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Abstract: We consider a class of models where the Standard Model (SM) and dark
matter (DM) belong to a conformal/scale-invariant theory at high energies. The
scale invariance is broken spontaneously at scale f , and the corresponding Goldstone
boson is the dilaton. In the low-energy theory, we assume DM interacts with the
SM only through the dilaton portal suppressed by the conformal breaking scale f .
Assuming f�TeV, the portal interactions are very feeble, and hence the DM is not
in thermal equilibrium with the SM bath. Therefore, ultraviolet freeze-in production
of DM is realized through the dilaton portal, which is most effective at the maximum
temperature of the SM bath. The temperature evolution critically depends on the
reheating dynamics, which we parameterize by a general equation of state w and
temperature at the end of reheating Trh. Implications of the reheating dynamics
are studied for DM production in this framework. We have identified regions of
parameter space that lead to the observed DM relic abundance for a wide range of
DM masses and reheating temperatures for a scalar, vector, or fermion DM.
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1 Introduction

The Standard Model (SM) of particle physics presents a remarkably successful description
of visible matter constituents and their interactions. However, there remain some of the
puzzles which are unanswered within the SM framework including the nature of dark matter
(DM), electroweak hierarchy problem, and fermion mass hierarchy. Some of these puzzles
can be addressed within the framework of strongly coupled gauge theories where the SM
Higgs boson emerges as a composite state or pseudo-Nambu-Goldstone boson (pNGB), see
for a review [1, 2]. Regarding the DM candidate within strongly coupled theories, one
possibility is that it is a pNGB state which ensures it to be naturally lighter than the
composite scale. Hence it forms a good weakly interacting massive particle (WIMP) DM
candidate [3–6] where DM is produced through the standard freeze-out mechanism assuming
it remains in thermal equilibrium at temperatures larger than DM mass. There is a vast
experimental program of DM searches including direct detection, indirect detection, and
collider searches for a WIMP DM, see e.g. [7]. However, there is no signal of WIMP DM
to date, which motivates to explore DM candidates beyond the WIMP or in general DM
production through the freeze-out paradigm.

In this work, we consider a framework where the SM and DM belong to a (strongly
coupled) conformal/scale-invariant theory. We assume the conformal invariance is sponta-
neously broken at scale f � vSM, where vSM = 246 GeV is the electroweak scale. Further-
more, we assume that the SM and DM do not have direct interactions below the conformal
invariance breaking scale f . The spontaneous breaking of scale invariance results in a
pseudo-Goldstone boson called, dilaton [8]. Requiring the scale invariance of the theory
dictates the form of dilaton interactions with the SM and DM in the low-energy effective
theory below scale Λ = 4πf [9–13]. It turns out that the dilaton interacts with the SM and
DM through dimension-five or higher operators suppressed by the scale f . Hence the effec-
tive couplings between the SM and DM through the dilaton portal is at least dimension-six
order. For low scale conformal breaking f , the SM and DM are in thermal equilibrium, and
hence the production of DM via the dilaton portal is realized through the thermal freeze-out
mechanism [14–20]. However, assuming the conformal invariance breaking scale f � vSM,
it is natural that SM and DM are out of thermal equilibrium. Hence the possible DM
production follows through the freeze-in mechanism, where DM is produced through the
SM annihilation via the dilaton portal or through direct decays/annihilation of the dilaton
field, see also [21–24].

The freeze-in mechanism relies on the fact that initial DM abundance is negligible
compared to the states in thermal equilibrium [25], see for a review [26]. Furthermore,
if the SM-DM interaction is a higher dimensional operator, as in our case, the freeze-in
mechanism also crucially depends on the maximum temperature in the early universe. In
particular, the DM production is dominated around the maximum temperature [27]. The
maximum temperature is usually assumed as the temperature at the end of reheating, Trh.
This is the only correct description if the reheating is instantaneous. However, the reheating
through perturbative decays of the inflaton field to the SM would be non-instantaneous,
which leads to an extended period of reheating. Assuming a non-instantaneous reheating
scenario, the maximum temperature Tmax can be much larger than the temperature at
the end of reheating phase Trh [28]. The maximum temperature Tmax depends on inflaton
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energy density at the end of inflation, the equation of state w during the reheating period,
and duration of reheating phase which can be parametrized by the temperature at the
end of reheating phase, Trh. The end of reheating is defined when the SM energy density
becomes equal to the inflaton energy density. Without specifying the details of the reheating
phase, we consider the general equation of state w in the range (−1/3, 1), where w = 0

corresponds to the matter-dominated phase during the reheating process. Recently there
has been significant studies on implications of the reheating dynamics on the production of
DM, see e.g. [29–39].

We study the implications of non-standard reheating dynamics on the ultraviolet (UV)
freeze-in production of DM through the dilaton portal. We consider a DM candidate to be
a scalar, fermion, or vector field. For simplicity, we assume no self-interactions for the DM
field, and dark matter mass is the only parameter of the dark sector. The dilaton portal
dynamics are completely fixed by two parameters; the dilaton mass and the conformal
breaking scale f . Furthermore, the reheating dynamics is parametrized effectively by three
parameters, the Hubble scale at the end of inflation, the equation of state w, and the
reheating temperature. We study the freeze-in production of the DM within this framework
and identify the parameter space where the observed DM abundance can be produced.

The paper is organized as follows: In Sec. 2 we present details of the dilaton portal
DM model with the effective low-energy Lagrangian including interactions of the dilaton
field with the SM and DM. In Sec. 3, we describe early universe cosmology with the non-
standard period of reheating defined with the equation of state w. Production of DM via
UV freeze-in is given in Sec. 4, where consider DM production through SM annihilation
as well as dilaton annihilation/decays when kinematically allowed. Finally, in Sec. 5 we
conclude our findings.

2 The model

In this section, we lay out a framework where freeze-in dark matter production via a dilaton
portal is realized. We assume a UV completion of the SM and DM involving a strongly
coupled nearly scale-invariant theory. The scale invariance is broken spontaneously and
the corresponding pseudo-Goldstone boson is the dilaton σ(x). Furthermore, we assume
the scale symmetry is realized nonlinearly below the symmetry breaking scale f , such that
under the scale transformation xµ → x′µ=e−ωxµ, the dilaton undergoes a shift symmetry
σ(x) → σ′(x′) = σ(x) + ωf . It is instructive to express the dilaton field as a conformal
compensator, i.e.

χ(x) = feσ(x)/f , (2.1)

such that it transforms linearly under the scale transformation, i.e. χ(x)→ χ′(x′)=eωχ(x).
The vacuum expectation value (VEV) of χ(x) sets the scale of spontaneous symmetry
breaking, i.e. 〈χ(x)〉≡f , which is determined by the underlying strong sector dynamics at
Λ=4πf .

In this work we consider the interactions of DM with the SM only through the dilaton
portal. In particular, we consider the following form of the Lagrangian

L = LSM + LDM + Ldilaton + LintSM + LintDM, (2.2)
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where LSM is the SM Lagrangians. As mentioned in the Introduction, we consider three
possibilities for DM X, i.e. scalar, fermion, or vector DM, with the following Lagrangian,

LDM =


1

2
∂µX∂

µX − 1

2
m2
XX

2, Scalar DM

iX /∂X −mXXX, Fermion DM

−1

4
XµνX

µν +
1

2
m2
XX

2
µ, Vector DM

(2.3)

where Xµν =∂µXν − ∂νXµ is the field strength tensor to the vector DM Xµ. The dilaton
Lagrangian is

Ldilaton =
1

2
∂µχ∂

µχ− V (χ), (2.4)

where we assume the following form for the dilaton potential,

V (χ) =
m2
σ

4f2
χ4

[
ln

(
χ

f

)
− 1

4

]
. (2.5)

It is convenient to rewrite the dilaton field χ in terms of canonically normalized physical
dilaton fluctuation σ by expanding the χ field around its VEV, i.e., χ = f +σ. The dilaton
Lagrangian in the canonical basis is

Ldilaton =
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 − 5

3!

m2
σ

f
σ3 − 11

4!

m2
σ

f2
σ4 +O(σ5). (2.6)

The interactions of the dilaton field σ with the SM and DM are dictated by the nonlinearly
realized scale invariance below scale Λ=4πf .

In this work we assume that scale invariance breaking scale Λ is much larger than the
electroweak scale, i.e. Λ � 1 TeV. Furthermore, as we are interested in UV freeze-in
production of dark matter, therefore usually temperatures involved are much larger than
the electroweak scale. Taking this into account, we define dilaton interactions with the
SM only in the electroweak symmetric phase (EWSP) for temperatures T above critical
temperature Tc ∼ 150 GeV. Note the SM electroweak symmetry is restored at T > Tc and
taking into account the thermal corrections at one-loop level, Higgs effective potential takes
the following form,

V (H,T ) ' µ2(T )|H|2 + λ(T )|H|4 (2.7)

where the Higgs quartic coupling is λ(T )∼λ ' 0.13, and the Higgs effective mass parameter
µ2(T ) can be approximated as,

µ2(T ) ≈

{
−λ v2EW T . Tc ,

β T 2 T > Tc .
(2.8)

with the parameter β ∼ 0.4.
In the SM electroweak symmetric phase, all the SM gauge and fermion fields are mass-

less. However, the SM Higgs doublet (four real scalar components, hi with i = 0, 1, 2, 3)
mass is m2

h = β T 2. Note this Higgs mass is one of the sources of explicit breaking of scale
invariance. In this case dilaton coupling with the Higgs field are,

LintSM ⊃
3∑
i=0

(
σ

f
+

σ2

2f2

)[
∂µhi∂

µhi − 2m2
hh

2
i

]
+ . . . , (2.9)
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where ellipses denote higher order interactions. Furthermore, the dialton interacts with the
SM fermions through the Yukawa terms,

LintSM ⊃
σ

f

[
ytQ̄LH̃tR + . . .

]
+ h.c., (2.10)

where H̃ = iσ2H
∗ and ellipsis represent the fermions with smaller Yukawa couplings. Since

top Yukawa coupling yt ∼ 1 being the largest coupling would be the most relevant for our
analysis. The dilaton interactions with the SM gauge bosons emerge due to RGE running
of their gauge couplings and the following form

LintSM ⊃
3∑
i=1

αi
8π
bi
σ

f
FiµνF

µν
i , (2.11)

where i = 1, 2, 3 corresponds to SM gauge groups U(1)Y , SU(1)L, and SU(3)c, respectively.
Whereas αi = g2i /4π and bi are the corresponding gauge couplings and beta-function coef-
ficients, respectively.

DM–Dilaton interactions: At the leading order the interaction Lagrangian for the dila-
ton field with the DM is given by,

LintDM =



(
σ

f
+

σ2

2f2

)[
∂µX∂

µX − 2m2
XX

2

]
, Scalar DM

−σ
f
mXXX, Fermion DM(
σ

f
+

σ2

2f2

)
m2
XX

2
µ, Vector DM

(2.12)

where we consider fermion DM as Dirac particle, however for Majorana fermion the above
interaction term is rescaled by factor 1/2.

3 Non-standard cosmology during the reheating phase

We assume a slow-roll inflationary paradigm with quasi-de Sitter expansion of the Universe
with Hubble parameter HI . The inflationary epoch of accelerated expansion ends with
a reheating phase where the inflaton field φ is assumed to transfer its energy density via
perturbative decays to the SM sector. Without specifying the details of reheating dynamics,
we assume inflaton energy density scales as ρφ ∝ a−3(1+w), where w is the equation of state
during the reheating phase, i.e. pφ = wρφ. During inflation w ' −1 and the end of inflation
is marked when w = −1/3. During the reheating phase, we assume w ∈ (−1/3, 5/3), where
w = 0 defines the matter-dominated universe and w = 1/3 corresponds to radiation-
dominated universe. The Hubble rate is given by,

H(a) ≡ ȧ

a
=

√
ρ(a)

3M2
Pl
, (3.1)

where MPl = 2.435×1018 GeV is the reduced Planck mass and over-dot is derivative w.r.t.
time t. Above the energy density ρ(a) is sum of the inflaton and the SM radiation energy
densities, i.e. ρ(a) = ρφ(a) + ρR(a). During the reheating phase inflaton energy density is
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dominant, i.e. ρφ(a)� ρR(a) for ae < a < arh, where ae and arh denote the end of inflation
and reheating phase, respectively. Furthermore, we assume that DM energy density ρX
remains sub-dominant component of the total energy density. The end of reheating phase
is defined when ρφ(arh) = ρR(arh).

The exact cosmological evolution of the reheating phase is determined by solving the
coupled Boltzmann equations,

ρ̇φ + 3(1 + w)Hρφ = −Γφρφ, ρ̇R + 4HρR = +Γφρφ, (3.2)

where Γφ is the perturbative decay width of the inflation field to SM radiation. Assuming
Γφ � 3(1 + w)H during the reheating phase ae . a . arh we can approximately solve the
above Boltzmann equations as,

ρφ ' 3M2
PlH

2
I

(
ae
a

)3(1+w)

, (3.3)

ρR ' 3M2
PlH

2
I

(
ae
arh

)3(1+w)/2[(ae
a

)3(1+w)/2

−
(
ae
a

)4]
, (3.4)

where we employed Γφ ' (5 − 3w)Hrh/2 with Hrh being the Hubble scale at the end of
reheating,

Hrh ≡ H(arh) = HI

(
ae
arh

)3(1+w)/2

. (3.5)

After the end of reheating, the inflaton energy density rapidly vanishes and standard cos-
mological evolution takes its course where SM radiation is the dominant energy density
until the matter-radiation equality, i.e. a = aeq. During the radiation-dominated epoch,
arh . a . aeq, the radiation energy density is given as,

ρR ' ρrh
(
arh
a

)4

, where ρrh ≡ 3M2
PlH

2
I

(
ae
arh

)3(1+w)

. (3.6)

It is instructive to write the Hubble parameter as a function of the scale factor,

H(a) =


HI

(
ae
a

) 3(1+w)
2

, ae < a ≤ arh ,

Hrh

(
arh
a

)2

, arh < a ≤ aeq ,

(3.7)

where Hrh is defined in (3.5). The temperature of the SM bath is defined in terms of the
SM radiation energy density as,

T =

(
30 ρR
π2g?(T )

)1/4

' Trh
(
g?(Trh)

g?(T )

)1/4


(
H(a)

Hrh

)1/4

, amax < a ≤ arh ,(
H(a)

Hrh

)1/2

, a > arh ,

(3.8)

where amax is the value of scale factor when temperature (or radiation energy density)
has its maximum value, see below Eq. (3.11). Whereas, g?(T ) is the effective number of
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relativistic d.o.f. contributing to the energy density. Temperature at the end of reheating
period Trh is defined as,

T 2
rh ≡

3

π

√
10

g?(Trh)
MPlHrh. (3.9)

In the following analysis, we treat temperature Trh as one of the free parameters of the
model.

Note that the initial condition for the radiation energy density at a = ae is ρR(ae) = 0,
therefore the temperature of the SM bath is also zero at the onset of reheating phase. The
maximum of radiation energy density or the maximum temperature Tmax is reached during
the reheating phase at a = amax < arh,

amax = ae

(
8

3(1 + w)

) 2
5−3w

, for − 1

3
< w <

5

3
. (3.10)

Hence using (3.4) and (3.9) the corresponding maximum temperature Tmax can be written
as,

T 4
max =

3(5− 3w)

8π

(
3(1 + w)

8

) 3(1+w)
5−3w

√
10

g?(Trh)
MPlHI T

2
rh, for − 1

3
< w <

5

3
. (3.11)

In the following analysis, we have three free parameters which determine non-standard
cosmological evolution during the reheating phase, namely (i) the Hubble scale at the end
of inflationHI , (ii) the temperature at the end of reheating Trh, and (iii) the equation of state
w which we take in the range (−1/3, 5/3). The value of the scale factor at the end of inflation
ae is arbitrary. With these three free parameters (HI , Trh, w) one can readily calculate all
the other quantities related to cosmological and thermal evolution. Now the inflationary
Hubble scale is constrained by the CMB measurement of the inflationary perturbations.
The current upper-bound from Planck data [40] reads as HI . 6×1013 GeV. An upper-
bound on the maximum temperature Tmax is set by the requirement that radiation energy
density is smaller than the total energy density at the end of inflation, i.e. ρR . 3M2

PlH
2
I .

Employing the upper-bound on HI , we get Tmax . 6.5×1015 GeV. Reheating temperature
is by default smaller than the maximum temperature, i.e. Trh < Tmax. Furthermore, the
BBN sets a lower-bound on the reheating temperature Trh & 1 MeV [41].

4 Dilaton portal dark matter production

In this section we discuss freeze-in production of dark matter via dilaton portal. The
Boltzmann equation for DM X is,

ṅX + 3HnX = CX +DX , (4.1)

where C/D are the collision/decay terms are,

CX ' n̄2X
[
〈σXX→SMSM v〉+ 〈σXX→σσ v〉

]
, (4.2)

DX ' 2nσ〈Γσ→XX〉, (4.3)
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with 〈σXX→SMSM v〉 and 〈Γφ→XX〉 being the thermally averaged annihilation cross section
and partial width, respectively. Above the equilibrium number density of species i with
spin Ji is defined as,

n̄i = (2Ji + 1)
m2
i T

2π2
K2

(mi

T

)
, (4.4)

where K2(x) is the Bessel function of second kind. Note that the decay term is only
relevant when mσ > 2mX . Furthermore, we assume no interaction between inflaton and
dilaton, therefore dilaton is produced through scatting and inverse decays of the SM fields.
Therefore, nσ is the number density of the dilaton field. If the interaction rate between the
SM and dilaton is larger than the Hubble scale then dilaton is in thermal equilibrium, i.e.
nσ = n̄σ. In general, we solve the following Boltzmann equation to get the dilaton number
density nσ,

ṅσ + 3Hnσ = n̄σ〈ΓSM→σ〉, (4.5)

where the thermally averaged SM annihilation to dilaton 〈ΓSM→σ〉 is dominated by the
top-Yukawa interaction term Eq. (2.10).

It is convenient to recast the Boltzmann equation (4.1) in terms of the comoving number
density NX = nXa

3 and as a function of temperature T ,

dNX
dT

= −
3a3rh
π

√
10

g?(T )
MPl

T 3
rh

T 6

[
CX +DX

]


8

3(1 + w)

(
Trh
T

) 7−w
1+w

, T ≥ Trh,

g?s(Trh)

g?s(T )
, T < Trh,

(4.6)

where g?s(T ) denote the effective number of relativistic d.o.f. contributing to entropy
density s = 2π2g?s(T )T 3/45. Dark matter present relic abundance can be calculated as,

ΩXh
2 =

mXnX(a0)

ρc h−2
=

mX

ρc h−2
NX(T0)

a3rh

s0
srh

, (4.7)

where nX(a0) is the DM number at present. Whereas, the second equality is obtained
employing entropy conservation with present entropy density s0 = 2970 cm−3 and srh ≡
s(Trh). Above the critical energy density is ρc = 1.054× 10−5h2 GeV cm−3

4.1 SM and dilaton scattering

The schematic diagrams contributing to the production of DM due to annihilation of SM
bath particles as well as the annihilation/decay of dilaton field are shown in Fig. 1. DM
production through the annihilation of the dilaton field is relevant when the latter is in
thermal equilibrium with the SM bath. As mentioned above, since we are interested in the
production of DM through UV freeze-in, therefore we consider SM annihilation to DM only
in the electroweak symmetric phase.
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X
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σ
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X
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X
Figure 1: Schematic diagrams for the freeze-in production of DM through the dilaton portal.

Scalar DM X: For the case of vector DM Xµ amplitude squared for the SM and dilaton
scattering processes are,

|MXX→hh|2 =

(
2m2

h + s
)2 (

2m2
X + s

)2
2f4 (m2

σ (Γ2
σ − 2s) +m4

σ + s2)
, (4.8)

|MXX→ViVi |2 =
b2iα

2
i

4π2
s2
(
2m2

X + s
)2

4f4
(

Γ2
σm

2
σ + (s−m2

σ)2
) , (4.9)

|MXX→σσ|2 =
1

2f4

[(
m2
σ + 2m2

X

)
2

u−m2
X

−
2m2

σ

(
m2
σ + 8m2

X + 3s
)

m2
σ − s

+

(
m2
σ + 2m2

X

)
2

t−m2
X

− 6m2
X

]2
,

(4.10)

where bi and αi are the beta-function coefficient and the gauge couplings with i = 1, 2, 3

for the SM gauge groups U(1)Y , SU(2)L, and SU(3)c, respectively.

The scattering rate CX can be approximated for the above processes as,

CX ≈



(
5 +

b2iα
2
i

8π2

) 3T 8

4π5f4
, T � mσ,mX(

4 +
b2iα

2
i

8π2

)2880T 12

π5f4m4
σ

, mσ � T � mX ,(
4 +

b2iα
2
i

8π2

) 9m9
XT

3

8π4f4m4
σ

exp
(−2mX

T

)
, mσ � mX � T

(4.11)

where summation over all the SM gauge bosons i is assumed.

Fermion DM X: For the case of vector DM Xµ amplitude squared for the SM and
dilaton scattering processes are,

|MXX→hh|2 =
49m2

X

(
2m2

h + s
)2 (

s− 4m2
X

)
4f4

(
Γ2
σm

2
σ + (m2

σ − s)
2
) , (4.12)

|MXX→ViVi |2 =
b2iα

2
i

4π2
49s2m2

X

(
s− 4m2

X

)
8f4

(
Γ2
σm

2
σ + (m2

σ − s)
2
) , (4.13)

|MXX→σσ|2 =
49m2

X

(
s− 4m2

X

) (
15m2

σ + s
)2

16f4
(

Γ2
σm

2
σ + (s−m2

σ)2
) . (4.14)
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The scattering rate CX for the fermion DM can be approximated as,

CX ≈



(
4 +

b2iα
2
i

8π2

) m2
XT

6

64π5f4
+

25m2
Xm

4
σT

2

4096
√

2π4f4
, T � mσ,mX(

4 +
b2iα

2
i

8π2

)18m2
XT

10

π5f4m4
σ

, mσ � T � mX ,(
4 +

b2iα
2
i

8π2

)75m4
XT

4

512π4f4
exp
(−2mX

T

)
, mσ � mX � T

(4.15)

Vector DM Xµ: For the case of vector DM Xµ amplitude squared for the SM and dilaton
scattering processes are,

|MXX→hh|2 =

(
2m2

h + s
)2 (−4sm2

X + 12m4
X + s2

)
2f4

(
Γ2
σm

2
σ + (s−m2

σ)2
) , (4.16)

|MXX→ViVi |2 =
b2iα

2
i

4π2
s2
(
−4sm2

X + 12m4
X + s2

)
4f4

(
Γ2
σm

2
σ + (s−m2

σ)2
) , (4.17)

|MXX→σσ|2 =

(
−4sm2

X + 12m4
X + s2

) (
7m2

σ + s
)2

2f4
(

Γ2
σm

2
σ + (s−m2

σ)2
) . (4.18)

In this case, neglecting the leading order phase space factor, the approximate form of
scatting rate CX is the same as that of the scalar DM case, i.e. Eq. (4.11).

4.2 Dilaton decays

For the dark matter lighter than the dilaton, the dominant contribution to the production
of DM is through the dilaton decays. In this case, the decay term DX in Eq. (4.1) is given
by,

DX = 2nσ
K1

(
mσ
T

)
K2

(
mσ
T

)



m3
σ

32πf2

√
1−

4m2
X

m2
σ

(
1 +

2m2
X

m2
σ

)2

, Scalar DM

mσm
2
X

8πf2

(
1−

4m2
X

m2
σ

)3/2

, Fermion DM

m3
σ

32πf2

√
1−

4m2
X

m2
σ

(
1−

4m2
X

m2
σ

+
12m4

X

m4
σ

)
, Vector DM

(4.19)

where nσ is the number density of the dilaton field. We note that in most natural parame-
ter space when f � vSM the dilaton field is out of thermal equilibrium with the SM bath,
therefore the number density of the dilaton nσ is calculated through the SM annihilation
and through inverse decays of the SM fields. The dominant contribution to the dilaton pro-
duction is due to scattering processes involving top-Yukawa coupling (2.10), i.e. ytQLH̃tR,
see also [21, 23]. The condition for dilaton to be in thermal equilibrium reads as,

1 <
〈ΓSM→σ〉

H
∼ 0.04

y2t T
3

f2H
∼ 0.01

MPl

f2


T 2
rh

T
, T ≥ Trh

T, T < Trh

(4.20)
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which maximizes for T = Trh and the thermalization condition becomes Trh & 102f2/MPl.

4.3 Numerical Analysis

Making use of the results from the previous section our goal is to solve the Boltzmann
equation (4.6) to calculate the comoving number density and thus the relic abundance using
Eq. (4.7). Before discussing the numerical results, we observe that our model contains six
free parameters: mX , mσ, f , HI , Trh, and w. Note, however, that dilaton mass cannot
be arbitrarily smaller than the scale invariance breaking scale f . Naturalness suggests the
dilaton mass of the same order as breaking scale f , therefore mσ/f shows the amount of
tuning. In the following, we show the dependence of dark matter comoving number density
w.r.t temperature evolution for various choices of these parameters.

Dark matter mass mX dependance: In Fig. 2, we present NX as a function of Trh/T
for different choices of DM mass for scalar/vector DM (left-panel) and fermion DM (right-
panel). We fix the remaining parameters as: w = 0, f = 1014 GeV, HI = 1013 GeV and
Trh = 1010 GeV, with mσ/f = 1%. For these choice of parameters maximum temperature
obtained is Tmax ∼ 103Trh. In this figure, we show T = mσ = 1012 GeV with orange
dashed vertical line, to the left of this line T > mσ and hence dilaton can be produced
on-shell via inverse decays of SM fields, and therefore its decays to DM (for mσ > 2mX) are
the dominant source of DM production. However, for temperatures smaller than dilaton
mass T < mσ, the dominant source of DM production is SM annihilation to DM through
an effective dimension-8 operator, where s-channel dilaton is integrated out. In Fig. 2
(left-panel) for scalar/vector DM illustrates these features, where comoving number density
acquires maximum value for temperatures mσ > T > Trh for DM masses mX < Tmax. We
consider three illustrative values for mX = Trh,mσ, 2mσ, however, we note that DM mass
mX < Trh, the results are same as that of mX = Trh case.

The right-panel of Fig. 2 shows the case when DM is a Dirac fermion. We consider
the three values of DM mass mX = Trh,mσ, 2mσ shown as solid, long-dashed, and dashed
curves, respectively. In this case, we also note that maximum comoving number density is
attained when mσ > T > Trh. As mentioned above, the cross-section is proportional to
fermionic DM mass therefore for dark matter mass smaller than Trh the DM number density
scales as m2

X/T
2
rh at the end of reheating. Note that once the DM mass becomes larger than

the temperature, i.e. mX > T , the number density becomes exponentially suppressed due
to Boltzmann suppression.

Dilaton mass mσ dependance: For the case of scalar/vector DM (left-panel) and
fermion DM (right-panel) in Fig. 3, we illustrate the dependance of comoving number
density as a function of temperature for various values of dilaton mass mσ with fixed
mX = Trh = 1010 GeV, f = 1014 GeV, HI = 1013 GeV and w = 0. We consider three
choices for the dilaton mass mσ/Trh = 100, 10, 1, whereas for mσ/Trh < 1 the comoving
number density remains almost same as for the case mσ/Trh = 1. Again one can notice
the scaling of NX w.r.t. T for T > mσ where the dilaton can be produced on-shell and for
the case when T < mσ where the dilaton can be effectively integrated out. Furthermore,
due to naturalness one expects that the dilaton mass of the similar order as the conformal
breaking scale f .
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Figure 2: Comoving number density NX for scalar/vector DM (left-panel) and Dirac fermion DM
(right-panel) as function of Trh/T for different choices DM mass mX .

Figure 3: Comoving number density NX for scalar/vector DM (left-panel) and Dirac fermion DM
(right-panel) as function of Trh/T for different choices dilaton mass mσ.

Dependance on equation of state during reheating w: The non-trivial dependance
on the equation of state w during reheating is given in Eq. (4.6) as

(
Trh/T

)(7−w)/(1+w). This
shows suppression in the number density with increasing w. In Fig. 4 illustrates this feature
where comoving number density NX is shown as a function of Trh/T for w = 0, 1/3, 2/3, 1

with fixed values of mX = 1 GeV,mσ = 1012 GeV, f = 1014 GeV, and Trh = 1010 GeV
for the scalar/vector DM (left-panel) and fermion DM (right-panel). It is clear that non-
standard cosmological effects are only relevant for temperatures T < Trh, i.e. during the
reheating phase.

Dark matter relic abundance: There are six free parameters in our model namely, mX ,
mσ, f , HI , Trh, and w. In the following, we present regions of parameter space in the DM
massmX vs the reheating temperature Trh with fixed choices of all the remaining parameters
such that we produced to observed DM relic abundance ΩXh

2 = 0.12. In particular, in all
the analysis we choose the Hubble scale at the end of inflation He = 1013 GeV and fix
the ratio of dilaton mass to conformal breaking scale mσ/f = 1%. Whereas the value of
conformal breaking scale fixes the observed DM relic abundance for a specific choice of the
equation of state parameter w, which we take w = 0, 1/3, 2/3, 1.

In Fig. 5, we present contours of observed DM relic abundance for the case of scalar/vector
DM in the Trh vsmχ plane for different values of equation of state w and f with fixed values
of mσ/f = 1% and HI = 1013 GeV. The gray shaded region represents parameter space
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Figure 4: Comoving number density NX for scalar/vector DM (left-panel) and Dirac fermion DM
(right-panel) as function of Trh/T for different choices of equation of state w.

Figure 5: Contours of observed DM relic abundance for scalar/vector DM as function of mX and
Trh for different choices equation of state parameter w.

where the DM would be in thermal equilibrium with the SM bath. The orange shaded
region represents the parameter space where mX > Tmax and dashed-orange line denotes
mX = Trh. The three panels of this figure show the results for conformal breaking scale
f = 1014, 1012, 1010 GeV from left to right, respectively. The curves show observed DM
abundance for DM masses from 10−6 GeV to 1012 GeV as a function of the reheating tem-
perature. Note that for a low DM mass mχ we require larger Trh to produce desired DM
abundance, whereas for the high DM mass mχ we require smaller Trh. The lower values of
Trh imply that the reheating phase lasts longer and therefore, the impact of non-standard
cosmology during this phase has a significant effect on the DM production. This effect is
manifestly shown in Fig. 5. Note that the dip in these curves for large DM masses is around
mX ∼ mσ as the temperature dependence of the source term changes as shown in Eq. (4.11)
for the cases of scalar/vector DM.

In Fig. 6 we show the fermionic DM results for parameters in mX − Trh plane which
produce observed DM relic abundance for different choices of w and f , whereas we fix
mσ/f = 1% and HI = 1013 GeV. Similar to Fig. 5, in Fig. 6 the gray shaded region repre-
sents the DM in thermal equilibrium with the SM bath and the orange shaded region shows
the DM mass larger than the maximum temperature of the thermal bath, i.e. mX > Tmax.
Note that in the case of fermionic DM, unlike the bosonic DM case, the scattering cross-
section is proportional to DM mass squared. Therefore the DM thermalization condition is
proportional to DM mass, for larger masses the cross-section is large and hence it is ther-
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Figure 6: Contours of observed DM relic abundance for fermionic DM as function of mX and Trh
for different choices equation of state parameter w.

malized, whereas the constraint weakens for lower DM masses. Furthermore, due to the
same DM mass dependence notice that for larger values of conformal breaking scaling, e.g.
f = 1014 GeV (left-panel) the observed DM abundance can only be achieved for DM mass
mX > 106 GeV, in contrast to the scalar/vector DM case where sub-GeV masses are also
allowed. Note that the effect of non-standard cosmology during the reheating phase is very
similar to that of the scalar/vector DM case, i.e. for smaller values of reheating temperature
the duration of reheating phase is larger and therefore the effect of the equation of state
w during this phase is significant. However, for larger reheating temperatures the effect is
irrelevant.

5 Conclusions

In this work, we have studied the implication of non-standard cosmology during reheating
on the ultraviolet freeze-in production of DM via the dilaton portal. We assume the SM
and DM are part of a (strongly coupled) conformal/scale-invariant theory, where the scale
invariance is broken spontaneously at scale f . As a result of spontaneous breaking of scale
invariance low-energy effective theory, below scale Λ = 4πf , contains a dilaton field σ.
Such that the dilaton field naturally couples to the SM and DM. This coupling is higher
dimensional and therefore it is suppressed by the breaking scale f . Furthermore, we assume
in the low-energy effective theory the SM interacts with the DM only through the dilaton
portal coupling. In this scenario, the lowest dimensional interaction between the SM and
DM is a dimension-six operator. For high scale conformal breaking f , such interaction is
naturally very small and as a result, the DM is not in thermal equilibrium with the SM
bath. Therefore, the DM can only be produced in the early universe through the freeze-in
mechanism. There are two production processes through which the DM can be produced:
(i) through the annihilation of SM particles to DM, and (ii) through direct decays of dilaton
field to DM when the dilaton mass is larger than twice the DM mass. We studied the cases
when the DM is a scalar, vector, or a (Dirac) fermion field.

The ultraviolet freeze-in production of DM is highly sensitive to the maximum temper-
ature of the SM bath particles as well as the reheating dynamics. We have parameterized
the reheating dynamics with three parameters, (a) Hubble scale at the end of inflation HI

which determines inflaton energy density at the end of inflation, (b) the equation of state
w of the inflaton field during reheating, and (c) the reheating temperature Trh when the
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inflaton energy density is equal to that of the SM, therefore it determines the duration
of reheating. The dilaton portal dynamics involve two parameters, the dilaton mass mσ,
and the conformal breaking scale f . Apart from these five parameters, DM mass mX (for
scalar/vector/fermion) is the only remaining free parameter. In this study, we considered
a high scale inflationary scenario, where the Hubble scale at the end of inflation is fixed to
be, HI = 1013 GeV. With this choice of HI , assuming instantaneous thermalization the
maximum temperature attained by the SM bath is Tmax ∼ 1015 GeV ×

√
Trh/(1015 GeV),

see Eq. (3.11). For the equation of state parameter, we choose w = 0, 1/3, 2/3, 1, where
w = 0 and w = 1/3 corresponds to the matter-dominated and radiation-dominated reheat-
ing which are achieved for quadratic and quartic inflaton potentials, respectively. Present
the dependence of the DM number density as a function of temperature on various param-
eters of the model in Figs. 2–4.

In Fig. 5 and Fig. 6, we present the results in the Trh−mX plane for the scalar/vector
and fermion DM cases, respectively. We consider high scale conformal breaking scale
f = 1014, 1012, 1010 GeV and we fix the dilaton mass mσ/f = 1%. It is shown that DM pro-
duction is sensitive to the conformal breaking scale f as the production cross-section scales
as 1/f4. To realize DM freeze-in production mechanism, one requires high scale conformal
breaking. For the case of scalar/vector DM (Fig. 5), the observed DM abundance can be
achieved for DM masses in the range 10−5− 1012 GeV depending on the reheating temper-
ature Trh and breaking scale f . Whereas, for the case of fermion DM (Fig. 6), the observed
DM abundance can be achieved for DM masses in the range 102 − 1012 GeV depending on
the reheating temperature Trh and breaking scale f . We conclude that the dilaton portal
offers a natural realization of ultraviolet freeze-in production of DM for a wide DM mass
range and its sensitivity on the reheating dynamics is investigated.
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