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Surprising stability of recent global  
carbon cycling enables improved fossil  
fuel emission verification

Benjamin Birner    1 , Christian Rödenbeck    2, Julia L. Dohner    1, 
Armin Schwartzman    3 & Ralph F. Keeling    1

The interannual to decadal variability in natural carbon sinks limits 
the explanation of recent changes in atmospheric CO2 concentration. 
Here we account for interannual and decadal variability using a simple 
quasi-mechanistic model of the net land carbon exchange with terms 
scaling with atmospheric CO2 and a weighted spatial average of temperature 
anomalies. This approach reduces the unexplained residual in Earth’s 
carbon cycle budget from ±0.76 GtC per year obtained using process models 
to ±0.50 GtC per year, with the largest improvements on decadal timescales 
despite assuming constant dynamics. Our findings reveal remarkable 
stability of the carbon cycle and allow verification of reported global 
emissions to within 4.4% (95% confidence level) over the five-year stocktake 
cycle of the Paris Agreement—half the uncertainty reported previously.

Independent verification of reported fossil fuel emissions from  
atmospheric observations is critical to transparently tracking progress 
towards the reduction targets formalized in the Paris Agreement1–4. 
Uncertainty (1σ) of reported annual fossil fuel emissions is estimated 
to be around the 5% level5, allowing for methodological uncertainties 
in deriving CO2 fluxes from energy statistics and incomplete data, with 
larger uncertainty on decadal timescales due to potential systematic 
errors in reporting6. At the global scale, fossil fuel emissions can be 
verified in principle by quantifying all other terms in the global carbon 
budget5,7 as follows:

F = AGR − LU + B +O + δ (1)

where LU is land use and land cover change, O is the ocean sink, B is the 
natural terrestrial carbon exchange and AGR is the atmospheric CO2 
growth rate, and where F includes small contributions from the cement 
manufacture and the carbonation sink as well as other industrial pro-
cesses. This approach has been hampered, however, by unexplained 
discrepancies in the budget on interannual and decadal timescales1–5, 
as reflected by δ, sometimes called the budget imbalance. In the 2021 
assessment by the Global Carbon Project (GCP)5, δ has a near-zero 

mean but varies strongly from year to year between −0.73 and  
0.8 GtC yr−1 (1σ range), with average imbalances as large as 0.6 GtC yr−1  
during some decades, corresponding to roughly 6–8% of current fossil  
fuel emissions.

On interannual timescales, the main contributor to δ is unexplained 
exchanges of atmospheric CO2 with the land biosphere (Bnet = B − LU)5.  
Interannual variability in this exchange is mostly controlled by natural 
climate variability in the tropics and semi-arid extratropical regions8,9. 
Much of this variability is tied to the El Niño/Southern Oscillation 
(ENSO), but the complex nature of climate control has so far hampered 
our ability to fully account for these flux fluctuations. ENSO modulates 
terrestrial CO2 release via temperature- and moisture-driven changes 
in net primary productivity and, to a lesser extent, heterotrophic res-
piration and biomass burning10–14. Soil moisture plays a critical role 
in net biome exchange through land–atmosphere interactions that 
amplify temperature extremes9,15–17. However, local compensation of 
water-driven anomalies in photosynthesis and respiration and spatial 
anticorrelation of precipitation patterns limit the influence of water 
availability relative to temperature on global carbon exchange13,18. 
Interannual variability in ocean carbon sequestration is roughly 80% 
smaller than on land and follows different temporal patterns5,11,19.
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the global NOAA CO2 record from sampling stations in the well-mixed 
marine boundary layer in recent years31 but are continuous from 1958 
to 2021. Following work by Dohner et al.32, the global mean land use 
flux is assumed constant over the regression period and contained in 
the regression coefficient c, but c also adjusts for the non-zero 
pre-industrial values of a × Γ  and b × CO2.

The coefficients a, b and c (Table 1) are derived from a linear regres-
sion of Bnet,mod against the residual land sink (Bnet,res):

Bnet,res = Frep −Omod − AGRobs = Bnet,mod + ϵ (3)

where AGRobs is also calculated from the average of CO2 concentrations 
at Mauna Loa and the South Pole. Frep is GCP-reported fossil emissions 
including the cement carbonation sink5, Omod is the ocean carbon uptake 
calculated using the well-established global pulse-response model by 
Joos et al.33 and ϵ is the residual of the optimized model. The parameters 
are tuned to match the overall growth in CO2. The tuning also partly 
compensates for imperfections in the representation of the ocean sink 
O, but replacing Omod with the central ocean sink estimate from GCP 
has little impact (Methods and Extended Data Table 2). In the follow-
ing, Bnet,mod according to equation (2) (here in combination with Omod) 

There is also substantial unexplained variability in CO2 on decadal 
timescales5,20. Bastos et al.21 reviewed the unexplained low AGR in the 
1940s and suggested a connection to increased land abandonment 
caused by World War II. Rafelski et al.22 evaluated the same period and 
identified coincident global cooling as an important contribution to 
a low AGR. Keeling et al.23 showed that an anomalous decrease in the 
natural carbon sinks in the mid-1980s was necessary to reconcile the 
stagnating AGR with a concurrent deceleration in fossil emissions. 
Keenan et al.24 and Ballantyne et al.25 discussed a temporary slowdown 
in the AGR after 2002. Both explain the decade-long slowdown by 
increased carbon sequestration into the terrestrial biosphere linked 
to the ‘warming hiatus’ and ongoing CO2 fertilization.

Two general approaches have been taken to model land carbon 
exchanges (LU and B), one using dynamic global vegetation mod-
els5,10,11 and one using linear regression of B against observational 
climate indices, such as average tropical land temperature or ENSO 
state11,13,14,19,22,26,27. However, both methods leave a substantial fraction 
of variability in the observations unexplained. While global regression 
models have the advantage of being less complex and less computa-
tionally expensive than dynamic global vegetation models, they do not 
fully account for (1) spatial heterogeneity in the temperature sensitivity 
of carbon exchange or (2) variations with season (for example, spring 
versus summer warming can have opposite effects on plant growth).

Information on spatial and seasonal details in the temperature 
sensitivity of land carbon exchange is available from the extensive set of 
atmospheric CO2 records observed across Earth’s surface. On the basis 
of 196 measurement stations, Rödenbeck et al.19,28,29 derived annually 
repeating, season-specific gridded temperature sensitivities of land 
carbon fluxes within an atmospheric inversion framework (‘NEE-T 
inversion’). The estimated sensitivities are ecologically meaningful and 
possess predictive power as they are (1) robust against cross-validation 
and (2) compatible within uncertainties with analogous regression 
coefficients from fully independent eddy covariance CO2 flux meas-
urements. Rödenbeck et al.29 used these temperature sensitivities to 
study interannual variability of land carbon fluxes and showed that 
previously observed changes in temperature sensitivity12 were par-
tially explained by the pattern of warming rather than ecosystem or 
physiological changes.

Here we make use of these spatially and seasonally resolved tem-
perature sensitivities to improve on previous global regressions of the 
net land flux (Bnet,mod). We develop a predictive model of global carbon 
fluxes that can be applied on interannual to decadal timescales to study 
the stability of carbon cycle dynamics and to verify fossil fuel emissions.

Simple regression model of the net land sink
We estimate the annual net land carbon exchange Bnet (Fig. 1), using 
the model

Bnet,mod = a × Γ + b × CO2 + c (2)

where the term a × Γ  represents temperature-driven carbon fluxes, 
with Γ = ∑n

i=1 γiTi being a weighted spatial average of local land tem-
perature anomalies Ti with weights for each grid cell i of n being pro-
portional to the local seasonally resolved temperature sensitivity  
γi taken from the CarboScope inversion run ‘sEXTocNEET_v2021’19.  
γi values repeat annually and have been shown to possess predictive 
power outside this study by Rödenbeck et al.19,29. Temperature anoma-
lies Ti are taken from Berkeley Earth30 and have been decadally 
detrended by subtracting an exponential moving average with a 2.5-year 
time constant (Methods). This effectively forces climate-driven fluxes 
to behave as exchanges with a fast-turnover pool as in Rafelski et al.22. 
The term b × CO2 accounts for a long-term increasing sink, including 
but not limited to atmospheric CO2 fertilization. Average atmospheric 
CO2 concentrations are calculated as the mean of CO2 concentrations 
at Mauna Loa and the South Pole, which closely track global trends in 
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Fig. 1 | Re-evaluation of Earth’s carbon budget. a,b, Earth’s carbon budget 
recalculated using our ‘Weighted-T’ regression model of terrestrial carbon 
exchange and a simple ocean model (a) and a comparison between the observed 
and our modelled atmospheric growth rate of CO2 (b). Reported annual fossil 
fuel (Frep, including cement effects) emissions are from the Global Carbon Project 
20215. The atmospheric CO2 growth rate (AGRobs) is calculated from the average of 
observed CO2 concentrations at Mauna Loa and the South Pole observatories39. 
The ocean sink (Omod) is determined using a pulse-response model driven with 
observed CO2 concentrations33. The net land carbon exchange (Bnet,mod) is derived 
from the ‘Weighted-T’ model (see text). Annual average fluxes (dots) are shown at 
the midpoint of each year and five-year running means (solid lines) are applied to 
all data to guide the eye. b, Comparison of the observed AGR to the growth rate 
calculated as AGRmod = Frep − Omod − Bnet,mod.
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is called the ‘Weighted-T’ model. Values and uncertainties of all coef-
ficients as well as the generalization error (that is, the root mean square 
error (RMSE) of the model when presented with new data) are derived 
using jackknifing and cross-validation, respectively, by repeatedly 
declaring non-overlapping five-year windows as validation data and 
the remaining 55 years as training data for the regression (Methods). 
This method prevents overfitting and ensures that the regression model 
has predictive power over interannual to decadal timescales.

The Weighted-T model has a cross-validated RMSE of 0.50 ± 0.09 
GtC yr−1 (1σ) and can explain approximately 75 ± 6% of the variance in the 
residual land sink (Bnet,res). RMSE values reduce to 0.16 ± 0.04 GtC yr−1 
after filtering the optimized model residual ϵ to decadal timescales. A 
corresponding RMSE calculation of the budget imbalance δ from pro-
cess models reported by the GCP5 yields substantially higher values of 
0.76 ± 0.11 GtC yr−1 and 0.36 ± 0.14 GtC yr−1 on interannual and decadal 
timescales, respectively (Extended Data Figs. 1 and 2). For a fair com-
parison, given that these models are not explicitly tuned, we also 
detrend δ by subtracting a best fit α × CO2 + β. However, this fit only 
accounts for 6% of the variance and does not reduce the cross-validated 
RMSE. We hence consider δ and ϵ to be fundamentally comparable 
quantities. Performance gains of the Weighted-T model compared to 
GCP process models are greatest on decadal timescales as demon-
strated by the smaller ratio of decadal to interannual RMSE (GCP/
Weighted-T interannual: 0.76/0.50 = 1.52; versus decadal: 
0.36/0.16 = 2.25). We also repeated the cross-validation with 10, 15, 20 
and 30-year windows, and observed a substantial increase in the RMSE 
only for windows longer than 15 years, supporting that the model has 
predictive power on decadal timescales.

We also tested two simpler model configurations, replacing 
predictor Γ with either unweighted tropical mean land tempera-
ture (|lat|≤25, ‘Tropical-T model’) or the four-month lagged Niño 3.4 
index (‘ENSO model’). The ENSO and Tropical-T models both yield 
higher RMSE values on interannual and decadal timescales than the 
Weighted-T model (Table 1). Allowing different lag times for Γ of up to 
one year for all model configurations does not improve the model fits. 
Notably, ϵ of the Weighted-T model is not temporally autocorrelated, 
in contrast to the residuals of the Tropical-T and ENSO models or the 
GCP budget imbalance3, leading to slower error accumulation and 
therefore higher predictive power on decadal timescales. Including 
global mean stratospheric aerosol optical thickness at 550 nm34 as an 
additional predictor for volcanic influences in the regression did not 
improve the performance of the Weighted-T model and only modestly 
improved the performance of the ENSO model, yet the Weighted-T 
model still outperforms all other model configurations (Extended 
Data Figs. 3, 4 and Extended Data Table 1). Similarly, excluding the three 

years affected by the Mount Pinatubo eruption (1991–1993) from our 
regression analysis improves the performance of all models, but the 
Weighted-T model continues to have the lowest RMSE among models 
(Extended Data Table 3).

Surprising stability of the carbon cycle
The atmospheric growth rate of CO2 calculated using the Weighted-T 
land model (Fig. 1) provides a unified understanding of a wide range of 
interannual and decadal features previously only considered in isola-
tion. Accounting for spatial and seasonal heterogeneity in the sensitiv-
ity of land carbon fluxes to temperature and other correlated climate 
variables substantially improves our ability to reproduce annual CO2 
growth compared to alternative models. The Weighted-T model suc-
cessfully captures the large ENSO-related impacts on AGR, including 
the strong El Niño event in 1997–1998 and the subsequent La Niña, while 
also accounting for the impacts of temperature on the carbon cycle 
on other timescales. Except for the three years immediately following 
the eruption of Mount Pinatubo in 1991, the modelled AGR reproduces 
most decadal features of the observations, including the stagnating 
AGR in the 1980s following two decades of steady increase, as well as 
slow AGR growth in the 1990s and 2000s when the land sink and fossil 
emissions underwent large decadal changes. The poorer performance 
following Pinatubo indicates that influences neglected by the model, 
such as impacts of diffuse light on plant growth35, played an important 
role during this period.

The good performance of the Weighted-T model suggests a perhaps 
surprising stability of the sensitivity of the net carbon exchange to cli-
mate and CO2 forcing at the global level since 1958. The Weighted-T model 
achieves good agreement with observations despite assuming a constant 
local land response to temperature and atmospheric CO2 throughout 
1958–2021. Although all regression coefficients in the land sink model 
are constants and the values of the local temperature sensitivity γi from 
the ‘NEE-T inversion’19 repeat annually, the residual ϵ of the Weighted-T 
model shows no trend and is homoscedastic (that is, the magnitude of 
the residual is stable over the time series). Our results therefore contrast 
with previous studies that highlight substantial changes in the physio-
logical response of the biosphere to temperature12,25,36. Instead, the good 
agreement with observations obtained with the Weighted-T model 
supports previous findings that the apparent changes in land carbon 
sensitivity at the global scale are partly explained by shifts in the pattern 
of warming29. Although the a × Γ  term of the Weighted-T model accounts 
only for carbon exchange with fast-responding carbon pools (approxi-
mately 2.5-year turnover) which attenuate most but not all decadal vari-
ability in temperature, this term nevertheless accounts for much of the 
decadal behaviour of the model. Mechanistically, the success of the 

Table 1 | Regression results and performance metrics for various model configurations using different inputs for predictor  
Γ and equivalent calculations for the Global Carbon Project between 1960 and 2020

Parameter Weighted-T model Tropical-T model ENSO model Global Carbon 
Project

Model configuration: input 
used for predictor Γ

Globally integrated, γ-weighted and 
detrended land temperature anomalies

Tropical average detrended land 
temperature anomalies

Niño 3.4 index Not a regression 
result

a (GtC yr−1 K−1) −4.384 ± 0.408 −3.880 ± 0.467 −0.810 ± 0.241

b (yr−1) 0.00839 ± 0.00131 0.00895 ± 0.00132 0.01020 ± 0.00142

c (GtC yr−1) −5.293 ± 0.974 −5.731 ± 0.971 −6.613 ± 1.074

r2 0.749 ± 0.059 0.638 ± 0.074 0.472 ± 0.207

RMSE (GtC yr−1) 0.50 ± 0.09 0.60 ± 0.10 0.74 ± 0.21 0.76 ± 0.11

Decadal RMSE (GtC yr−1) 0.16 ± 0.04 0.20 ± 0.03 0.24 ± 0.07 0.36 ± 0.14

Uncertainties (1σ) coefficients a, b, and c from the regression model in equation (2) as well as the model’s coefficient of determination r2 are obtained by jackknifing with five-year 
non-overlapping blocks. RMSE values represent the true generalization error and are derived using cross-validation on the same blocks. Decadal RMSE is calculated analogously after 
smoothing the residual model errors δ (or the GCP budget imbalance δ) with a ten-year moving average. Uncertainty of the generalization error (that is, uncertainty on RMSE) is approximated 
following the method of Nadeau and Bengio38. See Methods for details.

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 13 | September 2023 | 961–966 964

Article https://doi.org/10.1038/s41558-023-01761-x

model indicates that short-lived pools dominate variability in land car-
bon fluxes over a broad range of timescales as suggested previously22. 
The term b × CO2  accounts for the multi-decadal response of the 
Weighted-T model to increasing CO2, changing climate and other cor-
related factors, but has less of a mechanistic underpinning and is there-
fore not suitable for long-term forecasting.

Verifying global fossil fuel emissions
The ability of the Weighted-T regression model to tightly reproduce 
the interannual variations in the natural part of the global carbon 
budget also provides a means to verify reported emissions at improved 
accuracy with observations of atmospheric CO2 concentrations1,3,4. The 
Paris Agreement has a five-year stocktake cycle in which ongoing emis-
sion reduction efforts are reviewed. Reported global emissions (Frep) 
can be compared to inferred emissions (Fif) calculated by combining 
equations (1)–(3):

Fif = AGRobs +Omod + (a × Γ + b × CO2 + c) (4)

Consider the following counterfactual scenario (Fig. 2): global 
emissions were reported to be constant at a value of Frep = 8.95 GtC yr−1 
after 2010, while in reality emissions continued to increase. In 2015 an 
interested party could use our regression model to hindcast emissions 
since 2010 (Fif) using available observations of temperature and CO2. 
The difference between the inferred Fif and reported Frep is detectable 
in the cumulative CO2 flux as an unexplained buildup of CO2 in the 
atmosphere that is already statistically significant by 2015 and contin-
ues to grow thereafter (Fig. 2b). In contrast, it would take almost ten 
years to detect a significant disagreement if, instead of the cumulative 
emissions (that is, the impact on atmospheric CO2 concentrations), we 
used the difference in Fif and Frep directly (that is, the impact on AGR, 
Fig. 2a). This is because cumulative uncertainty increases as the square 
root of the time difference (that is, σcum = √Δt × RMSE) while the emis-
sion signal (S = Δt × F ) grows linearly, as it is simply integrated over 
time3. Our scenario illustrates that, if reported emissions stayed con-
stant at current levels of around 10 GtC yr−1, any misreporting of greater 

than CI95% ×
√ΔtRMSE

Δt×S
= 1.96√5×0.5

5×10
= 4.4% could be detected at the 95% 

confidence level (CI95% = 1.96 × σcum ) after Δt = 5 years and would 
manifest as a disagreement with observed CO2 concentrations of 
>1 ppm. Following previous approaches that use the GCP budget terms 
for emission verification which have a larger and temporally autocor-
related uncertainty given by its budget imbalance3,4, we could instead 
only confidently detect a two times larger misreporting of emissions 
(8.8%) over the same window (Methods). As we apply the verification 
only once (at the five-year window), there is no issue with repeat test-
ing3. Nevertheless, even with the improved performance of the 
Weighted-T model, we are still unable to detect short-lived emission 
changes such as the 0.52 GtC reduction in 2020 global emissions com-
pared to 2019 caused by the COVID-19 pandemic5,37.

Outside the period affected by the Mount Pinatubo volcanic 
eruption, Frep and Fif agree remarkably well since 1958, supporting the 
accuracy of reported emissions Frep. Figure 2 confirms the reported 
plateauing of emissions in the last decade and our regression model 
finds no evidence of inaccurate reporting of emissions since the Paris 
Agreement was adopted in December 2015. The model also does not 
detect any significant underreporting of emissions in the 1990s and 
2000s, as suggested previously using atmospheric data employing a 
different approach1,2.

Our carbon cycle model can also be applied to study emissions 
before the start of direct atmospheric CO2 measurements using ice core 
reconstructions and gridded temperature fields available since 1900  
(Fig. 2 and Extended Data Fig. 5). From 1900 until around 1935, annual 
inferred emissions are 0.59 GtC yr−1 higher than reported emissions, 
followed by the 1940s where inferred emissions are 0.3 GtC yr−1 lower. 
Although we cannot exclude contributions from unrepresented 
multi-decadal variability in the ocean sink and inaccurate temperature 
and/or CO2 input data, we suggest that these disagreements are most 
likely explained by neglected variations in land use emissions, which are 
assumed constant in our regression model but almost certainly varied to 
some degree over the twentieth century5. LU has a large uncertainty, so 
0.59 GtC yr−1 higher LU emissions at the beginning of the twentieth century 
compared to the average after 1960 are plausible. Bastos et al.21 suggested 
that LU decreased anomalously in the 1940s because of the socioeconomic 
turmoil of World War II and explored several hypothetical LU scenarios 
to account for increased land abandonment. These scenarios yielded 
changes in AGR of up to 0.39 GtC yr−1, more than sufficient to explain the 
underestimation of emissions in our hindcast during the 1940s. Previous 
carbon cycle models, in contrast, produce discrepancies too large to be 
completely explained by the land abandonment scenarios in the analysis of 
Bastos et al.21. The improved performance of the Weighted-T model in the 
1940s compared to models reviewed by Bastos et al.21 is probably explained 
by its ability to at least partially capture an increase in land carbon uptake 
associated with declining surface temperatures between 1940 and 1960, 
similar to the box model by Rafelski et al.22.
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Fig. 2 | Fossil fuel emissions and time-integrated difference between inferred 
and reported fossil fuel emissions. a, Comparison between reported emissions 
(black line) and emissions inferred based on observed atmospheric CO2 (red 
crosses and red line). Uncertainty in annual inferred emissions is given by the 
RMSE and shown as 1σ and 2σ envelopes around the five-year running mean 
(dark and light grey, respectively). Annual reported emissions are obtained 
from the Global Carbon Project5. Beginning in 2020 we also show rescaled 
monthly emission estimates (green dots; Methods) from Carbon Monitor37 
to highlight impacts of the COVID-19 pandemic. The solid blue line illustrates 
the counterfactual scenario of falsely reported constant emissions after year 
2010 (see text). b, Integrated difference between annual inferred emissions 
(Fif), GCP-reported emissions (Frep, black line) and emissions reported in our 
counterfactual scenario (blue line). The y-axis can be directly mapped to a 
deviation between the observed atmospheric CO2 concentrations (in ppm) and 
concentrations expected from the reported emissions (second y-axis on the 
left, scaling factor is 2.124 GtC ppm−1, see text). The range of integrated emission 
differences that are plausible after 2010 if emissions were reported correctly 
are shown as grey bands (1σ and 2σ) around a dotted blue line. Note that the 
integration constant is arbitrarily chosen to anchor the time series to zero in 
2010. Stratospheric aerosol optical depth at 550 nm (SAOD, orange line and 
area) is shown as a proxy for volcanic activity34.
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In summary, by combining a simple regression model of the net 
land sink and a pulse-response ocean model33, we built a framework 
that explains many of the important interannual and decadal features 
of the atmospheric CO2 rise since 1960 and also provides a new context 
for understanding variability from 1900 from 1960. The net land sink 
model accounts for the effect of CO2 fertilization (and/or other corre-
lated long-term trends) and climate-driven CO2 flux variations which 
are calculated based on the spatially and seasonally resolved tempera-
ture sensitivity of biosphere carbon exchange determined previously 
from the CarboScope global atmospheric CO2 inversion19. The model 
framework can be used to verify reported global emissions to within 
4.4% at the 95% confidence level over the five-year stocktake window 
of the Paris Agreement. Model parameters are constant yet the model’s 
performance over the last six decades is consistently strong, suggesting 
that there were no large surprises in the carbon cycle. Discrepancies in 
the early twentieth century point to larger temporal variability in the 
land use flux before 1960.
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Methods
Regression model input
In the following we describe the data needed to set up the regression 
model of the net land sink. The local temperature sensitivity of land 
carbon fluxes and the ocean carbon sink model need to be evaluated 
at least at monthly resolution for numerical accuracy and to account 
for seasonality in plant growth. Therefore, the ocean and land inputs to 
equation (2) are first calculated monthly and then averaged to annual 
resolution for the regression analysis.

Rödenbeck et al.19 derived the local temperature sensitivity (γ*) of 
interannual carbon fluxes in a global CO2 inversion. Extending the 
classical carbon flux inversion in which time-dependent land carbon 
exchange is optimized, the ‘NEE-T inversion’ imposes a linear relation-
ship between detrended temperature anomalies and interannual car-
bon fluxes in each land grid cell. The mean seasonal cycle of the carbon 
fluxes, the trend in seasonal cycle and the long-term flux trend are 
accounted for separately in the inversion. γ* is seasonally resolved (with 
a four-week decorrelation scale) but repeats every year, yielding 
52/4 = 13 independent degrees of freedom in time. The resulting γ* field 
from CarboScope inversion ‘sEXTocNEET_v2021’ is provided on a spa-
tial grid of 2.5° × 2° and at daily resolution, which we average monthly. 
To obtain the final weighting factors γ(i,mon) used in our regression 
modelling, we normalize the monthly averaged sensitivity γ̂ in each 
grid cell i out of n total cells according to:

γ (i,mon) = 1
12

γ̂ (i,mon)
12
∑
k=1

n
∑
l=1
γ̂ (l, k)

(5)

Monthly temperature fields were downloaded from Berkeley 
Earth30 on a 1° × 1° latitude–longitude grid. The data are re-gridded 
to match the resolution of the Jena CarboScope inversion results and 
subsequently decadally detrended in each grid cell by subtracting 
an exponential moving average of past temperatures with a 2.5-year 
time constant. This avoids causality problems associated with other 
filters, such as a centred running mean, which effectively includes 
information about the future, and allows the model to be readily 
updated because it produces valid output on the leading edge of 
available data. Subtracting the exponential moving average is essen-
tially the same as assuming that temperature modulates the carbon 
flux into or out of a carbon pool with a 2.5-year turnover time, paral-
leling Rafelski et al.22.

For the main configuration of our net land sink model, the 
‘Weighted-T’ model, Γ is calculated as Γ = ∑n

i=1 γiTi , the sum of all n 
gridded temperature sensitivity weights γi and local temperature 
anomalies Ti over the globe. For alternative configurations of the 
model, we also calculate global mean land temperature and the Niño 
3.4 index from the re-gridded temperature fields and use either for Γ.

De-seasonalized CO2 observations from the South Pole (SPO) 
and Mauna Loa (MLO, Hawaii) are available at monthly resolution 
from the Scripps CO2 Program after 195839. Their monthly average 
has been merged with a spline fit to the Law Dome ice core CO2 record 
available from the Scripps CO2 website to extend the time series  
to 180039,40.

The atmospheric growth rate of CO2 (AGR) is calculated as the 
12-month-centred difference. For example, the AGR for May 2018 is 
calculated as the difference in CO2 concentrations between November 
2018 and November 2017.

Monthly ocean carbon uptake is calculated using a pulse-response 
ocean model published by Joos et al.33, which only needs a history of 
atmospheric CO2 concentrations as input. The model fully accounts 
for the nonlinearity of carbon dissolution chemistry through a 
high-order parametrization and represents carbon exchange with 
the deep ocean via circulation through a simple pulse-response func-
tion. The model has been shown to effectively emulate the behaviour 

of three-dimensional ocean models for the twenty-first century at 
a fraction of the computational cost. The model is spun up from an 
equilibrium state in 1800 and with parameter values for the HILDA 
(HS + LS) model configuration given in Table 2 and section A2.2 of Joos 
et al.33. Model output is rescaled to match the integrated ocean sink 
between 1800 and 2021 of 176.03 GtC reported in the Global Carbon 
Project (GCP)5.

We use annual emissions from fossil fuel combustion and indus-
trial processes reported by the GCP5. To reduce the number of terms 
in the budget, the influence of the cement carbonation sink is grouped 
into the Frep estimate.

Carbon Monitor37 began reporting monthly fossil emissions start-
ing in 2019, which we use to highlight effects of the COVID-19 pandemic 
in Fig. 2. To remove effects of the seasonal cycle from the data and 
build a coherent time series with emissions reported by the GCP5, we 
first divided Carbon Monitor emissions after 2020 by their monthly 
value in 2019 and then multiplied that anomaly by the GCP annual 
emissions for 2019.

Regression model set-up and uncertainties
First, a regression model is fitted to all input data between 1960 
and 2020 to get a best estimate of the coefficients a, b and c and the 
r-squared value of the model. Then, input data are split into M = 12 
non-overlapping blocks of five years to determine uncertainty on 
model parameters and find the generalization error which measures 
how well the model performs on data it was not trained on. The group-
ing into blocks addresses potential concerns about autocorrelation in 
the data with a timescale of <5 years. M − 1 blocks, that is, the ‘training 
data’, are used to fit the regression model and obtain parameter esti-
mates, and the remaining block, that is the ‘validation data’, is used to 
evaluate model performance according to the mean squared error 
(MSE). The splitting procedure is repeated using each block once as 
validation data and can be thought of as a combination of the statistical 
methods ‘jackknifing’ and ‘cross-validation’.

Jackknifing produces a suite of M = 12 subjugate models that were 
fitted to different choices of training data and used to determine uncer-
tainties for different parameters of the regression model, including 
coefficients a, b and c and the R2 value. To account for the overlap in 
training data for different subjugate models, we report uncertainties 
δx for parameter x based on equation (6):

δx =√
M − 1
M ∑

M
i=1(xi − ̄x)2 (6)

where ̄x  is the mean of parameter x over all subjugate models i.
Cross-validation produces M estimates of the generalization error, 

that is MSEj, derived from different validation periods j = 1,… ,M  
(Extended Data Fig. 1). We find the average MSE  and RMSE 

(RMSE = √MSE ) of all subjugate models as the best estimate of the 
generalization error. For decadal RMSE values, the regression residual 
ϵ is smoothed with a ten-year moving average, including at the edges 
where this introduces a slight bias, before the MSEj is calculated in the 
validation period.

The MSE  and RMSE of the GCP5 budget imbalance are calculated 
similarly. GCP data are split into matching five-year blocks and the MSE 
is determined for each independent five-year block.

To allow quantitative comparison of different models and a statisti-
cal comparison to the GCP, some confidence bounds must be placed 
on the generalization error. Cross-validation produces a distribution 
of MSE values (MSEj) obtained for different choices of the five-year 
validation blocks (j). Although the validation blocks are independent, 
the training data for each subjugate model overlap strongly. Therefore, 
the variance of MSEj values captures only some of the uncertainty of 
the generalization error. To estimate the true generalization error we 
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use a heuristic method which relies on rescaling the variance of MSEj 
values obtained from cross-validation38:

var (MSE) ≈ ( 1
M + n2

n1
) var (MSEj) (7)

where n2 is the length of the validation period and n1 is the length of the 
training period for the model. Using this formula, we obtain values of 
0.25 ± 0.08, 0.36 ± 0.12, 0.55 ± 0.31 and 0.58 ± 0.17 (1σ) for the MSE of 
the Weighted-T model, Tropical-T model, ENSO model and the GCP, 
respectively. We use the delta method (which involves a mapping 
according to a first-order Taylor expansion of the derivative) to esti-
mate the corresponding RMSE values.

We perform two sensitivity tests to further investigate the role of 
volcanic activity and the ocean model in our regression analysis. We 
repeat the regression analysis including stratospheric aerosol optical 
depth34 as an additional predictor to better capture the influence of 
volcanic eruptions on land carbon exchange. Results and regres-
sion parameters are presented in Extended Data Table 1. Although 
the Weighted-T model itself does not benefit from the additional 
predictor and we observe slightly improved performance of the 
ENSO and Tropical-T model, the Weighted-T model continues to 
outperform both. When the period of the Mount Pinatubo eruption 
(1991–1993) is excluded from the regression analysis instead, the 
performance of all models increases (Extended Data Table 3) but the 
results remain qualitatively the same. We also repeat the regression 
analysis using the mean of GCP ocean sink estimates instead of the 
Joos et al. pulse-response model. This leads to a minor improvement 
of the RMSE of all model configurations but does not alter our conclu-
sions (Extended Data Table 2).

To support our claim that the GCP budget imbalance and the 
residual of our regression model are comparable quantities, we 
correct the GCP budget imbalance with a fit of the imbalance to 
the atmospheric CO2 concentration. After cross-validation, this 
yields an RMSE of 0.8 ± 0.11 which is higher than the value calcu-
lated without the additional fitting correction. This shows that 
the atmospheric CO2 record has no predictive power for the GCP 
budget imbalance and that our results are not an artefact of addi-
tional tuning.

Finally, we repeat the regression analysis after changing the CO2 
term to a logarithmic relationship, that is, b × ln(CO2), which does not 
substantially change the performance of the models.

GCP emission verification
Following refs. 3,4, we benchmark our ability to verify reported fos-
sil fuel and land use change emissions from the GCP global carbon 
budget5 using its residual imbalance as a metric of uncertainty. The 
budget imbalance is temporally autocorrelated and best repre-
sented by an AR(1) process with an AR coefficient of 0.35 as deter-
mined by the ARMIA function of the Python statsmodel package. 
Monte Carlo simulations (n = 200,000) of the GCP budget imbalance 
represented as this AR(1)-processes find a cumulative uncertainty 
of 4.4 GtC (95% CI) after five years, or 8.8% assuming ongoing emis-
sions of 10 GtC yr−1.

Data availability
Jena CarboScope inversion results including gridded temperature 
sensitivities γi are available from: https://www.bgc-jena.mpg.de/
CarboScope/?ID=sEXTocNEET_v2021. Source data are provided with 
this paper. All other data used in this study are publicly available as 
cited. We also archived copies of the datasets on Zenodo together with 
the Python code used for the analysis41.

Code availability
Python code for the derivation and visualization of the regression 
model is available on Zenodo: https://doi.org/10.5281/zenodo.8019283 
(ref. 41).
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Extended Data Fig. 1 | Evolution of the RMSE of different regression model 
configurations and the budget imbalance of the Global Carbon Project 2021. 
RMSE values are calculated for a 5-year window of validation data and are plotted 

at the center of the window. The remaining 55 years are used as training data 
for the regression and are unused in the case of the GCP budget imbalance (see 
Methods).
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Extended Data Fig. 2 | Evolution of the RMSE in different model configurations on decadal time scales. This figure is similar to Extended Data Fig. 1 but with a  
10-year running mean applied to the time series of residual model error ϵ before calculating the RMSE in each validation period.
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Extended Data Fig. 3 | Re-evaluated global carbon cycle since 1900 from  
a special model configuration including volcanic activity. Panels (a) and (b) of 
this figure are identical to Fig. 1a,b  in the manuscript but extended to 1900 and 
with the land sink model including stratospheric optical thickness at 550 nm34 

as an additional predictor. Atmospheric CO2 growth rate is calculated from a 
spline fit to Law Dome ice core data until 195840 and from the average of directly 
observed CO2 concentrations at Mauna Loa and South Pole after38.
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Extended Data Fig. 4 | Evolution of the RMSE in special model configurations including volcanic activity. This figure is similar to Extended Data Fig. 1 but for 
results including stratospheric optical thickness at 550 nm34 as an additional predictor in net the land sink regressions.
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Extended Data Fig. 5 | Re-evaluation of the global carbon cycle since 1900. 
Panels (a) and (b) of this figure are identical to Fig. 1a,b  in the manuscript but 
starting in 1900. Atmospheric CO2 growth rate is calculated from a spline fit to 

Law Dome ice core data until 195840 and from the average of directly observed 
CO2 concentrations at Mauna Loa and South Pole after38.
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Extended Data Table 1 | Regression results and performance metrics for various model configurations including volcanic 
activity

Same as Table 1 but the regression model configurations include stratospheric optical thickness at 550 nm (SAOD)34 as an additional predictor, that is, 
Frep −Omod − AGRobs = a×Γ + b× CO2 + c+ d× SAOD+ ϵ.
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Extended Data Table 2 | Regression results and performance metrics for various model configurations using a different 
ocean sink estimate

Same as Table 1 but the GCP ocean sink estimate is used instead of the Joos et al. ocean model in the tuning and validation of the regression models.
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Extended Data Table 3 | Regression results and performance metrics for various model configurations with special 
treatment of the Pinatubo eruption years

Same as Table 1 but years 1991–1993 are excluded in the tuning and validation of the models.

http://www.nature.com/natureclimatechange

	Surprising stability of recent global carbon cycling enables improved fossil fuel emission verification
	Simple regression model of the net land sink
	Surprising stability of the carbon cycle
	Verifying global fossil fuel emissions
	Online content
	Fig. 1 Re-evaluation of Earth’s carbon budget.
	Fig. 2 Fossil fuel emissions and time-integrated difference between inferred and reported fossil fuel emissions.
	Extended Data Fig. 1 Evolution of the RMSE of different regression model configurations and the budget imbalance of the Global Carbon Project 2021.
	Extended Data Fig. 2 Evolution of the RMSE in different model configurations on decadal time scales.
	Extended Data Fig. 3 Re-evaluated global carbon cycle since 1900 from a special model configuration including volcanic activity.
	Extended Data Fig. 4 Evolution of the RMSE in special model configurations including volcanic activity.
	Extended Data Fig. 5 Re-evaluation of the global carbon cycle since 1900.
	Table 1 Regression results and performance metrics for various model configurations using different inputs for predictor Γ and equivalent calculations for the Global Carbon Project between 1960 and 2020.
	Extended Data Table 1 Regression results and performance metrics for various model configurations including volcanic activity.
	Extended Data Table 2 Regression results and performance metrics for various model configurations using a different ocean sink estimate.
	Extended Data Table 3 Regression results and performance metrics for various model configurations with special treatment of the Pinatubo eruption years.




