𝜎 (𝐴𝜕)𝑃 (𝛼) ] = 1
Tr[...] tr𝜕out𝐴, (𝛼) [𝑃 (𝛼)𝜎 (𝐴𝜕)𝑃 (𝛼) ], (4.10)

where the prefactors 1
Tr[...] contains the trace on B(H (𝛼)𝐴in) and ensure proper trace normalization

Tr[𝜏 (𝛼)
𝐴in

] = 1 and the partial trace in the last expression traces out the Hilbert space H (𝛼)
𝜕out𝐴

=⊗
𝑖∈𝐼𝐴

⊗
𝑗∈𝐽 (𝑖) \{0} H

𝛼𝑖
𝑗

= H (𝛼)
𝐴out\(𝐴𝜕)𝑐 ,.

It is easy to check that these expressions (4.8) and (4.9) are dual to each other w.r.t. the Hilbert
Schmidt inner product on B(HΛ). The expression (4.10) follows from the invariance of the local
Gibbs states 𝜎 (𝐴𝜕) via 𝑃 (𝛼)𝜎 (𝐴𝜕)𝑃 (𝛼) = 𝐸𝑆 (𝛼)

𝐴∗
(
𝑃 (𝛼)𝜎 (𝐴𝜕)𝑃 (𝛼) ) = tr𝐴in, (𝛼)

[
𝑃 (𝛼)𝜎 (𝐴𝜕)𝑃 (𝛼) ] ⊗

𝜏
(𝛼)
𝐴in

. Taking the partial trace of this expression on H (𝛼)
𝐴out

now gives the above expression.

Remark. We can think of the 𝛼𝑖 as labeling the boundary conditions at site 𝑖 ∈ 𝐼𝐴 and all
(𝛼) := {𝛼𝑖}𝑖∈𝐼𝐴 give a complete labeling of all boundary conditions of some subset 𝐴. Hence, we
can think of the effect of the Schmidt-conditional expectation on states as effectively replacing the
state 𝜌 locally on 𝐴 with the Gibbs state 𝜎, where the boundary conditions to (𝛼) = {𝛼𝑖}𝑖∈𝐼𝐴.
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4 Local Generators and conditional expectations

Equally to the Davies evolution, there exists a uniform family of Lindbaldians, s.t. the Schmidt
conditional expectations are given as the local Lindbladian projectors of this family. For the
Schmidt conditional expectation one corresponding family of Lindbladians is

L𝑆
𝐴(𝑋) :=

∑︁
𝑥∈𝐴

𝐸𝑆𝑥 (𝑋) − 𝑋. (4.11)

We call them Schmidt generators2 [11]. It is straightforward to see that the projection onto their
kernel is given by the Schmidt conditional expectation. From the properties established above, they
are uniform families of locally primitive, locally GNS-symmetric, frustration free Lindbladians.
And via this definition we immediately get the additivity in the region.

4.3 Relating Davies and Schmidt dynamics

An important observation is that, since the Schmidt- and Davies- families of conditional expecta-
tions almost have the same fixed-point algebras, we can relate the relative entropy distance of any
given state to the fixed point subalgebra of one to the other:

Lemma 4.7. Let 𝑋 ⊂ Λ, 𝜌 ∈ D(HΛ), then for 𝐸𝑆
𝑋∗(𝜌) the Schmidt conditional expectation of 𝜌

and 𝐸𝐷
𝑋∗(𝜌) its Davies conditional expectation, it holds that

𝐷 (𝜌∥𝐸𝐷𝑋∗(𝜌)) ≤ 𝐷 (𝜌∥𝐸𝑆𝑋∗(𝜌)) ≤ 𝐷 (𝜌∥𝐸𝐷𝑋𝜕∗(𝜌)). (4.12)

Proof. First recall that for some region 𝑋 ⊂ Λ, 𝐸𝐷
𝑋

is the projection onto the kernel of L𝐷
𝑋

, call it
F 𝐷
𝑋

:=Fix(𝐸𝐷
𝑋

). It is also the projection onto the largest *-subalgebra of B(H𝑋𝑐 ) ⊗ 1𝑋 ⊂ B(HΛ)
which is invariant under the modular group of the Gibbs state 𝜎 {Δ𝑖𝑡𝜎}𝑡∈R [11], [38]. Now 𝐸𝑆

𝑋
is

a projection onto, say, F 𝑆
𝑋

:=Fix(𝐸𝑆
𝑋

). This is by construction a *-subalgebra of B(H𝑋𝑐 ) ⊗ 1𝑋 ⊂
B(HΛ) invariant under the modular group {Δ𝑖𝑡𝜎}𝑡∈R, see Section 4.2. Thus F 𝑆

𝑋
⊂ F 𝐷

𝑋
. This

implies that 𝐷 (𝜌∥𝐸𝐷
𝑋∗(𝜌)) ≤ 𝐷 (𝜌∥𝐸𝑆

𝑋∗(𝜌)) for any state 𝜌 ∈ D(HΛ), since

𝐷 (𝜌∥𝐸𝑆𝑋∗(𝜌)) − 𝐷 (𝜌∥𝐸𝐷𝑋∗(𝜌)) = Tr[𝜌 (log 𝐸𝐷𝑋∗(𝜌) − log 𝐸𝑆𝑋∗(𝜌))︸                             ︷︷                             ︸
∈F𝐷

𝑋

]

= Tr[𝐸𝐷𝑋∗(𝜌) (log 𝐸𝐷𝑋∗(𝜌) − log 𝐸𝑆𝑋∗(𝜌))]
= 𝐷 (𝐸𝐷𝑋∗(𝜌)∥𝐸𝑆𝑋∗(𝜌)) ≥ 0.

Where we used that if 𝜔1, 𝜔2 are fixed points of some conditional expectation, then so is log𝜔1 −
log𝜔2. Now since F 𝐷

𝑋𝜕
⊂ F 𝑆

𝑋
holds by frustration freeness, it equally follows form the calculation

above that 𝐷 (𝜌∥𝐸𝑆
𝑋∗(𝜌)) ≤ 𝐷 (𝜌∥𝐸𝐷

𝑋𝜕∗(𝜌)). More explicitly F 𝐷
𝑋𝜕

⊂ F 𝑆
𝑋

follows from the fact that
the Gibbs state 𝜎𝑋𝜕, the unique fixed point of the Davies evolution on 𝑋𝜕, is also a stationary under
the Schmidt conditional expectation 𝐸𝑆

𝑋𝜕∗ by construction. And hence by frustration freeness also
stationary w.r.t 𝐸𝑆

𝑋∗. □

Remark. This is a crucial lemma that allows us to analyze the MLSI for Davies generators in terms
of entropic inequalities associated to Schmidt, which are easier to analyze. The Schmidt generators
hence serves as a proxy QMS to the Davies. Such a comparison is a well known technique for
classical Markov chains.

2They are sometimes also referred to as Heat bath generators w.r.t. the Schmidt conditional expectation.
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5 Main results: Gap implies cMLSI

This section contains the main result of this work, stated in Theorem 5.1. It is followed by some
immediate corollaries and a discussion thereof. The rest of the section is then devoted to its proof.
There in Section 5.1 we first establish an important implication of weak clustering in Theorem 5.4
and then a connection between the static (clustering) and dynamic properties of spin systems of non-
zero temperature. In particular in Theorem 5.6 we establish a necessary approximate tensorization
statement, which with a novel geometric argument in Section 5.2, in particular Lemma 5.8, we use
to proof the main result in Section 5.3. For a graphical visualization of some of the implications
that are proved in this thesis, see Figure 5.1.

Definition 7 (Geometric condition on correlation length of fixed point). For an infinite graph Λ,
recall 𝑁 (𝑙) := sup𝑥∈Λ |𝐵𝑙 (𝑥) |, where 𝐵𝑙 (𝑥) := {𝑣 ∈ Λ| dist(𝑥, 𝑣) ≤ 𝑙} is the ball around 𝑥 of radius
𝑙. We will require the correlation length 𝜉 of the Gibbs state to satisfy

𝜉 <
𝑙

2 ln 𝑁 (𝑙) (5.1)

eventually in 𝑙, i.e. for 𝑙 ≥ 𝑙0 for some 𝑙0.

Remark. First note that this correlation length is the one of the Gibbs state and hence not just a
function of the Graph alone, but also of the Hamiltonian and the inverse temperature.
Moreover, if Condition (5.1) holds, then 𝑁 (𝑙) exp

(
− 𝑙
𝜉

)
is exponentially decaying in 𝑙. Recall that

hypercubic lattices are sub-exponential under this definition, whereas 𝑏−ary trees are exponential.
Hence for infinite hypercubic lattices of dimension 𝐷 we have that 𝑁 (𝑙) ∝ 𝑙𝐷 and hence this
condition is trivially fulfilled for any 𝜉 > 0. For 𝑏-ary trees we have that 𝑁 (𝑙) =

∑𝑙
𝑘=0 𝑏

𝑘 =
𝑏𝑙−1−1
𝑏−1 ∝ 𝑏𝑙, and hence this condition becomes 𝜉 < 1

ln 𝑏 .
This gives an implicit condition on the temperature 𝛽−1.

We may now state the main theorem of this work.

Theorem 5.1. Let Λ be a 2-colorable graph with finite growth constant. Then the Davies gen-
erator L𝐷

Λ
:= {L𝐷

Γ
}Γ⊂⊂Λ corresponding to a uniform, nearest neighbour, commuting family of

Hamiltonians acting on the locally-finite dimensional quantum spin system HΛ, i.e. it satisfies a
MLSI with constant

1) 𝛼(L𝐷
Γ
) = Ω(1) |Γ |→∞ independent of system size, when Λ is a sub-exponential graph, or

2) 𝛼(L𝐷
Γ
) = Ω

(
(ln |Γ|)−1)

|Γ |→∞ logarithmically decreasing in system size, when Λ is an
exponential graph and the correlation length of the fixed point (Gibbs state) satisfies condition
(5.1).

whenever the Lindbladian is gapped, i.e. infΓ⊂⊂Λ 𝜆(L𝐷
Γ
) > 0, or the thermal states satisfy L −∞-

clustering.
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Theorem 3.1 [3]

 




Definition 2

𝕃∞ − clustering
⟹
⟹Theorem 3.4



Definition 4

Strong local indistinguishability

Strong tensorization (mixing condition)⟹
⟹

Exponential decay of mutual Information

⟹ 

Theorem 5.4

(q𝕃1 → 𝕃∞) − clustering
Theorem 5.4

Additional assumptions 

(See Theorem 5.4) }

Rapid Mixing

⟹ via MLSI &

Theorem 5.1

Gapped generator

⟹

Static properties

Dynamic properties ⟹

System size independent cMLSI constant

⟹[3,39]

Figure 5.1: Relation between the different notions of clustering (static properties) and their relation
to thermalization and gap (dynamic properties), in the setting of this thesis. The red
implications signify novel implications, wheres the black ones signify results from
literature. The main result of Chapter 3 is Theorem 3.4, whereas the main result of
this thesis in Chapter 5 is Theorem 5.1. In effect we show that (system size invariant
gap) is equivalent to a system size independent MLSI constant via the visualized chain
of implications. For details on the necessary assumptions and requirements on the
systems, see the respective theorems.

Remark. Recall that by Theorem 3.1 the existence of a system size independent gap implies
L∞-clustering. Hence the, a priori, slightly weaker assumption required for the main result to hold
is is uniform exponential decay of correlations (L∞-clustering) of the uniform family of thermal
states.
This implies, that for the above considered systems, MLSI implies existence of a strictly positive
gap of the generator. Hence we have, for these systems equivalence of strictly positive gap of
generators, (weak) L∞-clustering of the invariant state, MLSI with strictly positive constant, and
rapid thermalization. Hence in order to establish rapid thermalization under the Davies evolution
of a system under the conditions in the above theorem, it suffices to check for a strictly positive
gap, or exponential decay of clustering. Hence it also partially1 affirmatively answers an open
question from [3], that for nearest neighbour commuting systems, existence of exponential decay
of correlations (in the form of L∞-clustering) is sufficient to prove existence of a spin-system
size invariant strictly positive spectral gap for L𝐷

Γ
. This is since we have the implication that

L∞-clustering of a thermal state of a uniform geometrically-local, commuting Hamiltonian implies
a strictly positive and system size invariant MLSI constant, which implies rapid thermalization,
which in turn implies the existence of a strictly positive and spin-system invariant spectral gap of
the Davies generators [3]. See also [39](Lemma 6). As seen in the remark before, the geometric
condition on 𝜉 is trivially fulfilled for a hypercubic lattice of dimension 𝐷 ∈ N, and becomes
𝜉 < 1

2 ln 𝑏 for the 𝑏−ary tree. We also recall that the correlation length of the Gibbs state is the
exponential decay rate of many clustering properties, as established in Chapter 3 and Section 5.1.
Hence the smaller the correlation length, the faster correlation between subsystems decay in their

1For nearest neighbour interactions we show that gap implies MLSI. Since in [3] MLSI implies gap is shown for
uniform, geometrically-local, commuting systems. See also [39](Lemma 6).
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5 Main results: Gap implies cMLSI

distance and hence the closer some distinct subsystems can be s.t. their correlations are still smaller
than some prescribed bound.
Note also that this result works for graphs Λ which are not two-colorable, but which can be brought
into a two-colorable graph after finite size coarse-graining, i.e. by assigning a color to subsets of
some finite size. See Chapter 7 for a more thorough discussion of this point, where we conjecture
that this may include a very large class of systems.
For sake of readability we now consider two special cases of Theorem 5.1, namely 1D systems,
Λ = Z in Theorem 5.2 and 𝑏−ary trees Λ = T𝑏 in Theorem 5.3.

Corollary 5.2 (1D constant MLSI at any temperature). Let Λ = Z be a 1 dimensional quantum spin
chain endowed with a uniform family of bounded, geometrically−𝑟−local, commuting, translation
invariant Hamiltonians for some 𝑟 ∈ N and let 𝛽 > 0 be any inverse temperature. Then there exists a
strictly positive spin-chain length independent MLSI constant𝛼(L𝐷

Γ
) of any element of the uniform

family of Davies generators L𝐷
Λ

= {L𝐷
Γ
}Γ⊂⊂Λ corresponding to this family of Hamiltonians to the

inverse temperature 𝛽. I.e. 𝛼(L𝐷
Γ
) = Ω(1) |Γ |→∞. Hence 𝛼 := infΓ⊂⊂Λ 𝛼(L𝐷

Γ
) > 0 and for any

finite Γ ⊂⊂ Λ we have

𝐷 (𝜌𝑡 ∥𝜎Γ) ≤ 𝑒−𝑡 𝛼𝐷 (𝜌0∥𝜎Γ). (5.2)

Remark. This follows from the fact that the Davies generators to such a uniform family of
Hamiltonians are known to be gaped with a gap independent of spin-chain length. [3] Note, that
here we do not require 𝑟 = 2, i.e. nearest neighbour interaction, since by coarse-graining, we can
always map a geometrically−𝑟−local system to a nearest neighbour one. This only works in the 1D
case, however. This result is a strict improvement over the previous best known one [12], where it
was shown that 𝛼(L𝐷

Γ
) = Ω(ln |Γ|−1) is logarithmically decreasing in the system size. Moreover,

we obtain the same scaling as of the so called LSI constant in the classical setting, which is known
to be optimal.

Corollary 5.3 (b-ary Trees). Let Λ = T𝑏 be the infinite 𝑏−ary tree with a uniform family of
bounded, nearest-neighbour, commuting Hamiltonians. Let the inverse temperature 𝛽 be such
that the correlation length 𝜉 of the Gibbs state to this inverse temperature satisfies 𝜉 < (2 ln 𝑏)−1

and the corresponding, uniform family of Davies generators L𝐷
T𝑏

= {L𝐷
Γ
}Γ⊂⊂T𝑏 have a system

size independent gap, infΓ⊂⊂T𝑏 𝜆(L𝐷
Γ
) > 0. Then infΓ⊂⊂T𝑏 , |Γ | ≤𝑙 𝛼(L𝐷

Γ
) ≥ 𝛼𝑙 = Ω((log(𝑙))−1).

Hence for any finite Γ ⊂⊂ T𝑏 with |Γ| ≤ 𝑙 we have

𝐷 (𝜌𝑡 ∥𝜎Γ) ≤ 𝑒−𝑡 𝛼𝑙𝐷 (𝜌0∥𝜎Γ) (5.3)

and thus rapid thermalization.

Remark. This is a novel result which implies that the mixing time 𝑡mix(𝜖) = O(polylog( |Γ |))
scales poly-logarithmically with the system size, i.e. rapid thermalization holds. Classically it is
known, however, that the exponential decay rate of the relative entropy towards the equilibrium is
tree-size independent [35]. We suspect that this should also hold in the quantum case. Moreover,
the exponential decay found in [35] also hinges upon a very analogous condition on the temperature
as we require here, implicitly through 𝜉 < (2 ln 𝑏)−1.

In the rest of this section we will only be considering bounded, nearest-neighbour, commuting
Hamiltonians.
The proof of the main result will be split into two parts, first in Theorem 5.4 showing that the
clustering properties established above imply a stronger form of clustering, which are known to
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5 Main results: Gap implies cMLSI

be equivalent to an approximate tensorization statement for the state 𝜔 in Theorem 5.6. This
and the work in [11] will already be enough to establish the main result for quantum systems on
hypercubic latices of dimension 𝐷 > 1. The second part in Section 5.2 will then consist of a
geometric argument to show the main result for quantum spin chains and 𝑏−ary trees explicitly.
The derivations generalize straightforwardly to the case of sub-exponential and exponential graphs
respectively.

5.1 Approximate tensorization for an almost classical state 𝜔 via
weak clustering

From this section onward we only consider graphs Λ which are two-colorable up to a finite size
coarse-graining. As examples, any connected complete subtree of an infinite hypercubic lattice
or infinite b-ary tree are two-colorable. See Chapter 7 for a more detailed discussion on the
reason behind our restriction to two-colorable graphs. Given a two-colorable graph Λ and a fixed
2-coloring, we denote the set of vertices with labels 0 as Λ0 =: 𝐴 and the set of vertices with labels
1 as Λ1 = Λ \ 𝐴.

Definition 8. Given a 2-colorable graph Λ and a quantum state 𝜌 ∈ D(HΛ), we fix some 2-
coloring, write 𝐴 = Λ0 and define

𝜔 := 𝐸𝑆𝐴∗(𝜌) = (⃝𝑎∈Λ0𝐸
𝑆
𝑎∗) (𝜌), (5.4)

where the second equality and well definiteness on the r.h.s follows from Proposition 4.4.

Next we show that in the setting which we are considering exponential decay of correlations
(weak clustering) implies a stronger form of decay of correlations, namely qL1 → L∞-decay of
correlations, see Theorem 5.4 for a formulation here (or see [11][Definition 8] for a definition in
the general case). This is a first big result of this work which is also of independent interest since
exponential decay of correlations (weak-clustering) is the type of clustering usually considered in
the physics literature and much easier to prove in general. It will also be an important step in the
proof of the main result.

Remark. This qL1 → L∞-decay of correlations was used and required to prove the main result
of [11](Section 4). As a simple corollary of the next theorem, we can therefore establish the main
result of [11] under the seemingly weaker assumption of gaped Lindbladians.

Theorem 5.4 (L∞-clustering is equivalent to qL1 → L∞-clustering). Let Λ be a 2-colorable graph
with finite growth constant and Γ ⊂⊂ Λ a finite subgraph. Let 𝐻Λ be a uniformly bounded, com-
muting, nearest-neighbour Hamiltonian and let {𝐸𝑆

𝑋
}𝑋⊂⊂Λ be the Schmidt conditional expectation

Then L∞-clustering implies qL1 → L∞-clustering, that is for any overlapping subregions𝐶, 𝐷 ⊂ Γ

it holds that

max
𝛼={𝛼𝑖 }𝑖∈𝐼𝐶∪𝐷

∥𝐸𝑆, (𝛼)
𝐶

◦ 𝐸𝑆, (𝛼)
𝐷

− 𝐸𝑆, (𝛼)
𝐶∪𝐷 : L1(𝜏𝛼𝐶∪𝐷) → L∞∥ ≤ |𝐶 ∪ 𝐷 |𝜖 (𝑙),

holds for an exponentially decaying function 𝜖 (𝑙), where 𝑙 = dist(𝐶 \ 𝐷, 𝐷 \ 𝐶).

Remark. An example of subsets𝐶, 𝐷 of a 3-ary tree can be found in Figure 5.2. With this statement
we effectively show that gap, which implies L∞-clustering, implies this seemingly stronger notion
of clustering, called qL1 → L∞-clustering. Before giving its proof, we discuss two corollaries.
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5 Main results: Gap implies cMLSI

Corollary 5.5 (Strengthening of Main Result of [11] under weaker assumption). 2 The main result
of [11] holds for the Schmidt and Davies conditional expectations3 under the weaker assumption
of a gaped Davies Lindbladian4. Informally, nearest neighbour quantum systems with a uniformly
bounded, commuting Hamiltonian on hypercubic lattices of dimension 𝐷 ≥ 2, which evolve under
Davies evolution, satisfy strong exponential convergence in relative entropy towards equilibrium.
I.e. they thermalize rapidly under Davies evolution whenever the Davies Lindbladian is gaped.

The statement of this corollary is essentially the main theorem in case of hypercubic lattices of
dimension 𝐷 > 1. Hence we will focus in the rest of this work on the 1D and b-ary tree settings.
For a thorough discussion of this result, see [11]. Another corollary of Theorem 5.4 is the following
approximate tensorization statement for the state 𝜔, which we will require to prove our main result.

Theorem 5.6 (Approximate tensorization for 𝜔). Let Λ be an infinite, 2-colorable graph of
finite growth constant. Let 𝐻 be a nearest neighbour, bounded, commuting Hamiltonian on a
family of finite subgraphs {Γ}Γ⊂⊂Λ which, on any given Γ, satisfies uniform L∞-clustering at
inverse temperature 𝛽 with correlation length 𝜉. Let 𝐶, 𝐷, 𝑅 ⊂ Γ be three connected subsets, s.t.
𝑅 := 𝐶 ∪𝐷, 𝜕𝐶, 𝜕𝐷, 𝜕𝑅∩Λ0 = ∅, and let 𝑙 := dist(𝐶 \𝐷, 𝐷 \𝐶) > 1. Fix some state 𝜌 ∈ D(HΓ)
and define 𝜔 w.r.t it as above. Then

𝐷 (𝜔∥𝐸𝑆𝐶∪𝐷∗(𝜔)) ≤
1

1 − 2𝜖 (𝑙) [𝐷 (𝜔∥𝐸𝑆𝐶∗(𝜔)) + 𝐷 (𝜔∥𝐸𝑆𝐷∗(𝜔))], (5.5)

where 𝜖 (𝑙) = exp (O(𝛽))O(|𝐶 |, |𝐷 |)O
(
exp

(
− 𝑙
𝜉

))
.

The proof of this is, given Theorem 5.4, just an application of [11][Theorem 8]. This theorem
is repeated below for convenience.

Theorem 5.7 ([11][Theorem 8). ] If there exists an exponentially decaying function 𝑙 ↦→ 𝜖 (𝑙) ≤ 1
2 ,

s.t.

max
𝛼={𝛼𝑖 }𝑖∈𝐼𝐶∪𝐷

∥𝐸𝑆, (𝛼)
𝐶

◦ 𝐸𝑆, (𝛼)
𝐷

− 𝐸𝑆, (𝛼)
𝐶∪𝐷 : L1,𝜏𝛼

𝐶∪𝐷
→ L∞∥ ≤ |𝐶 ∪ 𝐷 |𝜖 (𝑙),

then

𝐷 (𝜔∥𝐸𝑆𝐶∪𝐷∗(𝜔)) ≤
1

1 − 2𝜖 (𝑙) [𝐷 (𝜔∥𝐸𝑆𝐶∗(𝜔)) + 𝐷 (𝜔∥𝐸𝑆𝐷∗(𝜔))] .

Here 𝜏 (𝛼)
𝐶∪𝐷 , with (𝛼) = {𝛼𝑖}𝑖∈𝐼𝐶𝐷

and is 𝐸𝑆, (𝛼)
𝑋

is just as defined in Section 4.2.

Proof of Theorem 5.4. We show that, under the assumption of the theorem, L∞-clustering implies

max
(𝛼)

∥𝐸𝑆, (𝛼)
𝐶

◦ 𝐸𝑆, (𝛼)
𝐷

− 𝐸𝑆, (𝛼)
𝐶∪𝐷 : L1,𝜏𝐶∪𝐷

𝛼
→ L∞∥ ≤ |𝐶 ∪ 𝐷 |𝜖 (𝑙)

explicitly for the Schmidt conditional expectations. Here (𝛼) is a boundary condition of the subset
𝐶𝐷 := 𝐶 ∪ 𝐷 ⊂ Λ and 𝜖 (𝑙) is exponentially decaying with decay length 𝜉. We will do this in two
steps, first establish that what we need to show is algebraically equivalent to a statement 𝜎1

𝜖 (𝑙)∼ 𝜎2

2The Main result of [11] concerns only the Schmidt conditional expectation, but with the geometric argument we give
in Section 5.2 we can extend this to the Davies as well.

3For the Davies with the geometric argument in Section 5.2, for the Schmidt this is immediate from [11].
4Or the condition of (qL∞-clustering), which is slightly stronger than the gap condition
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5 Main results: Gap implies cMLSI

for two states 𝜎1, 𝜎2 and then employ results of Theorem 3.4 to show this statement from the
assumptions of the theorem.
Before we continue let us first establish some nomenclature for the subregions we are considering.
We split the region 𝐶𝐷 into the following disjoint subsets 𝑙out𝑙in𝐸𝑙out𝑙in𝐹𝑟in𝑟out𝐺𝑟in𝑟out, where
𝐶 = 𝐸𝑙𝐹, 𝐶in = 𝑙in𝐸𝑙𝐹𝑟in, 𝐷 = 𝐹𝑟𝐺, 𝐷in = 𝑙in𝐹𝑟𝐺𝑟in. The projectors 𝑃 (𝛼𝑙 ) , 𝑃 (𝛾𝑙 ) , 𝑃 (𝛽𝑟 ) , 𝑃 (𝛼𝑟 )

act on the regions 𝑙, 𝑙, 𝑟, 𝑟 respectively. For a graphical representation of this see Figure 5.2.

Figure 5.2: Partition of a subregion𝐶𝐷 of a tree into two overlapping subregions C and D. We have
𝐸 := 𝐶\(𝐷𝜕), 𝐹 := 𝐶∩𝐷,𝐺 := 𝐷\(𝐶𝜕). The splitting of the boundary Hilbert spaces
corresponding to a boundary site {𝑏𝑖} in the boundary of a region 𝐴 ∈ {𝐸, 𝐹, 𝐺} into⊗

𝑖∈𝐼𝐴 𝑃
𝛼𝑖H𝑏𝑖 = H 𝛼𝑖

𝜕in𝐴
⊗H 𝛼𝑖

𝜕out𝐴
=

(
H 𝛼𝑖

0 ⊗ H 𝛼𝑖
𝑐

)
⊗

(⊗
𝑗∈𝐽 (𝑖) \{0} H

𝛼𝑖
𝑗

)
is represented

by a dotted line. Hence e.g. the Hilbert space of the region 𝑙in is H (𝛼𝑙 )
𝜕left

in 𝐸
and of 𝑙out it

is H (𝛼𝑙 )
𝜕left

out𝐸
. Here the superskript left, refers to the part of 𝜕in𝐸 , which is located in the

geometric region 𝑙, i.e. the in the figure left boundary of the region 𝐸 . Respectively,
this is the same with the other boundaries. We fix the boundary conditions (𝛼𝑙) on
region 𝑙, (𝛾𝑙) on 𝑙, (𝛽𝑟 ) on 𝑟 , and (𝛼𝑟 ) on 𝑟.

Recall the notation for the Schmidt conditional expectation established in Section 4.2 and
equation (4.10). Fix some boundary condition (𝛼) = (𝛼𝑙, 𝛼𝑟 ) = {𝛼𝑖}𝑖∈𝐼𝐶𝐷

for 𝐶𝐷, where
(𝛼𝑙) := {𝛼𝑖}𝑖∈𝐼𝜕𝐶\𝐷 labels the boundary of 𝐶 not in 𝐷 and (𝛼𝑟 ) := {𝛼𝑖}𝑖∈𝐼𝜕𝐷\𝐶 labels the
boundary of 𝐷 not in 𝐶. Similarly denote with (𝛽𝑟 ) := {𝛽𝑖}𝑖∈𝐼𝜕𝐶∩𝐷 and (𝛾𝑙) := {𝛾𝑖}𝑖∈𝐼𝜕𝐷∩𝐷 the
boundaries of 𝐶 in 𝐷 and of 𝐷 in 𝐶 respectively. For visualization, see also Figure 5.2. Let
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0 ≤ 𝑋 ≡ 𝑋 (𝛼) ∈ L1,𝜏 (𝛼)
𝐶𝐷in

s.t. ∥𝑋 ∥1,𝜏 (𝛼)
𝐶𝐷in

= 1. Set

𝑁 ≡ 𝑁 (𝛼𝑟 ) := 𝐸𝑆, (𝛼𝑟 )
𝐷

(𝑋) =
⊕
(𝛾𝑙 )

𝐸
𝑆, (𝛾𝑙 ,𝛼𝑟 )
𝐷

(𝑋) ∈ B(H
𝐷

(𝛼𝑟 )
out

) ⊗ 1
𝐷

(𝛼𝑟 )
in

.

By construction it holds that 𝑃 (𝛼𝑟 )𝑁𝑃 (𝛼𝑟 ) = 𝑁 . Recall that since 𝐷 ⊂ 𝐶𝐷, it follows that
𝐸𝑆
𝐶𝐷

◦ 𝐸𝑆
𝐶
= 𝐸𝑆

𝐶𝐷
and hence(

𝐸
𝑆, (𝛼)
𝐶

◦ 𝐸𝑆, (𝛼)
𝐷

−𝐸𝑆, (𝛼)
𝐶𝐷

(𝑋)

=
©­«
⊕
(𝛽𝑟 )

𝐸
𝑆, (𝛼𝑙 ,𝛽𝑟 )
𝐶

− 𝐸𝑆, (𝛼𝑙 ,𝛼𝑟 )
𝐶𝐷

ª®¬ (𝑁)
=

⊕
(𝛽𝑟 )

(
𝑃 (𝛼𝑙 )𝑃 (𝛽𝑟 )

(
tr𝐶in, (𝛼𝑙 ,𝛽𝑟 )

[
𝜏
(𝛼𝑙 ,𝛽𝑟 )
𝐶in

𝑁

]
⊗ 1𝐶in

)
𝑃 (𝛼𝑙 )𝑃 (𝛽𝑟 )

)
− 𝑃 (𝛼𝑙 )𝑃 (𝛼𝑟 )

(
tr𝐶𝐷in, (𝛼𝑙 ,𝛼𝑟 )

[
𝜏
(𝛼𝑙 ,𝛼𝑟 )
𝐶𝐷in

𝑁

]
⊗ 1𝐶𝐷in

)
𝑃 (𝛼𝑙 )𝑃 (𝛼𝑟 )

= 𝑃 (𝛼𝑙 )

⊕
(𝛽𝑟 )

𝑃 (𝛽𝑟 )
(
tr𝐶in, (𝛼𝑙 ,𝛽𝑟 )

[
𝜏
(𝛼𝑙 ,𝛽𝑟 )
𝐶in

𝑃 (𝛼𝑟 ) (𝑁 ⊗ 1𝐷in)𝑃 (𝛼𝑟 )
]
⊗ 1𝐶in

)
𝑃 (𝛽𝑟 )

− ©­«
⊕
(𝛽𝑟 )

𝑃 (𝛽𝑟 )ª®¬ 𝑃 (𝛼𝑟 )
(
tr𝐶𝐷in, (𝛼𝑙 ,𝛼𝑟 )

[
𝜏
(𝛼𝑙 ,𝛼𝑟 )
𝐶𝐷in

(𝑁 ⊗ 1𝐷in)
]
⊗ 1𝐶𝐷in

)
𝑃 (𝛼𝑟 )𝑃 (𝛼𝑙 )

=
©­«𝑃 (𝛼𝑙 )𝑃 (𝛼𝑟 )

⊕
(𝛽𝑟 )

𝑃 (𝛽𝑟 )ª®¬ tr𝐶in\𝐷in, (𝛼𝑙 )

[(
tr𝐶in∩𝐷in, (𝛽𝑟 )

[
𝜏
(𝛼𝑙 ,𝛽𝑟 )
𝐶in

]
︸                       ︷︷                       ︸

=:𝜎
(𝛼

𝑙
,𝛽𝑟 )

2 ≡𝜎2

− tr𝐷in, (𝛼𝑟 )
[
𝜏
(𝛼𝑙 ,𝛼𝑟 )
𝐶𝐷in

]
︸                   ︷︷                   ︸

=:𝜎
𝛼
𝑙

1 ≡𝜎1

)
𝑁

]
×

=
©­«𝑃 (𝛼𝑙 )𝑃 (𝛼𝑟 )

⊕
(𝛽𝑟 )

𝑃 (𝛽𝑟 )ª®¬ ≡
⊕
(𝛽𝑟 )

𝑃 (𝛼𝑙 ,𝛽𝑟 ,𝛼𝑟 )
[
tr𝐶in\𝐷in [(𝜎2 − 𝜎1)𝑁]

] ⊕
(𝛽𝑟 )

𝑃 (𝛼𝑙 ,𝛽𝑟 ,𝛼𝑟 ) ,

where 𝜎2 ≡ 𝜎
(𝛼𝑙 ,𝛽𝑟 )
2 := tr𝐶in∩𝐷in, (𝛽𝑟 )

[
𝜏
(𝛼𝑙 ,𝛽𝑟 )
𝐶in

]
and 𝜎1 ≡ 𝜎

(𝛼𝑙 )
1 := tr𝐷in, (𝛼𝑟 )

[
𝜏
(𝛼𝑙 ,𝛼𝑟 )
𝐶𝐷in

]
. In the

first line here we used the definition of 𝑋 , in the second the explicit expressions for the Schmidt
conditional expectation from Section 4.2. Then in the third we factor out a common 𝑃𝛼𝑙 and
introduce an identity 1 =

⊕
(𝛽𝑟 ) 𝑃

(𝛽𝑟 ) , which commutes with the term just after. We also employ
the fact that 𝑁 ≡ 𝑃𝛼𝑟𝑁 ⊗1𝐷in𝑃

𝛼𝑟 . In the forth equality we factor out the projections and rearrange
the partial traces suitably. The last equality is then just introducing a simplifying notation. For
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simplicity we suppress the boundary conditions (𝛼𝑙) index on the states. Hence

∥
(
𝐸
𝑆 (𝛼)
𝐶

◦ 𝐸𝑆 (𝛼)
𝐷

− 𝐸𝑆 (𝛼)
𝐶𝐷

)
(𝑋)∥ ≤ max

(𝛽𝑟 )
∥ tr𝐶in\𝐷in, (𝛼𝑙 ) [(𝜎2 − 𝜎1)𝑁] ∥

= max
(𝛽𝑟 )

��Tr𝐶in\𝐷in, (𝛼𝑙 ) [(𝜎2 − 𝜎1)𝑁]
��

= max
(𝛽𝑟 )

| Tr𝐶in\𝐷in, (𝛼𝑙 ) [(1 − 𝜎− 1
2

1 𝜎2𝜎
− 1

2
1 ) (𝜎

1
2

1 𝑁𝜎
1
2

1 )] |

≤ max
(𝛽𝑟 )

∥(1 − 𝜎− 1
2

1 𝜎2𝜎
− 1

2
1 ) (𝜎

1
2

1 𝑁𝜎
1
2

1 )] ∥1

≤ max
(𝛽𝑟 )

∥𝜎− 1
2

1 𝜎2𝜎
− 1

2
1 − 1∥∞∥𝑁 ∥L1,𝜎1

,

where the equality in second line follows since 𝑁 = 𝐸
𝑆 (𝛾𝑙 ,𝛼𝑟 )
𝐷

(𝑋) is the identity on the comple-
mentary Hilbert space to (H (𝛼𝑙 )

𝐶in\𝐷in
The last inequality we used Hölder and the definition of the

L1,𝜎1 norm. By definition of 𝑁 , we have

∥𝑁 ∥L1,𝜎1
= ∥𝜎

1
2

1 𝑁𝜎
1
2

1 ∥1
𝑁≥0
= Tr[𝜎1𝑁] = Tr[𝜏 (𝛼𝑙 ,𝛼𝑟 )

𝐶𝐷in
𝑁] = Tr[𝜏 (𝛼)

𝐶𝐷in
𝐸
𝑆 (𝛼)
𝐷

(𝑋)]

= Tr[𝐸𝑆 (𝛼)
𝐷∗ (𝜏 (𝛼)

𝐶𝐷in
)𝑋] = Tr[𝜏 (𝛼)

𝐶𝐷in
𝑋] 𝑋≥0

= ∥𝑋 ∥L
1,𝜏 (𝛼)

𝐶𝐷in

= 1.

Hence to prove the theorem, we need to establish that 𝜎1
𝜖∼ 𝜎2 for any boundary condition

(𝛼𝑙, 𝛽𝑟 , 𝛼𝑟 ). We will do with with 𝑙 ↦→ 𝜖 (𝑙) an exponentially decreasing function in 𝑙 = dist(𝐶 \
𝐷, 𝐷 \ 𝐶) with decay length 𝜉.
Thus the two states can be written as

𝜎1 := tr𝐷in, (𝛼𝑟 )
[
𝜏
(𝛼𝑙 ,𝛼𝑟 )
𝐶𝐷in

]
=

1
Tr[...] tr𝜕out (𝐶𝐷)∪𝐷in, (𝛼𝑟 )

[
𝑃 (𝛼𝑙 )𝑃 (𝛼𝑟 )𝜎 (𝐶𝐷𝜕)𝑃 (𝛼𝑙 )𝑃 (𝛼𝑟 )

]
=

1
Tr[...] tr𝑙out𝑙in𝐷𝑟

[
𝑃 (𝛼𝑟 )𝑃 (𝛼𝑙 )𝜎 (𝐶𝐷𝜕)𝑃 (𝛼𝑙 )

]
∈ B(H (𝛼𝑙 )

𝐶in\𝐷in
)

𝜎2 := tr𝐹in, (𝛽𝑟 )
[
𝜏
(𝛼𝑙 ,𝛽𝑟 )
𝐶in

]
=

1
Tr[...] tr𝜕out (𝐶 )∪𝐹in, (𝛽𝑟 )

[
𝑃 (𝛼𝑙 )𝑃 (𝛽𝑟 )𝜎 (𝐶𝜕)𝑃 (𝛼𝑙 )𝑃 (𝛽𝑟 )

]
=

1
Tr[...] tr𝑙out𝑙in𝐹𝑟

[
𝑃 (𝛽𝑟 )𝑃 (𝛼𝑙 )𝜎 (𝐶𝜕)𝑃 (𝛼𝑙 )

]
∈ B(H (𝛼𝑙 )

𝐶in\𝐷in
)

Note that both are fullrank states on H (𝛼𝑙 )
𝐶in\𝐷in

and thus have the same support. The intuition now is,
since we have a Gibbs state that satisfies exponential decay of correlations, local indistinguishability,
and the mixing condition tensorization (see Theorem 3.4) these two states should be approximately
the same in the bulk, where we compare them. This is since they only differ on 𝐷 \ 𝐶, but we
look at them on 𝐶 \ 𝐷. From the assumptions of the Theorem we have that the family of Gibbs
states satisfy L∞-clustering and hence by Theorem 3.4 also strong local indistinguishability and
strong tensorization (mixing condition). We start by applying the strong tensorization property
(3.6) to each of the states, which gives the existence of two exponentially decaying functions 𝜖1, 𝜖2
in dist(𝑙, 𝑟) > dist(𝐶 \ 𝐷, 𝐷 \ 𝐶) and dist(𝑙, 𝑟) = dist(𝐶 \ 𝐷, 𝐷 \ 𝐶), respectively, s.t.

tr𝑙in𝐷 𝜎
𝐶𝐷𝜕 𝜖1∼ tr𝑙in𝐷𝑟 𝜎

𝐶𝐷𝜕 ⊗ tr𝑙𝐸𝑙𝐷 𝜎
𝐶𝐷𝜕

𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.2
=⇒ tr𝑟 𝑃 (𝛼𝑟 ) tr𝑙in𝐷 𝜎

𝐶𝐷𝜕𝑃 (𝛼𝑟 ) 𝜖1∼ tr𝑙in𝐷𝑟 𝜎
𝐶𝐷𝜕 Tr[𝑃 (𝛼𝑟 )𝜎𝐶𝐷𝜕𝑃 (𝛼𝑟 ) ],

tr𝑙in𝐹 𝜎
𝐶𝜕 𝜖2∼ tr𝑙in𝐹𝑟 𝜎

𝐶𝜕 ⊗ tr𝑙𝐸𝑙𝐹 𝜎
𝐶𝜕

𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.2
=⇒ tr𝑟 𝑃 (𝛽𝑟 ) tr𝑙in𝐹 𝜎

𝐶𝜕𝑃 (𝛽𝑟 ) 𝜖2∼ tr𝑙in𝐹𝑟 𝜎
𝐶𝜕 Tr[𝑃 (𝛽𝑟 )𝜎𝐶𝜕𝑃 (𝛽𝑟 ) ] .
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Here the implication follows from Proposition 3.2 4) applied to the projections 𝑃 (𝛼𝑟 ) , 𝑃 (𝛽𝑟 ) re-
spectively. Now by strong local indistinguishability (Theorem 3.4) there exists an exponentially
decaying function 𝜖3 in dist(𝑙, 𝑟) = dist(𝐶 \ 𝐷, 𝐷 \ 𝐶), s.t.

tr𝑙in𝐷𝑟 𝜎
𝐶𝐷𝜕 = tr𝑙in𝐹𝑟𝐺𝑟 𝜎

𝐶𝐷𝜕 𝜖3∼ tr𝑙in𝐹𝑟 𝜎
𝐶𝜕.

Hence by transitivity and symmetry of the strong similarity relation, see Theorem 3.2 1),2), it
follows that

tr𝑙in𝐷𝑟
[
𝑃 (𝛼𝑟 )𝜎𝐶𝐷𝜕𝑃 (𝛼𝑟 )

]
𝜖1∼ tr𝑙in𝐷𝑟 𝜎

𝐶𝐷𝜕 Tr[𝑃 (𝛼𝑟 )𝜎𝐶𝐷𝜕𝑃 (𝛼𝑟 ) ] 𝜖3∼ tr𝑙in𝐹𝑟 𝜎
𝐶𝜕 Tr[𝑃 (𝛼𝑟 )𝜎𝐶𝐷𝜕𝑃 (𝛼𝑟 ) ]

𝜖2 (1−𝜖2 )−1
∼ tr𝑙in𝐹𝑟

[
𝑃 (𝛽𝑟 )𝜎𝐶𝜕𝑃 (𝛽𝑟 )

] Tr[𝑃 (𝛼𝑟 )𝜎𝐶𝐷𝜕𝑃 (𝛼𝑟 ) ]
Tr[𝑃 (𝛽𝑟 )𝜎𝐶𝜕𝑃 (𝛽𝑟 ) ]

,

hence

𝜎1 :=
tr𝑙in𝐷𝑟

[
𝑃 (𝛼𝑟 )𝜎𝐶𝐷𝜕𝑃 (𝛼𝑟 )

]
Tr[𝑃 (𝛼𝑟 )𝜎𝐶𝐷𝜕𝑃 (𝛼𝑟 ) ]

𝜂∼
tr𝑙in𝐹𝑟

[
𝑃 (𝛽𝑟 )𝜎𝐶𝜕𝑃 (𝛽𝑟 )

]
Tr[𝑃 (𝛽𝑟 )𝜎𝐶𝜕𝑃 (𝛽𝑟 ) ]

=: 𝜎2,

where 𝜂 is exponentially decreasing in dist(𝐶 \ 𝐷, 𝐷 \ 𝐶) with decay length 𝜉, since all 𝜖1, 𝜖2, 𝜖3
are. Now by Proposition 3.2 4′) it follows that this strong similarity of the states obviously also
holds in each block (𝛼𝑙):

𝜎1 =
1

Tr[...] tr𝑙in [𝑃
𝛼𝑙𝜎1𝑃

𝛼𝑙 ] 𝜖 :=𝜂 (2+𝜂)∼ 1
Tr[...] tr𝑙in [𝑃

𝛼𝑙𝜎2𝑃
𝛼𝑙 ] = 𝜎2.

This establishes the bound for any boundary condition (𝛼𝑙, 𝛽𝑟 , 𝛼𝑟 ), which concludes the proof.
Note that this also shows that the exponential decay rate of 𝜖 is the same as the one of the
L∞-clustering we assumed, hence the correlation length of the Gibbs state 𝜉. □

5.2 Geometric argument

In this section we will provide the final geometric part of the proof of Theorem 5.1 explicitly
for 𝑏−ary trees with 𝑏 ∈ N. If 𝑏 = 1 this will prove Corollary 5.2, since every finite complete
connected subset of a 1−ary tree is a finite length subset of a 1-dimensional quantum spin chain. If
𝑏 > 1, this will prove Corollary 5.3. The idea of the proof will be essentially the same for the two
quantitatively very different cases of exponential and sub-exponential graphs. Denote the infinite
complete 𝑏−ary tree with T𝑏. Denote with 𝐵𝑥,𝑙 the subtree rooted at site 𝑥 ∈ T𝑏 of height 𝑙. For a
finite subtree Γ ⊂⊂ T𝑏 of height 𝐿, say Γ = 𝐵0,𝐿 , let Γ0 be all its vertices of index 0 under some
fixed 2-coloring. We define the following set of subsets

{𝑅𝑘}𝑘∈𝐾 := {𝐵𝑥𝑘 ,𝑙0 ∩ Γ}𝑘∈𝐾 = {𝐵𝑥,𝑙0 ∩ Γ}𝑥∈Γ0 , (5.6)

where 𝐾 := {𝑘 |𝑥𝑘 ∈ Γ0} and where we fix 𝑙0 later on. We can think of 𝑙0 as a suitably large
constant. These will form a suitable coarse-graining into subtrees on each vertex of the same label
(i.e. in Γ0) of finite fixed height 𝑙0. We will be considering the cMLSI constant of our evolution
on these sets end extend these via a suitable Cesaro averaging argument to the whole lattice. For a
set 𝐵𝑥𝑘 ,𝐿 define

𝐶𝑙𝑘 := 𝐵𝑥𝑘 ,𝑙 𝐷
𝑙,𝑙

𝑘
:=

⋃
𝑚∈𝐾

dist(𝑥𝑚,𝑥𝑘=𝑙−𝑙)

𝐵𝑥𝑚,𝐿+𝑙−𝑙 . (5.7)
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5 Main results: Gap implies cMLSI

Hence we cover the subtree 𝐵𝑥𝑘 ,𝐿 of height 𝐿 by a subtree of height 𝑙, called 𝐶𝑙
𝑘
, and a union of

disjoint subtrees of height 𝐿 + 𝑙 − 𝑙, called 𝐷𝑙,𝑙
𝑘

, s.t. their overlap has height 𝑙 and is hence s.t. we
can apply the approximate tensorization result Theorem 5.6 with the function 𝜖 (𝑙). Importantly we
require that each of these sets begins and ends with some vertices of the same index 0, i.e. in Γ0.
In formulae this is 𝐶𝑙

𝑘
∪ 𝐷𝑙,𝑙

𝑘
= 𝐵𝑥𝑘 ,𝐿 and dist(𝐶𝑙

𝑘
\ 𝐷𝑙,𝑙

𝑘
, 𝐷

𝑙,𝑙

𝑘
\ 𝐶𝑙

𝑘
) = 𝑙 for all 0 ≤ 𝑙 ≤ 𝐿. Hence

each set 𝐵𝑥𝑘 ,𝐿 has the family of non-trivial partitions {𝐶𝑙
𝑘
, 𝐷

𝑙,𝑙

𝑘
}𝐿−1
𝑙=1

and for each of these it holds,
due to Theorem 5.6, that

𝐷 (𝜔∥𝐸𝑆𝐵𝑥𝑘 ,𝐿
∗(𝜔)) ≤

1
1 − 2𝜖 (𝑙)

[
𝐷 (𝜔∥𝐸𝑆

𝐶𝑙
𝑘
∗
(𝜔)) + 𝐷 (𝜔∥𝐸𝑆

𝐷
𝑙,𝑙

𝑘
∗
(𝜔))

]
,

where 𝜖 (𝑙) = 𝐾 |𝐵𝑥𝑘 ,𝐿 | exp(− 𝑙
𝜉
). For an example of these regions see Figure 5.3.

Figure 5.3: Example of a partition of 𝐵0,6 ⊂ T2 into the regions 𝐶𝑙0, 𝐷𝑙,𝑙0 with height of the regions
𝑙 = 4 and 𝑙 = 6− 𝑙 + 2 = 4 and the height of their overlap being 𝑙 = 2. This is in 𝐵0,6 as
part of a 2-ary tree. The red vertices are the ones of index 0. Notice that each of these
sets ’begins’ and ’ends’ in these sets.
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5 Main results: Gap implies cMLSI

We will now consider the two cases of subexponential (1D) and exponential (𝑏-ary, 𝑏 > 1)
separately.

Case 1) The 1D quantum spin chain, i.e. 𝑏 = 1 case where |𝐵𝑥𝑘 ,𝐿 | = 𝐿.

Case 2) The 𝑏−ary tree case with 𝑏 > 1, where |𝐵𝑥𝑘 ,𝐿 | = 𝑏𝐿+1−1
𝑏−1 = O(𝑏𝐿).

Remark: Note that the analysis in the case of any sub-exponential graph will work just in case
1), however, the sets 𝐶𝑘 , 𝐷𝑘 will obviously be different. Similarly, the analysis of any exponential
graph will work just as in case 2).

Case 1) We can pick the overlap 𝑙 = ⌊
√
𝐿⌋ = O(

√
𝐿). Then 𝜖 (𝑙) ∝ 𝐿 exp(−

√
𝐿
𝜉
) is exponentially

decaying in 𝐿 for any 𝜉 > 0. Set 𝑙min,1 to be the smallest 𝐿, s.t. 𝜖 (𝑙) < 1
2 for all 𝑙 ≥ 𝑙min,1.

Case 2) We have to pick the overlap 𝑙 = 𝐿
𝑁

= O(𝐿) for some 𝑁 ∈ N \ {1} and require the correlation
length to satisfy 𝜉 < 1

𝑁 ln 𝑏 . This suffices for 𝑁 = 2, but we will keep it general in the
following derivation. Then 𝜖 (𝑙) = |𝐵𝑥𝑘 ,𝐿 | exp(− 𝐿

𝑁 𝜉
) = 𝑏𝐿𝑒−

𝐿
𝑁 𝜉 is eventually exponentially

decaying in 𝐿 and we set 𝑙0 to be the smallest 𝑙, s.t. 𝜖 (𝑙) < 1
2 for all 𝑙 ≥ 𝑙0.

We define

𝐷𝑅 (𝜔) :=
∑︁
𝑅𝑘⊂𝑅

𝐷 (𝜔∥𝐸𝑆𝑅𝑘∗(𝜔)), (5.8)

where the sets {𝑅𝑘}𝑘∈𝐾 are as in Equation 5.6 defined above. Observe that𝐷𝑅 (𝜔) is monotonically
increasing in 𝑅, i.e. if 𝐴 ⊂ 𝐵 ⊂ Γ are two subregions, then 𝐷𝐴(𝜔) ≤ 𝐷𝐵 (𝜔) by positivity of the
relative entropy, and additive up to boundary terms, i.e. if 𝐴, 𝐵 ⊂ Γ are two disjoint subregions,
then 𝐷𝐴𝐵 (𝜔) = 𝐷𝐴(𝜔) + 𝐷𝐵 (𝜔) +

∑
𝑅𝑘∩𝐵≠∅
𝑅𝑘∩𝐴≠∅

𝐷 (𝜔∥𝐸𝑆
𝑅𝑘∗(𝜔)).

Next we define a function 𝐿 ↦→ 𝐶 (𝐿) : N→ R, s.t. 𝐶 (𝐿) is the smallest number, s.t. ∀ 𝑗 ∈ Γ0

𝐷 (𝜔∥𝐸𝑆𝐵𝑥 𝑗 ,𝐿
∗(𝜔)) ≤ 𝐶 (𝐿)𝐷𝐵𝑥 𝑗 ,𝐿

(𝜔) (5.9)

This can always be done and is, trivially, monotonically non-decreasing. We will show, by
inductively applying the approximate tensorization and averaging suitably, that the following
Lemma holds.

Lemma 5.8. For sets of the form 𝑅 = 𝐵𝑥 𝑗 ,𝐿 for some 𝑗 ∈ 𝐾 , (5.9) holds with

Case 1) 𝐶 (𝐿) = O(1) |Γ |→∞ is uniformly upper bounded by a 𝐶 (∞) < ∞ in case 1).

Case 2) 𝐶 (𝐿) = O(𝐿)𝐿→∞ = O(ln |Γ |) |Γ |→∞ in case 2).

Remark: This Lemma is an approximate tensorization statement for the state 𝜔. I.e. we give an
upper bound on the relative entropy distance between it and its Schmidt conditional expectation on
the whole lattice Γ in terms of the relative entropies of it and the Schmidt conditional expectations
of the fixed finite size regions {𝑅𝑘}𝑘∈𝐾 . Later on we will be able to generalize this statement
rather simply to arbitrary states 𝜌 and the Davies instead of the Schmidt conditional expectation.
This will then allow us to extend the existence of a local cMLSI constant, see Theorem 2.1, to the
whole lattice with the cost of 𝐶 (𝐿)−1.
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5 Main results: Gap implies cMLSI

Proof of 1) in Lemma 5.8. The proof idea is to average the approximate tensorization result, The-
orem 5.6, over all the above defined coverings {𝐶𝑙

𝑘
, 𝐷

𝑙,𝑙

𝑘
} to get the relative entropy between 𝜔 and

its Schmidt conditional expectation on the whole of 𝐵𝑥 𝑗 ,𝐿 in terms of the relative entropy between
it and the Schmidt conditional expectation on subregions of height 𝜂𝐿, where 𝜂 < 1. Repeating
this inductively O(log(𝐿)) times will then give the statement of the Lemma. Hence the constant
𝐶 (𝐿) will be given as a product of O(log(𝐿)) terms. Bounding this product will will then give the
in the Lemma stated asymptotics.
Fix 𝑥 𝑗 ∈ Γ0 and let 𝜂 < 1. We enumerate all partitions of 𝐵𝑥 𝑗 ,𝐿 into {𝐶𝑙

𝑗
, 𝐷

𝑙,⌊
√
𝐿⌋

𝑗
}, s.t.

𝑙, 𝐿 + ⌊
√
𝐿⌋ − 𝑙 ≤ 𝜂𝐿 and s.t. different partitions have disjoint overlaps, i.e.

(
𝐶
𝑙1
𝑗
∩ 𝐷𝑙1,⌊

√
𝐿⌋

𝑘

)
∩(

𝐶
𝑙2
𝑗
∩ 𝐷𝑙2,⌊

√
𝐿⌋

𝑘

)
= ∅, whenever 𝑙1 ≠ 𝑙2. This works as long as

√
𝐿 ≲ (2𝜂 − 1)𝐿 which gives

another condition on the minimal size of 𝑙 = ⌊
√
𝐿⌋ ≥: 𝑙min,2. There exist 𝐿

⌊
√
𝐿⌋

= O(
√
𝐿) of these

partitions, since their overlap is of height ⌊
√
𝐿⌋ = O(

√
𝐿). Call these partitions {𝐶𝑖 , 𝐷𝑖}O(

√
𝐿)

𝑖=1 .
Now we average over all the approximate tensorization results of these partitions to get

𝐷 (𝜔∥𝐸𝑆𝐵𝑥 𝑗 ,𝐿
∗(𝜔))

≤ 1
O(

√
𝐿)

O(
√
𝐿)∑︁

𝑖=1

1
1 − 2𝜖 (

√
𝐿)

[
𝐷 (𝜔∥𝐸𝑆𝐶𝑖∗(𝜔)) + 𝐷 (𝜔∥𝐸𝑆𝐷𝑖∗(𝜔))

]
≤ 1

1 − 2𝜖 (
√
𝐿)

1
O(

√
𝐿)

O(
√
𝐿)∑︁

𝑖=1
𝐶 (height(𝐶𝑖))𝐷𝐶𝑖

(𝜔) + 𝐶 (height(𝐷𝑖))𝐷𝐷𝑖
(𝜔)

≤ 𝐶 (𝜂𝐿) 1
1 − 2𝜖 (

√
𝐿)

1
O(

√
𝐿)

O(
√
𝐿)∑︁

𝑖=1

(
2𝐷𝐶𝑖∩𝐷𝑖

(𝜔) + 𝐷𝐶𝑖\𝐷𝑖∪𝐷𝑖\𝐶𝑖
(𝜔)

+
∑︁

𝑅𝑘∩(𝐶𝑖∩𝐷𝑖 )≠∅
𝑅𝑘∩(𝐶𝑖\𝐷𝑖 )≠∅

𝐷 (𝜔∥𝐸𝑆𝑅𝑘∗(𝜔)) +
∑︁

𝑅𝑘∩(𝐶𝑖∩𝐷𝑖 )≠∅
𝑅𝑘∩(𝐷𝑖\𝐶𝑖 )≠∅

𝐷 (𝜔∥𝐸𝑆𝑅𝑘∗(𝜔))

≤ 𝐶 (𝜂𝐿) 1
1 − 2𝜖 (

√
𝐿)

1
O(

√
𝐿)

©­«2𝐷⋃O(
√
𝐿)

𝑖=1 (𝐶𝑖∩𝐷𝑖 )
(𝜔) +

O(
√
𝐿)∑︁

𝑖=1
𝐷 (𝐶𝑖\𝐷𝑖 )𝜕∪(𝐷𝑖\𝐶𝑖 )𝜕(𝜔)

ª®¬
≤ 𝐶 (𝜂𝐿) 1

1 − 2𝜖 (
√
𝐿)

⌊
√
𝐿⌋
𝐿

(
2 + 𝐿

⌊
√
𝐿⌋

)
𝐷𝐵𝑥 𝑗 ,𝐿

(𝜔),

where in the second line we used the definition of 𝐶 (height(·)) and in the third line we used that
height(𝐶𝑖), height(𝐷𝑖) ≤ 𝐶 (𝜂𝐿) since height(𝐶𝑖) = 𝑙, height(𝐷𝑖) = 𝐿 + ⌊

√
𝐿⌋ − 𝑙 ≤ 𝜂𝐿. Hence it

follows that 𝐶 (𝐿) ≤ 𝐶 (𝜂𝐿) 1
1−2𝜖 (

√
𝐿)
(1 + 2√

𝐿
) =: 𝐶 (𝜂𝐿) 𝑓 (𝐿). Repeating this 𝑀 = O(ln 𝐿) times,

s.t. 𝜂𝑀𝐿 = 𝑙0 =: max{𝑙min,1, 𝑙min,2} then gives

𝐶 (𝐿) ≤ 𝐶 (𝑙0)
𝑀∏
𝑘=1

𝑓 (𝜂𝑘𝐿) ≤ 𝐶 (𝑙0)
∞∏
𝑘=0

𝑓 (𝑙0𝜂−𝑘) < ∞,

where the infinite product converges since 𝜖 (
√
𝐿) = 𝐿𝑒

−
√
𝐿
𝜉 is exponentially decaying in 𝐿 and

(1 + 2√
𝐿
) → 1 fast enough. Note that by definition 𝐶 (𝑙0) = 1 and that it is independent of the 𝑥 𝑗

which we fixed. Hence the result follows. □
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Proof of 2) in Lemma 5.8. This proof follows exactly the same idea as the one above, with the slight
difference that we need to choose the overlap of the coverings 𝐶, 𝐷 to scale as O(𝐿). Hence the
number of partitions has to be constant in system size which will give us a constant multiplicative
factor in each inductive step. Since we need O(log(𝐿)) steps this gives the O(𝐿) scaling of 𝐶 (𝐿)
in the lemma.
Let 𝑁 ∈ N \ {1} and 1

2 < 𝜂 < 1, 𝑠.𝑡. 1
𝑁

≥ (2𝜂 − 1). We enumerate all partitions of 𝐵𝑥 𝑗 ,𝐿
into {𝐶𝑙

𝑗
, 𝐷

𝑙, 𝐿
𝑁

𝑗
}, s.t. 𝑙, 𝐿 + 𝐿

𝑁
− 𝑙 ≤ 𝜂𝐿 and s.t. different partitions have disjoint overlaps, i.e.(

𝐶
𝑙1
𝑗
∩ 𝐷𝑙1,

𝐿
𝑁

𝑘

)
∩

(
𝐶
𝑙2
𝑗
∩ 𝐷𝑙2,

𝐿
𝑁

𝑘

)
= ∅, whenever 𝑙1 ≠ 𝑙2. There exist 𝐿

𝐿
𝑁

= 𝑁 of these partitions,

since their overlap is of height 𝐿
𝑁

. Call these partitions {𝐶𝑖 , 𝐷𝑖}𝑁𝑖=1. Now we average over all the
approximate tensorization results of these partitions to get

𝐷 (𝜔∥𝐸𝑆𝐵𝑥 𝑗 ,𝐿
∗(𝜔))

≤ 1
𝑁

𝑁∑︁
𝑖=1

1
1 − 2𝜖 ( 𝐿

𝑁
)

[
𝐷 (𝜔∥𝐸𝑆𝐶𝑖∗(𝜔)) + 𝐷 (𝜔∥𝐸𝑆𝐷𝑖∗(𝜔))

]
≤ 1

1 − 2𝜖 ( 𝐿
𝑁
)

1
𝑁

𝑁∑︁
𝑖=1

𝐶 (height(𝐶𝑖))𝐷𝐶𝑖
(𝜔) + 𝐶 (height(𝐷𝑖))𝐷𝐷𝑖

(𝜔)

≤ 𝐶 (𝜂𝐿) 1
1 − 2𝜖 ( 𝐿

𝑁
)

1
𝑁

𝑁∑︁
𝑖=1

(
2𝐷𝐶𝑖∩𝐷𝑖

(𝜔) + 𝐷𝐶𝑖\𝐷𝑖∪𝐷𝑖\𝐶𝑖
(𝜔)

+
∑︁

𝑅𝑘∩(𝐶𝑖∩𝐷𝑖 )≠∅
𝑅𝑘∩(𝐶𝑖\𝐷𝑖 )≠∅

𝐷 (𝜔∥𝐸𝑆𝑅𝑘∗(𝜔)) +
∑︁

𝑅𝑘∩(𝐶𝑖∩𝐷𝑖 )≠∅
𝑅𝑘∩(𝐷𝑖\𝐶𝑖 )≠∅

𝐷 (𝜔∥𝐸𝑆𝑅𝑘∗(𝜔))

≤ 𝐶 (𝜂𝐿) 1
1 − 2𝜖 ( 𝐿

𝑁
)

1
𝑁

(
2𝐷⋃𝑁

𝑖=1 (𝐶𝑖∩𝐷𝑖 ) (𝜔) +
𝑁∑︁
𝑖=1

𝐷 (𝐶𝑖\𝐷𝑖 )𝜕∪(𝐷𝑖\𝐶𝑖 )𝜕(𝜔)
)

≤ 𝐶 (𝜂𝐿) 1
1 − 2𝜖 ( 𝐿

𝑁
)

1
𝑁

(2 + 𝑁) 𝐷𝐵𝑥 𝑗 ,𝐿
(𝜔),

where in the second line we used the definition of 𝐶 (height(·)) and in the third line we used that
height(𝐶𝑖), height(𝐷𝑖) ≤ 𝐶 (𝜂𝐿) since height(𝐶𝑖) = 𝑙, height(𝐷𝑖) = 𝐿 + 𝐿

𝑁
− 𝑙 ≤ 𝜂𝐿. Hence it

follows that 𝐶 (𝐿) ≤ 𝐶 (𝜂𝐿) 1
1−2𝜖 ( 𝐿

𝑁
) (1 + 2

𝑁
) =: 𝐶 (𝜂𝐿) 𝑓 (𝐿) (1 + 2

𝑁
). Repeating this 𝑀 = O(ln 𝐿)

times s.t. 𝜂𝑀𝐿 = 𝑙0 =: 𝐿min,1 then gives

𝐶 (𝐿) ≤ 𝐶 (𝑙0) (1 + 2
𝑁
)𝑀

𝑀∏
𝑘=1

𝑓 (𝜂𝑘𝐿) ≤ 𝐶 (𝑙0) (1 + 2
𝑁
)𝑀

∞∏
𝑘=0

𝑓 (𝑙0𝜂−𝑘)

= O
((

1 + 2
𝑁

)O(ln 𝐿)
)
= O(𝐿) = O(ln |𝐵𝑥 𝑗 ,𝐿 |),

where the infinite product converges since 𝜖
(
𝐿
𝑁

)
= 𝑏𝐿𝑒

− 𝐿
𝑁 𝜉 is exponentially decaying in 𝐿 under

the condition on 𝜉. We used that |𝐵𝑥 𝑗 ,𝐿 | = 𝑏𝐿 and hence 𝐿 = O(ln |𝐵𝑥 𝑗 ,𝐿 |). Note that it is
independent of the 𝑥 𝑗 which we fixed and hence the result follows. □
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5 Main results: Gap implies cMLSI

5.3 Putting everything together

Now we can put everything together to prove the main result.

Proof of Theorem 5.1. Let Λ be as in the main Theorem 5.1. Let Γ ⊂⊂ Λ be a complete connected
finite subgraph. For the 𝑏−ary tree, 𝑏 ∈ N, wlog Γ = 𝐵0,𝐿 . Let 𝐻Γ be an element of the
uniform, commuting, nearest-neighbour family from the theorem andL𝐷

Γ
the corresponding Davies

Lindbaldian with conditional expectations {𝐸𝐷
Γ
}Γ⊂⊂Λ. Fix a 2-coloringΛ0 and let {𝑥𝑘}𝑘∈𝐾 = Γ0 =

Λ0 ∩ Γ be the corresponding one on Γ. Set 𝜔 := 𝐸𝑆
Γ0
(𝜌) for a state 𝜌 ∈ D(HΓ). We first apply the

chain rule for the relative entropy (2.19), with 𝜎 ≡ 𝜎Γ = 𝐸𝐷
Γ∗(𝜌) = 𝐸𝑆Γ0∗(𝜎):

𝐷 (𝜌∥𝐸𝐷Γ∗(𝜎)) = 𝐷 (𝜌∥𝜎) = 𝐷 (𝜌∥𝐸𝑆Γ0∗(𝜌)) + 𝐷 (𝐸𝑆Γ0∗(𝜌)∥𝜎) = 𝐷 (𝜌∥𝜔) + 𝐷 (𝜔∥𝜎).

The first summand 𝐷 (𝜌∥𝜔) satisfies exact tensorization (a form of strong subadditivity), since
the Schmidt conditional expectations of two sets with distance two between each other commute,
𝐸𝑆{𝑥𝑘 }∗ ◦ 𝐸

𝑆
{𝑥 𝑗 }∗ = 𝐸

𝑆
{𝑥 𝑗 }∗ ◦ 𝐸

𝑆
{𝑥𝑘 }∗ = 𝐸

𝑆
{𝑥𝑘 }∪{𝑘 𝑗 }∗ for all 𝑥𝑘 , 𝑥 𝑗 ∈ Γ0, see Proposition 4.4 [8], [40].

That is

𝐷 (𝜌∥𝜔) = 𝐷 (𝜌∥𝐸𝑆Γ0∗(𝜌)) ≤
∑︁
𝑥𝑘∈Γ0

𝐷 (𝜌∥𝐸𝑆{𝑥𝑘 }∗(𝜌))
(4.12)
≤

∑︁
𝑥𝑘∈Γ0

𝐷

(
𝜌




𝐸𝐷{𝑥𝑘 }𝜕∗(𝜌)) ,
The second summand 𝐷 (𝜔∥𝜎) is, using Lemma 5.8, the DPI for the relative entropy, and then
Lemma 4.12, bounded by

𝐷 (𝜔∥𝜎) = 𝐷 (𝜔∥𝐸𝑆Γ∗(𝜔))
Lemma 5.8

≤ 𝐶
∑︁
𝑥𝑘∈Γ0

𝐷 (𝜔∥𝐸𝑆𝑅𝑘∗(𝜔)) = 𝐶
∑︁
𝑥𝑘∈Γ0

𝐷 (𝐸𝑆Γ0∗(𝜌)∥(𝐸
𝑆
𝑅𝑘∗ ◦ 𝐸

𝑆
Γ0
) (𝜌))

𝐷𝑃𝐼
≤ 𝐶

∑︁
𝑥𝑘∈Γ0

𝐷 (𝜌∥𝐸𝑆𝑅𝑘∗(𝜌))
Lemma 4.12

≤ 𝐶
∑︁
𝑥𝑘∈Γ0

𝐷 (𝜌∥𝐸𝐷𝑅𝑘𝜕∗(𝜌)),

where in the second line we used that 𝐸𝑆
𝑅𝑘∗ ◦ 𝐸

𝑆
Γ0

= 𝐸𝑆
Γ0
◦ 𝐸𝑆

𝑅𝑘∗, which holds by the construction of
the sets 𝑅𝑘 in Equation 5.6.5 Recall, that by Lemma 5.8 in the case of sub-exponential (e.g. the 1d
dimensional spin chain) the constant 𝐶 is independent of system size, whereas in the exponential
setting, e.g. the 𝑏−ary tree it scales logarithmically with system size. Now importantly, the regions
{{𝑥𝑘}𝜕, 𝑅 𝑗𝜕}𝑘, 𝑗 are of fixed finite size, hence by Theorem 2.1 there exists cMLSI constants
𝛼0, 𝛼1 > 0, s.t. for any 𝑗 , 𝑘

𝛼0𝐷
(
𝜌∥𝐸𝐷{𝑥𝑘 }𝜕∗(𝜌)

)
≤ EPL𝐷

{𝑥𝑘 }𝜕
(𝜌), 𝛼1𝐷

(
𝜌∥𝐸𝐷𝑅 𝑗𝜕∗(𝜌)

)
≤ EPL𝐷

𝑅𝑗𝜕
(𝜌).

Hence, putting everything above together, we have

𝐷 (𝜌∥𝐸𝐷Γ∗(𝜌) = 𝐷 (𝜌∥𝜎) ≤ 1
min{𝛼0, 𝛼1}

©­«
∑︁
𝑥𝑘∈Γ0

EPL𝐷
{𝑥𝑘 }𝜕

(𝜌) + 𝐶
∑︁

𝑘 |𝑥𝑘∈Γ0

EPL𝐷
𝑅𝑘𝜕

(𝜌)ª®¬
≤ 2(1 + 𝑚𝐶)

min{𝛼0, 𝛼1}
EPL𝐷

Γ
(𝜌),

5This is since 𝜕𝑅𝑘 ∩ Γ0 = ∅. Recall that Γ0 is the union of single vertices each with distance 2 from each other. Hence
the claim follows from Proposition 4.4.
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5 Main results: Gap implies cMLSI

where in the last inequality we used the positivity and additivity of the entropy production and the
fact that, by construction, each site 𝑥 ∈ Λ is contained in at most a constant number 2𝑚 of regions
𝑅𝑘𝜕, since they are of fixed finite size. The same holds for {𝑥𝑘}𝜕 with 2 regions. Thus it follows
that

𝛼(L𝐷
Γ ) ≥ min{𝛼0, 𝛼1}

2(1 + 𝑚𝐶) > 0.

Therfore in the sub-exponential setting from Lemma 5.8 we get 𝛼(L𝐷
Γ
) = O(1) |Γ |→∞ whereas in

the exponential we get 𝛼(L𝐷
Γ
) = Ω((ln |Γ|)−1) |Γ |→∞. □
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6 Applications

In the following let Λ, Γ; 𝜌, 𝜎 ∈ 𝒟(HΓ), and L𝐷
Λ

be as in the main Theorem 5.1, such that
𝛼(L𝐷

Γ
) > 0 is independent of |Γ|.

6.1 Exponential convergence to Gibbs states in the
thermodynamic limit

A direct consequence of the spin-system size |Γ| independence of 𝛼(L𝐷
Γ
) is that in the thermody-

namic limit we have exponential decay of the relative entropy density between some state at time
𝑡 and the thermal state, with decay rate 𝛼. This gives meaning to exponential convergence in the
thermodynamic limit and is a strict improvement to the trivial statement we would get when taking
the limit with a spin-chain length decreasing MLSI constant. It is quite the important statement
since most materials in condensed matter systems are very very large. E.g. for the case of 1D spin
chains this is a novel result.

Corollary 6.1. Note that for local Hamiltonians 𝐷 (𝜌𝑡 | |𝜎Γ) = O(|Γ |), and hence

lim
Γ↑Λ

1
|Γ|𝐷 (𝜌𝑡 | |𝜎Γ) ≤ 𝑒−𝛼𝑡 lim

Γ↑Λ

1
|Γ|𝐷 (𝜌𝑡 | |𝜎Γ).

Proof. For a local Hamiltonian we have ∥𝐻Γ∥ =
∑

𝑋⊂Γ
diam(𝑋) ≤𝑟

∥Φ𝑋∥ = O(|Γ|) and hence

𝑑 |Γ |𝑒−𝛽O( |Γ | ) = Tr[1𝑒−𝛽 ∥𝐻 ∥ ] ≤ Tr[𝑒−𝛽𝐻] ≤ Tr[1𝑒𝛽 ∥𝐻 ∥ ] = 𝑑 |Γ |𝑒𝛽O( |Γ | ) ,

hence taking logarithms gives 𝑍Γ = log Tr[𝑒−𝛽𝐻Γ ] = O(|Γ|) and thus we can bound

𝐷 (𝜌∥𝜎Γ) ≤ −Tr
[
𝜌 log

𝑒−𝛽𝐻

𝑍Γ

]
= 𝑍Γ + 𝛽 Tr[𝜌𝐻Γ] = O(|Γ|).

Now the result follows directly from the main theorem by dividing through |Γ| and taking the
limit. □

Some more corollaries follow the use of a quantum transport inequality. These are upper bounds
on the𝑊1 distance in terms of the relative entropy. In the quantum case1 they have connections to
eigenstate thermalization, concentration bounds, and many more. See e.g. [1]. From the existence
of a MLSI constant 𝛼 independent of the spin-system size |Γ| one can show that the following
transport cost inequality holds with a transport cost 𝑐′ = 𝑐 |Γ |

𝛼
linear in spin-system size |Γ| [1].

∥𝜌 − 𝜎∥𝑊1 ≤
√︁
𝑐′𝐷 (𝜌 | |𝜎). (6.1)

For a proof of this see [1](Proposition 16, Theorem 5) and [41](Theorem 3,4). The fact that the
transport cost scales linearly in |Γ| has amongst others the following important consequences.

1and also the classical case [NEED SOURCE]
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6 Applications

6.2 Tighter bounds on the entropy difference and convergence via
relative entropy

The first application of this concerns bounding the von-Neumann entropy difference between two
quantum states 𝜌, 𝜎 by their relative entropy.

Corollary 6.2. If 𝜌, 𝜎 are as assumed above, then the following two bounds hold

𝑖) |𝑆(𝜌) − 𝑆(𝜎) | ≤ 𝑔
(
𝑐

√︂
|Γ|
𝛼

√︁
𝐷 (𝜌 | |𝜎)

)
+ 𝑐

√︂
|Γ|
𝛼

ln (𝑑2 |Γ|)
√︁
𝐷 (𝜌 | |𝜎)

= O(
√︁
|Γ| log |Γ|) |Γ |→∞

√︁
𝐷 (𝜌 | |𝜎), (6.2)

𝑖𝑖) |𝑆(𝜌𝑡 ) − 𝑆(𝜎) | = O
(
|Γ| log |Γ|, 𝑒

− 𝛼𝑡
2

√
𝛼

)
, (6.3)

where 𝑔(𝑡) = (𝑡 + 1) log(𝑡 + 1) − 𝑡 log 𝑡 = 𝑜(𝑡)𝑡→∞, 𝜌𝑡 := 𝑒𝑡LΛ∗ (𝜌), and 𝑐 is some constant
independent of |Γ | depending only on the locality of the Lindbladian L𝐷

Λ
.

Remark: These inequalities represent a O
( √

|Γ |
log |Γ |

)
improvement compared to the use of

Pinsker’s inequality, see [26], as ∥𝜌 − 𝜎∥𝑊1 ≤ |Γ |
2 ∥𝜌 − 𝜎∥1 ≤ |Γ |√

2

√︁
𝐷 (𝜌 | |𝜎), or to the following

inequality from [42] |𝑆(𝜌) −𝑆(𝜎) | ≤
√

3 log(𝑑 |Γ |)
√︁
𝐷 (𝜌 | |𝜎) = O(|Γ |)

√︁
𝐷 (𝜌 | |𝜎). However, these

inequalities apply to arbitrary quantum states 𝜌, 𝜎, whereas (6.2) requires 𝜎 to be the Gibbs state of
a suitable Hamiltonian. It is also an O(log |Γ|) improvement over the until now best known bound
under the above assumptions, derived by employing a MLSI constant that scales as Ω(log |Γ|)−1

[12]. And comparing to [1] these inequalities constitute an extension of the O(|Γ | log |Γ|) scaling
of the entropy difference from product states to more general Gibbs states satisfying the assump-
tions of the Corollary. Note that these entropy difference bounds are optimal in their scaling in |Γ|
up to logarithmic correction, since the entropy difference is an extensive quantity, i.e. it scales as
O(|Γ|).

Proof. We first use the following continuity bound from [26](Theorem 1), that states that for any
two states 𝜌, 𝜎 ∈ D(HΓ)

|𝑆(𝜌) − 𝑆(𝜎) | ≤ 𝑔(∥𝜌 − 𝜎∥𝑊1) + ∥𝜌 − 𝜎∥𝑊1 ln(𝑑2 |Γ |),

where 𝑑 is the local Hilbert space dimension, ∥ · ∥𝑊1 the quantum Wasserstein distance of order
1 (see (2.13) for the definition), and 𝑔(𝑡) = (𝑡 + 1) log(𝑡 + 1) − 𝑡 log 𝑡. Now by the transport
cost inequality from [1](Prop 16, Theorem 5) and [41](Theorem 3,4)2, which holds under the
assumptions of the Corollary we get Inequality (6.1). Combining this one with the just above gives
i). For ii) use i), the bound 𝐷 (𝜌 | |𝜎Γ) ≤ O(|Γ|) from above, and the MLSI in its integrated form
𝐷 (𝜌𝑡 | |𝜎) ≤ 𝑒−𝛼𝑡𝐷 (𝜌 | |𝜎). □

2Note that in that paper a different normalization convention for the quantum Wasserstein distance was used as
compared to here or the other references in this section
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6 Applications

6.3 Optimal 1D Gaussian concentration bound

Corollary 6.3. Let 𝑂 ∈ B(HΛ) be a 𝑘-local (but not necessarily geometrically-𝑘-bounded)
observable, i.e.

𝑂 =
∑︁
𝑋⊂Λ
|𝑋|≤𝑘

𝑜𝑋, (6.4)

such that for all 𝑖 ∈ Λ
∑
𝑋⊂Λ:𝑋∋𝑖 ∥𝑜𝑋∥ ≤ 𝑔, where each 𝑜𝑋 acts only non trivially on sites 𝑋 ⊂ Λ.

Let 𝜎 be the Gibbs state of some geometrically-local, uniformly bounded, commuting Hamiltonian
with uniform exponential decay of correlations, at any fixed inverse temperature 𝛽 > 0. Then for
𝑟 ≥ 0 it holds that

P𝜎 ( |𝑂 − Tr[𝑂𝜎] | ≥ 𝑟) ≤ 2 exp
[
− 𝛼𝑟2

O(|Γ|)

]
. (6.5)

Remark: This means that 1D spin-systems with geometrically-local, commuting Hamiltonians
with uniform exponential decay of correlations give rise to a sub-Gaussian random variable in their
thermal equilibrium states for any observables of the above form, notably including long-range
observables with a power-law decay. Thus inequality (6.5) constitutes a tightening in terms of its
|Γ|-dependence and generalization to a larger class of observables and 𝑟-values of the until now
best known 1D Gaussian concentration bound in [43]3. This bound is optimal in its scaling in |Γ|
by the Gärtner-Ellis Theorem, see e.g. [44] which is applicable by [45](Theorem 3.2).

Proof. This follows from Theorem 5.1 and [1](Theorem 7 and Lemma 7), when using the transport
cost 𝑐′ = 𝑐 |Γ |

𝛼
in inequality (6.1) and the fact that ∥Δ

1
2
𝜎 (𝑂)∥𝐿 ≤ 4𝑔𝐶 = O(1) |Γ |→∞, since

∥Δ
1
2
𝜎 (𝑂)∥𝐿 ≤ 2 max

𝑖∈Λ





Δ 1
2
𝜎 (𝑂) − 1(𝑖)

𝑑
⊗ tr𝑖Δ

1
2
𝜎 (𝑂)






= 2 max

𝑖∈Λ







 ∑︁
𝑋: |𝑋 | ≤𝑘

Δ
1
2
𝜎 (𝑜𝑋) − 1(𝑖)

𝑑
⊗ tr𝑖

∑︁
𝑋: |𝑋 | ≤𝑘

Δ
1
2
𝜎 (𝑜𝑋)








= 2 max

𝑖∈Λ







 ∑︁
𝑋:𝑋𝜕∋𝑖, |𝑋 | ≤𝑘

(
Δ

1
2
𝜎 (𝑜𝑥) − 1(𝑖)

𝑑
⊗ tr𝑖Δ

1
2
𝜎 (𝑜𝑥)

)






≤ 2 max

𝑖∈Λ

∑︁
𝑋:𝑋𝜕∋𝑖, |𝑋 | ≤𝑘

2




Δ 1

2
𝜎 (𝑜𝑥)





 ≤ 4 max
𝑖∈Λ

∑︁
𝑋: |𝑋 | ≤𝑘,𝑋𝜕∋𝑖

∥𝑜𝑋∥









exp
©­­­«
𝛽

2

∑︁
𝐵:𝐵∩𝑋≠∅
(𝐵)≤𝑟

Φ𝐵

ª®®®¬










≤ 4𝑔 exp
(
𝛽𝐽𝑐𝑟 ,𝑘,𝜈

2

)
≡ 4𝑔𝐶,

3The statement there [43](Theorem 4.2) is equivalent to P𝜎 ( |𝑂 − Tr[𝑂𝜎] | ≥ 𝑟) ≤ 2 exp
[
− 𝛼𝑟

O(
√
|Γ | )

]
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where tr is the normalized partial trace. In the last two inequalities are:

∥Δ
1
2
𝜎 (𝑜𝑋)∥ = ∥𝜎 1

2 𝑜𝑋𝜎
− 1

2 ∥ = ∥𝑒−
𝛽

2
∑

𝐵∩𝑋≠∅ Φ𝐵𝑜𝑋𝑒
𝛽

2
∑

𝐵∩𝑋≠∅ Φ𝐵 ∥

≤ ∥𝑜𝑋∥∥ exp
©­­­«
𝛽

2

∑︁
𝐵:𝐵∩𝑋≠∅

|𝑋 | ≤𝑘, (𝐵)≤𝑟

Φ𝐵

ª®®®¬ ∥ ≤ ∥𝑜𝑋∥ exp
(
𝛽𝐽𝑐𝑟 ,𝑘,𝜈

2

)
.

𝑐𝑟 ,𝑘,𝜈 is a constant which depends only on the locality of 𝑂, the geometric locality 𝑟 of the
Hamiltonian, and the growth constant 𝜈 of the graph. □

This also implies that any operator of the form of𝑂, i.e. locally bounded and k-local, is Lipschitz.
For a reference about the Lipschitz constant see [26].

6.4 Ensemble equivalence under (long-range) Lipschitz
observables

The canonical ensemble state to inverse temperature 𝛽 is given by the Gibbs state 𝜎𝛽 , where we
write the temperature dependence explicitly again.
Let𝜎𝐸,𝛿 be the microcanonical ensemble to energy 𝐸 = arg max𝐸∈R

(
𝑒−𝛽𝐸N𝐸,𝛿

)
and energy-shell

width 𝛿 [46]. Here N𝐸,𝛿 := Tr[𝑃((𝐸 − 𝛿, 𝐸])] is the number of eigenstates in the energy interval
(𝐸 − 𝛿, 𝐸]. i.e. if 𝑃 is the spectral measure of the Hamiltonian 𝐻, i.e. 𝐻 =

∑
𝐸 𝐸𝑃(𝐸) ≡∑

𝐸𝑚
𝐸𝑚 |𝐸𝑚 ⟩⟨ 𝐸𝑚 | then

𝜎𝐸,𝛿 :=
𝑃((𝐸 − 𝛿, 𝐸])

Tr[𝑃((𝐸 − 𝛿, 𝐸])] =
1

N𝐸,𝛿

∑︁
𝐸𝑚∈ (𝐸−𝛿,𝐸 ]

|𝐸𝑚 ⟩⟨ 𝐸𝑚 | .

Two ensembles represented respectively by the families of states {𝜎Γ
1 , 𝜎

Γ
2 }Γ⊂⊂Λ are said to be

equivalent if, in the thermodynamic limit, they produce the same expectation values on averaged
geometrically-local observable 𝑂

|Γ | =
1
|Γ |

∑ |Γ |
𝑖=1𝑂𝑖 , with ∥𝑂𝑖 ∥ ≤ 𝑔 [46]. I.e if for any such observable����Tr

[
𝜎Γ

1
𝑂

|Γ|

]
− Tr

[
𝜎Γ

2
𝑂

|Γ |

] ���� = 1
|Γ| | Tr[(𝜎Γ

1 − 𝜎Γ
2 )𝑂] |

|Γ |→∞
−→ 0.

In [47] it was shown that the microcanonical and canonical ensembles are equivalent in this sense
when the system satisfies suitable concentration bounds, such as inequality (6.5). In fact they show
equivalence also for observables of form (6.4). We extend this notion of equivalence in the 1D
case to a more general class of Lipschitz observables, i.e. 𝑂 ∈ B(HΓ), s.t. ∥𝑂∥𝐿 < ∞. These
notably include long-range locally bounded, 𝑘−local observables of the form (6.4).

Corollary 6.4 ([1]Corollary 2 applied to our setting). For any Lipschitz observable 𝑂, i.e. 𝑂 ∈
B(HΛ) s.t. ∥𝑂∥𝐿 < ∞ and for 𝜎𝐸,𝛿 , 𝜎𝛽 the micro- and canonical ensemble states with the same
energy 𝐸 = arg max𝐸∈R

(
𝑒−𝛽𝐸N𝐸,𝛿

)
, respectively, it holds that

1
|Γ| | Tr[𝜎𝐸,𝛿𝑂] − Tr[𝜎𝛽𝑂] | ≤ ∥𝑂∥𝐿𝑜(1) |Γ |→∞, (6.6)

where we can take the energy shell width 𝛿 = 𝑒−O( |Γ | ) .

Proof. This follows directly from [1] (Corollary 2) when employing the linearity of the transport
cost in the system size. The idea is to employ the transport cost inequality and then bound the
relative entropy between the microcanonical and canonical ensembles suitably. □

50



7 Summary and Outlook

7.1 Summary and future work

In this work we showed that uniform families of commuting nearest-neighbour Hamiltonians on
two-colorable sub-exponential graphs satisfy an exponential decay of relative entropy towards their
Gibbs states with an exponential decay rate 𝛼 that is spin-system size independent. This was under
the assumption of Davies evolving and the general condition that the Davies generators are gaped.
For 1 dimensional system this gives a strict improvement in the scaling of the MLSI constant in
system size and has an implication on the convergence to the Gibbs state in the thermodynamic
limit. For exponential graphs, such as 𝑏−ary trees we proved existence of a positive MLSI
sonstant 𝛼 scaling with Ω((ln |Γ|)−1) in system size |Γ |. For both of these types of graphs we
established a weaker criterion for existence of a strictly positive MLSI and rapid thermalization
to occur. This has many interesting implications such optimal Gaussian concentration bounds,
exponential convergence to Gibbs states in the thermodynamic limit, and connections to ETH. If
such Hamiltonians and evolutions are on exponential graphs, we showed, that the exponential decay
rate𝛼 is only logarithmically decreasing in system size, hence we recover rapid thermalization under
certain additional assumptions on the temperature. We showed that essentially all nearest neighbour
commuting systems thermalize quickly at large enough temperatures. And rapid thermalization
has implications in efficient quantum algorithm designs, Gibbs and ground state sampling, and
more. For trees this is a completely new result in the quantum framework. However, for classical
system it is known that for systems on trees, a system size independent exponential decay rate 𝛼
can be derived [35] under very similar conditions as we impose in that setting. This leads us to the
following conjecture.

Conjecture 1. There exists a system size independent, strictly positive MLSI constant for trees
(and general exponential graphs) under pretty much the same conditions as we impose in this work.
This may be done by following an analogous strategy to [35], just for quantum instead classical
systems.

We further think it should not require many more tools than the ones established in this work
or the literature. This would be very interesting, since this is a step towards a general theory
of thermalization of quantum spin systems, which would explain under what exact conditions
quantum spin systems thermalize rapidly and how fast if not. As a first step towards this, we
already showed in this work that nearest-neighbour, commuting, translation invariant, systems on
2-colorable, subexponential graphs at high enough temperatures will thermalize rapidly. Removing
the requirement on the growth constant of the graph seems physically implausible. Removing
the requirement of nearest-neighbour interactions would, however, be one very interesting next
research direction. This should be somewhat difficult however, since we know certain commuting
non-nearest neighbour systems, which have a qualitatively different thermalization behaviour. E.g
the four dimensional Toric-code is known to be robust against thermal noise for low enough
temperatures [48]. Next we discuss the requirement of 2-colorability.
In Chapter 5 we had to restrict our analysis to 2-colorable graphs due to the use of the Schmidt
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conditional expectation and the conditioned state 𝜔, on which the proof of the main result relies.
As we mentioned all hypercubic and loop-free graphs are two-colorable. However, we may relax
this condition to graphs, which are two-colorable after finite size coarse graining. I.e. given some
graph, whenever there exists a constant 𝑑, independent of graph-size, such that we may think of
subsets of diameter up to size 𝑑 as one vertex, such that the resulting graph is two colorable.
Note that without the condition that 𝑑 is graph-size independent this would be trivial. This does
works for example for very simple examples, like certain infinite pentagonal tilings1, which are
not two colorable, but after coarse graining set of size up to 𝑑 = 4 give two-colorable, and indeed
hypercubic, graphs. For this specific example see appendix A.2 and Figure A.1.

Conjecture 2. We suspect this 2-colorability after finite-size-coarse-graining to be the case for a
large class of graphs, but are unaware of general theorems giving conditions on graphs in order to
satisfy this. Indeed we conjecture that any regular graph can be finite-size-coarse-grained into a
hypercubic, and hence two-colorable, one. Although we also suspect this to hold for certain classes
of non-regular graphs.

We also showed that for nearest neighbour commuting systems on a 2-colorable lattice, weak
L∞-clustering is equivalent to strong qL1 → L∞ clustering. This established the existence of a
gaped generator as a sufficient condition for a system-size independent MLSI constant and not only
gives a rather weak condition for exponential decay of relative entropy and rapid thermalization
of such systems, but also shows the equivalence between system size independent gap and rapid
thermalization affirmatively answering the open question from [3] for when weak (L∞-clustering)
implies existence of a gap, for nearest-neighbour interacting systems. We also established that weak
clustering is equivalent to exponential decay of mutual information and implies something we call
strong local indistinguishability regardless of the geometry, only requiring geometric-locality and
commutativity of the Hamiltonian.

Conjecture 3. Theorem 3.4 should, like in the 1 dimensional case Theorem 3.5, hold also without
the constraint of commuting Hamiltonians when the temperature 𝛽−1 is high enough.

Most of the work in doing this is to establish Lemma 3.6 and especially property 1) in the
non-commuting case. The rest essentially follows from the proof here and some additional work
analogously to the proofs in [7]. The way it is done here relies on the fact that the Araki-expansionals
𝐸𝐴,𝐵 are positive, which only holds if the Hamiltonian is commuting. We suspect a way around
this may be via a suitable cluster expansion, or similar technique, which should converge for high
enough temperatures 𝛽 ≤ 𝛽∗ and give a suitable bound on ∥𝐸±1

𝐴,𝐵
∥ via quantum belief-propagation.

Some of the collaborators of this work had proven essentially this under the assumption that the
initial claims in [49] were correct. Since the issues there seem to be practically resolved this
conjecture may essentially already be proven.

Of enormous importance to this work was that we were only considering locally finite dimen-
sional, i.e. spin-lattice systems, since e.g. the results on the existence of a local strictly positive
MLSI constant only holds in the finite dimensional setting. Also the tools we used, such as the
relative entropy, entropy production, etc... are much simpler to define and work with in the finite
dimensional setting. A body of work has and is currently establishing suitable generalizations
of some of the tools used in this work to the von Neumann algebraic setting. This is a natural
framework to describe locally infinite dimensional, i.e. bosonic systems, such as those encountered
in quantum optics. These are of large interest to the physics community since they are assumed

1E.g the Monohedral convex pentagonal tiling with ccm symmetry
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7 Summary and Outlook

to have qualitatively different dissipative behaviours. Understanding these, in contrast to local
spin systems, is of large interest in the quest for noise-robust quantum information storage. Hence
establishing new, suitable tools and extending the ones from this work from the matrix algebra to
the general and more abstract von Neumann algebra setting is also a interesting, broad, and quite
promising future research direction.

53



Literatur
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𝜕in𝐴

⊗ H 𝛼𝑖
𝜕out𝐴
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0 ⊗ H 𝛼𝑖
𝑐

)
⊗(⊗

𝑗∈𝐽 (𝑖) \{0} H
𝛼𝑖
𝑗
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in 𝐸
and of 𝑙out it is H (𝛼𝑙 )

𝜕left
out𝐸

. Here the superskript left, refers to
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Appendix A

A.1 Omitted proofs from the main text

Proof of proposition 3.2. The reflexivity is trivial, for symmetry see that the spectra and thus the
spectral radii of 𝐵− 1

2 𝐴𝐵− 1
2 − 1 and 𝐴 1

2 𝐵−1𝐴
1
2 − 1 are the same. Since they are both normal we

have ∥𝐵− 1
2 𝐴𝐵− 1

2 − 1∥ ≤ 𝜖 which proves the second implication. Now the first implication follows
via

∥𝐵 1
2 𝐴−1𝐵

1
2 − 1∥ = ∥(𝐵− 1

2 𝐴𝐵− 1
2 )−1 − 1∥ = ∥

∞∑︁
𝑘=1

(𝐵− 1
2 𝐴𝐵− 1

2 − 1)𝑘 ∥ ≤
∞∑︁
𝑘=1

∥𝐵− 1
2 𝐴𝐵− 1

2 − 1∥𝑘

≤ 𝜖

1 − 𝜖 ,

where in the last line we used that by assumption ∥𝐵− 1
2 𝐴𝐵− 1

2 − 1∥ ≤ 𝜖 .
For transitivity, see that

∥𝐴 1
2𝐶−1𝐴

1
2 − 1∥ = ∥𝐴 1

2 𝐵− 1
2 (𝐵 1

2𝐶−1𝐵
1
2 − 1 + 1)𝐵− 1

2 𝐴
1
2 − 1∥

≤ ∥𝐴 1
2 𝐵− 1

2 (𝐵 1
2𝐶−1𝐵

1
2 − 1)𝐵− 1

2 𝐴
1
2 ∥ + ∥𝐴 1

2 𝐵−1𝐴
1
2 − 1∥

≤ ∥(𝐵 1
2𝐶−1𝐵

1
2 − 1) (𝐵− 1

2 𝐴𝐵− 1
2 )∥ + ∥𝐴 1

2 𝐵−1𝐴
1
2 − 1∥

≤ 𝜖2(1 + 𝜖1) + 𝜖1 = 𝜂.

For the second inequality note that ∥𝑋𝑌𝑋∗∥ = |𝜎(𝑋𝑌𝑋∗) | = |𝜎(𝑋∗𝑋𝑌 ) | ≤ ∥𝑋∗𝑋𝑌 ∥ holds, for
𝑋,𝑌 some operators with 𝑌 self-adjoint, and |𝜎(𝑋) | denotes the spectral radius of 𝑋 . Using this
with 𝑋 = 𝐴

1
2 𝐵− 1

2 and 𝑌 = 𝐵
1
2𝐶−1𝐵

1
2 − 1 then gives the second inequality. The third inequality

follows from the assumptions and the fact that ∥𝐵− 1
2 𝐴𝐵− 1

2 ∥ = |𝜎(𝐵− 1
2 𝐴𝐵− 1

2 ) | = |𝜎(𝐴 1
2 𝐵−1𝐴

1
2 ) | =

|𝜎(𝐴 1
2 𝐵−1𝐴

1
2 − 1) + 1| ≤ 1 + 𝜖1. See also the second implication of symmetry.

For the tensor multiplicativity 3) see that

∥(𝐴 ⊗ 𝐵) 1
2 ( 𝐴̃ ⊗ 𝐵̃)−1(𝐴 ⊗ 𝐵) 1

2 − 1∥ = ∥𝐴 1
2 𝐴̃−1𝐴

1
2 ⊗ 𝐵 1

2 𝐵̃−1𝐵
1
2 − 1 ⊗ 1∥

≤ ∥(𝐴 1
2 𝐴̃−1𝐴

1
2 − 1) ⊗ (𝐵 1

2 𝐵̃−1𝐵
1
2 − 1)∥

+ ∥(𝐴 1
2 𝐴̃−1𝐴

1
2 − 1) ⊗ 1∥ + ∥1 ⊗ (𝐵 1

2 𝐵̃−1𝐵
1
2 − 1)∥

≤ 𝜖1𝜖2 + 𝜖1 + 𝜖2 = 𝜂.

For property 4) see the following chain of implications

∥𝐷 1
2𝐸−1𝐷

1
2 − 1∥ ≤ 𝜖 ⇔ 1 − 𝜖 ≤ 𝐷

1
2𝐸−1𝐷

1
2 ≤ 1 + 𝜖

⇔ 1
1 + 𝜖 ≤ 𝐷− 1

2𝐸𝐷− 1
2 ≤ 1

1 − 𝜖 ⇔ 𝐷

1 + 𝜖 ≤ 𝐸 ≤ 𝐷

1 − 𝜖
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Since 𝑃 is self-adjoint the above implies that the following holds:

𝑃𝐷𝑃

1 + 𝜖 ≤ 𝑃𝐸𝑃 ≤ 𝑃𝐷𝑃

1 − 𝜖 =⇒ trK 𝑃𝐷𝑃
1 + 𝜖 ≤ trK 𝑃𝐸𝑃 ≤ trK 𝑃𝐷𝑃

1 − 𝜖 .

When ·−1 represents the generalized inverse, the above chain holds also in reverse on supp trK (𝑃𝐷𝑃) =
supp trK (𝑃𝐸𝑃). I.e. it implies that ∥(trK 𝑃𝐷𝑃)

1
2 (trK 𝑃𝐸𝑃)−1(trK 𝑃𝐷𝑃)

1
2 − 1supp(trK (𝑃𝐷𝑃) )∥ ≤

𝜖 .
For property 4′) first note that if 𝐷 𝜖∼ 𝐸 , then 𝐷 𝜇∼ 𝜆𝐸 where 𝜇 = 𝜖

𝜆
+ |1 − 1

𝜆
|, since

∥𝐷 1
2 (𝜆𝐸)−1𝐷

1
2 − 1∥ = |𝜆−1 |∥𝐷 1

2𝐸−1𝐷
1
2 − 1∥ + ∥𝜆−1

1 − 1∥.

Now since 𝐷 𝜖∼ 𝐸 =⇒ trK 𝑃𝐷𝑃
𝜖∼ trK 𝑃𝐸𝑃 ⇔ trK 𝑃𝐷𝑃

1+𝜖 ≤ trK 𝑃𝐸𝑃 ≤ trK 𝑃𝐷𝑃
1−𝜖 =⇒ 1 + 𝜖 ≥

Tr[𝑃𝐷𝑃 ]
Tr[𝑃𝐸𝑃] ≥ 1 − 𝜖 by the proof of property 4. It follows that

∥𝒳∥ ≡ ∥
(

trK 𝑃𝐷𝑃
Tr[𝑃𝐷𝑃]

) 1
2
(

trK 𝑃𝐸𝑃
Tr[𝑃𝐸𝑃]

)−1 (
trK 𝑃𝐷𝑃
Tr[𝑃𝐷𝑃]

) 1
2

− 1∥

= ∥(trK 𝑃𝐷𝑃)
1
2 (trK 𝑃𝐸𝑃)−1(trK 𝑃𝐷𝑃)

1
2𝜆 − 1∥,

with 1− 𝜖 ≤ 𝜆−1 =
Tr[𝑃𝐷𝑃 ]
Tr[𝑃𝐸𝑃] ≤ 1+ 𝜖 . Hence ∥𝒳∥ ≤ 𝜖𝜆−1 + |1−𝜆−1 | ≤ 𝜖 (1+ 𝜖) + 𝜖 = 𝜖 (2+ 𝜖). □

Proof of Corollary 3.3. The corollary is easily proved by induction using the transitivity of the
relation, spelled out here for convenience. Assume 𝐴𝑖

𝜖∼ 𝐴𝑖+1 for all 𝑖 and set 𝐴0
𝜂𝑘∼ 𝐴𝑘 , then by

transitivity we have the recursion

𝜂𝑘+1 ≤ 𝜂𝑘 (1 + 𝜖) + 𝜖 .

For 𝑘 = 1, noting that 𝜂1 = 𝜖 , this gives 𝜂2 = 𝜖 (1 + 𝜖) + 𝜖 = 𝜖2 + 2𝜖 = (1 + 𝜖)2 − 1. For any 𝑘 we
have

𝜂𝑘+1 ≤ 𝜂𝑘 (1 + 𝜖) + 𝜖 = ((1 + 𝜖)𝑘 − 1) (1 + 𝜖) + 𝜖 = (1 + 𝜖)𝑘+1 − 1.

□

Proof of Theorem 3.5: Strong local indistinguishability in 1D,. The proof follows a similar path
as the proof of Proposition 8.1 in [7] and uses local indistinguishability, see e.g. Theorem 5
from [4], or Corollary 2 in [6], which follows from the assumptions above. Thus we know that
∥ tr𝐵𝐶 𝜎𝐴𝐵𝐶 − tr𝐵 𝜎𝐴𝐵∥1 ≤ 𝐾 ′𝑒𝑎

′𝑙, with 𝐾 ′, 𝑎′ > 0 depending only on 𝑟, 𝐽𝛽.
Using the notation 𝐸𝑋,𝑌 := 𝑒−𝐻𝑋𝑌 𝑒𝐻𝑋+𝐻𝑌 for 𝑋,𝑌 ⊂ 𝐼 disjoint, we rewrite:

(tr𝐵𝐶 𝜎𝐴𝐵𝐶) (tr𝐵 𝜎𝐴𝐵)−1

= tr𝐵𝐶 [𝑒−𝐻𝐴𝐵𝐶 ] tr𝐵 [𝑒−𝐻𝐴𝐵]−1 Tr[𝑒−𝐻𝐴𝐵𝐶 ]−1 Tr[𝑒−𝐻𝐴𝐵]
= tr𝐵𝐶 [𝑒−𝐻𝐴𝐵𝐶 ]𝑒𝐻𝐴𝑒−𝐻𝐴 tr𝐵 [𝑒−𝐻𝐴𝐵]−1 Tr[𝑒−𝐻𝐴𝐵𝐶 ]−1 Tr[𝑒−𝐻𝐴𝐵]
= tr𝐵𝐶 [𝑒−𝐻𝐵𝐶 𝑒−𝐻𝐴𝐵𝐶 𝑒𝐻𝐴𝑒𝐻𝐵𝐶 ] tr𝐵 [𝑒−𝐻𝐵𝑒−𝐻𝐴𝐵𝑒𝐻𝐴𝑒𝐻𝐵]−1 Tr[𝑒−𝐻𝐴𝐵𝐶 ]−1 Tr[𝑒−𝐻𝐴𝐵]

= tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] tr𝐵 [𝜎𝐵𝐸𝐴,𝐵]−1 Tr[𝑒−𝐻𝐴𝐵] Tr[𝑒−𝐻𝐵𝐶 ]
Tr[𝑒−𝐻𝐴𝐵𝐶 ] Tr[𝑒−𝐻𝐵]︸                       ︷︷                       ︸

≡ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] tr𝐵 [𝜎𝐵𝐸𝐴,𝐵]−1 · 𝜆−1
𝐴𝐵𝐶 .
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In the second line we multiplied by 1 = 𝑒𝐻𝐴𝑒−𝐻𝐴, which in the third line we can separate and pull
into the partial traces, since neither of them trace out the region 𝐴. Thus we may rewrite:

∥(tr𝐵𝐶 𝜎𝐴𝐵𝐶) (tr𝐵 𝜎𝐴𝐵)−1−1∥
≤∥(tr𝐵𝐶 𝜎𝐴𝐵𝐶) (tr𝐵 𝜎𝐴𝐵)−1 − (tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶]) (tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥
+ ∥(tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶]) (tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1 − 1∥

≤∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] ∥∥(tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥|𝜆−1
𝐴𝐵𝐶 − 1|

+ ∥(tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵] ∥.
By Corollary 4 in [7] it holds that ∥(tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥ ≤ 𝐶 and ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] ∥ ≤ 𝐶,
for the same constant 𝐶 depending only on 𝑟, 𝐽𝛽. Furthermore in [7][Step 2] it is proven that
𝜆𝐴𝐵𝐶 − 1 decays exponentially, thus by the geometric series so does 𝜆−1

𝐴𝐵𝐶
− 1, i.e. there exist

𝐾 ′′, 𝑎′′ > 0, depending only on 𝑟, 𝐽𝛽 s.t. |𝜆−1
𝐴𝐵𝐶

− 1| ≤ 𝐾 ′′𝑒𝑎
′′𝑙. So it remains to bound

∥(tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶]) − (tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥ exponentially in 𝑙. To do this we adopt a similar
strategy to Step 3 in [7].
Split 𝐵 = 𝐵1𝐵2 into to halves, s.t. |𝐵1 | = |𝐵2 | = 𝑙 and write

∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵] ∥ ≤∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] − tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵1] ∥
+∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵1] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1] ∥ (A.1)
+∥ tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵] ∥.

Here we just used the triangle inequality of the operator norm twice. For the first and third summand
in (A.1) use that the map 𝑄 ↦→ tr𝑋 [𝜎𝑋𝑄] is a contraction in 𝐵(HΛ) → 𝐵(HΛ\𝑋) by the Russo
Dye theorem (see e.g. section 3.4 in [7]), and thus ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] − tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵1] ∥ ≤
∥𝐸𝐴,𝐵𝐶−𝐸𝐴,𝐵1 ∥, where the r.h.s is exponentially decaying in |𝐵1 | = 𝑙 by Corollary 3.4 and Remark
3.5 in [7]. The same holds true for ∥ tr𝐵 [𝜎𝐵𝐸𝐴,𝐵1] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵] ∥ ≤ ∥𝐸𝐴,𝐵1 − 𝐸𝐴,𝐵∥.
For the second summand in equation (A.1) we use Proposition 8.5 in [7], which gives ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸∗

𝐴,𝐵1
]−

tr𝐵 [𝜎𝐵𝐸∗
𝐴,𝐵1

] ∥ ≤ 𝐾̃𝑒−𝑎̃𝑙 for some 𝐾̃, 𝑎̃ > 0, depending only on 𝑟, 𝐽𝛽. The same holds true for
the adjoints, which is exactly the second summand. In total we have that there exist 𝐾 ′′′, 𝑎′′′ > 0
depending only on 𝑟 ,𝐽𝛽 s.t.

∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵] ∥ ≤ 𝐾 ′′′𝑒𝑎
′′′𝑙 . (A.2)

Now putting all of the above together we have our desired result.

∥(tr𝐵𝐶 [𝜎𝐴𝐵𝐶]) (tr𝐵 [𝜎𝐴𝐵])−1 − 1∥ ≤ ∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] ∥∥(tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥|𝜆−1
𝐴𝐵𝐶 − 1|

+ ∥(tr𝐵 [𝜎𝐵𝐸𝐴,𝐵])−1∥∥ tr𝐵𝐶 [𝜎𝐵𝐶𝐸𝐴,𝐵𝐶] − tr𝐵 [𝜎𝐵𝐸𝐴,𝐵] ∥
≤ 𝐶2𝐾 ′′𝑒𝑎

′′𝑙 + 𝐶𝐾 ′′′𝑒𝑎
′′′𝑙

□

Proof of Lemma 4.5. If dist(𝐴1, 𝐴2) ≥ 2, then by definition of the algebras N𝐴1 and N𝐴2 have
only 1 = N∅ = N𝐴1∩𝐴2 in common. Since it holds, that 𝜕𝐴1 ∪ 𝜕𝐴2 = 𝜕 (𝐴1 ∪ 𝐴2) their union is
given by

N𝐴1 ∪ N𝐴2 = B(H𝐴1) ⊗ B(H𝐴2) ⊗ 1H(𝐴1 )𝑐
⊗ 1H(𝐴2 )𝑐

⊗
𝑖∈𝐼𝐴1

⊗
𝑗∈𝐽 (𝑖) \{0}

A 𝑗

𝑏 𝑗
⊗

⊗
𝑖∈𝐼𝐴2

⊗
𝑗∈𝐽 (𝑖) \{0}

A 𝑗

𝑏 𝑗

= B(H𝐴1∪𝐴2) ⊗ 1H(𝐴1∪𝐴2 )𝑐
⊗

⊗
𝑖∈𝐼𝐴1∪𝐴2

⊗
𝑗∈𝐽 (𝑖) \{0}

A 𝑗

𝑏 𝑗

= N𝐴1∪𝐴2
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For the other case we can WLOG assume 𝐴1 ⊂ 𝐴2, hence 𝐴1 ∪ 𝐴2 = 𝐴2 and 𝐴1 ∩ 𝐴2 = 𝐴1. Then
clearly N𝐴1 ∪ N𝐴2 = N𝐴2 = N𝐴1∪𝐴2 . Similarly N𝐴1 ∩ N𝐴2 = N𝐴1 = N𝐴1∩𝐴2 . □

A.2 Finite-size-coarse-graining example

See ?? for an example of a 3-colorable, but non-2-colorable, infinite regular pentagonal graph,
which after coarse graining subsets of diameter 𝑑 = 4, becomes the 2 dimensional qubic, hence,
2-colorable lattice.

Figure A.1: Example of a section of the graph of an infinite pentagonal tiling. It is 3-colorable,
but not 2-colorable, since it contains loops of odd length 5. It becomes 2-colorable,
however, after finite size coarse graining of regions of size up to 4. A suitable coarse
graining is given by the yellow and turquoise regions.
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